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A Murnaghan-Nakayama rule for Grothendieck
polynomials of Grassmannian type

Dang Tuan Hiep, Nguyen Duc Khanh, Tran Ha Son, Do Le Hai Thuy

Abstract

We consider the Grothendieck polynomials appearing in the K-theory of Grassman-
nians, which are analogs of Schur polynomials. This paper aims to establish a version
of the Murnaghan-Nakayama rule for Grothendieck polynomials of the Grassmannian
type. This rule allows us to express the product of a Grothendieck polynomial with
a power sum symmetric polynomial into a linear combination of other Grothendieck
polynomials.
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1 Introduction

The K-theory of flag varieties was studied by Kostant and Kumar [KK87], and by De-
mazure [Dem74]. In [Las07], [LS82], Lascoux and Schutzenberger introduced the Grothendieck
polynomials as representatives for the structure sheaves of the Schubert varieties in a
flag variety. For any permutation w ∈

⋃
m≥1 Sm, the Grothendieck polynomial Gw :=

Gw(x1, x2, . . . ) is defined by isobaric divided difference operators. Fomin and Kirilov
found combinatorial insight of these polynomials in [FK94], [FK96].

Let sλ be the Schur function associated with a partition λ, and pk be the power-
sum symmetric functions of degree k [Mac91]. The classical Murnaghan-Nakayama rule
describes the decomposition of the product sλpk to the sum of Schur functions [Mac91] as
follows. We have

sλpk =
∑
µ

(−1)r(µ/λ)+1sµ,
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where the sum runs over all partitions µ such that µ/λ is a ribbon of size k, r(µ/λ) is the
number of rows of skew shape µ/λ.

The classical Murnaghan-Nakayama rule plays an important role in the representa-
tion theory of the symmetric groups. It gave a formula for the character table (see
[Mur37], [Nak40a], [Nak40b]). For this reason, many extensions and generalizations of
classical Murnaghan-Nakayama rule were studied. Indeed, a version for non-commutative
symmetric functions is given by Fomin and Green in [FG98] (it led to formulas for char-
acters of representations associated with stable Schubert and Grothendieck polynomi-
als). A skew version and its generalization of multiplication with quantum power sum
function are given by [AM11], [Kon12]. A version for noncommutative Schur functions
can be found in [Tew16]. A plethystic version is given by [Wil16]. A version for loop
Schur functions is given by [Ros14] (it provides a fundamental step in the orbifold Gro-
mov–Witten/Donaldson–Thomas correspondence in [RZ13]). A version in the cohomology
of an affine Grassmannian can be found in [BSZ11]. An extended version to Schubert poly-
nomials and the quantum cohomology of Grassmannians can be found in [MS18].

In this paper, we restrict our attention on the simplest complex flag variety: the
Grassmann variety of n dimensional subspaces of Cn+m. The Grothendieck polynomials in
this case are indexed by Grassmanian permutations [Buc02]. Namely, let λ = (λ1, . . . , λn)
be a partition of length at most n. The Grassmannian permutation wλ of descent n is
defined by wλ(i) = i + λn+1−i for i ∈ [1, n] and wλ(i) < wλ(i + 1) for all i 6= n. Set
Gλ = Gwλ . There are several new formulas for Gλ, for example, in the terms of set-valued
tableaux [Buc02] or Jacobi-Trudy identity [Kir16]. We here recall the Weyl identity given
by Ikeda and Naruse [IN13] (see also [IS14]). Namely,

Gλ = det(xλj+n−ji (1 + βxi)j−1)n×n∏
1≤i<j≤n(xi − xj)

,

where β is a formal parameter. Remind that, if β = 0, then Gλ is identified with the
Schur function sλ. The products of Gλ with other special symmetric polynomials ek, hk
are mentioned in [Len00], in which Lenart studied the Pieri rules of the Grassmannian
Grothendieck polynomials. Our work on the product Gλpk can be considered as a K-
theoretic version of the classical Murnaghan-Nakayama rule.

Let λ and µ be partions of length at most n and λ ≤ µ. Let |µ/λ|, c(µ/λ), r(µ/λ) be
the size, number of columns, number of rows of the skew shape µ/λ. We say two boxes in
a skew shape are adjacent whenever they share an edge, and we say a skew shape µ/λ is
connected whenever every pair of its boxes is connected by a sequence of adjacent boxes.
A ribbon is a connected skew shape with no 2 × 2 square. The main result of this paper
is stated as follows.

