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The Vlasov-Poisson-Boltzmann/Landau system with polynomial perturbation near Maxwellian

Chuqi Cao, Dingqun Deng, Xingyu

bounded domain Ω ⊆ R 3 (cf. [START_REF] Guo | The Vlasov-Poisson-Boltzmann system near Maxwellians[END_REF][START_REF] Guo | The Vlasov-Poisson-Landau system in a periodic box[END_REF]):

∂ t F + + v • ∇ x F + -∇ x φ • ∇ v F + = Q(F + , F + ) + Q(F -, F + ), ∂ t F -+ v • ∇ x F -+ ∇ x φ • ∇ v F -= Q(F + , F -) + Q(F -, F -), F (0) = F 0 , E(0) = E 0 , (1.1)
where E = -∇ x φ is the self-consistent electrostatic field satisfying

-∆ x φ = R 3 (F + -F -) dv, Ω φ(t, x)dx = 0, (1.2) 
and F (t, x, v) ≥ 0 is a distribution function of particles at time t > 0 with position x ∈ Ω and velocity v ∈ R 3 .

For the case of Vlasov-Poisson-Boltzmann system, the collision operator Q is a bilinear operator which acts only on the velocity variable v given by

Q(G, F )(v) = R 3 S 2 B(v -v * , σ)(G * F -G * F )dσdv * .
Here we use the standard notation F = F (v), G * = G(v * ), F = F (v ), G * = G(v * ), where v , v * are velocities of two particles after collision given by

v = v + v * 2 + |v -v * | 2 σ, v * = v + v * 2 - |v -v * | 2 σ, σ ∈ S 2 .
This representation follows from physical law of elastic collision:

v + v * = v + v * , |v| 2 + |v * | 2 = |v | 2 + |v * | 2 .
The nonnegative function B(v -v * , σ) is called the Boltzmann collision kernel. It depends only on relative velocity |v -v * | and the deviation angle θ through cos

θ def = v -v * |v -v * | • σ.
In the present work, we consider the non-cutoff kernel B as the followings.

(A1). The Boltzmann kernel B takes the form

B(v -v * , σ) = |v -v * | γ b( v -v * |v -v * | • σ),
where b is a nonnegative function. (A2). The angular function b(cos θ) is not locally integrable and it satisfies Kθ -1-2s ≤ sin θb(cos θ) ≤ K -1 θ -1-2s , with 0 < s < 1, for some constant K > 0. (A3). The parameter γ and s satisfy the condition

-3 < γ ≤ 1, 1/2 ≤ s ≤ 1, γ + 2s > -1.
(A4). Without loss of generality, we may assume that B(v -v * , σ) is supported in the set 0 ≤ θ ≤ π/2, i.e. v-v * |v-v * | • σ ≥ 0. Otherwise B can be replaced by its symmetrized form:

B(v -v * , σ) = |v -v * | γ b( v -v * |v -v * | • σ) + b( v -v * |v -v * | • (-σ)) 1 v-v * |v-v * | •σ≥0
, where 1 A is the indicator function of the set A.

Remark 1.1. For inverse repulsive potential, it holds that γ = p-5 p-1 and s = 1 p-1 with p > 2. It is easy to check that γ + 2s > -1 is satisfied for the full range of the inverse power law model. Generally, the case γ > 0, γ = 0, and γ < 0 correspond to so-called hard, Maxwellian, and soft potentials respectively.

For the case of Vlasov-Poisson-Landau system, Q is the Landau collision operator given by

Q(g, f )(v) = ∇ v • R 3 Φ(v -v * )(g(v * )∇ v f (v) -f (v)∇ v * g(v * ))dv * = ∂ i R 3 φ ij (v -v * )(g * ∂ j f -f ∂ j g * )dv * , with Φ(u) = |u| γ+2 I - u ⊗ u |u| 2 , -3 ≤ γ ≤ 1, φ ij (v) = |v| γ+2 δ ij - v i v j |v| 2 , -3 ≤ γ ≤ 1, (1.3) 
hereafter we use the convention of summation for repeated indices, and the derivatives are in the velocity variable ∂ i = ∂ v i . We will use the notations

g * = g(v * ), f = f (v), ∂ j g * = ∂ v * j g(v * ), ∂ j f = ∂ v j f (v).
We also mention that

∂ j φ ij (v) = -2|v| γ v i , ∂ ij φ ij (v) = -2(γ + 3)|v| γ , if -3 < γ ≤ 1, -8πδ 0 , if γ = -3,
where δ 0 is the Dirac measure. It's convenient to call it hard potential if γ ≥ 0, and soft potential if γ ∈ [-3, 0).

1.2. Reformulation. We reformulate the Vlasov-Poisson-Boltzmann/Landau system near a global Maxwellian. For simplicity, we assume the initial data F 0 is normalized such that the equilibrium associated to the equation (1.1) will be the standard Gaussian function, i.e.

µ(v)

def = (2π) -3/2 e -|v| 2 /2 , which enjoys the same mass, momentum and energy as F 0 . In the perturbation framework, we denote F = [F + , F -] and let f = [f + , f -] satisfies

F ± = µ + f ± .
Then system (1.1) and (1.2) become

             ∂ t f ± + v • ∇ x f ± ∓ ∇ x φ • ∇ v f ± ± ∇ x φ • vµ = Q(f ± + f ∓ , µ) + Q(2µ + f ± + f ∓ , f ± ), -∆ x φ = R 3 (f + -f -)dv, Ω φ(x)dx = 0, f (0) = f 0 , φ(0) = φ 0 . (1.4) 
Note that Q(µ, µ) = 0. We also denote linear operator L = [L + , L -] and L = [L + , L -] by

L ± f = 2Q(µ, f ± ) + Q(f ± + f ∓ , µ), and 
Lf = -v • ∇ x f ∓ ∇ x φ • vµ + Lf, (1.5 
) where φ(x) is solved by the second equation of (1.4). The kernel of L on L 2 v × L 2 v is the span of [START_REF] Alexandre | Global hypoelliptic and symbolic estimates for the linearized Boltzmann operator without angular cutoff[END_REF]0]µ, [0, 1]µ, [START_REF] Alexandre | Global hypoelliptic and symbolic estimates for the linearized Boltzmann operator without angular cutoff[END_REF][START_REF] Alexandre | Global hypoelliptic and symbolic estimates for the linearized Boltzmann operator without angular cutoff[END_REF]vµ, [START_REF] Alexandre | Global hypoelliptic and symbolic estimates for the linearized Boltzmann operator without angular cutoff[END_REF][START_REF] Alexandre | Global hypoelliptic and symbolic estimates for the linearized Boltzmann operator without angular cutoff[END_REF]|v| 2 µ (cf. [START_REF] Guo | The Vlasov-Poisson-Boltzmann system near Maxwellians[END_REF]) and we define the projection of L 2 v × L 2 v onto ker L by

Pf = a + (t, x)[1, 0] + a -(t, x)[0, 1] + v • b(t, x)[1, 1] + (|v| 2 -3)c(t, x)[1, 1] µ, (1.6) 
or equivalently by

P ± f = a ± (t, x) + v • b(t, x) + (|v| 2 -3)c(t, x) µ,
where function a ± , b, c are given by

a ± = R 3 f ± dv, b j = 1 2 R 3 v i (f + + f -)dv, c = R 3 |v| 2 -3 12 (f + + f -)dv.
(1.7)

Taking inner produce of the first equation of (1.4) with 1 over R 3 v , we have the continuity equation

∂ ∂t R 3 f ± (v)dv + ∇ x • R 3
vf ± (v)dv = 0.

(1.8)

1.3. Domains. In this paper, we will consider two kinds of bounded domain Ω, namely, torus and union of finitely many cubes.

Torus. For the case of torus, we set

Ω = T 3 = [-π, π] 3 .
In this case, the solution (F, φ) to the Vlasov-Poisson-Boltzmann/Landau system (1.1) with the initial data F 0 enjoys the conservation of mass, momentum and the energy, i.e.

d dt Ω R 3 F + dvdx = d dt Ω R 3 F -dvdx = 0, d dt Ω R 3 v(F + + F -)dvdx = 0, d dt Ω R 3 |v| 2 (F + + F -)dvdx + d dt Ω |∇ x φ(t, x)| 2 dx = 0.
(1.9)

By assuming F 0 have the same mass, total momentum and total energy as µ, the conservation laws (1.9) yield

Ω R 3 f + dvdx = Ω R 3 f -dvdx = 0, Ω R 3 v(f + + f -)dvdx = 0, Ω R 3 |v| 2 (f + + f -)dvdx + Ω |∇ x φ(t, x)| 2 dx = 0.
(1.10)

Union of cubes. The second kind of bounded domain is the union of finitely many cubes:

Ω = ∪ N i=1 Ω i , (1.11) 
where Ω i = (a i,1 , b i,1 ) × (a i,2 , b i,2 ) × (a i,3 , b i,3 ) with a i,j , b i,j ∈ R such that a i,j < b i,j . Then ∂Ω = ∪ 3 i=1 Γ i is the union of three kinds of boundary Γ i (i = 1, 2, 3), where Γ i is orthogonal to axis x i and is the union of finitely many connected sets. We further assume that Γ i is of non-zero spherical measure. Since the boundary of Γ i 's are of zero spherical measure, we don't distinguish Γ i and the interior of Γ i .

The unit normal outer vector n(x) exists on ∂Ω almost everywhere with respect to spherical measure. On the interior of Γ i (i = 1, 2, 3), we have n(x) = e i or -e i , where e i is the unit vector with ith-component being 1. We will denote vectors τ 1 (x), τ 2 (x) on boundary ∂Ω such that (n(x), τ 1 (x), τ 2 (x)) forms an unit orthonormal basis for R 3 such that for j = 1, 2, τ j = e k or -e k for some k.

The boundary of the phase space is

γ := {(x, v) ∈ ∂Ω × R 3 }.
Denoting n = n(x) to be the outward normal direction at x ∈ ∂Ω, we decompose γ as γ -= {(x, v) ∈ ∂Ω × R 3 : n(x) • v < 0}, (the incoming set),

γ + = {(x, v) ∈ ∂Ω × R 3 : n(x)
• v > 0}, (the outgoing set),

γ 0 = {(x, v) ∈ ∂Ω × R 3 : n(x) • v = 0}
, (the grazing set).

Correspondingly, we assume that F (t, x, v) satisfies the specular-reflection boundary condition:

F (t, x, R x v) = F (t, x, v), on γ -,
where for (x, v) ∈ γ, R x v = v -2n(x)(n(x) • v). (1.12) This is equivalent to the specular reflection boundary condition for perturbation f :

f (t, x, R x v) = f (t, x, v), on γ -. (1.13) 
For the boundary condition of electric potential φ, we further assume that ∂ n φ = 0, on x ∈ ∂Ω.

(1. [START_REF] Chen | Smoothing estimates for Boltzmann equation with full-range interactions: Spatially inhomogeneous case[END_REF] In particular, the Poisson equation for potential φ is a pure Neumann boundary problem and we require zero-mean condition Ω R 3

(f + -f -) dvdx = 0, for t ≥ 0, to ensure its existence, which follows from the following conservation laws (1.15). Similar to (1.10), it's also well-known that the solution to (1.4) in bounded domain Ω given by (1.11) satisfies the conservation laws on mass and energy. That is, the solution f to (1.4) satisfies the following identities when the initial data f 0 satisfies it:

Ω×R 3 f + (t) dvdx = Ω×R 3 f -(t) dvdx = 0, Ω×R 3 (f + (t) + f -(t))|v| 2 dvdx + Ω |∇ x φ(t, x)| 2 dx = 0.
(1.15)

1.4. Notations. Let us first introduce the function spaces and notations. We let the multiindices α and β be α = [α 1 , α 2 , α 3 ], β = [β 1 , β 2 , β 3 ] and define

∂ α β := ∂ α 1 x 1 ∂ α 2 x 2 ∂ α 3 x 3 ∂ β 1 v 1 ∂ β 2 v 2 ∂ β 3 v 3 .
If each component of α is not greater than that of the α's, we denote by α ≤ α. α < α means α ≤ α, and |α | < |α|. We write a b (a b) to indicate that there is a uniform constant C, which may be different on different lines, such that a ≤ Cb (a ≥ Cb). We use the notation a ∼ b if a b and b a. We denote a b if a, b are two constants such that a > b and a is sufficiently large. We denote C a 1 ,a 2 ,••• ,an by a constant depending on parameters a 1 , a 2 , • • • , a n . Moreover, we use parameter ε to represent different positive numbers much less than 1 and determined in different cases. We use (f, g) = (f, g) L 2 v to denote the inner product of f, g over velocity variable for short and, (f, g) L 2

x,v to represent the inner product over both spatial and velocity variables. Also, we write (f, g)

L 2 k = ( v 2k f, g) L 2 v , f (θ) L 1 θ = S 2 f (θ)dσ = 2π π 0 f (θ) sin θdθ,
and for any p ∈ [1, ∞],

f (t) L p T = f (t) L p ([0,T ]) .
For the linear operator L, we write S L as the semigroup generated by L. Define the Japanese brackets by

v := (1 + |v| 2 ) 1/2 .
For real numbers m, l, we define the weighted Sobolev norm

• H m l by |f | H m l = | v l D v m f (v)| L 2 v .
If m = 0, we write L 2 l = H 0 l . Here a(D) is a pseudo-differential operator with the symbol a(ξ), and is defined by

(a(D)f )(v) := 1 (2π) 3 R 3 R 3 e i(v-u)ξ a(ξ)f (u)dudξ. The mixed norm • H n x H m l is defined as f H n x H m l := Ω D x n f (x, •) 2 H m l dx 1/2
.

If n = 0, we write H 0 x H m l = L 2 x H m l . The entropy L log L space is defined as

L log L := f (v) : f L log L = R 3 |f | log(1 + |f |)dv .
For any k ∈ R, γ ∈ (-3, 1], we define

f 2 L 2 k+γ/2, * := R 3 R 3 µ(v * )|v -v * | γ |f (v)| 2 v 2k dvdv * . It is direct to verify that f L 2 k+γ/2, * ∼ f L 2 k+γ/2
by noticing

R 3 µ(v * )|v -v * | γ v 2k dv * ∼ v 2k+γ .
For Boltzmann case, we denote the dissipation norm

L 2 D,k by f L 2 D,k = f H s k+γ/2 , and f L 2 D = f L 2 D,0 .
For Landau case, we denote the anisotropic norm L 2 D (m) by

f L 2 D (m) := f L 2 (m v γ/2 ) + ∇ v (mf ) L 2 ( v γ/2
) and, for brevity, we let L 2 D,k := L 2 D ( v k ) and L 2 D := L 2 D,0 . Here ∇ v is the anisotropic gradient given by

∇ v f := P v ∇ v f + v (I -P v )∇ v f, P v ξ := ξ • v |v| v |v| , ∀ ξ ∈ R 3 .
With multi-indices (α, β), we come to define our weight function with some constant k. For -3 ≤ γ ≤ 1, we choose the weight function w(α, β) as

w(α, β) =           
v k-p|α|-q|β|+r , q = 6s -3(γ-1), p = q + γ-1, r = 2q, for Boltzmann case, v k-p|α|-q|β|+r , q = 3 -(γ-1), p = 3, r = 2q, for Landau case.

(1.16)

Note that w(α, β) ≥ 1 for any |α| + |β| ≤ 2 and any k ≥ 0. For brevity, we write w(|α|, |β|) = w(α, β) throughout the paper. Noticing w 2 (α, β) is still of the form v k for some k > 0, we have

∇ v (w 2 (α, β)) = A α,β v v 2 w 2 (α, β), (1.17) 
for some constant A α,β depending on α, β, k, γ, s. In this work, we will apply a useful spacevelocity weight e ±A α,β φ v 2 (1.18) to eliminate the dissipation loss term. Next we define some useful norms in our analysis. For this, we denote constants to be chosen in Theorem 3.1:

C |α|,|β| C |α|,|β 1 | , if |β 1 | < |β|, C |α|+1,|β|-1 C |α|,|β| , (1.19) 
for any multi-indices α, β. Then for both Boltzmann case and Landau case, we denote energy norms:

f 2 X k = |α|+|β|≤2 C |α|,|β| e ±A α,β φ v 2 w(α, β)∂ α β f 2 L 2 x L 2 v , (1.20) 
and

f 2 Y k = |α|+|β|≤2 C |α|,|β| w(α, β)∂ α β f 2 L 2 x L 2 D . (1.21)
We further define the "instant energy functional" E k (t) and "dissipation energy functional"

D k (t) respectively by E k (t) ≈ f 2 X k + ∇ x φ 2 H 2 x , (1.22) 
and

D k (t) := f 2 Y k + ∇ x φ 2 H 2 x , (1.23) 
where the explicit definition of E k (t) is given in (4.83). Moreover, we fix the weight index k 0 by assuming k 0 ≥ 14, for the Boltzmann case, 7, for the Landau case.

(1.24)

1.5. Main results. We may now state our main results.

Theorem 1.2 (Global existence, uniqueness and large-time decay). Consider the Cauchy problem (1.4) for Vlasov-Poisson-Boltzmann/Landau system. Suppose γ ∈ (-3, 1], s ∈ [ 1 2 , 1), γ + 2s > -1 for the Boltzmann case and γ ∈ [-3, 1] for the Landau case. Let l = 0 for the hard potential case and l > |γ| 2 for the soft potential case. Then there exist constants λ > 0, M > 0 (small) such that, for any k ≥ k 0 + 4 + l for the Landau case and k ≥ k 0 + 4 + l for Boltzmann case, if the initial data f 0 satisfies F 0 (x, v) = µ + f 0 (x, v) ≥ 0, conservation laws (1.10) for the case of torus (or (1.15) for the case of union of cubes) and

E k 0 +l (0) ≤ M and E k (0) < +∞, (1.25) 
then there exists a unique solution f (t, x, v) to (1.4) satisfying

F (t, x, v) = µ + f (t, x, v) ≥ 0 such that sup 0≤t≤T E k (t) ≤ 2E k (0),
for any T > 0. Moreover, we have the following large-time asymptotic behavior. If γ ≥ 0, then

E k (t) ≤ e -λt E k (0).
If γ < 0, then we have

E k-l (t) (1 + t) -2l |γ| E k (0)
.

Here E k (t) is given in (1.22). Remark 1.3. (1)
We emphasize that for global solutions with polynomial weight, one only need to assume the smallness of initial data with respect to a given norm. Here, we only require X k 0 +l to be sufficiently small instead of requiring general X k to be small.

(2) Notice that the torus case and union of cubes case are similar and we will do integration by parts carefully when Ω is the union of cubes given by (1.11). The integration-by-parts technique for torus case is trivial.

(3) For the soft potential case γ < 0 and for the non-cutoff Boltzmann equation, in [START_REF] Cao | Propagation of moments and sharp convergence rate for inhomogeneous non-cutoff Boltzmann equation with soft potentials[END_REF], the authors shows that the sharp decay rate to the non-cutoff Boltzmann equation cannot be faster that k/|γ|. Therefore when k is sufficient large, the decay rate in Theorem 1.2 more or less can be regarded as the optimal one. (4)In this paper, we only prove the results for H 2

x,v ( v k ), but we believe that similar proof can be made for in high regularity space H N x,v ( v k ). 1.6. Strategies and ideas of the proof. In this subsection, we will give some literature and explain main strategies of the proof for our results.

In what follows we recall some known results on the Landau and Boltzmann equations with a focus on the topics under consideration in this paper, particularly on global existence and large-time behavior of solutions to the spatially inhomogeneous equations in the perturbation framework. For global solutions to the renormalized equation with large initial data, we mention the classical works [6, 20-22, 56, 66, 67]. We mention [START_REF] Chen | Smoothing estimates for Boltzmann equation with full-range interactions: Spatially homogeneous case[END_REF][START_REF] Chen | Smoothing estimates for Boltzmann equation with full-range interactions: Spatially inhomogeneous case[END_REF] for the smoothing effect for the Boltzmann equation without cut-off. For the stability of vacuum, see [START_REF] Chaturvedi | Stability of Vacuum for the Boltzmann Equation with Moderately Soft Potentials[END_REF][START_REF] Guo | The Vlasov-Poisson-Boltzmann system near vacuum[END_REF][START_REF] Luk | Stability of vacuum for the Landau equation with moderately soft potentials[END_REF] for the Landau, cutoff and non-cutoff Boltzmann equation with moderate soft potential respectively.

For the non-cutoff Boltzmann equation, [START_REF] Imbert | Decay estimates for large velocities in the Boltzmann equation without cutoff[END_REF][START_REF] Imbert | Gaussian lower bounds for the Boltzmann equation without cut-off[END_REF][START_REF] Imbert | The weak Harnack inequality for the Boltzmann equation without cut-off[END_REF][START_REF] Imbert | Global regularity estimates for the Boltzmann equation without cut-off[END_REF][START_REF] Imbert | The Schauder estimate for kinetic integral equations[END_REF][START_REF] Silvestre | A new regularization mechanism for the Boltzmann equation without cut-off[END_REF] obtains global regularity and long time behavior in a very general assumption by just assuming a uniformly bound in t, x such that

0 < m 0 ≤ M (t, x) ≤ M 0 , E(t, x) ≤ E 0 , H(t, x) ≤ H 0 ,
for some constant m 0 , M 0 , E 0 , H 0 > 0, where

M (t, x) = R 3 f (t, x, v)dv, E(t, x) = R 3 f (t, x, v)|v| 2 dv, H(t, x) = R 3 f (t, x, v) ln f (t, x, v)dv.
and for the Landau equation the local Hölder estimate is proved in [START_REF] Golse | Harnack inequality for kinetic Fokker-Planck equations with rough coefficients and application to the Landau equation[END_REF] for and higher regularity of solutions was studied in [START_REF] Henderson | C ∞ smoothing for weak solutions of the inhomogeneous Landau equation[END_REF] applying a kinetic version of Schauder estimates.

Then we focus on the results in the perturbation framework. In the near Maxwellian framework, global existence and large-time behavior of solutions to the spatially inhomogeneous equations are proved in [START_REF] Guo | Classical solutions to the Boltzmann equation for molecules with an angular cutoff[END_REF][START_REF] Guo | The Boltzmann equation in the whole space[END_REF][START_REF] Strain | Almost exponential decay near Maxwellian[END_REF][START_REF] Strain | Exponential decay for soft potentials near Maxwellian[END_REF] for the cutoff Boltzmann equation and in [START_REF] Guo | The Landau equation in a periodic box[END_REF] for the Landau equation. For the non-cutoff Boltzmann equation, it is proved in [2-5, 33, 34], see also [START_REF] Duan | Strain Global mild solutions of the Landau and non-cutoff Boltzmann equations Comm[END_REF] for a recent work on such topic. We refer to [START_REF] Guo | Decay and Continuity of the Boltzmann Equation in Bounded Domains[END_REF][START_REF] Guo | The Landau Equation with the Specular Reflection Boundary Condition[END_REF][START_REF] Guo | Regularity of the Boltzmann equation in convex domains[END_REF] for existence theory in bounded domains. The non-cutoff case in union of cubes is considered in [START_REF] Deng | The Landau and Non-cutoff Boltzmann Equation in Union of Cubes[END_REF]. All these works above are based on the following decomposition

∂ t f + v • ∇ x f = L µ f + Γ(f, f ), L µ f = 1 √ µ Q( √ µf, µ) + 1 √ µ Q(µ, √ µf ), with Γ(g, f ) = 1 2 1 √ µ Q( √ µg, √ µf ) + 1 2 1 √ µ Q( √ µf, √ µg),
which means that the solution is constructed in µ -1/2 weighted space.

For the inhomogeneous Boltzmann/Landau equation with polynomial weight perturbation near Maxwellian, Gualdani-Mischler-Mouhot [START_REF] Gualdani | Factorization of non-symmetric operators and exponential H-theorem[END_REF] first prove the global existence and large-time behavior of solutions with polynomial velocity weight for the cutoff Boltzmann equation with hard potential. This method is generalized to the Landau equation in [START_REF] Carrapatoso | Cauchy problem and exponential stability for the inhomogeneous Landau equation[END_REF][START_REF] Carrapatoso | Landau equation for very soft and Coulomb potentials near Maxwellians[END_REF]. The case of non-cutoff Boltzmann equation is proved in [START_REF] Alonso | Non-cutoff Boltzmann equation with polynomial decay perturbation[END_REF][START_REF] Hérau | Regularization estimates and Cauchy Theory for inhomogeneous Boltzmann equation for hard potentials without cut-off[END_REF] for the hard potential case and [START_REF] Cao | Propagation of moments and sharp convergence rate for inhomogeneous non-cutoff Boltzmann equation with soft potentials[END_REF] for the soft potential case.

Here we mention former works on the Vlasov-Poisson/Maxwell-Boltzmann/Landau system near Maxwellian. The Vlasov-Poisson/Maxwell-Boltzmann system for the cut-off hard sphere case is proved in [START_REF] Guo | The Vlasov-Poisson-Boltzmann system near Maxwellians[END_REF][START_REF] Guo | The Vlasov-Maxwell-Boltzmann system near Maxwellians[END_REF][START_REF] Strain | The Vlasov-Maxwell-Boltzmann system in the whole space[END_REF]; see also [START_REF] Duan | Optimal large-time behavior of the Vlasov-Maxwell-Boltzmann system in the whole space[END_REF] for the optimal convergence rate. We refer to [START_REF] Duan | The Vlasov-Maxwell-Boltzmann system near Maxwellians in the whole space with very soft potentials[END_REF][START_REF] Duan | The Vlasov-Poisson-Boltzmann system in the whole space: The hard potential case[END_REF][START_REF] Duan | The Vlasov-Poisson-Boltzmann system for soft potentials[END_REF] for other case with the cut-off assumption. For the Landau equation, it is first proved in a famous paper [START_REF] Guo | The Vlasov-Poisson-Landau system in a periodic box[END_REF] for the tours case and [START_REF] Strain | The Vlasov-Poisson-Landau system in R 3 x[END_REF][START_REF] Wang | Global solution and time decay of the Vlasov-Poisson-Landau system in R 3 x[END_REF] for the whole space case, see also [START_REF] Duan | Global smooth dynamics of a fully ionized plasma with long-range collisions[END_REF]. For the non-cutoff case, we refer to [START_REF] Duan | The Vlasov-Poisson-Boltzmann system without angular cutoff[END_REF][START_REF] Xiao | The Vlasov-Poisson-Boltzmann system for non-cutoff hard potentials[END_REF] for Vlasov-Poisson-Boltzmann system and [START_REF] Duan | Stability of the nonrelativistic Vlasov-Maxwell-Boltzmann system for angular non-cutoff potentials[END_REF] for the Vlasov-Maxwell-Boltzmann system, see also [START_REF] Deng | Regularity of the Vlasov-Poisson-Boltzmann System Without Angular Cutoff[END_REF] for the regularizing effect. The theory of bounded domain is discussed in [START_REF] Cao | Global Strong Solutions of the Vlasov-Poisson-Boltzmann System in Bounded Domains[END_REF][START_REF] Deng | The non-cutoff Vlasov-Poisson-Boltzmann and Vlasov-Poisson-Landau Systems in bounded domain[END_REF][START_REF] Dong | The Vlasov-Poisson-Landau System with the Specular-Reflection Boundary Condition Preprint[END_REF]. We mention that all the works above are based on the following decomposition

∂ t f ± + v • ∇ x f ± ∓ ∇ x φ • ∇ v f ± ± ∇ x φ • v √ µ ± 1 2 ∇ x φ • vf = L µ,± f + Γ ± (f, f ),
where

L µ, ± f = 1 √ µ Q( √ µ(f ± + f ∓ ), µ) + 2 1 √ µ Q(µ, √ µf ± ), (1.26) 
and

Γ ± (f, f ) = 1 √ µ Q( √ µf ± , √ µf ± ) + 1 √ µ Q( √ µf ∓ , √ µf ± ), (1.27) 
which means the result are in µ -1/2 weighted space. We remark here that to our knowledge, our paper is the first to consider such question in a polynomial weighted space.

