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Introduction

The K-theory of flag varieties was studied by Kostant and Kumar [START_REF] Kostant | T-equivariant K-theory of generalized flag varieties[END_REF], and by Demazure [START_REF] Demazure | Désingularisation des variétés de Schubert généralisées[END_REF]. In [START_REF] Lascoux | Anneau de Grothendieck de la variété de drapeaux[END_REF], [START_REF] Lascoux | Structure de Hopf de l'anneau de cohomologie et de l'anneau de Grothendieck d'une variété de drapeaux[END_REF], Lascoux and Schutzenberger introduced the Grothendieck polynomials as representatives for the structure sheaves of the Schubert varieties in a flag variety. For any permutation w ∈ m≥1 S m , the Grothendieck polynomial G w := G w (x 1 , x 2 , . . . ) is defined by isobaric divided difference operators. Fomin and Kirilov found combinatorial insight of these polynomials in [START_REF] Fomin | Grothendieck polynomials and the Yang-Baxter equation[END_REF], [START_REF] Fomin | The Yang-Baxter equation, symmetric functions, and Schubert polynomials[END_REF].

Let s λ be the Schur function associated with a partition λ, and p k be the powersum symmetric functions of degree k [START_REF] Macdonald | Notes on Schubert polynomials[END_REF]. The classical Murnaghan-Nakayama rule describes the decomposition of the product s λ p k to the sum of Schur functions [START_REF] Macdonald | Notes on Schubert polynomials[END_REF] as follows. We have

s λ p k = µ (-1) r(µ/λ)+1 s µ ,
where the sum runs over all partitions µ such that µ/λ is a ribbon of size k, r(µ/λ) is the number of rows of skew shape µ/λ.

The classical Murnaghan-Nakayama rule plays an important role in the representation theory of the symmetric groups. It gave a formula for the character table (see [START_REF] Francis D Murnaghan | The characters of the symmetric group[END_REF], [START_REF] Nakayama | On some modular properties of irreducible representations of a symmetric group, i[END_REF], [START_REF] Nakayama | On some modular properties of irreducible representations of symmetric groups, ii[END_REF]). For this reason, many extensions and generalizations of classical Murnaghan-Nakayama rule were studied. Indeed, a version for non-commutative symmetric functions is given by Fomin and Green in [START_REF] Fomin | Noncommutative Schur functions and their applications[END_REF] (it led to formulas for characters of representations associated with stable Schubert and Grothendieck polynomials). A skew version and its generalization of multiplication with quantum power sum function are given by [START_REF] Sami | A Pieri rule for skew shapes[END_REF], [START_REF] Konvalinka | Skew quantum Murnaghan-Nakayama rule[END_REF]. A version for noncommutative Schur functions can be found in [START_REF] Tewari | A Murnaghan-Nakayama rule for noncommutative Schur functions[END_REF]. A plethystic version is given by [START_REF] Wildon | A combinatorial proof of a plethystic Murnaghan-Nakayama rule[END_REF]. A version for loop Schur functions is given by [START_REF] Ross | The loop Murnaghan-Nakayama rule[END_REF] (it provides a fundamental step in the orbifold Gromov-Witten/Donaldson-Thomas correspondence in [START_REF] Ross | The gerby Gopakumar-Mariño-Vafa formula[END_REF]). A version in the cohomology of an affine Grassmannian can be found in [START_REF] Bandlow | The Murnaghan-Nakayama rule for k-Schur functions[END_REF]. An extended version to Schubert polynomials and the quantum cohomology of Grassmannians can be found in [START_REF] Morrison | Two Murnaghan-Nakayama rules in Schubert calculus[END_REF].

In this paper, we restrict our attention on the simplest complex flag variety: the Grassmann variety of n dimensional subspaces of C n+m . The Grothendieck polynomials in this case are indexed by Grassmanian permutations [START_REF] Buch | A Littlewood-Richardson rule for the K-theory of Grassmannians[END_REF]. Namely, let λ = (λ 1 , . . . , λ n ) be a partition of length at most n. The Grassmannian permutation w λ of descent n is defined by

w λ (i) = i + λ n+1-i for i ∈ [1, n] and w λ (i) < w λ (i + 1) for all i = n. Set G λ = G w λ .
There are several new formulas for G λ , for example, in the terms of set-valued tableaux [START_REF] Buch | A Littlewood-Richardson rule for the K-theory of Grassmannians[END_REF] or Jacobi-Trudy identity [START_REF] Kirillov | On some quadratic algebras i 1/2: combinatorics of Dunkl and Gaudin elements, Schubert, Grothendieck, Fuss-Catalan, universal Tutte and reduced polynomials[END_REF]. We here recall the Weyl identity given by Ikeda and Naruse [START_REF] Ikeda | K-theoretic analogues of factorial Schur Pand Q-functions[END_REF] (see also [START_REF] Ikeda | A proof of K-theoretic Littlewood-Richardson rules by Bender-Knuth-type involutions[END_REF]). Namely,