Theorem 1. For any partition λ ∈ Pn and k ∈ N, we have

Gλpk =
∑
µ

(−β)|µ/λ|−k(−1)k−c(µ/λ)
(
r(µ/λ)− 1
k − c(µ/λ)

)
Gµ, (1)

where the sum runs over all partitions µ ∈ Pn, µ ≥ λ such that c(µ/λ) ≤ k, µ/λ is
connected and contains at least a ribbon of size k along with its northwest border.

This paper is organized as follows. In Section 2 we recall the basic knowledge related to
symmetric polynomials, partitions, diagrams, binary tableaux, Grothendieck polynomials
of Grassmannian type. In Section 3 we prove our main result.
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2 Preliminaries

2.1 Symmetric polynomials

A polynomial f(x1, . . . , xn) in n variables is said to be symmetric if for all permutations
σ ∈ Sn, we have

f(xσ(1), . . . , xσ(n)) = f(x1, . . . , xn).

There are some fundamental symmetric polynomials: The k-th elementary symmetric
polynomial

ek =
∑

1≤i1<···<ik≤n
xi1 . . . xik ,

the k-th complete homogeneous symmetric polynomial

hk =
∑

1≤i1≤···≤ik≤n
xi1 . . . xik ,

and the k-th power sum symmetric polynomial

pk =
n∑
i=1

xki .

The next lemma gives us a way to write the power sum symmetric polynomial in terms of
elementary and complete homogeneous symmetric polynomials. It is one of the important
keys in the proof of Theorem 1.

Lemma 1. Let k be a positive integer. Then we have

pk =
k−1∑
i=0

(−1)i(k − i)eihk−i. (2)

Proof. Consider the following generating functions

H(t) =
∑
k≥0

hkt
k =

n∏
i=1

1
1− xit

,

E(t) =
∑
k≥0

ekt
k =

n∏
i=1

(1 + xit),

P (t) =
∑
k≥1

pkt
k−1 =

n∑
i=1

xi
1− xit

.

By (2.6), (2.10) in [Mac98], we have

P (t) = H ′(t)/H(t) = H ′(t)E(−t).

Compare the coefficients of tk−1 in both sides of the identity, we get the conclusion.
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2.2 Partitions, diagrams and binary tableaux

A non-negative integer sequence λ = (λ1, λ2, . . . ) is called a partition if λ1 ≥ λ2 ≥ . . . .

If λ = (λ1, λ2, . . . , λl) with λl > 0 and
l∑

i=1
λi = m, we write l(λ) = l, |λ| = m. We call

l(λ) the length, and |λ| the size of the partition λ. Each partition λ is presented by a
Young diagram that is a collection of boxes such that: The leftmost boxes of each row
are in a column, and the numbers of boxes from top row to bottom row are λ1, λ2, . . . ,
respectively.

Example 1. The Young diagram associated to the partition λ = (3, 3, 2, 1, 0, 0) is

Let λ = (λ1, λ2, . . . ) and ν = (ν1, ν2, . . . ) be partitions. We define the sum of two
partitions by λ + ν = (λ1 + ν1, λ2 + ν2, . . . ). For a non-negative integer n, we denote Pn
the set of all partition of length at most n. Let (1n) be the n-tuple partition (1, . . . , 1),
and λ = (λ1, . . . , λn) ∈ Pn, then we have λ+ (1n) = (λ1 + 1, . . . , λn + 1).

Let λ = (λ1, λ2, . . . ) and µ = (µ1, µ2, . . . ) be two partitions. We say that λ is smaller
than µ if and only if λi ≤ µi for all i, and we write λ ≤ µ. In this case, we define the
skew Young diagram µ/λ as the result of removing boxes in the Young diagram λ from
the Young diagram µ. We write |µ/λ| = |µ| − |λ| for the size, and r(µ/λ), c(µ/λ) for the
number of rows, columns of the skew Young diagram µ/λ respectively. We say two boxes
in a skew shape are adjacent whenever they share an edge, and we say a skew shape µ/λ is
connected whenever every pair of its boxes is connected by a sequence of adjacent boxes.
A ribbon is a connected skew shape with no 2×2 square. A binary tableau T of skew shape
µ/λ is a result of filling the skew Young diagram µ/λ by the alphabet {0, 1} such that
the entry in the bottom of each column is 1. A binary tableau T is said to have content
α(T ) = (α0, α1) if αi = αi(T ) is the number of entries i in T . We write sh(T ) for the
shape of the tableau T .

Example 2. We consider partitions in P6: λ = (3, 3, 2, 1, 0, 0) and µ = (4, 3, 3, 3, 1, 1).
Then µ ≥ λ and the skew diagram µ/λ has r(µ/λ) = 5 rows, c(µ/λ) = 4 columns. In this
case µ/λ is not connected and is not a ribbon. However, it contains ribbons of size 1, 2, 3,
for example
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The following tableau T is a binary tableau of skew shape sh(T ) = µ/λ.