Then we give some introduction on the semigroup method by Gualdani-Mischler-Mouhot [START_REF] Gualdani | Factorization of non-symmetric operators and exponential H-theorem[END_REF] and we improve the method to macroscopic part Pf . The main idea of semigroup method can be expressed briefly as follows: Taking the case γ = 0 and the space H 2

x L 2 k for example, by [START_REF] Mouhot | Spectral gap and coercivity estimates for linearized Boltzmann collision operators without angular cutoff[END_REF] we have

± (L ± f, f ± ) H 2 x L 2 (µ -1/2 ) ≤ -λ f H 2 x L 2 (µ -1/2 ) , if Pf = 0,
for some constant λ > 0. Together with the macroscopic estimates from [START_REF] Deng | The non-cutoff Vlasov-Poisson-Boltzmann and Vlasov-Poisson-Landau Systems in bounded domain[END_REF][START_REF] Gressman | Global classical solutions of the Boltzmann equation without angular cut-off[END_REF] for Pf , we can deduce that

S L (t)f 0 H 2 x L 2 (µ -1/2 ) ≤ e -λt f 0 2 H 2 x L 2 (µ -1/2
) . For some M, R > 0, define

A ± = -v • ∇ x + L ± -M χ R , K 1 = M χ R , B ± = -v • ∇ x + L ± , K 2 = ±µv • ∇ x φ, where χ ∈ D(R) is the truncation function satisfying 1 [-1,1] ≤ χ ≤ 1 [-2,2] and we denote χ R (•) := χ(•/R) for R > 0.
By the results in [START_REF] Cao | Propagation of moments and sharp convergence rate for inhomogeneous non-cutoff Boltzmann equation with soft potentials[END_REF] we have

± (L ± f, f ± ) H 2 x L 2 k ≤ -C f 2 H 2 x H s k + C k f 2 H 2 x L 2 v ,
then taking M, R > 0 large, we have

(Af, f ) H 2 x L 2 k ≤ -C f 2 H 2 x L 2 k , which implies S A (t)f H 2 x L 2 k ≤ e -λt f 0 2 H 2 x L 2 k . By Duhamel's formula S B = S A + S B * K 1 S A and S L = S B + S L * K 2 S B , roughly speaking, we have S B (t) H 2 x L 2 k →H 2 x L 2 k ≤ S A (t) H 2 x L 2 k →H 2 x L 2 k + t 0 S B (s) H 2 x L 2 (µ -1/2 )→H 2 x L 2 (µ -1/2 ) × K 1 H 2 x L 2 k →H 2 x L 2 (µ -1/2 ) S A (t -s) H 2 x L 2 k →H 2 x L 2 k ds ≤ Ce -λt .
and hence

S L (t) H 2 x L 2 k →H 2 x L 2 k ≤ S B (t) H 2 x L 2 k →H 2 x L 2 k + t 0 S L (s) H 2 x L 2 (µ -1/2 )→H 2 x L 2 (µ -1/2 ) × K 2 H 2 x L 2 k →H 2 x L 2 (µ -1/2 ) S B (t -s) H 2 x L 2 k →H 2 x L 2 k ds ≤ Ce -λt .
Thus, the rate of convergence for the linear operator L is established. To estimate the nonlinear part, we need to define a scalar product by

((f, g)) k := (f, g) L 2 k + η +∞ 0 (S L (τ )f, S L (τ )g) L 2 v dτ.
Due to the fact that +∞ 0

(S L (τ )Lf, S L (τ )f )dτ = +∞ 0 d dτ S L (τ )f 2 L 2 dτ = -f 2 L 2 ,
we deduce that

((Lf, f )) k = (Lf, f ) L 2 k + η ∞ 0 (S L (τ )Lf, S L (τ )f ) L 2 v dτ ∼ f 2 H s k .
if we choose proper η. This shows that the linear operator L can still be non-negative in a suitable function space. The estimate for the linear operator L in this space allows us to prove the global well-posedness by combining the nonlinear estimates.

The semigroup method can help us handle the lower order terms, while it could also produce new bad terms to estimate, which forces us to make the assumption s ≥ 1/2. Precisely, when applying the semigroup method on the Vlasov-Poisson term ∇ x φ(x)•∇ v f , unlike the usual case, where by integration by parts we easily have

(∇ x φ(x) • ∇ v f, f ) = 0.
For the semigroup term we have

∞ 0 (S L (τ )∇ x φ(x) • ∇ v f, S L (τ )f )dτ,
since we are not able to change S L (t) and ∇ v , integration by parts with respect to ∇ v is not allowed and we have to use upper bound to bound this term. By [START_REF] Cao | Propagation of moments and sharp convergence rate for inhomogeneous non-cutoff Boltzmann equation with soft potentials[END_REF] we have

S B (t)f H 2 x L 2 v ≤ t -1/2 e -λt f H 2 x H -s
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, using Duhamel's formula as before, similarly we can prove

S L (t)f H 2 x L 2 v ≤ t -1/2 e -λt f H 2 x H -s 12 .
Due to the extra ∇ v term, we need to use

S L (t)∇ x φ(x) • ∇ v f H 2 x L 2 v t -1/2 e -λt ∇ x φ(x) H 2 x ∇ v f H 2 x H -s 12 t -1/2 e -λt ∇ x φ(x) H 2 x f H 2 x H s 12 . which requires s ≥ 1/2.
Since the ∂ x i commutes with L, while ∂ v i does not commute with L, to avoid computing the commutator [S L (t), ∇ v ], we will apply the semigroup term only to ∂ α f without taking any velocity derivative. To avoid taking velocity derivative on the semigroup term, we split the proof into 2 steps. First we prove a rough estimate in the space for ∂ α β f which writes:

∂ t 1 2 f 2 X k + |α|≤2 C α C |α|,0 ∂ α ∇ x φ 2 L 2 x + γ 1 4 f 2 Y k f 2 H 2 x L 2 v + C ∂ t φ L ∞ x f 2 X k + ∇ x φ 2 H 2 x + E k 0 (t) + E k 0 (t) D k (t). (1.28)
We briefly explain why in the right hand side, the linear term is f 2

H 2 x L 2 v instead of f 2 H 2 x,v
. For the term ∇ x φ • vµ, using integration by parts, we have

(∂ α β (∇ x φ • vµ), ∂ α β f w 2 (α, β)) = ((-1) |β| ∇ x ∂ α φ • ∂ β (vµw 2 (α, β)), ∂ α f ) C f 2 H 2 x L 2 10
.

Only H 2 x L 2 10 norm of f is needed. For the Lf term, first we have |α|+|β|≤2 ± (L ± f, f ± ) L 2 x L 2 k ≤ -C |α|+|β|≤2 f 2 H 2 x H s k + C k |α|+|β|≤2 f 2 H 2 x,v .
We can use interpolation to estimate the f 2

H 2 x,v
term. More precisely, if |β| ≥ 1 we have

C k ∂ α β f 2 L 2 x,v ≤ C ∂ α f 2 L 2 x H |β| v ≤ γ 1 24 ∂ α f 2 L 2 x H |β|+s v + C k ∂ α f 2 L 2 x,v ≤ γ 1 24 f 2 Y k + C k ∂ α f 2 L 2 x,v .
Since only H 2 x L 2 v term on the right hand side, by adding a H 2 x L 2 v estimate to (1.28) we can prove there exists functional E 1 (t) satisfying

E 1 (t) ≈ f 2 X k + ∇ x φ 2 H 3
x , such that

∂ t E 1 (t) + λη f 2 Y k + λ |α|≤2 w(α, 0)∂ α {I -P}f 2 L 2 x L 2 D f X k 0 f 2 X k + C η,k {I -P}f 2 H 2 x L 2 v + η ∇ x φ 2 H 2 x + η Pf 2 H 2 x L 2 v + C( E k 0 (t) + E k 0 (t))D k (t). Thus we are able to estimate C η,k {I -P}f 2 H 2 x L 2 v
by the semigroup method and estimate η ∇ x φ 2

H 2 x + η Pf 2 H 2
x L 2 v by macroscopic estimate.

1.6.1. Comments on the weight (1.18). The polynomial perturbation can be seen as a change of variable F = µ + v -k f ± for (1.1) for some constant k > 0. Then we have

∂ t f ± + v • ∇ x f ± ∓ ∇ x φ • ∇ v f ± ± ∇ x φ • vµ v 2k ± k∇ x φ • v v 2 f = L k,± f + Γ k,± (f, f ), with L k,± f = v k Q( v -k (f ± + f ∓ ), µ) + 2 v k Q(µ, v -k f ± ), and Γ k,± (f, f ) = v k Q( v -k (f ± + f ∓ ), v -k f ± ).
In order to deal with the extra term ±k∇ x φ • v v 2 f , we follow the idea of [START_REF] Guo | The Vlasov-Poisson-Landau system in a periodic box[END_REF] and introduce the corresponding weight function

exp ±kφ v 2 , (1.29) 
which satisfies v • ∇ x (e ±kφ v 2 f ) = e ±kφ v 2 (v • ∇ x f ± k∇ x φ • v v 2 f
). Such choice of weight function allows us to absorb the extra term by taking integration by parts as

± k∇ x φ • v v 2 f, e ±kφ v 2 f L 2 x L 2 v + v • ∇ x f ± , e ±kφ v 2 f L 2 x L 2 v = 0.
Unlike [START_REF] Guo | The Vlasov-Poisson-Landau system in a periodic box[END_REF], where the weight function is e -φ , our weight function potential (1.29) also depends on the velocity variable. Fortunately, new error contributions are of the type (∇ x φ • vµ, (e ±kφ v 2 -1) v 2k f ), which can be controlled if φ is small and its velocity derivative can also be controlled if φ is bounded. 1.6.2. Comments on the weight function w(α, β). The weight w(α, β) was firstly introduced in [START_REF] Strain | Almost exponential decay near Maxwellian[END_REF][START_REF] Strain | Exponential decay for soft potentials near Maxwellian[END_REF] to deal with the time decay of the Boltzmann equation for soft potentials on torus, and it was later used in [START_REF] Diperna | On the Fokker-Planck-Boltzmann equation[END_REF][START_REF] Guo | The Vlasov-Poisson-Landau system in a periodic box[END_REF] to investigate the Vlasov-Poisson/Maxwell-Boltzmann/Landau system. The choice of w(α, β) should depend on the weighted estimates for the term v

• ∇ x f and ∇ x φ • ∇ v f . For ∇ x φ • ∇ v f , one has to bound (∇ x ∂ α 1 φ • ∇ v ∂ α-α 1 β f, ∂ α β f w 2 (α, β)) |∇ x ∂ α 1 φ| v -γ 2 ∇ v ∂ α-α 1 β f w(α, β) L 2 v v γ 2 ∂ α β f w(α, β) L 2 v
For the Landau case we will use

v -γ 2 ∇ v ∂ α-α 1 β f w(α, β) L 2 x L 2 v ∂ α-α 1 β f w(|α| -1, β) L 2 x H 1 γ/2
where we need

w(α, β) ≤ w(|α| -1, |β|) v γ , ∀ |α| ≥ 1, |β| ≥ 0.
For the Boltzmann case, similarly we use the following interpolation

f H 1 v f v k H s v + f v -ks/(1-s) H 1+s v .
which requires

w(α, β) ≤ w(|α| -1, |β|) s w(|α| -1, |β| + 1) 1-s v γ , ∀ |α| ≥ 1, |β| ≥ 0.
That is, fewer derivatives of f should require stronger weights. Since higher derivatives are associated with weaker velocity weights, more careful analysis is needed for spatial Sobolev imbedding to close the energy estimate. Such a cascade of weights takes advantage of the crucial feature of the Landau operator: a weak gain of ∇ v (for the Boltzmann operator it is a weak gain of (-∆ v )

s 2 ). For the term v • ∇ x f , one has to bound (∂ α+e i β-e i f, ∂ α β w 2 (α, β)) ∂ α+e i β-e i f w(|α| + 1, |β| -1) L 2 γ/2 ∂ α β f w(|α|, |β|) L 2 γ/2
where we need

w(α, β) ≤ v γ w(|α| + 1, |β| -1).
so the w(α, β) is taken such that the requirements above holds. 

P µ f = a ± (t, x) √ µ + b(t, x) • v √ µ + c(t, x)|v| 2 √ µ.
Then by L µ P µ f = 0 and L µ is symmetric, we have

(L µ f, f ) = (L µ (P µ f + {I -P µ }f ), P µ f + {I -P µ }f ) = (L µ ({I -P µ }f ), {I -P µ }f ).
Only the term with {I -P µ }f remains. While for the polynomial weight case, since L is not symmetric, one merely has

(Lf, f ) = (L{I -P}f, f ) = (L{I -P}f, Pf ) + (L{I -P}f, {I -P}f ).
An extra term (L{I -P}f, Pf ) occurs. Fortunately, we can bound it by

(L{I -P}f, Pf ) ≤ Pf 2 L 2 x,v + {I -P}f 2 L 2 x L 2 k + C {I -P}f L 2 x,v .
The Pf term can be estimated by macroscopic estimate and the last term can be estimated by semigroup method. Such asymmetry also makes it impossible to extend the result to x ∈ R 3 using existing techniques. In former works [START_REF] Strain | The Vlasov-Maxwell-Boltzmann system in the whole space[END_REF][START_REF] Strain | The Vlasov-Poisson-Landau system in R 3 x[END_REF] for the whole space x ∈ R 3 , the following fact is used. Since Γ is symmetric, for any smooth functions f, g, h

(Γ(g, f ), P µ h) = 0.
Thus in [START_REF] Strain | The Vlasov-Maxwell-Boltzmann system in the whole space[END_REF][START_REF] Strain | The Vlasov-Poisson-Landau system in R 3 x[END_REF], defining the dissipation rate functional D(t) by

D(t) = |α|≤K ∇ x ∂ α φ 2 L 2 x + 1≤|α|≤K P µ ∂ α f 2 L 2 x,v + 0≤|α|+|β|≤K w(α, β){I -P µ }∂ α β f ∂ α f 2 Y k ,
the estimate of P µ f is avoided. While for the polynomial case, since

(Q(f, g), µφ(v)) = 0, φ(v) = 1, v, |v| 2 ,
such fact does not hold anymore. So the method in [START_REF] Strain | The Vlasov-Maxwell-Boltzmann system in the whole space[END_REF][START_REF] Strain | The Vlasov-Poisson-Landau system in R 3 x[END_REF] can not work for the polynomial case, we have to assume Ω is a bounded domain and use the Poincaré's inequality to estimate Pf by ∇ x (Pf ). How to extend the result to the whole space case remains open.

1.7. Organization of the paper. In Section 2, we first recall some basic properties of the non-cutoff Boltzmann/Landau collision operator and then compute the basic estimates for the Vlasov-Poisson-Boltzmann/Landau system. We prove the local existence and uniqueness in Section 3 and obtain corresponding global results and decay of solutions in Section 4.

Basic estimates

In this section, we recall some important results on non-cutoff Boltzmann equation and Landau equation and prove several weighted estimates for the Vlasov-Poisson-Landau/Boltzmann equation.

2.1. Preliminaries on the Boltzmann/Landau equation. Before introducing the upper and lower bound for the non-cutoff Boltzmann and Landau collision operator, we first state the following lemmas.

Lemma 2.1. Let γ ∈ (-2, 0). Then for any function f , we have sup

v∈R 3 R 3 |v -v * | γ |f (v * )|dv * f 1+ 2γ 3 L 1 f -2γ 3 L 2 when γ ∈ (- 3 2 , 0), (2.1) 
and sup

v∈R 3 R 3 |v -v * | γ |f (v * )|dv * f 1+ γ 2 L 1 f -γ 2 L 3 when γ ∈ (-2, 0). (2.2)
Proof. Assume f does not equal to 0 otherwise the estimate is trivial. Let λ > 0 be a constant to be determined. We divide the integral into two regions |v -v * | ≤ λ and |v -v * | > λ we have

R 3 |v -v * | γ |f |(v * )dv * ≤ |v-v * |≤λ |v -v * | γ |f |(v * )dv * + |v-v * |>λ |v -v * | γ |f |(v * )dv * .
The second part is bounded by

|v-v * |>λ |v -v * | γ |f |(v * )dv * λ γ f L 1 .
For the first part we divided it into three cases, for γ ∈ (-3 2 , 0), by Cauchy-Schwarz inequality we have

|v-v * |≤λ |v -v * | γ |f |(v * )dv * ≤ |v-v * |≤λ |v -v * | 2γ dv * 1 2 f L 2 λ 3 2 +γ f L 2 .
For γ ∈ (-2, 0), by Hölder's inequality we have

|v-v * |≤λ |v -v * | γ |f |(v * )dv * ≤ |v-v * |≤λ |v -v * | 3 2 γ dv * 2 3 f L 3 λ 2+γ f L 3 . so the proof is ended by taking λ = f 2 3 L 1 f -2 3 L 2 , f 1 2 L 1 f -1 2 L 3 respectively. Lemma 2.2.
For any γ ∈ [-3, 1] and any functions f, g, h, we have

R 3 R 3 |v -v * | γ+2 f (v * )g(v)h(v)dv * dv f L 2 5 g L 2 h L 2 3 , (2.3) 
R 3 R 3 |v -v * | γ+1 f (v * )g(v)h(v)dv * dv f L 2 5 g L 2 h H 1 3 , (2.4) 
and

R 3 R 3 |v -v * | γ+1 f (v * )g(v)h(v)dv * dv f L 2 5 g H 1 γ/2+1 h L 2 γ/2 . (2.5)
If γ ∈ (-3, 1], then we have

R 3 R 3 |v -v * | γ f (v * )g 2 (v)dv * dv f L 2 5 g 2 H 1 γ/2 . (2.6) Proof. If -2 ≤ γ ≤ 1, we deduce that R 3 |v -v * | γ+2 f (v * )g(v)h(v)dv * dv f L 1 3 g L 2 h L 2 3 f L 2 5 g L 2 h L 2 3 .
If -3 ≤ γ < -2, by (2.1), we have sup

v∈R 3 R 3 |v -v * | γ+2 f (v * )dv * f L 2 2 ,
which implies that

R 3 |v -v * | γ+2 f (v * )g(v)h(v)dv * dv f L 2 2 R 3 |g(v)h(v)|dv f L 2 2 g L 2 h L 2 .
This proves (2.3). For (2.4), if γ ≥ -2, then it reduce to the (2.3). So we only need to consider the case γ ∈ [-3, -2), in which case we have -3 < γ + 1 2 < 0 and -2 < γ + 3 2 < 0. Then we have

R 3 R 3 |v -v * | γ+ 1 2 1 v * 4 |g(v)| 2 dvdv * g 2 L 2 .
Applying (2.2) to h, we have

R 3 R 3 |v -v * | γ+ 3 2 v * 4 |f (v * )| 2 |h(v)| 2 dvdv * f 2 L 2 2 |h| 2 1-γ+3/2 2 L 1 |h| 2 γ+3/2 2 L 3 f 2 L 2 2 h 2 H 1 .
Here we apply Sobolev embedding

• L 6 • H 1 . Thus, R 3 R 3 |v -v * | γ+1 |f (v * )||g(v)||h(v)|dvdv * ≤ R 3 R 3 |v -v * | γ+ 3 2 v * 4 |f (v * )| 2 |h(v)| 2 dvdv * 1 2 R 3 R 3 |v -v * | γ+ 1 2 v * 4 |g(v)| 2 dvdv * 1 2 ≤ f L 2 2 g L 2 h H 1 .
The proof of (2.4) is then finished. Now we come to (2.5). If -1 ≤ γ ≤ 1, we deduce that

R 3 R 3 |v -v * | γ+1 f (v * )g(v)h(v)dv * dv f L 1 γ+1 R 3 v γ+1 |g(v)h(v)|dv f L 2 4 g L 2 γ/2+1 h L 2 γ/2 . If -3 ≤ γ < -1, we have v -(γ+1) v * -(γ+1) v -v * -(γ+1) ,
which implies

R 3 R 3 |v -v * | γ+1 f (v * )g(v)h(v)dv * dv R 3 R 3 v -v * -(γ+1) |v -v * | γ+1 f (v * ) v * -(γ+1) |g(v)h(v)| v γ+1 dv * dv R 3 R 3 (1 + |v -v * | γ+1 )f (v * ) v * -(γ+1) |g(v)h(v)| v γ+1 dv * dv := T 1 + T 2 .
It is easily seen that

T 1 f L 1 -(γ+1) g L 2 γ/2+1 h L 2 γ/2 f L 2 5 g L 2 γ/2+1 h L 2 γ/2 , If γ ∈ [-2
, -1), we have γ + 1 ∈ (-3 2 , 0) and by (2.1),

T 2 sup v∈R d R 3 |v -v * | γ+1 |f (v * )| v * -(γ+1) dv * R 3 |g(v)h(v)| v γ+1 dv f L 2 5 g H 1 γ/2+1 h L 2 γ/2 . If γ ∈ [-3, -2)
, by Hardy-Littlewood-Sobolev inequality (cf. [61, Theorem 1.1, pp. 119]) and Hölder's inequality, we have

T 2 R 3 |v -v * | γ+1 f (v * ) v * -(γ+1) dv * L 6 v hg v γ+1 L 6 5 f L p -(γ+1) g L 3 γ/2+1 h L 2 γ/2 f L 2 5 g H 1 γ/2+1 h L 2 γ/2
, with p = 6 9+2γ ∈ [START_REF] Alexandre | Global hypoelliptic and symbolic estimates for the linearized Boltzmann operator without angular cutoff[END_REF][START_REF] Alexandre | Regularizing effect and local existence for the non-cutoff Boltzmann equation[END_REF]. The proof for (2.5) is thus finished. Finally we come to prove (2.6). For the case γ ∈ [-2, 1], (2.6) can be seen as a special case of (2.5). We focus on the case γ ∈ (-3, -2). Similarly to (2.1), we have

R 3 R 3 |v -v * | γ |f (v * )||g(v)| 2 dv * dv R 3 R 3 (1 + |v -v * | γ )|f (v * )| v * -γ |g(v)| 2 v γ dv * dv := I 1 + I 2 .
It is seen that

I 1 f L 1 -γ g 2 L 2 γ/2 f L 2 5 g 2 L 2 γ/2
.

For I 2 , by Hardy-Littlewood-Sobolev inequality (cf. [61, Theorem 1.1, pp. 119]), we have

I 2 f L 2 -γ R 3 |v -v * | γ |g(v)| 2 v γ dv L 2 v * f L 2 -γ |g| 2 v γ L p f L 2 5 g 2 L 2p γ/2 f L 2 5 g 2 H 1 γ/2
, where p = 6 9+2γ satisfies 2p ∈ [START_REF] Alexandre | Regularizing effect and local existence for the non-cutoff Boltzmann equation[END_REF][START_REF] Alexandre | On the Boltzmann equation for long-range interactions[END_REF]. This gives (2.6) and the proof of Theorem 2.2 is finished. We also recall some basic interpolation on x. Lemma 2.3. For any function f and constant k ∈ R, we have

f g H 2 x min c+d=2 { f H c x g H d x }. More precisely, f L ∞ x L 2 v f v k H 1 x L 2 v + f v -k H 2 x L 2 v , (2.7) 
f L 3 x L 2 v f v k L 2 x L 2 v + f v -k H 1 x L 2 v , (2.8 
) and for any constant s ∈ (0, 1)

f H 1 v f v k H s v + f v -ks/(1-s) H 1+s v .
(2.9)

Proof. Firstly, we use extension theorem [61, Thoerem VI.5, pp. 181] to extend function f in domain Ω with Lipschitz boundary to a function Ef in R 3 such that Ef = f in Ω and

Ef H k (R 3 ) f H k (Ω) ,
for any k ≥ 0. By Gagliardo-Nirenberg interpolation inequality on R and R 2 (cf. [START_REF] Leoni | A first course in Sobolev spaces[END_REF]Theorem 12.83] and [59, Page 125]), we obtain

Ef L ∞ x 1 (R) ∂ x 1 Ef 1/2 L 2 x 1 (R) Ef 1/2 L 2
x 1 (R) , and

Ef L ∞ x 2 ,x 3 (R 2 ) ∇ x 2 ,x 3 Ef L 2 x 2 ,x 3 (R 2 ) .
Combining the above estimates, we have

f L ∞ x (Ω) Ef L ∞ x 1 (R) L ∞ x 2 ,x 3 (R 2 ) f 1/2 H 2 x (Ω) f 1/2 H 1
x (Ω) , which implies (2.7). Also, by Gagliardo-Nirenberg interpolation inequality on R 3 , we have

Ef L 3 x (R 3 ) Ef 1/2 L 2 x (R 3 ) ∇ x Ef 1/2 L 2 x (R 3 ) f 1/2 L 2 x (Ω) f 1/2 H 1
x (Ω) , which gives (2.8). For (2.9), by Young's inequality,

η η s v k + η 1+s v -ks 1-s and hence η is a symbol in S( η s v k + η 1+s v -ks 1-s ) (cf. [16]
), where η is the Fourier variable of v. Then by [16, Lemma 2.3 and Corollary 2.5], we have

f H 1 v f v k H s + f v -ks/(1-s)
H 1+s . This completes the Lemma.

2.1.1. Upper and lower bound for the non-cutoff Boltzmann operator. In this section, we consider the Boltzmann collision operator Q(f, g).