G λ = det(x λ j +n-j i (1 + βx i ) j-1 ) n×n 1≤i<j≤n (x i -x j )
, where β is a formal parameter. Remind that, if β = 0, then G λ is identified with the Schur function s λ . The products of G λ with other special symmetric polynomials e k , h k are mentioned in [START_REF] Lenart | Combinatorial aspects of the K-theory of Grassmannians[END_REF], in which Lenart studied the Pieri rules of the Grassmannian Grothendieck polynomials. Our work on the product G λ p k can be considered as a Ktheoretic version of the classical Murnaghan-Nakayama rule.

Let λ and µ be partions of length at most n and λ ≤ µ. Let |µ/λ|, c(µ/λ), r(µ/λ) be the size, number of columns, number of rows of the skew shape µ/λ. We say two boxes in a skew shape are adjacent whenever they share an edge, and we say a skew shape µ/λ is connected whenever every pair of its boxes is connected by a sequence of adjacent boxes. A ribbon is a connected skew shape with no 2 × 2 square. The main result of this paper is stated as follows.

Theorem 1. For any partition λ ∈ P n and k ∈ N, we have

G λ p k = µ (-β) |µ/λ|-k (-1) k-c(µ/λ) r(µ/λ) -1 k -c(µ/λ) G µ , ( 1 
)
where the sum runs over all partitions µ ∈ P n , µ ≥ λ such that c(µ/λ) ≤ k, µ/λ is connected and contains at least a ribbon of size k along with its northwest border.

This paper is organized as follows. In Section 2 we recall the basic knowledge related to symmetric polynomials, partitions, diagrams, binary tableaux, Grothendieck polynomials of Grassmannian type. In Section 3 we prove our main result.

Preliminaries

Symmetric polynomials

A polynomial f (x 1 , . . . , x n ) in n variables is said to be symmetric if for all permutations σ ∈ S n , we have f (x σ(1) , . . . , x σ(n) ) = f (x 1 , . . . , x n ).
There are some fundamental symmetric polynomials: The k-th elementary symmetric polynomial

e k = 1≤i 1 <•••<i k ≤n x i 1 . . . x i k ,
the k-th complete homogeneous symmetric polynomial

h k = 1≤i 1 ≤•••≤i k ≤n x i 1 . . . x i k ,
and the k-th power sum symmetric polynomial

p k = n i=1 x k i .
The next lemma gives us a way to write the power sum symmetric polynomial in terms of elementary and complete homogeneous symmetric polynomials. It is one of the important keys in the proof of Theorem 1.

Lemma 1. Let k be a positive integer. Then we have

p k = k-1 i=0 (-1) i (k -i)e i h k-i . ( 2 
)
Proof. Consider the following generating functions

H(t) = k≥0 h k t k = n i=1 1 1 -x i t , E(t) = k≥0 e k t k = n i=1 (1 + x i t), P (t) = k≥1 p k t k-1 = n i=1 x i 1 -x i t .
By (2.6), (2.10) in [START_REF] Macdonald | Symmetric functions and Hall polynomials[END_REF], we have

P (t) = H (t)/H(t) = H (t)E(-t).
Compare the coefficients of t k-1 in both sides of the identity, we get the conclusion.

Partitions, diagrams and binary tableaux

A non-negative integer sequence λ = (λ 1 , λ 2 , . . . ) is called a partition if λ 1 ≥ λ 2 ≥ . . . . If λ = (λ 1 , λ 2 , . . . , λ l ) with λ l > 0 and l i=1 λ i = m, we write l(λ) = l, |λ| = m.
We call l(λ) the length, and |λ| the size of the partition λ. Each partition λ is presented by a Young diagram that is a collection of boxes such that: The leftmost boxes of each row are in a column, and the numbers of boxes from top row to bottom row are λ 1 , λ 2 , . . . , respectively.