1

0
1 1

1
1

Here the diagram in blue means the Young diagram λ removed from the Young diagram
µ. The content of the binary tableau T is α(T ) = (1, 5).

2.3 Grothendieck polynomials of Grassmannian type

The K-theory of flag varieties was studied by Kostant and Kumar [KK87], and by De-
mazure [Dem74]. The Grothendieck polynomials were introduced by Lascoux and Schutzen-
berger as representatives for the structure sheaves of the Schubert varieties in a flag variety
(see [Las07], [LS82]). For any permutation w ∈

⋃
m≥1 Sm, the Grothendieck polynomial

Gw := Gw(x1, x2, . . . ) is defined by isobaric divided difference operators (see [Las07],
[LS82]). In particular, for Grassmann varieties of n dimensional subspaces of Cn+m, the
Grothendieck polynomials are indexed by Grassmanian permutations [Buc02]. Namely,
let λ = (λ1, . . . , λn) be a partition of length at most n. The Grassmannian permutation
wλ of descent n is defined by wλ(i) = i + λn+1−i for i ∈ [1, n] and wλ(i) < wλ(i + 1)
for all i 6= n. Set Gλ = Gwλ . By [IN13], the polynomial can be defined by the following
bi-alternant formula

Gλ = det(xλj+n−ji (1 + βxi)j−1)n×n
det(xn−ji )n×n

,

where the denominator
det(xn−ji )n×n =

∏
1≤i<j≤n

(xi − xj)

is the well-known Vandermonde determinant.
Example 3. For n = 2 and λ = (2, 1), we have

G(2,1)(x1, x2) =

∣∣∣∣∣x3
1 x1(1 + βx1)
x3

2 x2(1 + βx2)

∣∣∣∣∣
x1 − x2

= x2
1x2 + x1x

2
2 + βx2

1x
2
2.

Remark 1. For β = 0, the Grothendieck polynomial Gλ is coincide with the Schur
polyninomial sλ.

3 Proof of the main theorem

We only need to focus on the case β 6= 0. Indeed, if β = 0, then Gλ is the Schur function
associated with partition λ. The Murnaghan-Nakayama rule for Schur polynomials is very
well-known (see [Mac91]). When β 6= 0, set

G̃λ(x1, . . . , xn) = β|λ|Gλ

(
x1
β
, . . . ,

xn
β

)
.

Theorem 1 can be reduced to the following theorem.
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Theorem 2. For any partition λ ∈ Pn and k ∈ N, we have

G̃λpk =
∑
µ

(−1)|µ/λ|−c(µ/λ)
(
r(µ/λ)− 1
k − c(µ/λ)

)
G̃µ, (3)

where the sum runs over all partitions µ ∈ Pn, µ ≥ λ such that c(µ/λ) ≤ k, µ/λ is
connected and contains a ribbon of size k along with its northwest border.

Before going to the proof, we need to restate the following lemma. It was used in
[Len00] as one of the important keys to obtain the Pieri rules for Grothendieck polynomials
of Grassmannian type.

Lemma 2. [Len00, Theorem 3.2] For any partition λ ∈ Pn and k ∈ N, we have

G̃λek =
∑

T :sh(T )=µ/λ
(−1)α0(T )G̃µ, (4)

G̃λhk =
∑

T :sh(T )=µ/λ
(−1)α0(T )G̃µ. (5)

The first sum runs over all binary tableaux T of shape µ/λ with µ ∈ Pn, λ ≤ µ ≤ λ+(1n),
α1(T ) = k. The second sum runs over all binary tableaux T of shape µ/λ with µ ∈ Pn ,
λ ≤ µ, α1(T ) = k, no two 1’s in the same column.

Proof of Theorem 2. By Lemmas 1 and 2, we have

G̃λpk =
k−1∑
i=0

(−1)i(k − i)G̃λeihk−i (6)

=
k−1∑
i=0

(−1)i(k − i)
∑

T1:sh(T1)=ν/λ
(−1)α0(T1)G̃νhk−i (7)

=
k−1∑
i=0

(−1)i(k − i)
∑

T1:sh(T1)=ν/λ
(−1)α0(T1) ∑

T2:sh(T2)=µ/ν
(−1)α0(T2)G̃µ (8)

=
∑
µ

∑
T=T1∪T2:sh(T )=µ/λ

(−1)|µ/λ|−α1(T2)α1(T2)G̃µ. (9)

The last sum runs over binary tableaux T = T1 ∪ T2 of shape µ/λ, with µ ∈ Pn, µ ≥ λ,
α1(T ) = k, and T1, T2 are of the forms mentioned in the equalities (4), (5), respectively.
Fix such a shape µ containing λ, we are going to determine the form of µ and the coeffi-
cient of G̃µ appearing in the decomposition of G̃λpk.