Lemma 2.4 ( [47], Theorem 1.1). Suppose γ ∈ (-3, 1], s ∈ (0, 1), γ + 2s > -1. Let w 1 , w 2 ∈ R, a, b ∈ [0, 2s] with w 1 + w 2 = γ + 2s and a + b = 2s. Then for any functions f, g, h we have (1) if γ + 2s > 0, then |(Q(g, h), f ) L 2 v | ( g L 1 γ+2s+(-w 1 ) + +(-w 2 ) + + g L 2 ) h H a w 1 f H b w 2 , ( 2 
) if γ + 2s = 0, then |(Q(g, h), f ) L 2 v | ( g L 1 w 3 + g L 2 ) h H a w 1 f H b w 2
, where w 3 = max{δ, (-w 1 ) + + (-w 2 ) + }, with δ > 0 sufficiently small.

(3) if -1 < γ + 2s < 0, we have

|(Q(g, h), f ) L 2 v | ( g L 1 w 4 + g L 2 -( γ+2s 
)
)

h H a w 1 f H b w 2
where w 4 = max{-(γ + 2s), γ + 2s + (-w 1 ) + + (-w 2 ) + }.

As a first application we have the following corollaries.

Corollary 2.5. Suppose γ ∈ (-3, 1], s ∈ (0, 1), γ + 2s > -1. For any multi-indices |β| ≤ 2, any constant k ≥ 0 and any functions f, g, we have

(Q(∂ β µ, f ), g v 2k ) ≤ C k f H s k+γ/2+2s g H s k+γ/2 , for some constant C k > 0. Lemma 2.6 ( [8], Lemma 3.3). Suppose that -3 < γ ≤ 1.
For any k ≥ 14, and functions g, h, we have

|(Q(h, µ), g v 2k )| ≤ b(cos θ) sin k-3+γ 2 θ 2 L 1 θ h L 2 k+γ/2, * g L 2 k+γ/2, * + C k h L 2 k+γ/2-1/2 g L 2 k+γ/2-1/2 ≤ b(cos θ) sin k-2 θ 2 L 1 θ h L 2 k+γ/2, * g L 2 k+γ/2, * + C k h L 2 k+γ/2-1/2 g L 2 k+γ/2-1/2 , (2.10) 
for some constant C k > 0. Moreover, for any |β| ≤ 2 we have 

|(Q(h, ∂ β µ), g v 2k )| ≤ C k h L 2 k+γ/2 g L 2 k+γ/2 . ( 2 
< γ ≤ 1, s ∈ (0, 1), γ + 2s > -1, k ≥ 14 and G = µ + g ≥ 0. If there exists A 1 , A 2 > 0 such that G ≥ 0, G L 1 ≥ A 1 , G L 1 2 + G L log L ≤ A 2 , then (Q(G, f ), f v 2k ) ≤ - 1 8 b(cos θ)(1 -cos 2k-3-γ θ 2 ) L 1 θ f 2 L 2 k+γ/2, * -2γ 1 f 2 H s k+γ/2 + C k f 2 L 2 k+γ/2-1/2 + C k f L 2 14 g H s k+γ/2 f H s k+γ/2 + C k g L 2 14 f 2 H s k+γ/2 ≤ - 1 8 b(cos θ) sin 2 θ 2 L 1 θ f 2 L 2 k+γ/2, * -γ 1 f 2 H s k+γ/2 + C k f 2 L 2 + C k f L 2 14 g H s k+γ/2 f H s k+γ/2 + C k g L 2 14 f 2 H s k+γ/2 , (2.12 
) for some constants γ 1 , C k > 0.

Remark 2.9. In [8, Theorem 3.1], the authors prove the result for k ≥ 22. However, the case k ≥ 14 can also be obtained by applying the same technique. Note that whenever g

L 1 v is small, we have µ + g L 1 v ≥ 1 -g L 1 v > A 1 .
Moreover, we couldn't obtain a better estimate for the term (Q(f, g), g v 2k ) as the Landau case (see (2.19)) and thus we should put the term µ + g ≥ 0 together.

Lemma 2.10 ( [8], Lemma 3.4 + Lemma 2.4). Suppose γ ∈ (-3, 1], s ∈ (0, 1), γ + 2s > -1.
For any functions f, g, h and k ≥ 14, we have

(Q(f, g), h v 2k ) f L 2 14 min{ g H s k+γ/2 h H s k+γ/2+2s , g H s k+γ/2+2s h H s k+γ/2 } + g L 2 14 f H s k+γ/2 h H s k+γ/2 . (2.

13)

In particular, by duality we have 

Q(f, g) H -s k-γ/2 f L 2 14 g H s k+γ/2+2s + g L 2 14 f H s k+γ/2 . ( 2 
|(Q(f, ∂ β µ), g v 2k )| ≤ C k f L 2 5 g L 2 5 , (2.15) 
and

(Q(µ, f ), f v 2k ) ≤ -γ 1 f 2 L 2 D (m) + C k f 2 L 2 , (2.16 
)

for some constants γ 1 , C k > 0.
Proof. Note that the work [START_REF] Carrapatoso | Cauchy problem and exponential stability for the inhomogeneous Landau equation[END_REF] is for the case γ ∈ [-2, 1] and [START_REF] Carrapatoso | Landau equation for very soft and Coulomb potentials near Maxwellians[END_REF] is for γ ∈ [-3, -2).

Lemma 2.12 ( [10], Lemma 3.5 and [START_REF] Carrapatoso | Landau equation for very soft and Coulomb potentials near Maxwellians[END_REF], Lemma 4.3). For any -3 ≤ γ ≤ 1, k ≥ 7 and any functions f, g, h, we have

|(Q(f, g), h v 2k )| ≤ C f L 2 7 min{ g L 2 D,k+1 h L 2 D,k , g L 2 D,k h L 2 D,k+1
}.

(2.17)

By duality, we have

Q(f, g) H -1 k-γ/2 f L 2 7 g L 2 D,k+1 . ( 2 

.18)

When h = g, we have a better estimate:

(Q(f, g), g v 2k ) ≤ C f L 2 7 g 2 L 2 D,k . (2.19)
Proof. The proof is similar to [10, Lemma 3.5] and [START_REF] Carrapatoso | Landau equation for very soft and Coulomb potentials near Maxwellians[END_REF]Lemma 4.3] with a little modification. Denoting m = v k , we have

(Q(f, g), hm 2 ) = R 3 ∂ j {(φ ij * f )∂ i g -(∂ i φ ij * f )g}hm 2 dv = - R 3 (φ ij * f )∂ i g∂ j hm 2 dv - R 3 (φ ij * f )∂ i gh∂ j m 2 dv + R 3 (∂ i φ ij * f )g∂ j hm 2 dv + R 3 (∂ i φ ij * f )gh∂ j m 2 dv := T 1 + T 2 + T 3 + T 4 .
For the T 1 , T 2 term, by [START_REF] Carrapatoso | Cauchy problem and exponential stability for the inhomogeneous Landau equation[END_REF]Lemma 3.5] and [START_REF] Carrapatoso | Landau equation for very soft and Coulomb potentials near Maxwellians[END_REF]Lemma 4.3], we have

|T 1 | + |T 2 | ≤ C f L 2 7 g L 2 D,k h L 2 D,k
. Now we give a better estimate for the

T 3 , T 4 term. Since ∂ i φ ij (v -v * ) |v -v * | γ+1 , ∂ j m 2 ≤ C v -1 m 2
, for the term T 3 , T 4 , by (2.5), we have

|T 3 | ≤ C f L 2 7 min{ g L 2 D,k+1 h L 2 D,k , g L 2 D,k h L 2 D,k+1 }, |T 4 | ≤ C f L 2 7 g L 2 D,k h L 2 D,k
, and (2.17) is thus proved. For the case g = h, we give a better estimate for T 3 . In fact,

T 3 = R 3 (∂ i φ ij * f )g∂ j gm 2 dv = - 1 2 R 3 (∂ ij φ ij * f )g 2 m 2 dv - 1 2 R 3 (∂ i φ ij * f )∂ j m 2 g 2 dv := T 31 + T 32 .
For the T 32 term, similar to the T 4 term, by (2.5), we have

T 32 ≤ C f L 2 7 g 2 L 2 D,k
.

For the T 31 term, if γ = -3, then ∂ ij φ ij = -8πδ 0 . It is easily seen that T 31 ≤ C R 3 |f |g 2 m 2 dv ≤ C f L 2 -γ g 2 L 2 2k+γ ≤ C f L 2 5 g 2 L 4 k+γ/2 ≤ C f L 2 5 g 2 L 2 D,k
.

For the case γ ∈ [0, 1], we have

T 31 ≤ C R 3 |v -v * | γ |f * |g 2 m 2 dvdv * ≤ C f L 1 γ g 2 L 2 k+γ/2 ≤ C f L 2 5 g 2 L 2 D,k
.

The case γ ∈ (-3, 1] follows from (2.6). Collecting the above estimates on T 31 and T 32 , we obtain (2.19) and complete the proof of Lemma 2.12.

For the Landau operator, we need another upper bound which writes Lemma 2.13. For the Landau operator Q, for any γ ∈ [-3, 1] and any function f, g, h, we have

|(Q(f, g), h)| ≤ f L 2 5 g L 2 h H 2 5 , |(Q(f, g), h)| ≤ f L 2 5 g L 2 10 h H 2 -5 , Proof.
By integration by parts we easily have

(Q(f, g), h) = R 3 -(φ ij * f )∂ j g∂ i h + (∂ j φ ij * f )g∂ i h dv = R 3 (φ ij * f )g∂ i ∂ j h + 2(∂ j φ ij * f )g∂ i h dv,
then by the homogeneity of φ ij and ∂ j φ ij , we have

|φ ij (v -v * )| |v -v * | γ+2 , |∂ j φ ij (v -v * )| |v -v * | γ+1 .
So the theorem follows directly from (2.3) and (2.4).

High-order specular boundary conditions.

When Ω is union of cubes given by (1.11), we give the high-order compatible specular boundary condition from [START_REF] Deng | The non-cutoff Vlasov-Poisson-Boltzmann and Vlasov-Poisson-Landau Systems in bounded domain[END_REF]Lemma 3.1 and 3.2]. Although the proof in [START_REF] Deng | The non-cutoff Vlasov-Poisson-Boltzmann and Vlasov-Poisson-Landau Systems in bounded domain[END_REF] is given for exponential decay perturbations, similar calculations can be applied to polynomial perturbations. Here we provide the proof for the sake of completeness.

Lemma 2.14. Let (f, φ) be the solution to (1.4) with boundary conditions (1.13) and (1.14). Fix i ∈ {1, 2, 3}, x ∈ Γ i and v • n(x) = 0. Then we have the following identities on boundary Γ i :

f (x, v) = f (x, R x v), (2.20) 
and

∂ τ j f (x, R x v) = ∂ τ j f (x, v), ∂ τ j τ k f (x, R x v) = ∂ τ j τ k f (x, v), (2.21) 
for j, k = 1, 2, where {τ j } j=1,2 = {e k } k =i are the two direction other than e i . For the normal derivatives, we have

∂ n f (x, R x v) = -∂ n f (x, v), ∂ τ j ∂ n f (x, R x v) = -∂ τ j ∂ n f (x, v), (2.22) 
for j = 1, 2, and

∂ 2 n f (x, R x v) = ∂ 2 n f (x, v). (2.23) Proof. Note that R x v maps γ -onto γ + . Then it's direct to obtain (2.20) from (1.13). On Γ i , ∂ τ j (x) (j = 1, 2
) is the derivative with direction lies in Γ i , where τ 1 (x), τ 2 (x) are tangent vector on Γ i . Then we can obtain (2.21) by taking tangent derivatives on (2.20). For normal derivatives, we will apply the equation (1.4). We claim that

∇ x φ • ∇ v f ± (R x v) = ∇ x φ • ∇ v f ± (v), ∇ x φ • R x vµ(R x v) = ∇ x φ • vµ, (2.24) 
and

Q(f, g)(R x v) = Q(f (R x v), g(R x v)), (2.25) 
on n(x) • v = 0, for any x belongs to the interior of Γ i . Indeed, by (1.14), we have ∂ x i φ = 0 on Γ i . Notice that R x v sends v i to -v i and preserve the other components on Γ i . For j = 1, 2, 3 such that j = i, we have

∂ v j f ± (R x v) = ∂ v j f ± (v) on Γ i .
Thus, on Γ i , we have

∇ x φ • ∇ v f ± (R x v) = j =i ∂ x j φ ∂ v j f ± (R x v) = ∇ x φ • ∇ v f ± (v).
and

∇ x φ • R x vµ(R x v) = j =i ∂ x j φ v j µ(v) = ∇ x φ • vµ.
Next we prove (2.25). For the Boltzmann case, we apply the Carleman representation as in [START_REF] Alexandre | Global hypoelliptic and symbolic estimates for the linearized Boltzmann operator without angular cutoff[END_REF]Appendix] to find that

Q(f, g)(R x v) = R 3 h E 0,h b(α, h)1 |α|≥|h| |α + h| γ+1+2s |h| 3+2s × f (R x v + α)g(R x v -h) -f (R x v + α -h)g(R x v) dαdh = Q(f (R x v), g(R x v)),
where we use change of variable (α, h) → (R x α, R x h) and E 0,h is the hyper-plane orthogonal to h containing the origin.

For Landau case, we can write

Q(f, g) = ∂ v j φ jk * f ∂ v k g -∂ v j φ jk * ∂ v k f g . (2.26) Notice that ∂ v i f (R x v) = -∂ v i (f (R x v)) and ∂ v j f (R x v) = ∂ v j (f (R x v)) on Γ i , for j = i. Then on Γ i , we have 3 j,k=1 ∂ v j φ jk * f ∂ v k g (R x v) = 3 k=1 ∂ v i -φ ik * f (R x v)∂ v k g(R x v) + j =i 3 k=1 ∂ v j φ jk * f (R x v)∂ v k g(R x v) = ∂ v i φ ii * [f (R x v)] ∂ v i (g(R x v)) + k =i ∂ v i φ ik * [f (R x v)] ∂ v k (g(R x v)) + j =i ∂ v j φ ji * [f (R x v)] ∂ v i (g(R x v)) + j =i,k =i ∂ v j φ jk * [f (R x v)] ∂ v k g(R x v) = 3 j,k=1 ∂ v j φ jk * [f (R x v)] ∂ v k (g(R x v)) ,
where we apply (1.3) to deduce that

φ ik (R x v) = -φ ik (v), φ ji (R x v) = -φ ji (v) when k = i, j = i.
Similar calculation can be applied to the second term of (2.26) and we obtain (2.25) for Landau case. This completes the claim (2.24) and (2.25).

Noticing that

v • ∇ x f = v • n(x)∂ n f + v • τ 1 (x)∂ τ 1 f + v • τ 2 (x)∂ τ 2 f, we can rewrite (1.4) as v • n(x)∂ n f ± = -v • τ 1 (x)∂ τ 1 f ± -v • τ 2 (x)∂ τ 2 f ± -∂ t f ± ± ∇ x φ • ∇ v f ± ∓ ∇ x φ • vµ + Q(2µ + f ± + f ∓ , µ + f ± ).
Applying (3.3) and (2.24), we can obtain that on ∂Ω,

R x v • n(x)∂ n f ± (R x v) = v • n(x)∂ n f ± (v). Since R x v • n(x) = -v • n(x)
, this implies (2.22) by taking tangent derivative. Apply ∂ n to (1.4) twice and rewrite it to be

v • n∂ n ∂ n f ± = -v • τ 1 (x)∂ τ 1 ∂ n f ± -v • τ 2 (x)∂ τ 2 ∂ n f ± -∂ t ∂ n f ± + ±∂ n (∇ x φ • ∇ v f ± ) ∓ ∂ n ∇ x φ • vµ + L ± ∂ n f + Q(f ± + f ∓ , f ± ). (2.27)
Here, by taking tangent derivatives on (1.14), we have ∂ n ∂ x j φ = 0 on Γ i for j = i and hence,

∂ n ∇ x φ • R x vµ(R x v) = ∂ n ∂ x i φ(R x v) i µ(v) = -∂ n ∂ x i φv i µ.
Similarly, we have on Γ i that

± ∂ n (∇ x φ • ∇ v f ± ) + ∂ n Q(f ± + f ∓ , f ± ) = ±∂ n ∇ x φ • ∇ v f ± ± ∇ x φ • ∂ n ∇ v f ± + Q(∂ n f ± + ∂ n f ∓ , f ± ) + Q(f ± + f ∓ , ∂ n f ± ) = ±∂ n ∂ x i φ ∂ v i f ± ± j =i ∂ x j φ ∂ n ∂ v j f ± + Q(∂ n f ± + ∂ n f ∓ , f ± ) + Q(f ± + f ∓ , ∂ n f ± ).
Together with (2.22) and (2.25), we know that on Γ i ,

± ∂ n (∇ x φ • ∇ v f ± )(R x v) + ∂ n Q(f ± + f ∓ , f ± )(R x v) = ±∂ n (∇ x φ • ∇ v f ± )(v) + ∂ n Q(f ± + f ∓ , f ± )(v).
Combining the above identities and (2.27), we have Define [a ± , b, c] by (1.7). For i = 1, 2, 3 and any x ∈ Γ i , we have

R x v • n(x)∂ 2 n f (x, R x v) = -v • n(x)∂ 2 n f (x, v).
∂ x i c(x) = ∂ x i a ± (x) = ∂ x i b j (x) = ∂ x i x i b i (x) = b i (x) = 0,
(2.28)

for j = i.

Proof. Fix x ∈ Γ i . Notice that on the boundary of union of cubes, we have

∂ n f = ∂ x i f or -∂ x i f .
Then by (2.22) and change of variable v → R x v, we have on Γ i that

∂ x i c = 1 12 R 3 ∂ x i f + (x, R x v) + f -(x, R x v) |R x v| 2 dv = - 1 12 R 3 ∂ x i f + (x, v) + f -(x, v) |v| 2 dv = 0.
Similarly, on interior of Γ i , we have

∂ x i a ± = R 3 ∂ x i f ± (x, R x v) dv = - R 3 ∂ x i f ± (x, v) dv = 0,
and for j = i,

∂ x i b j = 1 2 R 3 ∂ x i f + (x, R x v) + f -(x, R x v) (R x v) j dv = - 1 2 R 3 ∂ x i f + (x, v) + f -(x, v) v j dv = 0.
On Γ i , we have (R x v) i = -v i and hence by (2.20) and (2.23), we have

b i (x) = 1 2 R 3 f + (x, R x v) + f -(x, R x v) (R x v) i dv = - 1 2 R 3 f + (x, v) + f -(x, v) v i dv = 0, and 
∂ x i x i b i = 1 2 R 3 ∂ x i x i f + (x, R x v) + ∂ x i x i f -(x, R x v) (R x v) i dv = - 1 2 R 3 ∂ x i x i f + (x, v) + ∂ x i x i f -(x, v) v i dv = 0.
This completes the proof.

2.3.

Estimates on the weight. Recall the weight function w = w(|α|, |β|) = w(α, β) is defined in (1.16). We have the following properties of w.

Lemma 2.16. Assume -3 < γ ≤ 1, 1/2 ≤ s < 1, γ + 2s > -1
for Boltzmann case and -3 ≤ γ ≤ 1 for Landau case. For any multi-indices α, β and non-negative integer k, w(α, β) satisfies the following properties.

• For |α 1 | < |α|, |β 1 | < |β|, we have w(α, β) v 6s ≤ w(α, β 1 ), w(α, β) v 6s ≤ w(α 1 , β), (2.29) 
for the Boltzmann case, and

w(α, β) v 3 ≤ w(α, β 1 ), w(α, β) v 3 ≤ w(α 1 , β), (2.30) 
for the Landau case.

• For both Boltzmann and Landau case, and any |α| ≥ 0, |β| ≥ 1, we have

w(α, β) ≤ v γ-1 w(|α| + 1, |β| -1).
(2.31)

For any |α| + |β| ≤ 2, v k ≤ w(α, β).
(2.32)

• For the Boltzmann case and any |α| ≥ 1, |β| ≥ 0, we have

w(α, β) ≤ w(|α| -1, |β|) s w(|α| -1, |β| + 1) 1-s v γ . (2.33)
Proof. Recall that q = 6s -3(γ-1), p = q + γ-1, r = 2q + 6, for Boltzmann case, and q = 3 -(γ-1), p = 3, r = 2q + 6 for the Landau case. The estimate (2.29) and (2.30) is just from the fact that -3 ≤ γ ≤ 1 and

p = -3(γ-1) + 6s + γ-1 ≥ 6s, q ≥ 6s,
for the Boltzmann case and p, q ≥ 3 for the Landau case. The estimate (2.31) follows from the fact that

k -p|α| -q|β| + r ≤ k -p(|α| + 1) -q(|β| -1) + r + γ-1 ⇐⇒ q -p + γ-1 ≥ 0,
and we conclude (2.31) from the definition of p, q. From p ≤ q and

v k = w(0, 2) = min |α|+|β|≤2 {w(α, β)},
we obtain (2.32). (2.33) is equivalent to

k -p|α| -q|β| + r ≤ (k -p(|α| -1) -q|β| + r)s + (k -p(|α| -1) -q(|β| + 1) + r)(1 -s) + γ, which is equivalent to 0 ≤ ps + p(1 -s) -q(1 -s) + γ ⇐⇒ 0 ≤ qs + (p -q) + γ = (6s -3(γ-1))s + γ-1 + γ.
We thus conclude (2.33) from the definition of q, 1/2 ≤ s < 1 and -3 < γ ≤ 1.

We can directly deduce the following Corollary from Lemma 2.16.

Corollary 2.17. Assume the same conditions as in Lemma 2.16. Then

max |α|+|β|=1 w 2 (α, β) v κ ≤ w(0, 0)w(1, 0), (2.34) 
and

max |α|+|β|=2 w 2 (α, β) v κ ≤ w(1, 0)w(2, 0), max |α|+|β|=2 |β|≥1 w 2 (α, β) v κ ≤ w(0, 1)w(1, 1), (2.35) 
as well as

max |α|+|β|=2 w 2 (α, β) v κ ≤ w 2 (2, 0) v κ ≤ w(1, 0) 4/5 w(2, 0) 6/5 , (2.36) 
where κ = 4s for Boltzmann case, κ = 2 for Landau case.

2.4. Weighted estimates. Next we come to the nonlinear term for the Vlasov-Poisson term. Noticing w 2 (α, β) is still of the form v k for some k > 0, we have

∇ v (w 2 (α, β)) = A α,β v v 2 w 2 (α, β), (2.37) 
for some constant A α,β depending on α, β, k, γ. Then we can apply the space-velocity weight

e ±A α,β φ v 2
. To the end of this section, we will assume

φ L ∞ x ≤ C < +∞, ψ L ∞ x ≤ C < +∞. (2.38)
and hence, 

e ±A α,β φ v 2 ≤ C < ∞, e ±A α,β ψ v 2 ≤ C < ∞. ( 2 
v • ∇ x ∂ α β f ± , e ±A α,β φ v 2 ∂ α β f ± w 2 (α, β) L 2 x,v ∓ (∇ x φ • ∇ v ∂ α β f ± , e ±A α,β φ v 2 ∂ α β f ± w 2 (α, β)) L 2 x,v ∇ x φ H 2 x f 2 Y k , (2.40) and for |β| > 0, |β 1 |=1 |(∂ β 1 v • ∇ x ∂ α β-β 1 f, e ±A α,β φ v 2 ∂ α β f w 2 (α, β)) L 2 x,v | ≤ C |β 2 |=|β|-1 |α 2 |=|α|+1 ∂ α 2 β 2 f w(α 2 , β 2 ) L 2 x L 2 γ/2 ∂ α β f w(α, β) L 2 x L 2 γ/2
. (2.41)

For |α 1 | ≥ 1, we have |(∇ x ∂ α 1 φ • ∇ v ∂ α-α 1 β f, e ±A α,β φ v 2 ∂ α β f w 2 (α, β)) L 2 x,v | ∇ x φ H 3 x f 2 Y k (2.42)
where A α,β is given by (2.37), for some constant C k > 0 for both Landau and Boltzmann case.

Proof. For (2.40), taking integration by parts with respect to ∇ x , we have

v • ∇ x ∂ α β f ± , e ±A α,β φ v 2 ∂ α β f ± w 2 (α, β) L 2 x,v ± A α,β 2 v • ∇ x φ v 2 ∂ α β f ± , e ±A α,β φ v 2 ∂ α β f ± w 2 (α, β) L 2 x,v = ∂Ω R 3 v • n(x)|e ±A α,β φ 2 v 2 ∂ α β f ± w(α, β)| 2 dvdS(x).
For the torus case, the right hand side is equal to zero. For the case of union of cubes, we apply Lemma 2.14 to obtain

|∂ α β f ± (v)| = |∂ α β f ± (R x v)| for x ∈ ∂Ω and R x is given by (1.12). Thus, by change of variable v → R x v, ∂Ω R 3 v • n(x)|e ±A α,β φ 2 v 2 ∂ α β f ± (v)w(α, β)| 2 dvdS(x) = ∂Ω R 3 R x v • n(x)|e ±A α,β φ 2 Rxv 2 ∂ α β f ± (R x v)w(α, β)| 2 dvdS(x) = - ∂Ω R 3 v • n(x)|e ±A α,β φ 2 v 2 ∂ α β f ± (v)w(α, β)| 2 dvdS(x) = 0, (2.43) 
where

R x v • n(x) = -v • n(x).
Taking integration by parts with respect to ∇ v and using (2.37), we have

∓ (∇ x φ • ∇ v ∂ α β f ± , e ±A α,β φ v 2 ∂ α β f ± w 2 (α, β)) L 2 x,v = ∓( A α,β v • ∇ x φ φ v 4 ∂ α β f ± , e ±A α,β φ v 2 ∂ α β f ± w 2 (α, β)) L 2 x,v ± 1 2 ( A α,β v • ∇ x φ v 2 ∂ α β f ± , e ±A α,β φ v 2 ∂ α β f ± w 2 (α, β)) L 2 x,v . Noticing | v v 4 | ≤ v γ for -3 ≤ γ ≤ 1
and taking summation of the above two estimates, we have (2.40). Here we used the fact (2.38) and its consequence (2.39).

v • ∇ x ∂ α β f ± , e ±A α,β φ v 2 ∂ α β f ± w 2 (α, β) L 2 x,v ∓ (∇ x φ • ∇ v ∂ α β f ± , e ±A α,β φ v 2 ∂ α β f ± w 2 (α, β)) L 2 x,v ∇ x φ L ∞ x v γ 2 ∂ α β f ± w(α, β) L 2 x,v v γ 2 ∂ α β f ± w(α, β) L 2 x,v ∇ x φ H 2 x f 2 Y k . This yields

Notice that

∂ i v • ∇ x ∂ α β-e i f = ∂ α+e i β-e i f, ∀ i = 1, 2, 3
, where e i is the unit vector with i-th component being 1. Then (2.41) follows from (2.31) and (2.39).