Example 1. The Young diagram associated to the partition λ = (3, 3, 2, 1, 0, 0) is Let λ = (λ 1 , λ 2 , . . . ) and ν = (ν 1 , ν 2 , . . . ) be partitions. We define the sum of two partitions by λ + ν = (λ 1 + ν 1 , λ 2 + ν 2 , . . . ). For a non-negative integer n, we denote P n the set of all partition of length at most n. Let (1 n ) be the n-tuple partition (1, . . . , 1), and λ = (λ 1 , . . . , λ n ) ∈ P n , then we have λ + (1 n ) = (λ 1 + 1, . . . , λ n + 1).

Let λ = (λ 1 , λ 2 , . . . ) and µ = (µ 1 , µ 2 , . . . ) be two partitions. We say that λ is smaller than µ if and only if λ i ≤ µ i for all i, and we write λ ≤ µ. In this case, we define the skew Young diagram µ/λ as the result of removing boxes in the Young diagram λ from the Young diagram µ. We write |µ/λ| = |µ| -|λ| for the size, and r(µ/λ), c(µ/λ) for the number of rows, columns of the skew Young diagram µ/λ respectively. We say two boxes in a skew shape are adjacent whenever they share an edge, and we say a skew shape µ/λ is connected whenever every pair of its boxes is connected by a sequence of adjacent boxes. A ribbon is a connected skew shape with no 2 × 2 square. A binary tableau T of skew shape µ/λ is a result of filling the skew Young diagram µ/λ by the alphabet {0, 1} such that the entry in the bottom of each column is 1. A binary tableau T is said to have content α(T ) = (α 0 , α 1 ) if α i = α i (T ) is the number of entries i in T . We write sh(T ) for the shape of the tableau T .

Example 2. We consider partitions in P 6 : λ = (3, 3, 2, 1, 0, 0) and µ = (4, 3, 3, 3, 1, 1). Then µ ≥ λ and the skew diagram µ/λ has r(µ/λ) = 5 rows, c(µ/λ) = 4 columns. In this case µ/λ is not connected and is not a ribbon. However, it contains ribbons of size 1, 2, 3, for example

The following tableau T is a binary tableau of skew shape sh(T ) = µ/λ. 

Grothendieck polynomials of Grassmannian type

The K-theory of flag varieties was studied by Kostant and Kumar [START_REF] Kostant | T-equivariant K-theory of generalized flag varieties[END_REF], and by Demazure [START_REF] Demazure | Désingularisation des variétés de Schubert généralisées[END_REF]. The Grothendieck polynomials were introduced by Lascoux and Schutzenberger as representatives for the structure sheaves of the Schubert varieties in a flag variety (see [START_REF] Lascoux | Anneau de Grothendieck de la variété de drapeaux[END_REF], [START_REF] Lascoux | Structure de Hopf de l'anneau de cohomologie et de l'anneau de Grothendieck d'une variété de drapeaux[END_REF]). For any permutation w ∈ m≥1 S m , the Grothendieck polynomial G w := G w (x 1 , x 2 , . . . ) is defined by isobaric divided difference operators (see [START_REF] Lascoux | Anneau de Grothendieck de la variété de drapeaux[END_REF], [START_REF] Lascoux | Structure de Hopf de l'anneau de cohomologie et de l'anneau de Grothendieck d'une variété de drapeaux[END_REF]). In particular, for Grassmann varieties of n dimensional subspaces of C n+m , the Grothendieck polynomials are indexed by Grassmanian permutations [START_REF] Buch | A Littlewood-Richardson rule for the K-theory of Grassmannians[END_REF]. Namely, let λ = (λ 1 , . . . , λ n ) be a partition of length at most n. The Grassmannian permutation w λ of descent n is defined by w λ (i) = i + λ n+1-i for i ∈ [1, n] and w λ (i) < w λ (i + 1) for all i = n. Set G λ = G w λ . By [START_REF] Ikeda | K-theoretic analogues of factorial Schur Pand Q-functions[END_REF], the polynomial can be defined by the following bi-alternant formula

G λ = det(x λ j +n-j i (1 + βx i ) j-1 ) n×n det(x n-j i ) n×n ,
where the denominator det(x n-j i

) n×n = 1≤i<j≤n (x i -x j )
is the well-known Vandermonde determinant.

Example 3. For n = 2 and λ = (2, 1), we have

G (2,1) (x 1 , x 2 ) = x 3 1 x 1 (1 + βx 1 ) x 3 2 x 2 (1 + βx 2 ) x 1 -x 2 = x 2 1 x 2 + x 1 x 2 2 + βx 2 1 x 2 2 .
Remark 1. For β = 0, the Grothendieck polynomial G λ is coincide with the Schur polyninomial s λ .

