Crucial Role of Conjugation in Monolayer-Protected Metal Clusters with Aromatic Ligands: Insights from the Archetypal Au$_{144}$L$_{60}$ Cluster Compounds
Abstract
Ligand-protected metal clusters are employed in a great many applications that include notably energy conversion and biomedical uses. The interaction between the ligands and the metallic cores, mediated by an often complex interface, profoundly influences the properties of small clusters, in particular. Nonetheless, the mechanisms of interaction remain far from fully understood. The Au144L60 class of cluster compounds has long played a central role in the study of monolayer-protected clusters, but total structure determination has been achieved only recently for a thiolated and an all-alkynyl cluster. Both ligands contain aromatic rings but differ in their ligation to the metal core: conjugation along a triple bond in the latter, saturation in the former. We demonstrate the paramount importance of the conjugation in the connection between aromatic ligand rings and metal cores for the electronic and optical properties and, by extension, the critical transport properties, providing a crucial element for the development of design-principle-based synthesis.
Origin | Files produced by the author(s) |
---|