First step: Construct all tableaux T mentioned in (9). We proceed as follows.

• First, we numbering all boxes in the bottom of each column of the skew diagram
µ/λ by 1. Let B be the set of boxes we have created.

• Now, we will choose a subset of boxes in B and decide it as the set of boxes in
bottom of T2, say B2. In fact, we can not choose such subset randomly because
its completion in B, say B1, will be a subset of boxes in bottom of T1. Hence, it
must satisfy a strict condition that the boxes in B1 is located in the skew diagram
(λ + (1n))/λ. So, to choose a subset B2, we should start from choosing B1. Fix a
number of entries 1 in T2, say α1(T2) = j, we have
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– The cardinal of B1 is c(µ/λ)− j.
– The elements in B1 are chosen randomly from γ := B ∩ (λ+ (1n))/λ.

Hence for a fixed α1(T2) = j, the number of choices of B2 is equal the number of
choices of B1 and it is (

|γ|
c(µ/λ)− j

)
. (10)

Since B2 = B \ B1, we have

j = |B2| ∈ [|B \ B1|, |B|] = [c(µ/λ)− |γ|, c(µ/λ)]. (11)

• Now, the last step to construct tableau T is locating remaining entries 1 of T which
is not in the bottom B in the skew diagram (λ+ (1n)/λ) ∩ (µ/λ). We have

– The number of remaining entries 1 is k − c(µ/λ).
– Such entries 1 are chosen randomly from η := (λ+ (1n)/λ) ∩ (µ/λ) \ γ.

Hence the number of choice of this step is(
|η|

k − c(µ/λ)

)
. (12)

So, we have described a way to construct tableaux T of given skew shape µ/λ such that
the numbers of entries 1 in T2 is a fixed number j.

Second step: Substitute (11), (10), (12) to (9) and simplify it. We have

G̃λpk =
∑
µ

c(µ/λ)∑
j=c(µ/λ)−|γ|

(−1)|µ/λ|−jj
(

|γ|
c(µ/λ)− j

)(
|η|

k − c(µ/λ)

)
G̃µ. (13)

Note that the binomial coefficient (
|η|

k − c(µ/λ)

)

depends only on λ, µ and k. Thus, in order to simplify the coefficient of G̃µ, we only need
to determine the sum

c(µ/λ)∑
j=c(µ/λ)−|γ|

(−1)|µ/λ|−jj
(

|γ|
c(µ/λ)− j

)
.

Obviously, |γ| ≥ 1. We prove the following lemma.

Lemma 3. The sum

c(µ/λ)∑
j=c(µ/λ)−|γ|

(−1)c(µ/λ)−jj

(
|γ|

c(µ/λ)− j

)
(14)

is equal to 0 if |γ| > 1 and 1 if |γ| = 1.
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Proof. Set i = c(µ/λ)− j and c = c(µ/λ). Then (14) can be rewritten as
|γ|∑
i=0

(−1)i(c− i)
(
|γ|
i

)
= c

|γ|∑
i=0

(−1)i
(
|γ|
i

)
−
|γ|∑
i=0

(−1)ii
(
|γ|
i

)
.

Since |γ| ≥ 1, then
|γ|∑
i=0

(−1)i
(
|γ|
i

)
= (1− 1)|γ| = 0.

If |γ| > 1, then
|γ|∑
i=0

(−1)ii
(
|γ|
i

)
= |γ|(1− 1)|γ|−1 = 0.

If |γ| = 1, then
|γ|∑
i=0

(−1)ii
(
|γ|
i

)
=

1∑
i=0

(−1)ii
(

1
i

)
= −1.

We obtain the result as desired.

Now, we consider two cases.
• If |γ| = 1 then |(λ + (1n)/λ) ∩ (µ/λ)| = r(µ/λ) because if not, then |γ| > 1. So
|η| = r(µ/λ)− 1. The coefficient of G̃µ in (13) is

(−1)|µ/λ|−c(µ/λ)
(
r(µ/λ)− 1
k − c(µ/λ)

)
.