Proof of the main theorem

We only need to focus on the case β = 0. Indeed, if β = 0, then G λ is the Schur function associated with partition λ. The Murnaghan-Nakayama rule for Schur polynomials is very well-known (see [START_REF] Macdonald | Notes on Schubert polynomials[END_REF]). When β = 0, set

G λ (x 1 , . . . , x n ) = β |λ| G λ x 1 β , . . . , x n β .
Theorem 1 can be reduced to the following theorem.

Theorem 2. For any partition λ ∈ P n and k ∈ N, we have

G λ p k = µ (-1) |µ/λ|-c(µ/λ) r(µ/λ) -1 k -c(µ/λ) G µ , ( 3 
)
where the sum runs over all partitions µ ∈ P n , µ ≥ λ such that c(µ/λ) ≤ k, µ/λ is connected and contains a ribbon of size k along with its northwest border.

Before going to the proof, we need to restate the following lemma. It was used in [START_REF] Lenart | Combinatorial aspects of the K-theory of Grassmannians[END_REF] as one of the important keys to obtain the Pieri rules for Grothendieck polynomials of Grassmannian type.

Lemma 2. [Len00, Theorem 3.2] For any partition λ ∈ P n and k ∈ N, we have

G λ e k = T :sh(T )=µ/λ (-1) α 0 (T ) G µ , ( 4 
)
G λ h k = T :sh(T )=µ/λ (-1) α 0 (T ) G µ . ( 5 
)
The first sum runs over all binary tableaux T of shape µ/λ with µ

∈ P n , λ ≤ µ ≤ λ + (1 n ), α 1 (T ) = k.
The second sum runs over all binary tableaux T of shape µ/λ with µ ∈ P n , λ ≤ µ, α 1 (T ) = k, no two 1's in the same column.

Proof of Theorem 2. By Lemmas 1 and 2, we have

G λ p k = k-1 i=0 (-1) i (k -i) G λ e i h k-i (6) = k-1 i=0 (-1) i (k -i) T 1 :sh(T 1 )=ν/λ (-1) α 0 (T 1 ) G ν h k-i (7) = k-1 i=0 (-1) i (k -i) T 1 :sh(T 1 )=ν/λ (-1) α 0 (T 1 ) T 2 :sh(T 2 )=µ/ν (-1) α 0 (T 2 ) G µ (8) = µ T =T 1 ∪T 2 :sh(T )=µ/λ (-1) |µ/λ|-α 1 (T 2 ) α 1 (T 2 ) G µ . (9) 
The last sum runs over binary tableaux T = T 1 ∪ T 2 of shape µ/λ, with µ ∈ P n , µ ≥ λ, α 1 (T ) = k, and T 1 , T 2 are of the forms mentioned in the equalities (4), (5), respectively. Fix such a shape µ containing λ, we are going to determine the form of µ and the coefficient of G µ appearing in the decomposition of G λ p k .

First step: Construct all tableaux T mentioned in (9). We proceed as follows.

• First, we numbering all boxes in the bottom of each column of the skew diagram µ/λ by 1. Let B be the set of boxes we have created.

• Now, we will choose a subset of boxes in B and decide it as the set of boxes in bottom of T 2 , say B 2 . In fact, we can not choose such subset randomly because its completion in B, say B 1 , will be a subset of boxes in bottom of T 1 . Hence, it must satisfy a strict condition that the boxes in B 1 is located in the skew diagram (λ + (1 n ))/λ. So, to choose a subset B 2 , we should start from choosing B 1 . Fix a number of entries 1 in T 2 , say α 1 (T 2 ) = j, we have

-The cardinal of B 1 is c(µ/λ) -j.
-The elements in B 1 are chosen randomly from γ := B ∩ (λ + (1 n ))/λ.

Hence for a fixed α 1 (T 2 ) = j, the number of choices of B 2 is equal the number of choices of B 1 and it is |γ| c(µ/λ) -j .

(10)

Since B 2 = B \ B 1 , we have

j = |B 2 | ∈ [|B \ B 1 |, |B|] = [c(µ/λ) -|γ|, c(µ/λ)]. (11) 
• Now, the last step to construct tableau T is locating remaining entries 1 of T which is not in the bottom B in the skew diagram (λ + (1 n )/λ) ∩ (µ/λ). We have -The number of remaining entries 1 is k -c(µ/λ).