When 1 ≤ |α 1 | ≤ 2, we have

(∇ x ∂ α 1 φ • ∇ v ∂ α-α 1 β f, e ±A α,β φ v 2 ∂ α β f w 2 (α, β)) L 2 x,v |α 1 |=1 ∇ x ∂ α 1 φ L ∞ x v -γ 2 ∇ v ∂ α-α 1 β f w(α, β) L 2 x L 2 v + |α 1 |=2 ∇ x ∂ α 1 φ L 3 x v -γ 2 ∇ v ∂ α-α 1 β f w(α, β) L 6 x L 2 v v γ 2 ∂ α β f w(α, β) L 2 x L 2 v ∇ x φ H 3 x |α 1 |=1 v -γ 2 ∇ v ∂ α-α 1 β f w(α, β) L 2 x L 2 v f Y k . (2.44)
For the Boltzmann case, (2.33) implies

w(α, β) ≤ w(|α| -1, |β|) s w(|α| -1, |β| + 1) 1-s v γ , ∀ |α| ≥ 1, |β| ≥ 0.
Together with (2.9), we have for

|α 1 | = 1 that v -γ 2 ∇ v ∂ α-α 1 β f w(α, β) L 2 x L 2 v ≤ v -γ 2 ∂ α-α 1 β f w(α, β) L 2 x H 1 v ∂ α-α 1 β f w(|α| -1, β) L 2 x H s γ/2 + ∂ α-α 1 β f w(|α| -1, |β| + 1) L 2 x H 1+s γ/2 f Y k .
For the Landau case, it follows from (2.30) that

w(α, β) ≤ w(|α| -1, |β|) v γ , ∀ |α| ≥ 1, |β| ≥ 0.
Thus we have

v -γ 2 ∇ v ∂ α-α 1 β f w(α, β) L 2 x L 2 v ≤ v -γ 2 ∂ α-α 1 β f w(α, β) L 2 x H 1 v ∂ α-α 1 β f w(|α| -1, β) L 2 x L 2 D f Y k .
The proof of ( 

|(∂ α β (∇ x φ • vµ), e ±A α,β ψ v 2 ∂ α β f ± w 2 (α, β)) L 2 x,v | ≤ C k ∇ x φ H 2 x f H 2 x L 2 v . (2.45) 
When |β| = 0, we have

± ± ∂ α ∇ x φ • vµ, e ±A α,β ψ v 2 ∂ α f ± w 2 (α, β) L 2 x,v ≥ C α ∂ t ∂ α ∇ x φ 2 L 2 x -C ∂ α ∇ x φ L 2 x ∂ α {I -P}f L 2 x L 2 5 -C ∂ α ∇ x φ L 2 x ∇ x ψ H 1 x f Y k , (2.46) for some C α > 0.
Proof. From integration by parts about ∂ β , we have

(∂ α β (∇ x φ • vµ), e ±A α,β ψ v 2 ∂ α β f w 2 (α, β)) L 2 x,v = (∇ x ∂ α φ • ∂ β (vµ)w 2 (α, β), e ±A α,β ψ v 2 ∂ α β f ) L 2 x,v = (-1) |β| ∇ x ∂ α φ • ∂ β ∂ β (vµ)e ±A α,β ψ v 2 w 2 (α, β) , ∂ α f L 2 x,v . (2.47) 
By Fourier transform, Cauchy-Schwarz inequality and using the exponential decay of µ, it is direct to show that (2.47) is bounded by

∇ x ∂ α φ L 2 x R d ∂ α f ∂ β ∂ β (vµ)e ±A α,β ψ v 2 w 2 (α, β) dv L 2 x ∇ x φ H 2 x f H 2 x L 2
v . When β = 0, we temporarily define the projection

P f = R 3 f (u) du + v • R 3 uf (u)du + (|v| 2 -3) R 3 |u| 2 -3 6 f (u)du µ.
Then we split e

±A α,β ψ v 2 = 1 + e ±A α,β ψ v 2
-1 and f ± = P f + {I -P }f to obtain

± ∂ α ∇ x φ • vµ, e ±A α,β ψ v 2 w 2 (α, 0)∂ α f ± L 2 x,v = ± ∂ α ∇ x φ • vµ, w 2 (α, 0)P ∂ α f ± L 2 x,v ± ∂ α ∇ x φ • vµ, w 2 (α, 0){I -P }∂ α f ± L 2 x,v ± ∂ α ∇ x φ • vµ, (e ±A α,β ψ v 2 -1)w 2 (α, 0)∂ α f ± L 2 x,v . (2.48)
Then one can check that

{I -P }f ± = {I -P }{I ± -P ± }f. (2.49)
For the first right hand term of (2.48), we have from (1.8) and (1.4)

2 that ± ± ∂ α ∇ x φ • vµ, w 2 (α, 0)P ∂ α f ± L 2 x,v = 3 i=1 ∂ α ∇ x φ • vµ, w 2 (α, 0)v i µ R 3 1 2 v i ∂ α (f + -f -)(v ) dv L 2 x,v = 2C α Ω R 3 ∇ x ∂ α φ • v∂ α (f + -f -)(v) dvdx = -2C α Ω ∂ α φ ∇ x • R 3 v∂ α (f + -f -)(v) dvdx = -2C α Ω ∂ α φ ∂ t ∆ x φdx = C α ∂ t ∂ α ∇ x φ 2 L 2 x , (2.50) 
for some constant C α,β depending only on α, β. Here we can directly take integration by parts for the case of torus. When Ω is the union of cubes, we need to verify the zero boundary values as the following. Fix i = 1, 2, 3. If

α i = 1, then ∂ x i φ = 0 on Γ i . If α i = 0, 2, then by Lemma 2.14 and change of variable v → R x v, we have on Γ i that R 3 v i ∂ α (f + -f -)(v) dv = R 3 (R x v) i ∂ α (f + -f -)(R x v) dv = - R 3 v i ∂ α (f + -f -)(v) dv = 0.
Note that tangent derivatives doesn't affect the zero boundary values. This completes the integration by parts in (2.50). For the second right hand term of (2.48), noticing exponentially velocity decay in µ and using (2.49), we estimate it by

∂ α ∇ x φ • vµ, w 2 (α, β){I -P }∂ α f ± L 2 x,v ∂ α ∇ x φ L 2 x ∂ α {I ± -P ± }f L 2 x L 2 5 . For the third term in (2.48), noticing e ±A α,β ψ v 2 -1 A α,β ψ L ∞ A α,β ∇ x ψ H 1 x , we have ∂ α ∇ x φ • vµ, (e ±A α,β ψ v 2 -1)w 2 (α, β)∂ α f ± L 2 x,v ∂ α ∇ x φ L 2 x ∇ x ψ H 1 x f Y k .
The above four estimates imply (2.46) and we conclude Lemma 2.19.

In [START_REF] Cao | Propagation of moments and sharp convergence rate for inhomogeneous non-cutoff Boltzmann equation with soft potentials[END_REF], one only need to compute x derivative term, but for our Vlasov-Poisson system we also need estimates about v derivative term.

Lemma 2.20. Suppose that γ ∈ (-3, 1], s ∈ (0, 1), γ + 2s > -1 for Boltzmann case and γ ∈ [-3, 1] for Landau case. For any |α| ≥ 0, |β| ≤ 2, k ≥ 7, there exist constants C k > 0 such that, for any functions f, g, ψ, we have

|(∂ α β Q(f, µ), e ±A α,β ψ v 2 ∂ α β gw 2 (α, β)) L 2 x,v | ≤ b(cos θ) sin k-2 θ 2 L 1 θ ∂ α β f w(α, β) L 2 x L 2 γ/2, * ∂ α β gw(α, β) L 2 x L 2 γ/2, * + C k ∂ α β f w(α, β) L 2 x L 2 γ/2-1/2 ∂ α β gw(α, β) L 2 x L 2 γ/2-1/2 + C k β 1 <β ∂ α β 1 f w(α, β 1 ) L 2 x L 2 γ/2 ∂ α β gw(α, β) L 2 x L 2 γ/2
, for the Boltzmann case, and

|(∂ α β Q(f, µ), e ±A α,β ψ v 2 ∂ α β gw 2 (α, β)) L 2 x,v | ≤ C k β 1 ≤β ∂ α β 1 f L 2 x L 2 5 ∂ α β g L 2 x L 2 5 ,
for the Landau case.

Proof. For both cases, it's easily seen that

(∂ α β Q(f, µ), e ±A α,β ψ v 2 ∂ α β gw 2 (α, β)) L 2 x,v = α 1 ≤α (Q(∂ α β 1 f, ∂ β-β 1 µ), e ±A α,β ψ v 2 ∂ α β gw 2 (α, β)) L 2 x,v .
For the Boltzmann case, we split it into two cases: β 1 = β and β 1 < β. For the case β 1 = β, by (2.10) and integration about x, we have

|(Q(∂ α β f, µ), ∂ α β gw 2 (α, β)) L 2 x,v | ≤ b(cos θ) sin k-2 θ 2 L 1 θ ∂ α β f w(α, β) L 2 x L 2 γ/2, * ∂ α β gw(α, β) L 2 x L 2 γ/2, * + C k ∂ α β f w(α, β) L 2 x L 2 γ/2-1/2 ∂ α β gw(α, β) L 2 x L 2 γ/2-1/2
.

Notice that

e ±A α,β ψ v 2 -1 ≤ A α,β ψ L ∞ x v -2 A α,β ∇ x ψ H 1 x v -2 .
(2.51) By (2.11) we have

|(Q(∂ α β f, µ), (e ±A α,β ψ v 2 -1)∂ α β gw 2 (α, β)) L 2 x,v | ≤C k ∂ α β f w(α, β) v -1 L 2 x L 2 γ/2 (e ±A α,β ψ v 2 -1)∂ α β gw(α, β) v L 2 x L 2 γ/2 ≤C k ∂ α β f w(α, β) L 2 x L 2 γ/2-1/2 ∂ α β gw(α, β) L 2 x L 2 γ/2-1/2 .
For β 1 < β, by (2.11), (2.39) and integration about x, we have

|(Q(∂ α β 1 f, ∂ β-β 1 µ), e ±A α,β ψ v 2 ∂ α β gw 2 (α, β)) L 2 x,v | ≤ C k β 1 <β ∂ α β 1 f w(α, β) L 2 x L 2 γ/2 ∂ α β gw(α, β) L 2 x L 2 γ/2
.

So the proof for the Boltzmann case is completed by gathering the three terms. The Landau case can be prove similarly by taking integration in (2.15).

The next two coercive estimates play a key role. For the Boltzmann case, we have the following.

Lemma 2.21. Suppose that -3 < γ ≤ 1, s ∈ (0, 1), γ + 2s > -1 and k ≥ 14. For any function f, g, let G = µ + g ≥ 0 satisfies

G L 1 ≥ A 1 , G L 1 2 + G L log L ≤ A 2 .
for some generic constant A 1 , A 2 . Then for Q as the Boltzmann collision operator, and any |α| + |β| ≤ 2, we have

(∂ α β Q(µ + g, f ), ∂ α β f w 2 (α, β)) L 2 x,v ≤ - 1 8 b(cos θ) sin 2 θ 2 L 1 θ ∂ α β f w(α, β) 2 L 2 x L 2 γ/2, * -γ 1 ∂ α β f w(α, β) 2 L 2 x H s γ/2 + C k v 14 f H 2 x,v g Y k f Y k + C k v 14 g H 2 x,v f 2 Y k + C k ∂ α β f 2 L 2 x,v + C k β 1 <β ∂ α β 1 f w(α, β 1 ) H s γ/2 ∂ α β gw(α, β) H s γ/2 , (2.52) 
for some constant γ 1 , C k ≥ 0, where • Y k is given in (1.21). Moreover, suppose ψ satisfies (2.38), we have

∂ α β Q(g, f ), e ±A α,β ψ v 2 -1 ∂ α β hw 2 (α, β) L 2 x,v ≤ C k v 14 g H 2 x,v ∇ x ψ H 1 x f Y k h Y k + C k v 14 f H 2 x,v ∇ x ψ H 1 x g Y k h Y k , (2.53) and ∂ α β Q(g, f ), ∂ α β hw 2 (α, β) L 2 x,v + ∂ α β Q(g, f ), e ±A α,β ψ v 2 ∂ α β hw 2 (α, β) L 2 x,v ≤ C k v 14 g H 2 x,v min{ v 2s f Y k h Y k , f Y k v 2s h Y k } + C k v 14 f H 2 x,v g Y k h Y k . (2.54) 
Remark 2.22. To apply Lemma 2.21, one can easily check

G L 1 v = µ + g L 1 v ≥ A 1 when assuming g L 1 v is small enough. Proof. First we have (∂ α β Q(G, f ), ∂ α f w 2 (α, β)) L 2 x,v = α 1 ≤α,β 1 ≤β (Q(∂ α 1 β 1 G, ∂ α-α 1 β-β 1 f ), ∂ α β f w 2 (α, β)) L 2 x,v .
We split it into several cases. For the case α 1 = β 1 = 0, after integrating about x in Theorem 2.8, we have

(Q(G, ∂ α β f ), ∂ α β f w 2 (α, β)) L 2 x,v ≤ - 1 8 b(cos θ) sin 2 θ 2 L 1 θ ∂ α β f w(α, β) 2 L 2 x L 2 γ/2, * -γ 1 ∂ α β f w(α, β) 2 L 2 x H s γ/2 + C k ∂ α β f 2 L 2 x,v + Ω C k ∂ α β f L 2 14 gw(α, β) H s γ/2 ∂ α β f w(α, β) H s γ/2 + C k g L 2 14 ∂ α β f w(α, β) 2 H s γ/2
dx.

For the case

|β 1 | > 0, α 1 = 0, using ∂ β 1 G = ∂ β 1 µ + ∂ β 1 g, we split it into two parts. By (2.29), if |β 1 | > 0, we have w(α, β) v 2s ≤ w(α, β -β 1 ).
Then by Corollary 2.5, we have

|(Q(∂ β 1 µ, ∂ α β-β 1 f ), ∂ α β f w 2 (α, β)) L 2 x,v | ≤ C k ∂ α β-β 1 f w(α, β) L 2 x H s γ/2+2s ∂ α β f w(α, β) L 2 x H s γ/2 ≤ C k ∂ α β-β 1 f w(α, β -β 1 ) L 2 x H s γ/2 ∂ α β f w(α, β) L 2 x H s γ/2
.

For the ∂ β 1 g term, by Lemma 2.10, we have

|(Q(∂ β 1 g, ∂ α β-β 1 f ), ∂ α β f w 2 (α, β)) L 2 x,v | ≤ Ω C k ∂ α β-β 1 f L 2 14 ∂ β 1 gw(α, β) H s γ/2 ∂ α β f w(α, β) H s γ/2 + C k ∂ β 1 g L 2 14 ∂ α β-β 1 f w(α, β) H s γ/2+2s ∂ α β f w(α, β) H s γ/2 dx, For |α 1 | > 0, since ∂ α 1 µ = 0, we have (Q(∂ α 1 β 1 G, ∂ α-α 1 β-β 1 f ), ∂ α β f v 2k ) L 2 x,v = (Q(∂ α 1 β 1 g, ∂ α-α 1 β-β 1 f ), ∂ α β f v 2k ) L 2 x,v
. By Lemma 2.10 we have

|(Q(∂ α 1 β 1 g, ∂ α-α 1 β-β 1 f ), ∂ α β f v 2k ) L 2 x,v | ≤ Ω C k ∂ α-α 1 β-β 1 f L 2 14 ∂ α 1 β 1 gw(α, β) H s γ/2 ∂ α β f w(α, β) L 2 γ/2 dx + C k Ω ∂ α 1 β 1 g L 2 14 ∂ α-α 1 β-β 1 f w(α, β) H s γ/2+2s ∂ α β f w(α, β) H s γ/2
dx. Gathering all the terms, we have

(∂ α β Q(µ + g, f ), ∂ α β f w 2 (α, β)) L 2 x,v ≤ - 1 8 b(cos θ) sin 2 θ 2 L 1 θ ∂ α β f w(α, β) 2 L 2 x L 2 γ/2, * + C k ∂ α β f 2 L 2 x,v -γ 1 ∂ α β f w(α, β) 2 L 2 x H s γ/2 + C k |β 1 |<|β| ∂ α β 1 f w(α, β 1 ) L 2 x H s γ/2 ∂ α β f w(α, β) L 2 x H s γ/2 + C k Ω α 1 ≤α,β 1 ≤β ∂ α-α 1 β-β 1 f L 2 14 ∂ α 1 β 1 gw(α, β) H s γ/2 ∂ α β f w(α, β) H s γ/2 dx + C k Ω α 1 ≤α,β 1 ≤β,|α 1 |+|β 1 |>0 ∂ α 1 β 1 g L 2 14 ∂ α-α 1 β-β 1 f w(α, β) H s γ/2+2s ∂ α β f w(α, β) H s γ/2 dx + C k Ω g L 2 14 ∂ α β f w(α, β) 2 H s γ/2
dx.

(2.55)

Now we only need to prove that

Ω g L 2 14 ∂ α β f w(α, β) 2 H s γ/2 dx v 14 g H 2 x,v f 2 Y k , (2.56) 
and for all

α 1 ≤ α, β 1 ≤ β, |α 1 | + |β 1 | > 0, Ω ∂ α 1 β 1 g L 2 14 ∂ α-α 1 β-β 1 f w(α, β) H s γ/2+2s ∂ α β f w(α, β) H s γ/2 dx v 14 g H 2 x,v f 2 Y k . (2.57) 
The fifth terms on the right hand side of (2.55) follows similarly by changing the order f and g. First, for the case

|α 1 | = |β 1 | = 0, we have Ω g L 2 14 ∂ α β f w(α, β) 2 H s γ/2 dx g L ∞ x L 2 14 ∂ α β f w(α, β) 2 L 2 x H s γ/2 v 14 g H 2 x,v f 2 Y k .
This gives (2.56). For (2.57), we split it into two cases: 

|α 1 | + |β 1 | = 1 and |α 1 | + |β 1 | = 2. For the case |α 1 | + |β 1 | = 1, by f g L 2 x ≤ f L 6 x g L 3 x , we have Ω ∂ α 1 β 1 g L 2 14 ∂ α-α 1 β-β 1 f w(α, β) H s γ/2+2s ∂ α β f w(α, β) H s γ/2 dx ∂ α 1 β 1 g L 6 x L 2 14 ∂ α-α 1 β-β 1 f w(α, β) L 3 x H s γ/2+2s ∂ α β f w(α, β) L 2 x H s γ/2 v 14 g H 2 x,v ∂ α-α 1 β-β 1 f w(α, β) L 3 x H s γ/2+2s f Y k . ( 2 
f w(α, β) L 3 x H s γ/2+2s f w(0, 0) L 2 x H s γ/2 + f w(1, 0) H 1 x H s γ/2 f Y k .
We then consider the case

|α 1 | + |β 1 | = 1, |α| + |β| = 2. This time we have |α -α 1 | = 1, |β -β 1 | = 0 or |α -α 1 | = 0, |β -β 1 | = 1.
For the first case, by (2.35),

∂ α-α 1 f w(α, β) L 3 x H s γ/2+2s ≤ f w(1, 0) H 1 x H s γ/2 + f w(2, 0) H 2 x H s γ/2 f Y k .
For the second case, |β| ≥ 1 and by (2.35), we obtain

∂ β-β 1 f w(α, β) L 3 x H s γ/2+2s ≤ f w(0, 1) L 2 x H 1+s γ/2 + f w(1, 1) H 1 x H 1+s γ/2 f Y k .
For the case |α 1 |+|β 1 | = 2, it is easily seen that this time |α|+|β| = 2 and |α-α

1 | = |β -β 1 | = 0. So we have Ω ∂ α 1 β 1 g L 2 14 ∂ α-α 1 β-β 1 f w(α, β) H s γ/2+2s ∂ α β f w(α, β) H s γ/2 dx ∂ α β g L 2 x L 2 14 f w(α, β) L ∞ x H s γ/2+2s ∂ α β f w(α, β) L 2 x H s γ/2 v 14 g H 2 x,v f w(α, β) L ∞ x H s γ/2+2s f Y k .
(2.59) By (2.7) with suitable k and (2.36), we have

f w(α, β) L ∞ x H s γ/2+2s ≤ f w(1, 0) H 1 x H s γ/2 + f w(2, 0) H 2 x H s γ/2 f Y k .
These 

∂ α β Q(g, f ), e ±A α,β ψ v 2 -1 ∂ α β hw 2 (α, β) L 2 x,v α 1 ≤α β 1 ≤β min ∂ α 1 β 1 g L 2 14 ∂ α-α 1 β-β 1 f w(α, β) H s γ/2 L 2 x e ±A α,β ψ v 2 -1 v 2s ∂ α β hw(α, β) L 2 x H s γ/2 , + ∂ α 1 β 1 g L 2 14 v 2s ∂ α-α 1 β-β 1 f w(α, β) H s γ/2 L 2 x e ±A α,β ψ v 2 -1 ∂ α β hw(α, β) L 2 x H s γ/2 + ∂ α 1 β 1 f L 2 14 ∂ α-α 1 β-β 1 gw(α, β) H s γ/2 L 2 x e ±A α,β ψ v 2 -1 ∂ α β hw(α, β) L 2 x H s γ/2 . (2.60)
Applying L ∞ -L 2 and L 3 -L 6 Hölder's inequality and using the first term in the minimum, the first right-hand term of (2.60) can be estimated as

|α 1 |+|β 1 |=0 ∂ α 1 β 1 g L ∞ x L 2 14 ∂ α-α 1 β-β 1 f w(α, β) L 2 H s γ/2 + |α 1 |+|β 1 |=1 ∂ α 1 β 1 g L 3 x L 2 14 ∂ α-α 1 β-β 1 f w(α, β) L 6 x H s γ/2 + |α 1 |+|β 1 |=2 ∂ α 1 β 1 g L 2 x L 2 14 ∂ α-α 1 β-β 1 f w(α, β) L ∞ x H s γ/2 A α,β ∇ x ψ H 1 x ∂ α β hw(α, β) L 2 x H s γ/2 v 14 g H 2 x,v ∇ x ψ H 1 x f Y k ∂ α β hw(α, β) L 2 x H s γ/2
.

(2.61)

The second right-hand term of (2.60) can be estimated similarly and then we deduce that . Note that we keep the minimum in (2.60) this time, and the proof is omitted for brevity. This completes the proof of Lemma 2.21.

∂ α β Q(g, f ), e ±A α,β ψ v 2 -1 ∂ α β hw 2 (α, β) L 2 x,v v 14 g H 2 x,v ∇ x ψ H 1 x f Y k ∂ α β hw(α, β) L 2 x H s γ/2 + v 14 f H 2 x,v ∇ x ψ H 1 x g Y k ∂ α β hw(α, β) L 2 x H s γ/2
We can also prove the similar result for the Landau case.

Lemma 2.23. Let -3 ≤ γ ≤ 1, Q be the Landau collision operator and k ≥ 7. There exists a constant C k > 0 such that for any function f, g, h, and any function ψ satisfies (2.38), we have the followings.

(1) For any |α|

+ |β| ≤ 2, (∂ α β Q(µ, f ), ∂ α β f w 2 (α, β)) ≤ -γ 1 ∂ α β f w(α, β) 2 L 2 x L 2 D + C k ∂ α β f 2 L 2 x L 2 v + C k β 1 <β ∂ α β 1 f w(α, β 1 ) L 2 x L 2 D ∂ α β gw(α, β) L 2 x L 2 D .
(2.62)

(2) For any |α| + |β| ≤ 2, we have

∂ α β Q(g, f ), ∂ α β f w 2 (α, β) L 2 x,v ≤ C k g v 7 H 2 x,v f 2 Y k , (2.63) 
∂ α β Q(g, f ), e ±A α,β ψ v 2 -1 ∂ α β hw 2 (α, β) L 2 x,v ≤ C k g v 7 H 2 x,v ∇ x ψ H 1 x f Y k h Y k , (2.64) and ∂ α β Q(g, f ), ∂ α β hw 2 (α, β) L 2 x,v + ∂ α β Q(g, f ), e ±A α,β ψ v 2 ∂ α β hw 2 (α, β) L 2 x,v ≤ C k g v 7 H 2 x,v min{ f Y k v h Y k , v f Y k h Y k }. (2.65) where f 2 Y k is given in (1.21). Proof. Notice that (∂ α β Q(µ, f ), ∂ α f w 2 (α, β)) L 2 x,v = α 1 ≤α,β 1 ≤β (Q(∂ β 1 µ, ∂ α β-β 1 f ), ∂ α β f w 2 (α, β)) L 2 x,v .
We split it into two cases: β 1 = 0 and |β 1 | > 0. If β 1 = 0, after integrating about x in (2.16), we have

(Q(µ, ∂ α β f ), ∂ α β f w 2 (α, β)) L 2 x,v ≤ -γ 1 ∂ α β f w(α, β) 2 L 2 x L 2 D + C k ∂ α β f 2 L 2 x L 2 v . For the case |β 1 | > 0, by (2.30), if |β 1 | > 0, then w(α, β) v ≤ w(α, β -β 1 ).
Then by Lemma 2.12 we have

|(Q(∂ β 1 µ, ∂ α β-β 1 f ), ∂ α β f w 2 (α, β)) L 2 x,v | ≤ C k ∂ α β-β 1 f w(α, β) L 2 x L 2 D,1 ∂ α β gw(α, β) L 2 x L 2 D ≤ C k ∂ α β-β 1 f w(α, β -β 1 ) L 2 x L 2 D ∂ α β gw(α, β) L 2 x L 2 D , So (2.62
) is thus finished by gathering the above two terms together. Next, for (2.63), notice that

(∂ α β Q(g, f ), ∂ α β f w 2 (α, β)) L 2 x,v = α 1 ≤α,β 1 ≤β (Q(∂ α 1 β 1 g, ∂ α-α 1 β-β 1 f ), ∂ α β f w 2 (α, β)) L 2 x,v .
We again split it into two cases:

|α 1 | = |β 1 | = 0 and |α 1 | + |β 1 | > 0. For the case |α 1 | = |β 1 | = 0, by (2 
.17) and (2.51), we have

|(Q(g, ∂ α β f ), ∂ α β f w 2 (α, β)) L 2 x,v | ≤ Ω C k g L 2 7 e ±A α,β ψ v 2 -1 v ∂ α β f w(α, β) 2 L 2 D dx ≤ C k g L ∞ x L 2 7 ∇ x ψ H 1 x ∂ α β f w(α, β) 2 L 2 x L 2 D ≤ C k g v 7 H 2 x,v ∇ x ψ H 1 x f 2 Y k . For α 1 ≤ α, β 1 ≤ β, |α 1 | + |β 1 | > 0, by (2.17), we have |(Q(∂ α 1 β 1 g, ∂ α-α 1 β-β 1 f ), ∂ α β f w 2 (α, β)) L 2 x,v | ≤ Ω C k ∂ α 1 β 1 g L 2 7 ∂ α-α 1 β-β 1 f w(α, β) L 2 D,1 ∂ α β f w(α, β) L 2 D dx.
We split it into two cases,

|α 1 | + |β 1 | = 1 and |α 1 | + |β 1 | = 2. For the case |α 1 | + |β 1 | = 1, by f g L 2 x ≤ f L 6 x g L 3
x and similarly as (2.58), we have

Ω ∂ α 1 β 1 g L 2 7 ∂ α-α 1 β-β 1 f w(α, β) L 2 D,1 ∂ α β f w(α, β) L 2 D dx v 7 g H 2 x,v ∂ α-α 1 β-β 1 f w(α, β) L 3 x L 2 D,1 f Y k .
We again split it into two parts |α| + |β| = 1 and |α| + |β| = 2. For the case 

|α 1 | + |β 1 | = |α| + |β| = 1, we have |α -α 1 | = |β -β 1 | = 0.
f w(α, β) L 3 x L 2 D,1 f w(0, 0) L 2 x L 2 D + f w(1, 0) H 1 x L 2 D f Y k .
For the case |α|

+ |β| = 2, either |α -α 1 | = 1, |β -β 1 | = 0 or |α -α 1 | = 0, |β -β 1 | = 1.
For the first case, by (2.35) and (2.8), we have

∂ α-α 1 f w(α, β) L 3 x L 2 D,1 ≤ f w(1, 0) H 1 x L 2 D + f w(2, 0) H 2 x L 2 D f Y k .
For the second case, this time |β| ≥ 1. By (2.35) and (2.8), we have

∂ β-β 1 f w(α, β) L 3 x L 2 D,1 ≤ ∇ v f w(0, 1) L 2 x L 2 D + ∇ v f w(1, 1) H 1 x L 2 D f Y k .
For the case

|α 1 | + |β 1 | = 2, we have obviously |α| + |β| = 2 and |α -α 1 | = |β -β 1 | = 0. Similar to (2.59), we have Ω ∂ α 1 β 1 g L 2 7 ∂ α-α 1 β-β 1 f w(α, β) L 2 D,1 ∂ α β f w(α, β) L 2 D dx v 7 g H 2 x,v f w(α, β) L ∞ x L 2 D,1 f Y k .
We obtain again from (2.7) and (2.36) that

f w(α, β) L ∞ x L 2 D,1 ≤ f w(1, 0) H 1 x L 2 D + f w(2, 0) H 2 x L 2 D f Y k .
The proof of (2.63) is done after gathering the above terms. For (2.64), by (2.17) and (2.51), we have . Note that this time we keep the minimum in (2.66), and we omit the proof for brevity. This completes the proof of Lemma 2.23.