• If |γ| > 1, the coefficient of G̃µ in (13) is 0.
We see that, the condition |γ| = 1 is equivalent to the condition µ/λ is connected. When
|γ| = 1, the conditions µ/λ is a shape of a tableau T = T1 ∪ T2, where T1, T2 are of form
in (4), (5) and α1(T ) = k are equivalent to the conditions c(µ/λ) ≤ k (entries 1 in bottom
B is a part of all entries 1 of T ), k − c(µ/λ) ≤ r(µ/λ)− 1 (entries 1 not in bottom B can
be filled into η). The last inequality condition can be rewritten as

k ≤ c(µ/λ) + r(µ/λ)− 1. (15)
Since µ/λ is connected, the right hand side of (15) counts the boxes of the maximal ribbon
contained in skew shape µ/λ along with its northwest border. Hence, the conditions of
µ such that G̃µ appears in the decomposition of G̃λpk are: µ ∈ Pn, µ ≥ λ such that
c(µ/λ) ≤ k, µ/λ is connected and contains at least a ribbon of size k along with its
northwest border.

The example below visualize the first step: constructing tableaux T , in the proof of
Theorem 2.
Example 4. We continue Example 2. In the picture below, B is the set of four boxes 1 ,
and the skew diagram (λ + (1n))/λ is colored in yellow. So γ is the set of three yellow
boxes with blue entries 1 inside.

1

1 1

1
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The range of the number of entries 1 in T2 is j ∈ [1, 4]. If we fix j = 2, then there are
three choices of B1 (also B2) as in the picture below (the entries 1 in B1 are circled).

1

1 1

1

or 1

1 1

1

or 1

1 1

1

The skew shape η contains two boxes where we put ∗ inside in the picture below.

1

∗
1 1

∗
1

If k = 5, then we just need to put only one remaining entry 1 randomly to the boxes
marked by ∗. The remaining boxes of µ/λ are numbered by 0. For example, if we fix the
first choice of B1 in the picture above (j = 2), we have two tableaux below (empty yellow
boxes are not counted in tableaux).

1

1
1 1

0
1

1

0
1 1

1
1
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[Mac98] Ian G. Macdonald. Symmetric functions and Hall polynomials. Oxford university
press, 1998.

[MS18] Andrew Morrison and Frank Sottile. Two Murnaghan–Nakayama rules in Schu-
bert calculus. Annals of Combinatorics, 22(2):363–375, 2018.

10



[Mur37] Francis D Murnaghan. The characters of the symmetric group. American Jour-
nal of Mathematics, 59(4):739–753, 1937.

[Nak40a] Tadasi Nakayama. On some modular properties of irreducible representations
of a symmetric group, i. In Japanese journal of mathematics: transactions and
abstracts, volume 17, pages 165–184. The Mathematical Society of Japan, 1940.

[Nak40b] Tadasi Nakayama. On some modular properties of irreducible representations
of symmetric groups, ii. In Japanese journal of mathematics: transactions and
abstracts, volume 17, pages 411–423. The Mathematical Society of Japan, 1940.

[Ros14] Dustin Ross. The loop Murnaghan–Nakayama rule. Journal of Algebraic Com-
binatorics, 39(1):3–15, 2014.

[RZ13] Dustin Ross and Zhengyu Zong. The gerby Gopakumar–Mariño–Vafa formula.
Geometry & Topology, 17(5):2935–2976, 2013.

[Tew16] Vasu Tewari. A Murnaghan–Nakayama rule for noncommutative Schur func-
tions. European Journal of Combinatorics, 58:118–143, 2016.

[Wil16] Mark Wildon. A combinatorial proof of a plethystic Murnaghan–Nakayama
rule. SIAM Journal on Discrete Mathematics, 30(3):1526–1533, 2016.

Faculty of Mathematics and Computer Science, Da Lat University, 1 Phu Dong Thien
Vuong, Da Lat city, Lam Dong, Vietnam
E-mail: hiepdt@dlu.edu.vn

Department of Mathematics, Otto-von-Guericke University of Magdeburg, Germany
E-mail: khanh.mathematic@gmail.com

The Education Publisher in Ho Chi Minh city, 231 Nguyen Van Cu, District 5, Ho Chi
Minh city, Vietnam
E-mail: tranhason1705@gmail.com

Bao Loc High School for the Gifted, 5 Quang Trung, Bao Loc city, Lam Dong, Vietnam
E-mail: cbl.dolehaithuy@gmail.com

11

hiepdt@dlu.edu.vn
khanh.mathematic@gmail.com
tranhason1705@gmail.com
cbl.dolehaithuy@gmail.com

	Introduction
	Preliminaries
	Symmetric polynomials
	Partitions, diagrams and binary tableaux
	Grothendieck polynomials of Grassmannian type

	Proof of the main theorem