-Such entries 1 are chosen randomly from η := (λ

+ (1 n )/λ) ∩ (µ/λ) \ γ.
Hence the number of choice of this step is

|η| k -c(µ/λ) . ( 12 
)
So, we have described a way to construct tableaux T of given skew shape µ/λ such that the numbers of entries 1 in T 2 is a fixed number j.

Second step: Substitute (11), (10), (12) to (9) and simplify it. We have

G λ p k = µ c(µ/λ) j=c(µ/λ)-|γ| (-1) |µ/λ|-j j |γ| c(µ/λ) -j |η| k -c(µ/λ) G µ . ( 13 
)
Note that the binomial coefficient |η| k -c(µ/λ) depends only on λ, µ and k. Thus, in order to simplify the coefficient of G µ , we only need to determine the sum

c(µ/λ) j=c(µ/λ)-|γ| (-1) |µ/λ|-j j |γ| c(µ/λ) -j .
Obviously, |γ| ≥ 1. We prove the following lemma.

Lemma 3. The sum

c(µ/λ) j=c(µ/λ)-|γ| (-1) c(µ/λ)-j j |γ| c(µ/λ) -j (14) is equal to 0 if |γ| > 1 and 1 if |γ| = 1.
Proof. Set i = c(µ/λ) -j and c = c(µ/λ). Then ( 14) can be rewritten as

|γ| i=0 (-1) i (c -i) |γ| i = c |γ| i=0 (-1) i |γ| i - |γ| i=0 (-1) i i |γ| i . Since |γ| ≥ 1, then |γ| i=0 (-1) i |γ| i = (1 -1) |γ| = 0. If |γ| > 1, then |γ| i=0 (-1) i i |γ| i = |γ|(1 -1) |γ|-1 = 0. If |γ| = 1, then |γ| i=0 (-1) i i |γ| i = 1 i=0 (-1) i i 1 i = -1.
We obtain the result as desired. Now, we consider two cases.

• If |γ| = 1 then |(λ + (1 n )/λ) ∩ (µ/λ)| = r(µ/λ) because if not, then |γ| > 1. So |η| = r(µ/λ) -1. The coefficient of G µ in (13) is (-1) |µ/λ|-c(µ/λ) r(µ/λ) -1 k -c(µ/λ) . • If |γ| > 1, the coefficient of G µ in (13) is 0.
We see that, the condition |γ| = 1 is equivalent to the condition µ/λ is connected. When |γ| = 1, the conditions µ/λ is a shape of a tableau T = T 1 ∪ T 2 , where T 1 , T 2 are of form in (4), (5) and α 1 (T ) = k are equivalent to the conditions c(µ/λ) ≤ k (entries 1 in bottom B is a part of all entries 1 of T ), k -c(µ/λ) ≤ r(µ/λ) -1 (entries 1 not in bottom B can be filled into η). The last inequality condition can be rewritten as

k ≤ c(µ/λ) + r(µ/λ) -1. (15) 
Since µ/λ is connected, the right hand side of (15) counts the boxes of the maximal ribbon contained in skew shape µ/λ along with its northwest border. Hence, the conditions of µ such that G µ appears in the decomposition of G λ p k are: µ ∈ P n , µ ≥ λ such that c(µ/λ) ≤ k, µ/λ is connected and contains at least a ribbon of size k along with its northwest border.

The example below visualize the first step: constructing tableaux T , in the proof of Theorem 2.

Example 4. We continue Example 2. In the picture below, B is the set of four boxes 1 , and the skew diagram (λ + (1 n ))/λ is colored in yellow. So γ is the set of three yellow boxes with blue entries 1 inside. The range of the number of entries 1 in T 2 is j ∈ [1, 4]. If we fix j = 2, then there are three choices of B 1 (also B 2 ) as in the picture below (the entries 1 in B 1 are circled). The skew shape η contains two boxes where we put * inside in the picture below.

1 * 1 1 * 1 If k = 5, then we just need to put only one remaining entry 1 randomly to the boxes marked by * . The remaining boxes of µ/λ are numbered by 0. For example, if we fix the first choice of B 1 in the picture above (j = 2), we have two tableaux below (empty yellow boxes are not counted in tableaux). 

  in blue means the Young diagram λ removed from the Young diagram µ. The content of the binary tableau T is α(T ) = (1, 5).
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