∂ α β Q(g, f ), e ±A α,β ψ v 2 -1 ∂ α β hw 2 (α, β) L 2 x,v α 1 ≤α, β≤β 1 Ω ∂ α 1 β 1 g L 2 7 min ∂ α-α 1 β-β 1 f w(α, β) L 2 D e ±A α,β ψ v 2 -1 v ∂ α β hw(α, β) L 2 D , (2.66) 
v ∂ α-α 1 β-β 1 f w(α, β) L 2 D e ±A α,β ψ v 2 -1 ∂ α β hw(α, β) L 2 D |α 1 |+|β 1 |=0 ∂ α 1 β 1 g L ∞ x L 2 7 ∂ α-α 1 β-β 1 f w(α, β) L 2 x L 2 D + |α 1 |+|β 1 |=1 ∂ α 1 β 1 g L 3 x L 2 7 ∂ α-α 1 β-β 1 f w(α, β) L 6 x L 2 D + |α 1 |+|β 1 |=2 ∂ α 1 β 1 g L 2 x L 2 7 ∂ α-α 1 β-β 1 f w(α, β) L ∞ x L 2 D A α,β ∇ x ψ H 1 x ∂ α β hw(α, β) L 2 x L 2 D v 7 g H 2 x,v ∇ x ψ H 1 x f Y k h Y k ,

Local solutions

The main goal of this section is prove the local-in-time existence and uniqueness of the equation (1.4). Define the series of functions f n := F n -µ by f 0 = 0 and

               ∂ t f n+1 ± + v • ∇ x f n+1 ± ∓ ∇ x φ n • ∇ v f n+1 ± ± ∇ x φ n+1 • vµ = Q(f n ± + f n ∓ , µ) + Q(µ + f n ± , f n+1 ± ) + Q(µ + f n ∓ , f n+1 ± ), -∆ x φ n+1 = R 3 (f n+1 + -f n+1 -)dv, Ω φ n+1 (x)dx = 0, f n+1 (0) = f n+1 0 , E n+1 (0) = E n+1 0 . (3.1)
If Ω is the union of cubes given by (1.11), then we further assume

f (t, x, R x v) = f (t, x, v), on γ -, ∂ n φ = 0, on ∂Ω.
For the Boltzmann case, we further define

f Ȳk := |α|+|β|≤2 C |α|,|β| ∂ α β f w(α, β) 2 L 2 x L 2 γ/2, * . (3.2) 
In order to solve (3.1), we first consider the following linear problem.

Lemma 3.1. Suppose that -3 < γ ≤ 1, γ + 2s > -1 for Boltzmann case and -3 ≤ γ ≤ 1 for Landau case. Let k 0 be given in (1.24). There exist constants τ 0 , T 0 > 0 such that, for all k ≥ k 0 (and let k sufficiently large for Boltzmann case), if

f 0 ∈ X k , g ± ∈ L ∞ T 0 X k ∩ L 2 T 0 Y k , ψ ∈ L ∞ T 0 H 3 x satisfying µ + f 0 ≥ 0, µ + g ≥ 0 and f 0 X k 0 + ∇ x ψ L ∞ T 0 H 3 x + ∂ t ψ L ∞ T 0 L ∞ x + g L ∞ T 0 X k 0 ≤ τ 0 , (3.3) 
suppose also φ, ψ satisfies (2.38), then the Cauchy problem

             ∂ t f ± + v • ∇ x f ± ∓ ∇ x ψ • ∇ v f ± ± ∇ x φ • vµ = Q(g ± + g ∓ , µ) + Q(µ + g ± , f ± ) + Q(µ + g ∓ , f ± ), -∆ x φ = R 3 (f + -f -)dv, Ω φ(x)dx = 0, f (0) = f 0 , E(0) = E 0 . (3.4) admits a weak solution f (t, x, v), φ(t, x) in [0, T 0 ] satisfying µ + f ≥ 0, f ∈ L ∞ T 0 X k , with the energy bound f 2 L ∞ T 0 X k + ∇ x φ 2 L ∞ T 0 H 2 x + ∂ t φ L ∞ T 0 L ∞ x + f 2 L 2 T 0 Y k ≤ M f 0 2 X k + 1 2 g 2 L 2 T 0 Y k + ∇ x ψ 2 L ∞ T 0 H 1
x , (3.5) for some generic constant M > 0. If Ω is the union of cubes given by (1.11), then we consider (3.4) combined with

f (t, x, R x v) = f (t, x, v), on γ -, ∂ n φ = 0, on ∂Ω.
Proof. For |α| + |β| ≤ 2, we apply ∂ α β to (3.4) and obtain

∂ t ∂ α β f ± + ∂ α β (v • ∇ x f ± ) ∓ ∂ α β (∇ x ψ • ∇ v f ± ) ± ∂ α β (∇ x φ • vµ) = ∂ α β Q(g ± + g ∓ , µ) + ∂ α β Q(µ + g ± , f ± ) + ∂ α β Q(µ + g ∓ , f ± ). (3.6)
Thus, taking inner product of (3.6) with e

±A α,β ψ v 2 w 2 (α, β)∂ α β f ± over Ω × R 3 , one has 1 2 ∂ t e ±A α,β ψ 2 v 2 ∂ α β f ± 2 L 2 x,v + A α,β ∂ t ψ v -2 ∂ α β f ± , e ±A α,β ψ v 2 w 2 (α, β)∂ α β f ± L 2 x,v + v • ∇ x ∂ α β f ± , e ±A α,β ψ v 2 w 2 (α, β)∂ α β f ± L 2 x,v + |β 1 |=1 (∂ β 1 v • ∇ x ∂ α β-β 1 f ± , e ±A α,β ψ v 2 w 2 (α, β)∂ α β f ± ) L 2 x,v ∓ ∇ x ψ • ∇ v ∂ α β f ± , e ±A α,β ψ v 2 w 2 (α, β)∂ α β f ± L 2 x,v ∓ α 1 ≤α |α 1 |≥1 ∂ α 1 ∇ x ψ • ∇ v ∂ α-α 1 β f ± , e ±A α,β ψ v 2 w 2 (α, β)∂ α β f ± L 2 x,v ± ∂ α β (∇ x φ • vµ), e ±A α,β ψ v 2 w 2 (α, β)∂ α β f ± L 2 x,v = ∂ α β Q(g ± + g ∓ , µ), e ±A α,β ψ v 2 w 2 (α, β)∂ α β f ± L 2 x,v + ∂ α β Q(µ + g ± , f ± ) + ∂ α β Q(µ + g ∓ , f ± ), w 2 (α, β)∂ α β f ± L 2 x,v + ∂ α β Q(µ + g ± , f ± ) + ∂ α β Q(µ + g ∓ , f ± ), e ±A α,β ψ v 2 -1 w 2 (α, β)∂ α β f ± L 2 x,v . (3.7) 
We denote the second to tenth terms in (3.7) by I 1 to I 9 and estimate them one by one. For I 1 , we make a rough estimate: 

|I 1 | ∂ t ψ L ∞ x f 2 X k . (3.8) Notice that ψ L ∞ x ∇ x ψ H 1 x ≤ τ 0 ,
|I 3 | C η |β 2 |=|β|-1 |α 2 |=|α|+1 ∂ α 2 β 2 f w(α 2 , β 2 ) 2 L 2 x L 2 γ/2 + η ∂ α β f w(α, β) 2 L 2 x L 2 γ/2
, for any η > 0. By (2.42), we have

|I 5 | ∇ x ψ H 3 x f 2 Y k .
When |β| = 0, using (2.46), we have

I 6 ≥ C α ∂ t ∂ α ∇ x φ 2 L 2 x -C ∂ α ∇ x φ L 2 x ∂ α {I -P}f L 2 x L 2 5 -C ∂ α ∇ x φ L 2 x ∇ x ψ H 1 x f Y k ≥ C α ∂ t ∂ α ∇ x φ 2 L 2 x -η ∂ α ∇ x φ 2 L 2 x -η w(α, 0)∂ α f 2 L 2 x L 2 γ/2 -C η ∂ α f 2 L 2 x,v -C ∂ α ∇ x φ L 2 x ∇ x ψ H 1 x f Y k , for any η > 0. When |β| ≥ 1, we have from (2.45) that |I 6 | ≤ C k ∇ x φ H 2 x f H 2 x L 2 v . (3.9) 
For I 7 , since θ ∈ [0, π 2 ], we have sin 2 θ 2 ≤ 1 2 and hence if k ≥ 14 we have

1 2 b(cos θ) sin k-2 θ 2 L 1 θ f 2 Ȳk ≤ 1 32 b(cos θ) sin 2 θ 2 L 1 θ f 2 Ȳk . (3.10)
applying Lemma 2.20, we have for any η > 0 that

|I 7 | ≤ b(cos θ) sin k-2 θ 2 L 1 θ ∂ α β gw(α, β) L 2 x L 2 γ/2, * ∂ α β f w(α, β) L 2 x L 2 γ/2, * + η f 2 Ȳk + η g 2 Ȳk + C η f H 2 x,v + C k β 1 <β ∂ α β 1 gw(α, β 1 ) L 2 x L 2 γ/2 ∂ α β f w(α, β) L 2 x L 2 γ/2 ≤ 1 32 b(cos θ) sin 2 θ 2 L 1 θ ∂ α β f w(α, β) 2 L 2 x L 2 γ/2, * + 1 32 b(cos θ) sin 2 θ 2 L 1 θ ∂ α β gw(α, β) 2 L 2 x L 2 γ/2, * + η f 2 Ȳk + η g 2 Ȳk + C η f H 2 x,v + C k β 1 <β ∂ α β 1 gw(α, β 1 ) L 2 x L 2 γ/2 ∂ α β f w(α, β) L 2 x L 2 γ/2
, for Boltzmann case. For Landau case, it follows from Lemma 2.20 that

|I 7 | ≤ C k |α|+|β|≤2 ∂ α β g L 2 x L 2 5 ∂ α β f L 2 x L 2 5 ≤ η f 2 Y k + η g 2 Y k + C η f 2 H 2 x,v ,
For I 8 , we deduce from (2.52) that

± I 8 ≤ - 1 8 b(cos θ) sin 2 θ 2 L 1 θ ∂ α β f w(α, β) 2 L 2 x L 2 γ/2, * -γ 1 ∂ α β f w(α, β) 2 L 2 x H s γ/2 + C k v 14 f H 2 x,v g Y k f Y k + C k v 14 g H 2 x,v f 2 Y k + C k ∂ α β f 2 L 2 x,v + C k β 1 <β ∂ α β 1 f w(α, β 1 ) H s γ/2 ∂ α β gw(α, β) H s γ/2 ,
for Boltzmann case. Note that and from (2.62) and (2.63),

± I 8 ≤ -γ 1 ∂ α β f w(α, β) 2 L 2 x L 2 D + C k ∂ α β f 2 L 2 x L 2 v + C k β 1 <β ∂ α β 1 f w(α, β 1 ) L 2 x L 2 D ∂ α β gw(α, β) L 2 x L 2 D + C k g v 7 H 2 x,v f 2 Y k ,
for Landau case, with some constants γ 1 , C k > 0. For I 9 , we have from (2.53) that

|I 9 | ≤ C k v 14 g H 2 x,v + C ∇ x ψ H 1 x f 2 Y k + v 14 f H 2 x,v ∇ x ψ H 1 x g Y k + C f Y k ,
for Boltzmann case and, from (2.64) that 

|I 9 | ≤ C k v 7 g H 2 x,v + C ∇ x ψ H 1 x f 2 Y k ,
1 2 ∂ t f 2 X k + ∂ t |α|≤2 C α C |α|,0 ∂ α ∇ x φ 2 L 2 x + 1 8 b(cos θ) sin 2 θ 2 L 1 θ f 2 Ȳk + γ 1 f 2 Y k ≤ 1 32 b(cos θ) sin 2 θ 2 L 1 θ f 2 Ȳk + 1 32 b(cos θ) sin 2 θ 2 L 1 θ L 1 θ g 2 Ȳk + η g 2 Y k + C η,k f 2 H 2 x,v + C ∂ t ψ L ∞ x f 2 X k + C k ∇ x ψ H 3 x f 2 Y k + ∇ x φ 2 H 2 x + f X 14 g Y k f Y k + g X 14 f 2 Y k + g X 14 + C ∇ x ψ H 1 x f 2 Y k + f X 14 ∇ x ψ H 1 x g Y k + C f Y k , (3.11) 
and for the Landau case:

1 2 ∂ t f 2 X k + ∂ t |α|≤2 C α C |α|,0 ∂ α ∇ x φ 2 L 2 x + +γ 1 f 2 Y k ≤ η g 2 Y k + C η,k f 2 H 2 x,v + C ∂ t ψ L ∞ x f 2 X k + C k ∇ x ψ H 3 x f 2 Y k + ∇ x φ 2 H 2 x + f X 7 g Y k f Y k + g X 7 f 2 Y k + g X 7 + C ∇ x ψ H 1 x f 2 Y k + f X 7 ∇ x ψ H 1 x g Y k + C f Y k , (3.12) 
for some generic constant γ 1 independent of k, where we let k ≥ 14. Here f Ȳk is defined by (3.2) and f X k is given by

f 2 X k := |α|+|β|≤2, ± C |α|,|β| e ±A α,β ψ v 2 ∂ α β f ± 2 L 2
x,v .

Next we estimate the term

∇ 3 x φ 2 L ∞ T L 2 x
. Using (3.4) 2 , we have

∇ 3 x φ 2 L 2 x ∇ x ∆ x φ 2 L 2 x ∇ x f 2 L 2 x L 2 4 f 2 X k 0 . (3.13)
Here, for the case of union of cubes, we apply embedding [15, Theorem 6.7-5] with boundary values ∂ x i φ = 0 on Γ i to obtain (3.13). Taking difference of (1.8) over ±, we have

∂ t (a + -a -) = -∇ x • R 3 v(f + -f -) dv,
and hence,

∂ t φ L ∞ x ∇ x ∂ t φ 1/2 L 2 x ∇ x ∂ t φ 2 H 1 x ∇ 2 x ∂ t φ L 2 x ∆ x ∂ t φ L 2 x ∂ t (a + -a -) L 2 x ∇ x f L 2 x L 2 3 f X k 0 . (3.14)
Therefore, for both Boltzmann and Landau case, taking integration of (3.11) and (3.12) over t ∈ [0, T ], we have

1 2 f 2 L ∞ T X k + λ ∇ x φ 2 L ∞ T H 2 x + γ 1 f 2 L 2 T Y k + 1 12 b(cos θ) sin 2 θ 2 L 1 θ f 2 L 2 T Ȳk ≤ 1 2 f 0 2 X k + C η,k f 2 L 2 T H 2 x,v + C ∂ t ψ L ∞ T L ∞ x f 2 L 2 T X k + C k ∇ x φ 2 L 2 T H 2 x + ∇ x ψ L ∞ T H 3 x + g L ∞ T X k 0 + C η f 2 L ∞ T X k 0 + g L ∞ T X k 0 ∇ x ψ L ∞ T H 1 x f 2 L 2 T Y k + η g 2 L 2 T Y k + ∇ x ψ 2 L ∞ T H 1 x g 2 L 2 T Y k + ∇ x ψ 2 L 2 T H 1 x + 1 32 b(cos θ) sin 2 θ 2 L 1 θ g 2 L 2
T Ȳk , for the Landau case, taking integration of (3.11) and (3.12) over t ∈ [0, T ] we have

1 2 f 2 L ∞ T X k + λ ∇ x φ 2 L ∞ T H 2 x + γ 1 f 2 L 2 T Y k ≤ 1 2 f 0 2 X k + C η,k f 2 L 2 T H 2 x,v + C ∂ t ψ L ∞ T L ∞ x f 2 L 2 T X k + C k ∇ x φ 2 L 2 T H 2 x + ∇ x ψ L ∞ T H 3 x + g L ∞ T X k 0 + C η f 2 L ∞ T X k 0 + g L ∞ T X k 0 ∇ x ψ L ∞ T H 1 x f 2 L 2 T Y k + η g 2 L 2 T Y k + ∇ x ψ 2 L ∞ T H 1 x g 2 L 2 T Y k + ∇ x ψ 2 L 2 T H 1 x , (3.15) 
for some generic constant λ > 0 independent of k, η. Assume the a priori assumption corresponding to (3.15) to be

f 2 L ∞ T X k 0 + ∇ x φ 2 L ∞ T H 2 x ≤ ε 0 , (3.16) 
with some small ε 0 > 0. Noticing (3.16) and 0 < T = T (η, k) < η sufficiently small, for the Landau case, we obtain from (3.15) 

• L 2 T ≤ T • L ∞ T , choosing 0 < τ 0 = τ 0 (η) < η in (3.3), ε 0 = ε 0 (η) > 0 in
that 1 4 f 2 L ∞ T X k + λ 2 ∇ x φ 2 L ∞ T H 3 x + γ 1 2 f 2 L 2 T Y k ≤ 1 2 f 0 2 X k + η g 2 L 2 T Y k + ∇ x ψ 2 L ∞ T H 1 x g 2 L 2 T Y k + η ∇ x ψ 2 L ∞ T H 1 x ,
where we used the fact that f L 2

T H 2 x,v ≤ T f L ∞ T H 2 x,v and φ L 2 T H 2 x ≤ T φ L ∞ T H 2
x . Now we choose η = η(λ, γ 1 ) > 0 sufficiently small, which is independent of k, T, τ 0 , ε 0 . Then we have

f 2 L ∞ T X k + ∇ x φ 2 L ∞ T H 3 x + f 2 L 2 T Y k ≤ M f 0 2 X k + 1 2 g 2 L 2 T Y k + ∇ x ψ 2 L ∞ T H 1 x , (3.17) 
for some generic constant M > 0 depends only on λ, γ 1 . Choosing τ 0 in (3.3) small enough and noticing k ≥ k 0 , we close the a priori estimate (3.16) and deduce (3.5). Therefore, it's standard to apply the a priori arguments to obtain a solution to (3.4) in time interval [0, T 0 ] for some small T 0 > 0. For the Boltzmann case we have

1 4 f 2 L ∞ T X k + λ 2 ∇ x φ 2 L ∞ T H 3 x + γ 1 2 f 2 L 2 T Y k + 1 12 b(cos θ) sin 2 θ 2 L 1 θ f 2 L 2 T Ȳk ≤ 1 2 f 0 2 X k + 1 32 b(cos θ) sin 2 θ 2 L 1 θ g 2 L 2 T Ȳk + η g 2 L 2 T Y k + ∇ x ψ 2 L ∞ T H 1 x g 2 L 2 T Y k + η ∇ x ψ 2 L ∞ T H 1 x . Similarly, we have f 2 L ∞ T X k + ∇ x φ 2 L ∞ T H 3 x + f 2 L 2 T Y k + 1 12 b(cos θ) sin 2 θ 2 L 1 θ f 2 L 2 T Ȳk ≤M f 0 2 X k + 1 2 g 2 L 2 T Y k + ∇ x ψ 2 L ∞ T H 1 x + 1 12 b(cos θ) sin 2 θ 2 L 1 θ g 2 L 2
T Ȳk , Thus the Boltzmann case can be proved similarly.

We next prove the non-negativity for Boltzmann case. The Landau case can be proved by using the same method, thus we omit the proof for brevity. Set

F := µ + f, G := µ + g ≥ 0 and assume F | t=0 ≥ 0. Then (3.4) becomes ∂ t F ± + v • ∇ x F ± ∓ ∇ x ψ • ∇ v F ± = Q(G ± , F ± ) + Q(G ∓ , F ± ), -∆ x φ = R 3 (F + -F -) dv, Ω φ(t, x)dx = 0, F (0) = F 0 ≥ 0, E(0) = E 0 .
Denote F ± := ± max{±F, 0} and β(s) = 1 2 (s -) 2 with s -:= min{s, 0}. Notice that dβ ds (F ) = F -, F -| t=0 = 0, and

R 3 Q(G ± , F ± )F - ± v 2k dv = R 3 Q(G ± , F - ± )F - ± v 2k dv + R 3 Q(G ± , F + ± )F - ± v 2k dv = R 3 Q(G ± , F - ± )F - ± v 2k dv + R 3 R 3 S 2 B(G ± ) * (F + ± ) F - ± v 2k dv * dvdσ - R 3 R 3 S 2 B(G ± ) * F + ± F - ± v 2k dv * dvdσ ≤ R 3 Q(G ± , F - ± )F - ± v 2k dv.
Note that F + ± F - ± = 0 and (F + ± ) F - ± ≤ 0. Similarly, one can obtain

R 3 Q(G ∓ , F ± )F - ± v 2k dv ≤ R 3 Q(G ∓ , F - ± )F - ± v 2k dv.
Then we have

d dt Ω R 3 β(F ± ) v 2k dvdx = -(v • ∇ x F ± , F - ± v 2k ) L 2 x,v ± (∇ x ψ • ∇ v F ± , F - ± v 2k ) L 2 x,v + (Q(G ± , F ± ), F - ± v 2k ) L 2 x,v + (Q(G ∓ , F ± ), F - ± v 2k ) L 2 x,v = ±(∇ x ψ • ∇ v F ± , F - ± v 2k ) L 2 x,v + (Q(G ± , F - ± ), F - ± v 2k ) L 2 x,v + (Q(G ∓ , F - ± ), F - ± v 2k ) L 2 x,v . (3.18)
Notice that for the case of union of cubes, similar to (2.43), (v

• ∇ x F - ± , F - ± v 2k ) L 2
x,v = 0 by using change of variable v → R x v. For the first term we have

(∇ x ψ • ∇ v F ± , F - ± v 2k ) L 2 x,v = -2k(∇ x ψ • v v 2k-2 , (F - ± ) 2 ) L 2 x,v ≤ C k ∇ x ψ L ∞ x |v| v k-2 F - ± L 2 x L 2 v v k F - ± L 2 x L 2 v ≤ C k ∇ x ψ H 2 x F - ± 2 L 2 x L 2 k .
For the second term, we deduce from (2.12) that

(Q(G ± , F - ± ), F - ± v 2k ) L 2 x,v ≤ Ω -γ 1 F - ± 2 H s k+γ/2 + C k F - ± 2 L 2 + C k F - ± L 2 14 g ± H s k+γ/2 F - ± H s k+γ/2 + C k g ± L 2 14 F - ± 2 H s k+γ/2 dx ≤ Ω - γ 1 2 -C k g ± L 2 14 F - ± 2 H s k+γ/2 + C k F - ± 2 L 2 v + C k F - ± 2 L 2 14 g ± 2 H s k+γ/2 dx ≤ - γ 1 2 -C k g ± L ∞ x L 2 14 F - ± 2 L 2 x H s k+γ/2 + C k F - ± 2 L 2 x,v + C k F - ± 2 L 2 x L 2 14 g ± 2 L ∞ x H s k+γ/2
.

Choosing τ 0 > 0 in (3.3) small enough that g ± L ∞ x L 2 14 ≤ C g L ∞ T X k 0 ≤ Cτ 0 ≤ γ 1 2C k . Thus, (Q(G ± , F - ± ), F - ± v 2k ) L 2 x,v ≤ C k F - ± 2 L 2 x L 2 k + C k F - ± 2 L 2 x L 2 k g ± 2 Y k , and similarly, (Q(G ∓ , F - ± ), F - ± v 2k ) L 2 x,v ≤ C k F - ± 2 L 2 x L 2 k + C k F - ± 2 L 2 x L 2 k g ± 2 Y k .
Plugging the above estimates into (3.18), we obtain

d dt F - ± 2 L 2 x L 2 k ≤ 2C k (1 + g ± 2 Y k + ∇ x ψ H 1 x ) F - ± 2 L 2 x L 2 k . Recalling that ∇ x ψ ∈ L 2 T 0 H 1 x and g ∈ L 2 T 0 Y k , the Grönwall's inequality implies F - ± = 0 on [0, T 0 ]. We then deduce that F ≥ 0 on [0, T 0 ].
We finish this section by proving the theorem below. Theorem 3.2. Suppose that -3 < γ ≤ 1 for Boltzmann case and -3 ≤ γ ≤ 1 for Landau case. For any k ≥ k 0 + 2 (and let k sufficiently large for Boltzmann case), there exist small constants ε 0 , τ 0 , T 0 > 0, such that if f 0 ∈ X k 0 satisfies µ + f 0 ≥ 0 and

E k 0 (0) ≤ ε 0 , E k (0) ≤ A, ( 3 

.19)

for some A > 0, then the Cauchy problem

                   ∂ t f ± + v • ∇ x f ± ∓ ∇ x φ • ∇ v f ± ± ∇ x φ • vµ = Q(f ± + f ∓ , µ) + Q(µ + f ± , f ± ) + Q(µ + g ∓ , f ± ), -∆ x φ = R 3 (f + -f -)dv, Ω φ(x)dx = 0, f (0) = f 0 , E(0) = E 0 , f (t, x, R x v) = f (t, x, v) on γ -and ∂ n φ = 0 on ∂Ω, if Ω is given by (1.11), (3.20) admits a unique weak solution f ∈ L ∞ T 0 X k satisfying µ + f ≥ 0 and sup 0≤t≤T 0 E k 0 (t) ≤ τ 0 , sup 0≤t≤T 0 E k (t) ≤ A. (3.21)
Proof. We only prove the Boltzmann case and the Landau case can be proved similarly. We recall the sequence of approximate solutions defined in (3.1) with f 0 = 0. Applying Lemma 3.1 by taking

f = f n+1 , φ = φ n+1 , g = f n and ψ = φ n , choosing ε 0 in (3.19) such that 2 √ M ε 0 ≤ τ 0 ,
where M is defined in Lemma 3.1, we have µ + f n ≥ 0 and

f n L ∞ T 0 X k + f n L 2 T 0 Y k ≤ τ 0 . (3.22)
Then there exists a weak limit

f ∈ L ∞ T 0 X k ∩ L 2 T 0 Y k such that f n f weakly in L 2 T 0 Y k .
Then by (3.22), f satisfies (3.21). We next prove the strong convergence of the sequence of f n . Define 

h n := f n+1 -f n . Then we have from (3.1) that                ∂ t h n ± + v • ∇ x h n ± ∓ ∇ x φ n • ∇ v h n ± ∓ ∇ x (φ n -φ n-1 ) • ∇ v f n ± ± ∇ x (φ n+1 -φ n ) • vµ = Q(h n-1 ± + h n-1 ∓ , µ + f n ) + Q(µ + f n ± , h n ± ) + Q(µ + f n ∓ , h n ± ), -∆ x φ n+1 = R 3 (f n+1 + -f n+1 -)dv, -∆ x φ n = R 3 (f n + -f n -)dv, h n (0) = 0, f n+1 (t, x, R x v) = f n+1 (t,
w 2 (α, β) v -4 ∂ α β h n ± over Ω × R 3 .
Here we illustrate the different terms:

∂ α β (∇ x (φ n -φ n-1 ) • ∇ v f n ± ), e ±A α,β ψ v 2 w 2 (α, β) v -4 ∂ α β h n ± L 2 x,v , (3.24) 
and

∂ α β Q(h n-1 ± + h n-1 ∓ , f n ), e ±A α,β ψ v 2 w 2 (α, β) v -4 ∂ α β h n ± L 2 x,v . (3.25)
Since s ≥ 1 2 , we estimate (3.24) by

α 1 ≤α ∂ α 1 ∇ x (φ n -φ n-1 ) • ∂ α-α 1 β ∇ v f n ± , e ±A α,β ψ v 2 w 2 (α, β) v -4 ∂ α β h n ± L 2 x,v Ω |∂ α 1 ∇ x (φ n -φ n-1 )|| v γ 2 w(α, β) D v 1 2 ∈Op( v γ/2 η s w(α,β)) ∂ α-α 1 β f n ± | × | v -γ 2 w -1 (α, β) D v 1 2 e ±A α,β ψ v 2 w 2 (α, β) v -4 ∈Op( v γ/2 η s w(α,β)) ∂ α β h n ± | dx,
where we let s = 1 for the Landau case. Here an operator T ∈ Op(m) means T is a pseudodifferential operator with symbol in S(m). Then by [16, Lemma 2.3 and Corollary 2.5], we can estimate (3.24) by [START_REF] Chen | Smoothing estimates for Boltzmann equation with full-range interactions: Spatially homogeneous case[END_REF]), we estimate (3.25) by

α 1 ≤α Ω |∂ α 1 ∇ x (φ n -φ n-1 )|| v γ 2 D v s w(α, β)∂ α-α 1 β f n ± || v γ 2 D v s w(α, β)∂ α β h n ± | dx ∇ x (φ n -φ n-1 ) H 2 x f n Y k h n Y k . Applying (2.
α 1 ≤α, β 1 ≤β Ω ∂ α 1 β 1 h n-1 L 2 k 0 w(α, β)∂ α-α 1 β-β 1 f n H s γ/2+2s-2 + ∂ α 1 β 1 f n L 2 k 0 w(α, β)∂ α-α 1 β-β 1 h n-1 H s γ/2-2 w(α, β)∂ α β h n H s γ/2-2 dx h n-1 X k-2 f n Y k + f n X k h n-1 Y k-2 h n Y k-2
, where we let k ≥ k 0 + 2. Noticing we use weight w(α, β) v -4 instead of w(α, β), applying similar arguments for deriving (3.17) and choosing τ 0 in (3.22) sufficiently small, we obtain

h n 2 L ∞ T X k-2 + ∇ x (φ n+1 -φ n ) 2 L ∞ T H 3 x + 1 12 b(cos θ) sin 2 θ 2 L 1 θ h n 2 L 2 T Ȳk-2 h n 2 L 2 T Y k-2 ≤ 1 2 h n-1 2 L 2 T Y k-2 + ∇ x (φ n -φ n-1 ) 2 L ∞ T H 2 x + 1 12 b(cos θ) sin 2 θ 2 L 1 θ h n-1 2 L 2 T Ȳk-2 ≤ • • • ≤ 1 2 n-1 f 1 2 L 2 T Y k-2 + ∇ x φ 1 2 L ∞ T H 2 x + 1 12 b(cos θ) sin 2 θ 2 L 1 θ f 1 2 L 2 T Ȳk-2 ≤ τ 0 4 n-1 . (3.26) Thus {f n } and {∇ x φ n } are Cauchy sequence in L ∞ T X k-2 and L ∞ T H 3
x respectively. Then their limit (f, φ) solves (3.20) and satisfies (3.21).

For the uniqueness, suppose that there are two solutions (f 1 , φ 1 ) and (f 2 , φ 2 ) satisfy (3.20) and (3.21). Then

h := f 1 -f 2 satisfies                ∂ t h ± + v • ∇ x h ± ∓ ∇ x φ 1 • ∇ v h ± ± ∇ x (φ 1 -φ 2 ) • vµ = Q(h ± + h ∓ , µ + f 2 ) + Q(µ + f 1 ± , h ± ) + Q(µ + f 1 ∓ , h ± ), -∆ x (φ 1 -φ 2 ) = R 3 (h + -h -)dv, h(0) = 0, h(t, x, R x v) = h(t, x, v) on γ -and ∂ n (φ 1 -φ 2 ) = 0 on ∂Ω, if Ω is given by (1.11),
We apply the same method for deriving (3.26) to obtain that h = 0 and the solution to (3.20) is unique. This completes the proof of Theorem 3.2.

Global regularity

The main goal of this section is to prove the Theorem 1.2. Firstly, we establish the macroscopic estimates.

4.1. Macroscopic estimate. We recall the operator P defined in (1.6). Lemma 4.1. For any k ≥ 4, we have

1 2 f 2 L 2 k ≤ Pf 2 L 2 k + (I -P)f 2 L 2 k ≤ C k f 2 L 2 k , Pf L 2 k ≤ C k f L 2 4 , (4.1) 
for some constant C k ≥ 0.

Proof. Since f = Pf + (I -P)f , we have |f | 2 ≤ 2|Pf | 2 + 2|(I -P)f | 2 .
This proves the first part of (4.1). For the second part of (4.1), we have

|{I -P}f | ≤ 2|Pf | 2 + 2|f | 2 .
For the part Pf , by the definition (1.7), we have

Pf L 2 k ≤ C f L 1 2 µ v 2 L 2 k ≤ C k f L 2 4
. This completes the proof of (4.1).

It is direct to obtain

a 2 L 2 x + b 2 L 2 x + c 2 L 2 x ∼ Pf 2 L 2 x,v .
We also rewrite the equation (1.4) as

   ∂ t f ± + v • ∇ x f ± ± ∇ x φ • vµ -L ± f = N ± (f ), -∆ x φ = R 3 (f + -f -)dv, (4.2) 
with initial data f (0) = f 0 , E(0) = E 0 , where L = [L + , L -] and N = [N + , N -] are given by

L ± f : = Q(f ± + f ∓ , µ) + 2Q(µ, f ± ), N ± (f ) : = ±∇ x φ • ∇ v f ± + Q(f ± , f ± ) + Q(f ∓ , f ± ). (4.3) 
Our next goal is to estimate a(t, x), b(t, x), c(t, x) in terms of {I -P}f . In contrast to [START_REF] Guo | Boltzmann diffusive limit beyond the Navier-Stokes approximation[END_REF], our P is not symmetric and we can not compare the v i , v j terms on both side. The following Lemma gives the macroscopic estimates.

Lemma 4.2. For both Landau and Boltzmann case, suppose f solves (4.2). For any integer m ≥ 0, there exists function G = G(t) satisfying

G(t) |α|≤1 ∂ α f L 2 x L 2 10 ∂ α ∇ x Pf L 2 x,v , (4.4) 
such that

∂ t G(t) + λ [a + , a -, b, c] 2 H 2 x + λ ∇ x φ 2 H 2 x {I -P}f 2 H 2 x L 2 10 + N 2 H 1 x L 2 v + ∇ x φ 4 L 2
x , (4.5) Here N is the inner product of N (f ) with some linear combination of (1,

v i , v i v j , v 2 i , v i |v| 2 ) over v ∈ R 3 .
Proof. Here we only consider the non-cutoff Boltzmann case and the Landau case is similar. The proof follows the idea in [START_REF] Guo | Boltzmann diffusive limit beyond the Navier-Stokes approximation[END_REF]Section 6]. Splitting f = Pf + {I -P}f , we rewrite (4.2) to be

∂ t a ± + ∂ t b • v + ∂ t c(|v| 2 -3) µ + v • ∇ x a ± + b • v + c(|v| 2 -3) µ ± ∇ x φ • vµ = -(∂ t + v • ∇ x ){I ± -P ± }f -L ± {I -P}f + N ± (f ). (4.6)
Taking the inner product of (4.6) with 1,

v 2 i , |v| 2 , v i v j , i, j = 1, 2, 3, i = j over v ∈ R 3 , we have ∂ t a ± + ∇ x • b = (-(∂ t + v • ∇ x ){I ± -P ± }f -L ± {I -P}f + N ± (f ), 1) L 2 v , ∂ t a ± + 2∂ t c + 2∂ x i b i + ∇ x • b = (-(∂ t + v • ∇ x ){I ± -P ± }f -L ± {I -P}f + N ± (f ), v 2 i ) L 2 v , 3∂ t a ± + 6∂ t c + 5∇ x • b = (-(∂ t + v • ∇ x ){I ± -P ± }f -L ± {I -P}f + N ± (f ), |v| 2 ) L 2 v . (4.7) and ∂ x j b i + ∂ x i b j = (-(∂ t + v • ∇ x ){I ± -P ± }f -L ± {I -P}f, v i v j ) L 2 v + (N ± (f ), v i v j ) L 2 v =: γ 1ij +γ 2ij , i = j. (4.8) 
By taking the subtraction of (4.7) 2 and (4.7) 1 , we have

∂ t c + ∂ x i b i = -(∂ t + v • ∇ x ){I ± -P ± }f -L ± {I -P}f, |v i | 2 -1 2 L 2 v + N ± (f ), |v i | 2 -1 2 L 2 v =: γ 1i + γ 2i . (4.9) 
Taking the inner product of (4.6) with v, v|v| 2 over v ∈ R 3 , we have

∂ t b + ∇ x (a ± ± φ) + 2∇ x c = (-(∂ t + v • ∇ x ){I ± -P ± }f -L ± {I -P}f + N ± (f ), v) L 2 v , 5∂ t b + 5∇ x (a ± ± φ) + 20∇ x c = (-(∂ t + v • ∇ x ){I ± -P ± }f -L ± {I -P}f + N ± (f ), v|v| 2 ) L 2 v . (4.10)
The two identities in (4.10) implies

∇ x c = -(∂ t + v • ∇ x ){I ± -P ± }f -L ± {I -P}f + N ± (f ), v(|v| 2 -5) 10 L 2 v , (4.11) 
and

∇ x a ± = -∂ t b∓∇ x φ+ -(∂ t +v•∇ x ){I ± -P ± }f -L ± {I-P}f +N ± (f ), v(10 -|v| 2 ) 5 L 2 v . (4.12) 
Here we use the fact that

R 3 |v| 2 µdv = 3, R 3 |v| 4 µdv = 15, R 3 |v| 6 µdv = 105.
By the definitions (1.6) of Pf and (4.3) of L, we have for ψ

(v) = 1, v i , |v| 2 that ({I ± -P ± }f, ψ(v)) = 0, (L ± {I -P}f, ψ(v)) = 0,
and

(∂ t {I ± -P ± }f, ψ(v)) = 0, (v • ∇ x {I ± -P ± }f, 1) = 0.
Thus the first, third identities in (4.7) and first identities in (4.10) (i.e. inner product with 1, v i , |v| 2 ) become

∂ t a ± + ∇ x • b = (N ± (f ), 1) L 2 v , ∂ t b + ∇ x a ± + 2∇ x c ± ∇ x φ = -(v • ∇ x {I ± -P ± }f, v) L 2 v + (N ± (f ), v) L 2 v , 3∂ t a ± + 6∂ t c + 5∇ x • b = -(v • ∇ x {I ± -P ± }f, |v| 2 ) L 2 v + (N ± (f ), |v| 2 ) L 2 v . (4.13) 
Combining (4.13) 1 and (4.13) 3 , we have

∂ t c + 1 3 ∇ x • b = - 1 6 (v • ∇ x {I ± -P ± }f, |v| 2 ) L 2 v + N ± (f ), |v| 2 -3 6 L 2 v . (4.14) 
For brevity, we define

ξ a = v(10 -|v| 2 ) 5 , ξ bi = 2v 2 i -5 2 , ξ c = v(|v| 2 -5) 10 . (4.15) 
It follows that

|(v • ∇ x {I ± -P ± }f, ξ a )| + |(v • ∇ x {I ± -P ± }f, ξ bi )| + |(v • ∇ x {I ± -P ± }f, v i v j )| + |(v • ∇ x {I ± -P ± }f, ξ c )| ≤ ∇ x {I ± -P ± }f L 2 6
. For the Boltzmann case, by Lemma 2.4, we have

|(Q(µ, f ), ξ a )| ≤ µ L 2 10 f L 2 10 ξ a H 2s -7 ≤ C f L 2 10 , |(Q(f, µ), ξ a )| ≤ f L 2 10 µ L 2 10 ξ a H 2s -7 ≤ C f L 2 10
. For the Landau case, by Lemma 2.13, we have

|(Q(µ, f ), ξ a )| ≤ µ L 2 10 f L 2 10 ξ a H 2 -5 ≤ C f L 2 10 , |(Q(f, µ), ξ a )| ≤ f L 2 10 µ L 2 10 ξ a H 2 -5 ≤ C f L 2 10
. Similar arguments can be carried on inner product with ξ bi , v i v j , ξ c . Recalling the definition (4.3) of L = [L + , L -], we have

|(Lf, ξ a ) L 2 v | + |(Lf, ξ bi ) L 2 v | + |(Lf, v i v j ) L 2 v | + |(Lf, ξ c ) L 2 v | f L 2 10 . (4.16) 
Step 1:

Computation of ∇ x ∂ α c. Let |α| ≤ 2.
Applying ∂ α on both side of (4.11) and taking inner product with ∇ x ∂ α c over x ∈ Ω, we deduce that

∇ x ∂ α c 2 L 2 x = - Ω ((∂ t + v • ∇ x ){I ± -P ± }∂ α f, ξ c ) L 2 v • ∇ x ∂ α c dx - Ω (L ± {I -P}∂ α f, ξ c ) L 2 v • ∇ x ∂ α c dx + Ω (∂ α N ± (f ), ξ c ) L 2 v • ∇ x ∂ α c dx ≤ - d dt Ω ({I ± -P ± }∂ α f, ξ c ) L 2 v • ∇ x ∂ α c dx - Ω ({I ± -P ± }∇ x ∂ α f, ξ c ) L 2 v • ∂ t ∂ α c dx + C ∇ x ∂ α c L 2 x ∂ α {I ± -P ± }f H 1 x L 2 10 + ∂ α N L 2 x . (4.17) 
Here, for the torus case, one can take integration by parts directly. For the union of cubes case, we have from boundary (1.7) that ∂ x i c = 0 on Γ i . On the other hand, when α i = 0, 2, we have from Lemma 2.14 and definition (4.15) of ξ c that for x ∈ Γ i , (2.28). This implies the integration by parts about ∇ x in (4.17). For the term ∂ t ∂ α c in (4.17), it follows from (4.14) that

({I ± -P ± }∂ α f, ξ c ) L 2 v = ({I ± -P ± }∂ α f (R x v), ξ c (R x v)) L 2 v = -({I ± -P ± }∂ α f (v), ξ c (v)) L 2 v = 0. Note that ∂ α P ± f (R x v) = ∂ α P ± f (v) by using
∂ t ∂ α c = 1 3 ∇ x ∂ α b - 1 6 (v • ∇ x {I ± -P ± }∂ α f, |v| 2 ) L 2 v + ∂ α N ± (f ), |v| 2 -3 6 L 2 v .
By Cauchy-Schwarz inequality, for any small ε > 0, we have

- Ω ({I ± -P ± }∇ x ∂ α f, ξ c ) L 2 v • ∂ t ∂ α c dx ≤ ε ∇ x ∂ α b 2 + C ε ∇ x ∂ α {I ± -P ± }f 2 L 2 x L 2 10 + ε ∂ α N 2 L 2
x . Plugging this into (4.17), we deduce that

∇ x ∂ α c 2 ≤ - d dt Ω ({I ± -P ± }∂ α f, ξ c ) L 2 v • ∇ x ∂ α c dx + ε ∇ x ∂ α b 2 + ε ∇ x ∂ α c 2 + C ε ∂ α {I ± -P ± }f 2 H 1 x L 2 10 + ∂ α N 2 L 2
x . (4.18)

Step 2: Computation of ∇ x ∂ α b. For fixed i, we use (4.8), (4.9) to compute

∆ x b i = j =i ∂ x j x j b i + ∂ x i x i b i = j =i -∂ x i x j b j + ∂ x j (γ 1ij + γ 2ij ) + ∂ x i (γ 1i + γ 2i ) -∂ t ∂ x i c = j =i (∂ t ∂ x i c -∂ x i (γ 1j + γ 2j )) + j =i ∂ x j (γ 1ij + γ 2ij ) + ∂ x i (γ 1i + γ 2i ) -∂ t ∂ x i c = ∂ t ∂ x i c + j =i ∂ x j (γ 1ij + γ 2ij ) -∂ x i (γ 1j + γ 2j ) + ∂ x i (γ 1i + γ 2i ) = j =i ∂ x j (γ 1ij + γ 2ij ) -∂ x i (γ 1j + γ 2j ) -∂ x i x i b i + 2∂ x i (γ 1i + γ 2i ). (4.19) 
We can rewrite the linear terms

j =i ∂ x j γ 1ij -∂ x i γ 1j + 2∂ x i γ 1i including γ 1i , γ 1j , γ 1ij as the linear combination of ∂ x j -((∂ t + v • ∇ x ){I ± -P ± }f, ξ ij ) L 2 v -(L ± {I -P}f, ξ ij ) L 2 v , where ξ ij are certain linear combinations of the basis {1, v i v j , |v i | 2 } 3 i,j=1
. Similar to (4.16), we have

|(Lf, ξ ij ) L 2 v | f L 2 10 . Note that -(∆ x ∂ α b i , ∂ α b i ) L 2 x = ∇ x ∂ α b i 2 L 2 x , (∂ x i x i ∂ α b i , ∂ α b i ) L 2 x = -∂ x i ∂ α b i 2 L 2
x , which is trivial for the torus case and follows from (2.28) for the union of cubes case. Applying ∂ α on both side of (4.19), taking inner product with ∂ α b i over x ∈ Ω and summation over i = 1, 2, 3, we deduce that

∇ x ∂ α b 2 L 2 x = i - Ω j =i ∂ x j ∂ α (γ 1ij + γ 2ij ) -∂ x i ∂ α (γ 1j + γ 2j ) • ∂ α b i dx - i Ω |∂ x i ∂ α b i | 2 dx -2 Ω ∂ x i ∂ α (γ 1i + γ 2i ) • ∂ α b i dx ≤ i,j d dt Ω ({I ± -P ± }∂ x j ∂ α f, ξ ij ) L 2 v • ∂ α b i dx - i,j Ω ({I ± -P ± }∂ x j ∂ α f, ξ ij ) L 2 v • ∂ t ∂ α b i dx + C ∇ x ∂ α b ∂ α {I ± -P ± }f H 1 x L 2 10 + ∂ α N L 2 x . (4.20) 
Here we used integration by parts on ∂ x i and ∂ x j . For the case of union of cubes, we need the following boundary values to complete the integration by parts. For i = 1, 2, 3 and α = (α 1 , α 2 , α 3 ). If α i = 0 or 2, then it follows from (2.28) that ∂ α b i = 0 on Γ i . If α i = 1, then applying Lemma 2.14 and change of variable v → R x v, we can obtain from (4.9) that

∂ α γ 1j = 0, on Γ i for j = 1, 2, 3.
Similarly, for j = i, if α j = 1, then ∂ α b i = 0 on Γ j . If α j = 0 or 2, then it follows from (4.8) that

∂ α γ 1ij = 0, on Γ j for j = i.
Next we calculate the term

∂ t ∂ α b i . Applying ∂ α to (4.13) 2 yields ∂ t ∂ α b i = -∇ x i ∂ α a ± -2∇ x i ∂ α c ∓ ∇ x i ∂ α φ -(v • ∇ x {I ± -P ± }∂ α f + ∂ α N ± (f ), v i ) L 2 v .
Then by Cauchy-Schwarz inequality, we have

- Ω ({I ± -P ± }∂ x j ∂ α f, ξ ij ) L 2 v • ∂ t ∂ α b i dx ≤ ε ∇ x ∂ α a ± 2 L 2 x + ∇ x ∂ α c 2 L 2 x + ∇ x ∂ α φ 2 L 2 x + ε ∂ α N 2 L 2 x + C ε ∇ x ∂ α {I ± -P ± }f 2 L 2 x L 2 10
, and (4.20) becomes

∇ x ∂ α b 2 ≤ - i,j d dt Ω ({I ± -P ± }∂ α f, ξ ij ) L 2 v • ∂ x j ∂ α b i dx + ε ∇ x ∂ α φ 2 L 2 x + ε ∇ x ∂ α a ± 2 L 2 x + ε ∇ x ∂ α c 2 L 2 x + C ε ∂ α {I ± -P ± }f 2 H 1 x L 2 10 + ∂ α N 2 L 2
x , (4.21) where we choose ε small enough.

Step 3: Computation of ∇ x ∂ α a. Taking the addition and difference of (4.12) over ±, it yields that

∇ x (a + + a -) = -2∂ t b + ± -(∂ t + v • ∇ x ){I ± -P ± }f -L ± {I -P}f + N ± (f ), ξ a L 2 v , (4.22) 
and

∇ x (a + -a -) = -2∇ x φ + ± ± -(∂ t + v • ∇ x ){I ± -P ± }f -L ± {I -P}f + N ± (f ), ξ a L 2 v . (4.23)
Applying ∂ α derivative on both side of (4.22) and taking inner product with ∇ x ∂ α (a + + a -) over Ω, we deduce that

∇ x ∂ α (a + + a -) 2 L 2 x = - Ω ∂ t ∂ α b + ({I ± -P ± }∂ α f, ξ a ) L 2 v • ∇ x ∂ α (a + + a -) dx - Ω v • ∇ x {I ± -P ± }∂ α f + L ± {I -P}∂ α f + ∂ α N ± (f ), ξ a L 2 v • ∇ x ∂ α (a + + a -) dx. (4.24)
By integration by parts about ∂ t and ∇ x , we have

- Ω ∂ t ∂ α b + ({I ± -P ± }∂ α f, ξ a ) L 2 v • ∇ x ∂ α (a + + a -) dx = - d dt Ω ∂ α b + ({I ± -P ± }∂ α f, ξ a ) L 2 v • ∇ x ∂ α (a + + a -) dx - Ω ∇ x • ∂ α b + ({I ± -P ± }∂ α f, ξ a ) L 2 v ∂ t ∂ α (a + + a -) dx. (4.25) 
To apply the integration by parts for the union of cubes case, we write the following boundary values by using (2.28). If

α i = 1, then ∂ α (a + + a -) = 0 on Γ i . If α i = 0, 2, then ∂ α b i = 0 on Γ i
and by change of variable v → R x v and the definition (4.15) of ξ a , we have

({I ± -P ± }∂ α f, ξ a ) L 2 v = ({I ± -P ± }∂ α f (R x v), ξ a (R x v)) L 2 v = -({I ± -P ± }∂ α f, ξ a ) L 2 v = 0.
The time derivative and tangent derivatives doesn't affect the zero boundary values. This completes the integration by parts in (4.25). In view of (4.25) and (4.24), applying (4.13) 1 , (4.16) and Cauchy-Schwarz inequality, we have

∇ x ∂ α (a + + a -) 2 + d dt ± Ω ∂ α b + ({I ± -P ± }∂ α f, ξ a ) L 2 v • ∇ x ∂ α (a + + a -) dx ∂ α {I ± -P ± }f H 1 x L 2 10 + ∂ α N 2 L 2 x + ∇ x ∂ α b 2 L 2
x . (4.26) Similarly, noticing that

∇ x ∂ α φ, ∇ x ∂ α (a + -a -) L 2 x = -∆ x ∂ α φ, ∂ α (a + -a -) L 2 x = ∆ x ∂ α φ 2 L 2
x , we apply ∂ α to (4.23) and take inner product with ∇ x ∂ α (a + -a -) over Ω to deduce that

∇ x ∂ α (a + -a -) 2 L 2 x + 2 ∆ x ∂ α φ 2 L 2 x + d dt Ω ± ∓({I ± -P ± }∂ α f, ξ a ) L 2 v • ∇ x ∂ α (a + -a -) dx ∂ α {I ± -P ± }f H 1 x L 2 10 + ∂ α N 2 L 2 x + ∇ x ∂ α b 2 L 2 x . (4.27) Notice that |a + + a -| 2 + |a + -a -| 2 = 2|a + | 2 + 2|a -| 2 .
For the torus case, by Sobolev inequality, we have

∇ x φ 2 ∇ 2 x φ 2 = ∆ x φ 2 L 2 x . (4.28) 
For the zeroth order, we apply the Poincaré inequality to a ± , b, c in x and use the conservation law (1.10) to deduce that

a ± 2 L 2 x ≤ C Ω a ± (t, x)dx 2 + C ∇ x a ± 2 L 2 x ∇ x a ± 2 L 2 x , b 2 L 2 x ≤ C Ω b(t, x)dx 2 + C ∇ x b 2 L 2 x ∇ x b 2 L 2 x , (4.29) 
c 2 L 2 x ≤ C Ω c(t, x)dx 2 + C ∇ x c 2 L 2 x ∇ x φ 4 L 2 x + ∇ x c 2 L 2
x . For the union of cubes case, it follows from (1.14) that ∂ x i φ = 0 on Γ i . Then by Sobolev embedding (cf. [START_REF] Ciarlet | Linear and Nonlinear Functional Analysis with Applications: With 401 Problems and 52 Figures[END_REF]), we also have (4.28). The second equality in (4.28) can be obtained by using integration by parts. For the zeroth order, the conservation laws (1.15) give the conservation on mass and energy and hence, the estimates for a ± , c in (4.29) still hold. For the estimate on b, we have from (2.28) that b i = 0 on Γ i for i = 1, 2, 3. Then by Sobolev embedding (cf. [START_REF] Ciarlet | Linear and Nonlinear Functional Analysis with Applications: With 401 Problems and 52 Figures[END_REF]), we obtain

b L 2 x ∇ x b L 2 x .
In view of these facts, we take linear combination λ × (4.27) + λ × (4.26) + (4.18) + (4.21) and summation over |α| ≤ 1 and ± with sufficiently small λ, ε > 0 to deduce that

∂ t G(t) + λ |α|≤2 ∂ α [a + , a -, b, c] 2 L 2 x + λ ∇ x φ 2 H 2 x {I -P}f 2 H 2 x L 2 10 + N 2 H 1 x + ∇ x φ 4 L 2 x ,
where

G = ± |α|≤1 Ω ({I ± -P ± }∂ α f, ξ c ) L 2 v • ∇ x ∂ α c dx + i,j Ω ({I ± -P ± }∂ α f, ξ ij ) L 2 v • ∂ x j ∂ α b i dx + λ Ω ∂ α b + ({I ± -P ± }∂ α f, ξ a ) L 2 v • ∇ x ∂ α (a + + a -) dx ∓ λ Ω ({I ± -P ± }∂ α f, ξ a ) L 2 v • ∇ x ∂ α (a + -a -) dx .
This implies (4.5) and the estimate (4.4) can be directly deduced by Cauchy-Schwarz inequality.

4.2.

Estimates about the energy. In this section, we give the energy estimates on (1.4). There exists functional E 1 (t) satisfying

E 1 (t) ≈ f 2 X k + ∇ x φ 2 H 3 x , (4.30) 
such that, for any T > 0 and sufficiently large k ≥ 15, we have

∂ t E 1 (t) + λη f 2 Y k + λ |α|≤2 w(α, 0)∂ α {I -P}f 2 L 2 x L 2 D f X k 0 f 2 X k + C η,k {I -P}f 2 H 2 x L 2 v + η ∇ x φ 2 H 2 x + η Pf 2 H 2 x L 2 v + C( E k 0 (t) + E k 0 (t))D k (t). ( 4 
.31) for some generic constant λ > 0 and any sufficiently small η > 0.

Proof. We proceed by considering spatial derivatives and mixed derivatives. Notice that

φ L ∞ x ∇ x φ H 1 x E(t) ≤ C.
which verify (2.38) and we can apply estimates in Section 2.4.

Step 1. Estimates with mixed derivatives. We first consider the Boltzmann case. Recall that A α,β is given in (1.17 4 , we have

∂ t 1 2 f 2 X k + |α|≤2 C α C |α|,0 ∂ α ∇ x φ 2 L 2 x + γ 1 2 f 2 Y k ≤ C k f 2 H 2 x,v + C ∂ t φ L ∞ x f 2 X k + C k ∇ x φ H 3 x f 2 Y k + ∇ x φ 2 H 2 x + f X k 0 f 2 Y k + f X k 0 + C ∇ x φ H 1 x f 2 Y k + f X k 0 ∇ x φ H 1 x f Y k + C f Y k , (4.32) 
for some generic constant γ 1 independent of k. Here C α and C |α|,0 are given in (2.46) and (1.19) respectively. If |β| ≥ 1, by interpolation we have

C k ∂ α β f 2 L 2 x,v ≤ C ∂ α f 2 L 2 x H |β| v ≤ γ 1 24 ∂ α f 2 L 2 x H |β|+s v + C k ∂ α f 2 L 2 x,v ≤ γ 1 24 f 2 Y k + C k ∂ α f 2 L 2
x,v . (4.33) Also, by Sobolev embedding or Poincaré's inequality,

∇ x φ H 2 x ∇ 2 x φ H 1 x = ∆ x φ H 1 x f H 1 x L 2 4 η f Y k + C η f H 1 x L 2
v . In view of the above two estimates, choosing η > 0 small enough, (4.32) implies that

∂ t 1 2 f 2 X k + |α|≤2 C α C |α|,0 ∂ α ∇ x φ 2 L 2 x + γ 1 4 f 2 Y k f 2 H 2 x L 2 v + C ∂ t φ L ∞ x f 2 X k + ∇ x φ 2 H 2 x + E k 0 (t) + E k 0 (t) D k (t). (4.34)
For Landau case, one can apply similar calculation as (3.12) instead of (3.11) to derive (4.34) by using the same technique and we omit the details for brevity.

Step 2. Estimates with spatial derivatives. For any |α| ≤ 2, we apply ∂ α to (1.4), take inner product with e

±A α,0 φ v 2 w 2 (α, 0)∂ α f ± over Ω × R 3 to deduce that 1 2 ∂ t e ±A α,0 φ 2 v 2 ∂ α f ± 2 L 2 x,v + A α,0 ∂ t φ v -2 ∂ α f ± , e ±A α,0 φ v 2 w 2 (α, 0)∂ α f ± L 2 x,v + v • ∇ x ∂ α f ± , e ±A α,0 φ v 2 w 2 (α, 0)∂ α f ± L 2 x,v ∓ ∇ x φ • ∇ v ∂ α f ± , e ±A α,0 φ v 2 w 2 (α, 0)∂ α f ± L 2 x,v ∓ α 1 ≤α |α 1 |≥1 ∂ α 1 ∇ x φ • ∇ v ∂ α-α 1 f ± , e ±A α,0 φ v 2 w 2 (α, 0)∂ α f ± L 2 x,v ± ∂ α (∇ x φ • vµ), e ±A α,0 φ v 2 w 2 (α, 0)∂ α f ± L 2 x,v = ∂ α L ± f + ∂ α Q(f ± + f ∓ , f ± ), e ±A α,0 φ v 2 w 2 (α, 0)∂ α f ± L 2 x,v , (4.35) 
where L ± is given in (4.3). We denote the second to seventh terms in (4.35) by J 1 to J 6 and estimate them one by one. Similar to the calculation of I 1 to I 6 from (3.8) to (3.9), i.e. replacing (g, ψ) by (f, φ), one can obtain the following estimates by using (2.40) and (2.42):

|J 1 + J 2 + J 3 + J 4 | ∂ t φ L ∞ x + ∇ x φ H 3 x f 2 Y k C ∂ t φ L ∞ x f 2 X k + ∇ x φ H 2 x f 2 Y k f X k 0 f 2 X k + E k 0 (t)D k (t),
where we apply (3.13) and (3.14) for the terms ∇ 3 x φ L 2 x and ∂ t φ L ∞ x respectively. For J 5 , using (2.46), we have

J 5 ≥ C α ∂ t ∂ α ∇ x φ 2 L 2 x -C ∂ α ∇ x φ L 2 x ∂ α {I -P}f L 2 x L 2 5 -C ∂ α ∇ x φ L 2 x ∇ x φ H 1 x f Y k ≥ C α ∂ t ∂ α ∇ x φ 2 L 2 x -η ∂ α ∇ x φ 2 L 2 x -η w(α, 0)∂ α {I -P}f 2 L 2 x L 2 γ/2 -C η ∂ α {I -P}f 2 L 2 x L 2 v -C E k 0 (t)D k (t),
for any η > 0. Here C α is given in (2.46). For the term J 6 , we need some different estimates. Noticing L ± (∂ α f ) = 0 , we split J 6 into

J 6 = ∂ α Q(2µ + f ± + f ∓ , {I ± -P ± }f ), e ±A α,0 φ v 2 w 2 (α, 0)∂ α f ± L 2 x,v + ∂ α Q(f ± + f ∓ , P ± f ), e ±A α,0 φ v 2 w 2 (α, 0)∂ α f ± L 2 x,v + ∂ α Q({I ± -P ± }f + {I ∓ -P ∓ }f, µ), e ±A α,0 φ v 2 w 2 (α, 0)∂ α f ± L 2 x,v =: J 7 + J 8 + J 9 .
We further split J 7 as

J 7 = ∂ α Q(2µ + f ± + f ∓ , {I ± -P ± }f ), w 2 (α, 0)∂ α {I ± -P ± }f L 2 x,v + ∂ α Q(2µ + f ± + f ∓ , {I ± -P ± }f ), w 2 (α, 0)∂ α P ± f L 2 x,v + ∂ α Q(2µ + f ± + f ∓ , {I ± -P ± }f ), e ±A α,0 φ v 2 -1 w 2 (α, 0)∂ α f ± L 2 x,v =: J 7,1 + J 7,2 + J 7,3 .
For Boltzmann case, we deduce from (2.52) that J 7,1 satisfies

± J 7,1 ≤ - 1 8 b(cos θ) sin 2 θ 2 L 1 θ w(α, 0)∂ α {I -P}f 2 L 2 x L 2 γ/2, * - γ 1 2 w(α, 0)∂ α {I -P}f 2 L 2 x H s γ/2 + C k E k 0 (t)D k (t) + C k ∂ α {I -P}f 2 L 2
x,v . For J 7,2 and J 7,3 , for the Boltzmann case, we deduce from Lemma 2.4 that

|J 7,2 | (C + v 14 f H 2 x L 2 v ) {I -P}f H 2 x L 2 v w 2 (α, 0)Pf H 2 x H 2s γ+2s η Pf 2 H 2 x L 2 v + C η {I -P}f 2 H 2 x L 2 v + C k E k 0 (t)D k (t). It follows from (2.53) that |J 7,3 | ∇ x φ H 1 x (C + v 14 f H 2 x,v ) {I -P}f Y k Pf Y k + v 14 {I -P}f H 2 x,v (C + f Y k ) Pf Y k E k 0 (t) + E k 0 (t) D k (t).
For the Landau case, it follows from (2.62) and (2.63) that

± J 7,1 ≤ - γ 1 2 w(α, 0)∂ α {I -P}f 2 L 2 x L 2 D + C k ∂ α {I -P}f 2 L 2 x L 2 v + C k E k 0 (t)D k (t),
with some constants γ 1 , C k > 0. Applying Lemma 2.13 and (2.64), we have

|J 7,2 | (C + f L 2 5 ) {I -P}f H 2 x L 2 v Pf H 2 x H 2 5 η Pf 2 H 2 x L 2 v + C η {I -P}f 2 H 2 x L 2 v + C k E k 0 (t)D k (t)
, and

|J 7,3 | (C + v 7 f H 2 x,v ) ∇ x φ H 1 x {I -P}f Y k f Y k E k 0 (t) + E k 0 (t) D k (t).
For J 8 , we deduce from (2.54) that for the Boltzmann case:

|J 8 | v 14 f H 2 x,v v 2s Pf Y k f Y k + v 14 Pf H 2 x,v f Y k f Y k E k 0 (t)D k (t),
and from (2.65) that for the Landau case:

|J 8 | f v 7 H 2 x,v v Pf Y k f Y k E k 0 (t)D k (t).
Here we let k ≥ k 0 . For J 9 , we split it as

J 9 = ∂ α Q({I ± -P ± }f + {I ∓ -P ∓ }f, µ), e ±A α,0 φ v 2 w 2 (α, 0)∂ α {I ± -P ± }f f ± L 2 x,v + ∂ α Q({I ± -P ± }f + {I ∓ -P ∓ }f, µ), e ±A α,0 φ v 2 w 2 (α, 0)∂ α P ± f ± L 2 x,v =:J 9,1 + J 9,2 .
Then for Boltzmann case, applying Lemma 2.20, we have for any η > 0 that

|J 9,1 | ≤ b(cos θ) sin k-2 θ 2 L 1 θ w(α, 0)∂ α {I -P}f L 2 x L 2 γ/2, * ∂ α {I -P}f w(α, 0) L 2 x L 2 γ/2, * + C k w(α, 0)∂ α {I -P}f L 2 x L 2 γ/2-1/2 ∂ α {I -P}f w(α, 0) L 2 x L 2 γ/2-1/2 ≤ 1 16 b(cos θ) sin 2 θ 2 L 1 θ w(α, 0)∂ α {I -P}f 2 L 2 x L 2 γ/2, * + η w(α, 0)∂ α {I -P}f 2 L 2 x L 2 γ/2 + C k,η {I -P}f 2 H 2 x L 2
v , For the term J 9,2 , by Lemma 2.4 we have

|J 9,2 | ≤ C w(α, 0)∂ α {I -P}f L 2 x L 2 7 µ H 2s ∂ α Pf w(α, 0) L 2 x L 2 γ+2s ≤ η ∂ α Pf 2 L 2 x,v + η w(α, 0)∂ α {I -P}f 2 L 2 x L 2 γ/2 + C k,η {I -P}f 2 H 2 x L 2
v , For Landau case, we have from Lemma 2.20 that (4.35), combining the above estimates for J 1 to J 9 , applying (3.10) and (4.33), we deduce that for small η > 0,

|J 9 | ≤ C k ∂ α {I -P}f L 2 x L 2 5 ∂ α f L 2 x L 2 5 ≤ η w(α, 0)∂ α {I -P}f 2 L 2 x L 2 D + η ∂ α Pf 2 L 2 x,v + C η {I -P}f 2 H 2 x L 2 v . Taking summation ± |α|≤2
∂ t |α|≤2 1 2 e ±A α,0 φ 2 v 2 ∂ α f ± 2 L 2 x,v + C α ∇ x φ 2 H 2 x + γ 1 3 |α|≤2 w(α, 0)∂ α {I -P}f 2 L 2 x H s γ/2 f X k 0 f 2 X k + C η,k {I -P}f 2 H 2 x L 2 v + η ∇ x φ 2 H 2 x + η Pf 2 H 2 x L 2 v + C( E k 0 (t) + E k 0 (t))D k (t). (4.36)
Here, for the Boltzmann case, we use the fact that

b(cos θ) sin k-2 θ 2 L 1 θ ≤ 1 16 b(cos θ) sin 2 θ 2 L 1 θ , which follows from k ≥ k 0 .
Taking linear combination η × (4.34) + (4.36) and applying (3.14), we obtain

∂ t E 1 (t) + λη f 2 Y k + γ 1 4 |α|≤2 w(α, 0)∂ α {I -P}f 2 L 2 x L 2 D f X k 0 f 2 X k + η f 2 H 2 x L 2 v + C η,k {I -P}f 2 H 2 x L 2 v + η ∇ x φ 2 H 2 x + η Pf 2 H 2 x L 2 v + C( E k 0 (t) + E k 0 (t))D k (t). (4.37)
where E 1 (t) is given by

E 1 (t) = η 2 f 2 X k + η |α|≤2 C α C |α|,0 ∂ α ∇ x φ 2 L 2 x + ± |α|≤2 1 2 e ±A α,0 φ 2 v 2 ∂ α f ± 2 L 2 x,v + C α ∂ t ∇ x φ 2 H 2
x . (4.38)

It's direct to verify that E 1 (t) satisfies (4.30). For the second right-hand term of (4.37), we split it as

η f 2 H 2 x L 2 v η Pf 2 H 2 x L 2 v + η |α|≤2 w(α, 0)∂ α {I -P}f 2 L 2 x L 2 D . (4.39) 
Choosing η sufficiently small, the second right hand term of (4.39) can be absorbed by the left hand side of (4.37) and we obtain (4.31). This completes the proof of Lemma 4.3.

4.3.

Recover the energy from semigroup method. According to Lemma 4.3, we only need to deal with term {I -P}f H 2

x L 2 v without velocity derivative on the right hand side of (4.31). In order to eliminate this term, we define the semigroup generated by L given in (1.5) to be S L (t). Then we first give some estimate on S L (t), which is the solution operator to equation

∂ t f + v • ∇ x f ± ∇ x φ • vµ = L ± f, f (0) = f 0 , -∆ x φ = R 3 (f + -f -) dv, Ω φ(t, x)dx = 0. (4.40)
If the domain Ω is union of cubes given by (1.11), then we further assume

∂ n φ = 0 on ∂Ω. (4.41) 
To obtain the estimate of (4.40), we denote

-∆ -1 x R 3 (•) + -(•) -dv
to be the solution operator to the second equation of (4.40). Then we define linear operators

A = [A + , A -], B = [B + , B -] and K 1 , K 2 as A ± = -v • ∇ x + L ± -M χ R , K 1 = M χ R , B ± = -v • ∇ x + L ± , K 2 = ±µv • ∇ x ∆ -1 x R 3 (•) + -(•) -dv, L = -v • ∇ x ± µv • ∇ x ∆ -1 x R 3 (•) + -(•) -dv + L ± where M > 0 is a large constant and χ ∈ D(R) is the truncation function satisfying 1 [-1,1] ≤ χ ≤ 1 [-2,2] and we denote χ R (•) := χ(•/R) for R > 0.
For the case of union of cubes, we consider the domain of these operators, i.e. A, B, L, with restriction of specular-reflection boundary condition for f and Neumann boundary condition for φ:

f (R x v) = f (v) on γ -, ∂ n ∆ -1 x R 3 f + -f -dv = 0 on ∂Ω.
Then we have the following lemma.

Lemma 4.4. Consider both Boltzmann and Landau case. For k ≥ k 0 , there exists ε 0 > 0 such that if

f H 2 x L 2 k 0 +4 ≤ ε 0 , (4.42) 
then we have

S L (t)f H 2 x L 2 k t -7 6 f H 2 x L 2 k+4 , (4.43) 
and

∞ 0 v k S L (t)f 2 H 2 x L 2 v dt 1 2 f H 2 x H -s k-γ/2 . ( 4 

.44)

Here we suppose that s = 1 for Landau case.

Proof. We will prove (4.43) and (4.44) in two steps. We only prove the Boltzmann case and the Landau case can be proved similar.

Step 1. By Duhamel's principle, we have

S B (t) = S A (t) + t 0 S B (t -s)K 1 S A (s) ds, (4.45) 
and 

S L (t) = S B (t) + t 0 S L (t -s)K 2 S B (s) ds. ( 4 
≥ k 0 , (-Af, v 2k f ) L 2 x,v ≥ γ 1 2 v k f 2 L 2 x L 2 D v k+ γ 2 f 2 L 2 x,v , (4.47) 
where k 0 is given in (1.24). Here (v

• ∇ x ∂ α f, ∂ α f ) L 2 
x,v = 0 by using change of variable v → R x v for the case of union of cubes. Moreover, we use Lemma 2.14 to obtain

(v • ∇ x f, v 2k f ) L 2 x,v = 0 (4.48)
for the case of union of cubes, and by using change of variable v → R x v. For the case of torus, (4.48) also holds. Then A generates a semigroup on

L 2 k such that S A (t)f L 2 x L 2 k ≤ f L 2 x L 2 k . (4.49) 
Also, by definition of semigroup, we have equation

∂ t S A (t)f -AS A (t)f = 0. (4.50)
Taking inner product of (4.50) with v 2k S A (t)f over Ω × R 3 , we have from (4.47) that 1 2

∂ t v k S A (t)f 2 L 2 x,v + λ v k S A (t)f 2 L 2 x L 2 D ≤ 0. ( 4 

.51)

For the hard potential case, i.e. γ ≥ 0, we have

v k S A (t)f L 2 x L 2 D v k S A (t)f L 2 x L 2 v , and hence, S A (t)f L 2 x L 2 k ≤ e -λt f L 2 x L 2 k , (4.52) 
for some λ > 0. For the soft potential case and k ≥ k 1 ≥ k 0 , it follows from (4.51) that

∂ t S A (t)f 2 L 2 x L 2 k 1 -S A (t)f 2 L 2 x L 2 k 1 + γ 2 -λ R γ S A (t)f 2 L 2 x L 2 k 1 + R 2(k-k 1 )+γ S A (t)f 2 L 2 x L 2 k ,
for some λ > 0. Solving this ODE and using (4.49), we have

S A (t)f 2 L 2 x L 2 k 1 e -λ R γ t f 2 L 2 x L 2 k 1 + R 2(k-k 1 )+γ t 0 e λ R γ s ds f 2 L 2 x L 2 k e -λ R γ t f 2 L 2 x L 2 k 1 + R 2(k-k 1 ) f 2 L 2 x L 2 k . Choosing R = t [log t ] -2(k-k 0 ) λ - 1 
γ , we have

S A (t)f L 2 x L 2 k 1 t - k-k 1 -1/2 |γ| f L 2 x L 2 k , (4.53) 
For k ≥ k 1 + 4, since |γ| ≤ 3, we know that t

- k-k 1 -1/2 |γ| ≤ t -7 6
. Together with (4.52), we deduce that

S A (t)f L 2 x L 2 k 1 t -7 6 f L 2 x L 2 k , (4.54) 
For the semigroups S B (t) and S L (t) in exponential weighted space, we have

∂ t S B (t)f -BS B (t)f = 0, ∂ t S L (t)f -LS L (t)f = 0. (4.55)
Taking H 2 x L 2 v inner product with µ -1 S B (t)f and µ -1 S L (t)f over Ω × R 3 respectively, we have

∂ t µ -1 2 S B (t)f 2 H 2 x L 2 v + λ µ -1 2 {I -Pµ 1 2 }(S B (t)f ) 2 H 2 x H s γ/2 ≤ 0, ∂ t µ -1 2 S L (t)f 2 H 2 x L 2 v + ∂ t ∇ x φ 2 H 2 x + λ µ -1 2 {I -Pµ 1 2 }(S L (t)f ) 2 H 2 x H s γ/2 ≤ 0. (4.56)
where the dissipation rate of L ± for exponential perturbation can be found in [START_REF] Gressman | Global classical solutions of the Boltzmann equation without angular cut-off[END_REF][START_REF] Guo | The Landau equation in a periodic box[END_REF] and φ is given by

φ = ∆ -1 x R 3 (S L (t)f ) + -(S L (t)f ) -dv. (4.57)
Here, in the second estimate of (4.56), we used the fact that

∂ t R 3 S L (t)f dv + R 3 v • ∇ x S L (t)f dv = 0,
and thus,

± ± µv • ∇ x ∂ α ∆ -1 x R 3 (S L (t)f ) + -(S L (t)f ) -dv, µ -1 ∂ α (S L (t)f ) ± L 2 x,v = ∂ α φ, R 3 v • ∇ x ∂ α ((S L (t)f ) + -(S L (t)f ) -) dv L 2 x = ∂ α φ, -∂ t ∂ α R 3 ((S L (t)f ) + -(S L (t)f ) -) dv L 2 x = 1 2 ∂ t ∂ α ∇ x φ 2 L 2
x .

Here we take integration by parts on ∇ x with (4.41) and use boundary condition (1.13) to deduce

R 3 v((S L (t)f ) + -(S L (t)f ) -) dv = 0
on ∂Ω for the case of union of cubes. In order to derive the weighted version of (4.56), taking H 2 x L 2 v inner product of (4.55) with v k µ -1 S B (t)f and v k µ -1 S L (t)f over Ω × R 3 respectively, we have

∂ t v k µ -1 2 S B (t)f 2 H 2 x L 2 v + λ v k (µ -1 2 S B (t)f ) 2 H 2 x H s γ/2 ≤ C R χ R µ -1 2 S B (t)f 2 H 2 x L 2 v , ∂ t v k µ -1 2 S L (t)f 2 H 2 x L 2 v + ∂ t ∇ x φ 2 H 2 x + λ v k (µ -1 2 S L (t)f ) 2 H 2 x H s γ/2 ≤ C η ∇ x φ 2 H 2 x + C η,R χ R µ -1 2 S L (t)f 2 H 2 x L 2 v . (4.58) 
By macroscopic estimates from [START_REF] Deng | The non-cutoff Vlasov-Poisson-Boltzmann and Vlasov-Poisson-Landau Systems in bounded domain[END_REF]Theorem 3.4] for the case of union of cubes and exponential perturbation, we have

∂ t E int,B (t) + λ µ -1 2 Pµ 1 2 S B (t)f 2 H 2 x H s γ/2 ≤ C µ -1 2 {I -Pµ 1 2 }S B (f ) 2 H 2 x L 2 γ/2 , ∂ t E int,L (t) + ∂ t ∇ x φ 2 H 2 x + λ µ -1 2 Pµ 1 2 S L (t)f 2 H 2 x H s γ/2 + λ ∇ x φ 2 H 2 x ≤ C µ -1 2 {I -Pµ 1 2 }S L (f ) 2 H 2 x L 2 γ/2 + ∇ x φ 4 L 2 x , (4.59) 
where φ is given by (4.57) and E int,B , E int,L are functional satisfying

E int,B (t) µ -1 2 S B (t)f 2 H 2 x L 2 v , E int,L (t) µ -1 2 S L (t)f 2 H 2 x L 2 v . (4.60) 
respectively. Although the macroscopic estimates from [START_REF] Deng | The non-cutoff Vlasov-Poisson-Boltzmann and Vlasov-Poisson-Landau Systems in bounded domain[END_REF] is for union of cubes, the case of torus can be similarly derived with simpler calculations; see also [START_REF] Guo | The Vlasov-Poisson-Landau system in a periodic box[END_REF]. Taking linear combinations (4.56) + κ 2 × (4.58) + κ × (4.59) and assuming the a priori assumption

∇ x φ 2 H 2 x ≤ ε, (4.61) 
with ε > 0 sufficiently small and φ given by (4.57), we have

∂ t E B (t) + λ v k µ -1 2 S B (t)f 2 H 2 x H s γ/2 ≤ 0, ∂ t E L (t) + λ v k µ -1 2 S L (t)f 2 H 2 x H s γ/2 + λ ∇ x φ 2 H 2 x ≤ 0, (4.62) 
where

E B (t) = µ -1 2 S B (t)f 2 H 2 x L 2 v + κ 2 v k µ -1 2 S B (t)f 2 H 2 x L 2 v + κE int,L , E L (t) = µ -1 2 S L (t)f 2 H 2 x L 2 v + κ 2 v k µ -1 2 S L (t)f 2 H 2 x L 2 v + κE int,L + ∇ x φ 2 H 2 x . With (4.60), it's direct to check that E B (t) ∼ µ -1 2 S B (t)f 2 H 2 x L 2 v + v k µ -1 2 S B (t)f 2 H 2 x L 2 v , E L (t) ∼ µ -1 2 S L (t)f 2 H 2 x L 2 v + v k µ -1 2 S L (t)f 2 H 2 x L 2 v + ∇ x φ 2 H 2
x . We calculate the first inequality of (4.62) and the second one is similar. When γ ≥ 0, we have

∂ t E B (t) + λ v k µ -1 2 S B (t)f 2 H 2 x L 2 v ≤ 0, and thus, v k µ -1 2 S B (t)f 2 H 2 x L 2 v ≤ e -λt v k µ -1 2 f 2 H 2 x L 2 v . When γ < 0, we have ∂ t E B (t) + λ v k+ γ 2 µ -1 2 S B (t)f 2 H 2 x L 2
v ≤ 0. Then we apply similar arguments for obtaining (4.53) to deduce that

µ -1 2 S B (t)f 2 H 2 x L 2 k-4 t - 2(3-1 2 ) |γ| µ -1 2 f 2 H 2 x L 2 k t -7 6 µ -1 2 f 2 H 2 x L 2 k . ( 4 

.63)

The estimate for hard potential case is also included in (4.63). Similarly, it follows from the second estimate of (4.62) that 

µ -1 2 S L (t)f 2 H 2 x L 2 k-4 + ∇ x φ 2 H 2 x t -7 6 µ -1 2 f 2 H 2 x L 2 k + ∇ x φ| t=0 2 H 2 x . ( 4 
≥ k 0 , S B (t)f H 2 x L 2 k 1 S A (t)f H 2 x L 2 k 1 + t 0 µ -1 2 S B (t -s)K 1 S A (s)f H 2 x L 2 v ds t -7 6 f H 2 x L 2 k 1 +4 + t 0 t -s -7 6 µ -1 2 K 1 S A (s)f H 2 x L 2 4 ds t -7 6 f H 2 x L 2 k 1 +4 + t 0 t -s -7 6 S A (s)f H 2 x L 2 v ds t -7 6 f H 2 x L 2 k 1 +4 . ( 4 
≥ k 0 , S L (t)f H 2 x L 2 k 1 S B (t)f H 2 x L 2 k 1 + t 0 µ -1 2 S L (t -s)K 2 S B (s)f H 2 x L 2 v ds t -7 6 f H 2 x L 2 k 1 +4 + t 0 t -s -7 6 µ -1 2 K 2 S B (s)f H 2 x L 2 4 + ∇ x ∆ -1 x R 3 (K 2 S B (s)f ) + -(K 2 S B (s)f ) -dv H 2 x ds. (4.66) 
Note that by using odd property on µv, we have

R 3 (K 2 S B (s)f ) + -(K 2 S B (s)f ) -dv = 2 R 3 µ(v)v • ∇ x ∆ -1 x R 3 (S B (s)f ) + (u) -(S B (s)f ) -(u) du dv = 0.
Also, letting

φ 1 = ∆ -1 x R 3 (S B (s)f ) + (u) -(S B (s)f ) -(u) du,
when Ω is torus, we know that

∇ x φ 1 L 2 x ∆ x φ 1 L 2 x . (4.67) 
If Ω is union of cubes given by (1.11), noticing from (4.41) that ∂ x i φ 1 = 0 on Γ i , by Sobolev inequality [15, Theorem 6.7-5], we also have (4.67). Then we obtain from (4.66) and (4.54) that for k

1 ≥ k 0 , S L (t)f H 2 x L 2 k 1 t -7 6 f H 2 x L 2 k 1 +4 + t 0 t -s -7 6 v 4 µ 1 2 (v)v • ∇ x φ 1 H 2 x L 2 v ds t -7 6 f H 2 x L 2 k 1 +4 + t 0 t -s -7 6 ∆ x φ 1 H 2 x L 2 k 1 +4 ds t -7 6 f H 2 x L 2 k 1 +4 + t 0 t -s -7 6 S B (s)f H 2 x L 2 2 ds t -7 6 f H 2 x L 2 k 1 +4 . ( 4.68) 
Next we check that (4.61) is fulfilled if ε 0 > 0 in (4.42) is small enough. Indeed, similar to (4.67), we have

∇ x φ H 2 x ∆ x φ H 1 x = R 3 (S L (t)f ) + -(S L (t)f ) -dv H 1 x . (4.69) 
Then it follows from (4.68) that

∇ x φ H 2 x S L (t)f H 1 x L 2 2 f H 2 x L 2 k 0 +4
. This closes the a priori assumption (4.61) and completes the proof of (4.43).

Step 2. For brevity of notations, we let s = 1 for the Landau case. In order to obtain (4.44), we consider the dual

A * l of A l = v l A( v -l f ) for any l ∈ R. Notice that A * l f, v 2k f L 2 x L 2 v = v l f, A( v 2k-l f ) L 2 x L 2 v = v 2l-2k g, Ag L 2 x L 2 v ,
where we let g = v 2k-l f . Then the taking L

2 x L 2 v inner product of ∂ t S A * l (t)f -A * l S A * l (t)f = 0 with v 2k S A * l (t)f , we have ∂ t v k S A * l (t)f 2 L 2 x L 2 v + A * l S A * l (t)f, v 2k S A * l (t)f L 2 x L 2 v = 0,
and hence, for l -k ≥ k 0 ,

∂ t v l-k g 2 L 2 x L 2 v + v 2l-2k g, Ag L 2 x L 2 v = 0,
where g = v 2k-l S A * l (t)f . Taking integration over t, we have

λ ∞ 0 v l-k g 2 L 2 x H s γ/2 dt ≤ v l-k g| t=0 2 L 2 x L 2 v . That is, for l -k ≥ k 0 , λ ∞ 0 v k S A * l (t)f 2 L 2 x H s γ/2 dt ≤ v k f 2 L 2 x L 2 v . (4.70) Observe that if f satisfies equation ∂ t f = Af then g = v l f satisfies ∂ t g = A l g, and also that (Af, v 2l f ) L 2 x,v = (A l g, g) L 2 x,v . Thus, v l S A (t)f = S A l ( v l f ). Moreover, by duality, we have (S A l f, g) L 2 x,v = (f, S A * l g) L 2 x,v . Therefore, for some sequence {ϕ n } in Schwartz space such that ϕ n L 2 x L 2 k ≤ 1, we have from (4.70) that ∞ 0 v k S A (t)f 2 L 2 x L 2 v dt = ∞ 0 lim n→∞ v 2k S A (t)f, ϕ n L 2 x,v 2 dt = lim inf n→∞ ∞ 0 v 2k f, S A * 2k (t)ϕ n L 2 x,v 2 dt ≤ lim inf n→∞ ∞ 0 v k f 2 L 2 x H -s -γ/2 v k S A * 2k (t)ϕ n 2 L 2 x H s γ/2 dt v k-γ/2 f 2 L 2 x H -s v , (4.71) 
for k ≥ k 0 . This is the estimate for S A (t). To obtain the estimates for S B (t), it follows from Duhamel's principle (4.45) that

∞ 0 v k S B (t)f 2 H 2 x L 2 v dt 1 2 ∞ 0 v k S A (t)f 2 H 2 x L 2 v dt 1 2 + ∞ 0 v k t 0 S B (s)K 1 S A (t -s)f ds 2 H 2 x L 2 v dt 1 2 . (4.72)
Using (4.71) and (4.63), the second right-hand term of (4.72) can be estimated by

∞ 0 ∞ s µ -1 2 S B (s)K 1 S A (t -s)f 2 H 2 x L 2 v dt 1 2 ds ∞ 0 ∞ 0 s -7 6 v k µ -1 2 K 1 S A (t)f 2 H 2 x L 2 v dt 1 2 ds ∞ 0 S A (s)f 2 H 2 x L 2 v ds 1 2 f H 2 x H -s k 0 -γ/2
.

Note that ∇ x commutes with S A (t). The first term on the right hand side of (4.72) can be estimated by using (4.71). Thus, for k ≥ k 0 , we have from (4.72) that 

∞ 0 v k S B (t)f 2 H 2 x L 2 v dt 1 
∞ 0 v k S L (t)f 2 H 2 x L 2 v dt 1 2 ∞ 0 v k S B (t)f 2 H 2 x L 2 v dt 1 2 + ∞ 0 v k t 0 S L (s)K 2 S B (t -s)f ds 2 H 2 x L 2 v dt 1 2 f H 2 x H -s k-γ/2 + ∞ 0 ∞ s v k S L (s)K 2 S B (t -s)f 2 H 2 x L 2 v dt
∞ 0 ∞ s v k µ -1 2 S L (s)K 2 S B (t -s)f 2 H 2 x L 2 v dt 1 2 ds ∞ 0 s -7 6 ∞ 0 v k+4 µ -1 2 K 2 S B (t)f 2 H 2 x L 2 v + ∇ x ∆ -1 x R 3 (K 2 S B (t)f ) + -(K 2 S B (t)f ) -dv =0 2 H 2 x dt 1 2 ds ∞ 0 v k+4 µ -1 2 µv • ∇ x ∆ -1 x R 3 (S B (t)f ) + -(S B (t)f ) -dv H 2 x L 2 v dt 1 2 ∞ 0 S B (t)f H 2 x L 2 2 dt 1 2 f H 2 x H -s k-γ/2
.

The term with brace equal to zero because R 3 vµ dv = 0. Inserting this into (4.74), we obtain (4.44). This completes the proof of Lemma 4. (S L (τ )∂ α f, S L (τ )∂ α g) L 2

x L Proof. Recall the first equation of (1.4):

∂ t f ± = ±∇ x φ • ∇ v f Term 1 + Lf Term 2 + Q(f ± + f ∓ , f ± ) Term 3 , (4.79) 
where L is given in (1.5). Then we take the ((•, •)) inner product of (4.79) with f and compute every term separately. Since ∂ t commute with L, we know that ∂ t commute with S L (τ ) and hence,

((∂ t ∂ α f, ∂ α f )) = 1 2 ∂ t |||∂ α f ||| 2 .
Next we compute the Term 1. Since s ≥ 1 2 implies 1 -s ≤ s, by Lemma 2.10 and (4.77), we have

+∞ 0 |α|≤2 (S L (τ )∂ α (∇ x φ • ∇ v f ), S L (τ )∂ α f ) L 2 x L 2 v dτ |α|≤2 ∂ α (∇ x φ • ∇ v f ) L 2 x H -s k 0 +3/2 |α|≤2 ∂ α f L 2 x L 2 k 0 +3/2 ∇ x φ H 2 x f H 2 x H 1-s k 0 +3/2 f H 2 x L 2 k 0 +3/2 E k 0 (t)D k (t),
for the non-cutoff Boltzmann case, where we let k ≥ k 0 + 3/2. Similarly, for the Landau case, we have from (4.76) that for k ≥ k 0 + 4,

+∞ 0 |α|≤2 (S L (τ )∂ α (∇ x φ • ∇ v f ), S L (τ )∂ α f ) L 2 x L 2 v dτ |α|≤2 ∂ α (∇ x φ • ∇ v f ) L 2 x L 2 k 0 +4 f H 2 x L 2 k 0 +4 ∇ x φ H 2 x f H 2 x H 1 k 0 +4 f H 2 x L 2 k 0 +4 E k 0 (t)D k (t).
For the term 2 and for both Boltzmann and Landau case, since lim t→∞ t 7 6 = 0 in (4.43), we have

∞ 0 |α|≤2 (S L (τ )L∂ α f, S L (τ )∂ α f ) L 2 x L 2 v dτ = ∞ 0 d dτ |α|≤2 S L (τ )∂ α f 2 L 2 x L 2 v dτ = - |α|≤2 ∂ α f 2 L 2 x L 2 v .
Finally, we consider the nonlinear part, i.e. Term 3. For the Boltzmann case, by (2.14), (4.76) and (4.77), we have

∞ 0 |α|≤2 (S L (τ )∂ α Q(f ± + f ∓ , f ± ), S L (τ )∂ α f ) L 2 x L 2 v dτ ≤ C k |α|≤2 α 1 ≤α Q(∂ α 1 (f ± + f ∓ ), ∂ α-α 1 f ± ) L 2 x H -s k 0 -γ/2 ∂ α f L 2 x L 2 k 0 ≤ C k ( f H 2 x L 2 14 f H 2 x H s k 0 +γ/2+2s + f H 2 x L 2 14 f H 2 x H s k 0 +γ/2 ) ∂ α f L 2 x L 2 k 0 ≤ C k E k 0 (t)D k (t).
Here we let k 0 ≥ 14, k ≥ k 0 + γ/2 + 2s and apply similar discussion on α 1 as in (2.61). For the Landau case, by (2.18), (4.76) and (4.77), we have

∞ 0 |α|≤2 (S L (τ )∂ α Q(f ± + f ∓ , f ± ), S L (τ )∂ α f ) L 2 x L 2 v dτ ≤ C k |α|≤2 α 1 ≤α Q(∂ α 1 f ± + f ∓ , ∂ α-α 1 f ± ) L 2 x H -1 k 0 +3/2 ∂ α f L 2 x L 2 k 0 ≤ C k f H 2 x L 2 k 0 +5/2 f H 2 x L 2 D,k 0 +5/2 ∂ α f L 2 x L 2 k 0 +5/2 ≤ C k E k 0 (t)D k (t),
where k ≥ k 0 + 4 and we also apply similar discussion on α 1 as in (2.61). Combining the above estimates, the ((•, •)) inner product of (4.79) with ∂ α f yields 1 2

∂ t |||f ||| 2 + |α|≤2 ∂ α f 2 L 2 x L 2 v E k 0 (t)D k (t).
Then we conclude Lemma 4.5. for the case γ ∈ [-3, 0), where l > |γ| 2 is a constant and we further assume k ≥ k 0 + l in this case.

Theorem 4.6. Assume that f 0 satisfies the conservation laws (1.10) and F 0 = µ + f 0 ≥ 0. There exists k 1 ≥ k 0 such that for k ≥ k 0 for Landau case and k ≥ k 1 for Boltzmann case, there exists a small constant M ≥ 0 such that if

E k 0 (0) ≤ M, E k (0) < ∞,
then there exist a unique global solution f (t, x, v) to the Vlasov-Poisson-Boltzmann/Landau system (1.4) with F = µ + f ≥ 0 satisfying

∂ t E k (t) + λD k (t) f X k 0 E k (t), (4.82) 
for any T > 0, for some generic constant λ > 0.

Proof. We take linear combination κ × (4.5) + (4.31) + C 0 × (4.78) with κ, C 0 > 0 to deduce that

∂ t E k (t) + λκ [a + , a -, b, c] 2 H 2 x + λκ ∇ x φ 2 H 2 x + λη f 2 Y k + C 0 f 2 H 2 x L 2 v + λ |α|≤2 w(α, 0)∂ α {I -P}f 2 L 2 x L 2 D f X k 0 f 2 X k + κ {I -P}f 2 H 2 x L 2 10 + κ N 2 H 1 x L 2 v + C η,k {I -P}f 2 H 2 x L 2 v + η ∇ x φ 2 H 2
x + η Pf 

N = (±∇ x φ • ∇ v f ± ) + Q(f ± + f ∓ , f ± ) = (±∇ x φ • ∇ v f ± , ξ) + (Q(f ± + f ∓ , f ± ), ξ),
where ξ is some linear combination of 1, v i , v i v j , v 2 i , v i |v| 2 . For |α| ≤ 1, we have

∂ α (∇ x φ • ∇ v f, ξ) L 2 v L 2 x |α 1 |=0 ∂ α 1 ∇ x φ L ∞ x ∂ α-α 1 ∇ v f L 2 x L 2 5 + |α 1 |=1 ∂ α 1 ∇ x φ L 3 x ∂ α-α 1 ∇ v f L 6 x L 2 5 ∇ x φ H 2 x f H 1 x H 1 5 E k 0 (t)D k (t). (4.85) 
For the Boltzmann case, by Lemma 2.4, we apply similar discussion on α 1 as in (4.85) to deduce that

∂ α (Q(f ± + f ∓ , f ± ), ξ) 2 L 2 x,v f H 2 x L 2 10 f H 2 x L 2 10 ξ H 2s -7
E k 0 (t)D k (t).

For the Landau case, by (2.17) we have Choosing M in the a priori assumption (4.80) and (4.81) sufficiently small, we have from (4.86) that

∂ α (Q(f ± + f ∓ , f ± ), ξ v -14 v 14 ) 2 L 2 x,v f H 2 x L 2 7 f H 2 x L 2 D,
∂ t E k (t) + λD k (t) f X k 0 E k (t),
for some λ > 0. This concludes Theorem 4.6.

To conclude Theorem 1.2, we need to prove the large-time behavior as the following.

Theorem 4.7. Let l = 0 for hard potential case and l > |γ| 2 for soft potential case. Let k ≥ k 0 + 2 + l (and let k sufficiently large for Boltzmann case). If the solution (f, φ) of (1.4) satisfies E k 0 +2+l (0) ≤ M, E k (0) < ∞. Then there exists a constant λ > 0, such that for any t > 0, we have If γ < 0, then we have

E k-l (t) (1 + t) -2l
|γ| E k (0). (4.88)

Proof. If 0 ≤ γ ≤ 1, noticing that • L 2 x,v • L 2 D
and choosing M in (4.80) small enough, we have f X k 0 E k 0 M , and hence, by (4.82) we have

∂ t E k (t) + λE k (t) ≤ 0.
Solving this ODE, we obtain E k (t) ≤ e -λt E k (0). This close the a priori assumption (4.80) and conclude the case of hard potential.

Next we assume γ < 0. For any l > |γ| 2 , we have from (4.81) that

f X k 0 E k 0 (t) M (1 + t) -2l |γ| . (4.89) 
Let p = -γ+2l 2l and p = -γ+2l -γ . Then by L p -L p Hölder's inequality, we have

w(α, β)∂ α β f 2 L 2 v = R 3 v 2lγ -γ+2l v -2lγ -γ+2l |w(α, β)∂ α β f | 2 dv ≤ v γ/2 w(α, β)∂ α β f 4l -γ+2l L 2 v v l w(α, β)∂ α β f -2γ -γ+2l L 2 v ≤ D 2l -γ+2l k E -γ -γ+2l
k+l .

From definition (1.22) 

. 58 )

 58 We again split it into two parts |α| + |β| = 1 and |α| + |β| = 2. For the case |α 1 | + |β 1 | = |α| + |β| = 1, we have |α -α 1 | = |β -β 1 | = 0. Then by (2.8) and (2.34), we have

2 -

 2 where we apply L ∞ -L 2 and L 3 -L 6 Hölder's inequality. The proof of (2.65) is similar by replacing the term e ±A α,β ψ v 1 by 1 and e ±A α,β ψ v 2

Lemma 4 . 3 .

 43 Let T > 0, η > 0 and k ≥ k 0 . For the Boltzmann case, we further assume k = k(η) > 0 sufficiently large. Suppose [f, φ] is the solution to equation (1.4) satisfying µ + f ≥ 0 and E(t) ≤ C.

±A α,β φ v 2 w 2

 22 ). For any |α| + |β| ≤ 2, we apply ∂ α β to (1.4), take inner product with e (α, β)∂ α β f ± over Ω × R 3 . Similar to the calculation from (3.7) to (3.11), i.e. replacing (g, ψ) by (f, φ) in (3.11), applying (3.10), (3.13), (3.14) and choosing η < γ 1

1 2

 1 ds. (4.74) Applying (4.64), (4.67) and (4.73), the second right-hand term of (4.74) can be estimated by

sup 0≤t≤T E

 0≤t≤T k (t) ≤ 2E(0). (4.87) Moreover, if 0 ≤ γ ≤ 1, then E k (t) ≤ e -λt E k (0).

  1.6.3. Difference between the polynomial case and the exponential weight case. The main difference is that in the exponential case, L µ f and Γ(f, f ) defined in (1.26) and (1.27) are symmetric while in the polynomial case, they are not. Such asymmetry will cause two problems. The first one is the occurrence of an extra Pf term in the linearized equation. More precisely, if we denote

  This gives (2.23) by taking tangent derivatives. This completes the proof of Lemma 2.14. As a corollary, by definition (1.7), we have the following boundary values for [a ± , b, c]. Lemma 2.15. Let (f, φ) be the solution to (1.4) with boundary conditions (1.13) and (1.14).

  .39) Lemma 2.18. Suppose that -3 ≤ γ ≤ 1 for Landau case and -3 < γ ≤ 1 for Boltzmann case. For |α| + |β| ≤ 2 and any functions f ± , for any function φ satisfies (2.38), we have

.

  The proof of (2.54) is similar by replacing the term e

	±A α,β ψ		±A α,β ψ
	v 2	-1 by 1 and e	v 2

  By (2.34) and (2.8) we obtain that

  for Landau case. Combining the above estimates, we take summation |α|+|β|≤2, ± C |α|,|β| ×(3.7) with 0 < η 1 and constants C |α|,|β| satisfying (1.19) to deduce that for the Boltzmann case:

  x, v) on γ -and ∂ n φ n+1 = 0 on ∂Ω, if Ω is given by (1.11). (3.23) Let |α| + |β| ≤ 2. We apply similar arguments in Lemma 3.1 by applying ∂ α

β to (3.23) 1 and taking inner product of the resultant equation with e ±A α,β ψ v 2

  .[START_REF] Guo | Regularity of the Boltzmann equation in convex domains[END_REF] Using Lemma 2.6 and Theorem 2.8 with g = 0 for the Boltzmann case and Lemma 2.11 for the Landau case, we deduce that for k

  2Next we apply (4.46), and (4.73) to derive the estimates on S L (t):

	f H 2 x H -s k-γ/2	.	(4.73)

  Note that ∂ α commutes with L and hence, commutes with S L (t). Then by (4.43) and (4.44), we have = 1 for the Landau case. Then we can recover the loss energy by using this norm.Lemma 4.5. For both the Boltzmann and Landau case, suppose (f, φ) is the solution to the equation (1.4). Then we have1 2 ∂ t |||∂ α f ||| 2 + f 2

						2 v dτ,
		|||f |||	f H 2 x L 2 k 0 +4	,	(4.76)
	and				
	|||f |||	f H 2 x H -s k 0 -	γ 2	f H 2 x H -s k 0 + 3 2	(4.77)
	where we let s H 2 x L 2	

v E k 0 (t)D k (t), (

4

.78) where |||•||| is given in (4.75), E k (t) and D k (t) are given in (1.22) and (1.23).

  4.4. Proof of the main theorem. We start this subsection by proving the main stability theorem below. Theorem 4.6 and 4.7 together with local existence from Theorem 3.2 imply Theorem 1.2. To prove Theorem 1.2, we assume the a priori assumption as sup

0≤t≤T E k 0 (t) ≤ 2M,

(4.80)

for the case γ ∈ [0, 1] and

sup 0≤t≤T (1 + t) 2l |γ| E k 0 (t) ≤ CM,

(4.81)

  some generic constant λ > 0, where E k (t) is given byE k (t) := κG(t) + E 1 (t) + C 0 2 |α|≤2 |||∂ α f ||| 2 (4.83)Here G(t), E 1 (t) and |||•||| are given in Lemma 4.2, Lemma 4.3 and (4.75) respectively. Choosing κ > 0 sufficiently small, and then η > 0 sufficiently small, and finally C 0 > 0 sufficiently large, we have∂ t E k (t) + λD k (t) f X k 0 E k (t) + κ N 2 H 1 x L 2 v + ( E k 0 (t) + E k 0 (t))D k (t),(4.84)for some generic constant λ > 0, where D k (t) is given by(1.23). Then one can check (1.22) by using (4.4), (4.38), (4.76) and (4.77) with sufficiently small κ. Note that e

	±A α,0 φ	
	2 v 2	≈ 1 as in
	(2.39).	
	Next, recall from Lemma 4.2 that	
	2 H 2 x L 2	

v + C( E k 0 (t) + E k 0 (t))D k (t), for

  8 E k (t) + λD k (t) f X k 0 E k (t) + ( E k 0 (t) + E k 0 (t))D k (t).(4.86)

		ξ L 2 D,-7
		E k 0 (t)D k (t).
	Therefore, we obtain	
	∂ α N 2 L 2 x	E k 0 (t)D k (t).
	|α|≤1	
	Then (4.84) implies	
	∂ t	

  and (1.20), we know that E Neglecting the second left hand term of (4.90), we have∂ t E k (t) ≤ CM (1 + t)Note that -2l + |γ| < 0. Taking integration over t ∈ [0, T ], we have Replacing k by k -l ≥ k 0 , we apply (4.91) to deduceE k-l (t) (1 + t)Choosing k -l = k 0 and applying (1.25), we close the a priori assumption (4.81). Using the standard continuity arguments, we obtain (4.88). This completes the proof of Theorem 4.7.

	∂ t exp	CM |γ| 2 2l(-2l + |γ|)	(1 + t) -2l |γ| +1 E k (t) γ 2l
									≥ -	γλ 2l	exp	CM |γ| 2 2l(-2l + |γ|)	(1 + t) -2l |γ| +1	0≤t≤T sup	E k+l	γ 2l .
	exp	CM |γ| 2 2l(-2l + |γ|)	(1 + t)	-2l |γ| +1 E k (t) ≥ C γ,l E γ 2l	γ 2l k (0) + C γ,l	0	t	0≤t≤T 1 dt sup	E k+l	γ 2l ,
	and hence,										
												2l
							E k (t) ≤ C γ,l (1 + t)	γ	sup	E k+l (t).
												0≤t≤T
									2l		2l
									γ	sup	E k (t) (1 + t)	γ E k (0).
											0≤t≤T
												-γ+2l	γ
												k	2l	E k+l ≤ D k . Then it follows from (4.82) 2l
	and (4.89) that									
		∂ t E k (t) + λE k -γ+2l 2l	0≤t≤T (t) sup	E k+l	-2l |γ| E k (t).	(4.90)
												-2l |γ| E k (t).
	Taking integration over t ∈ [0, T ] yields		
			sup		E k (t) ≤ E k (0) + CM	T	(1 + t)	-2l |γ| dt sup
		0≤t≤T					0
	Since 2l |γ| > 1, choosing M > 0 sufficiently small, we have
									sup	E k (t) ≤ 2E k (0).	(4.91)
									0≤t≤T	
	This gives (4.87). Next we solve (4.90) directly. It's direct to obtain that
	∂ t (E k (t)) = γ 2l	γ 2l	E	γ-2l 2l				γλ 2l	sup 0≤t≤T	E k+l	γ 2l +	CM γ 2l	(1 + t) -2l |γ| E	γ 2l k (t),
	and thus,										

γ 2l ≤ CM (1 + t) 0≤t≤T E k (t). k (t)∂ t E k (t) ≥ -
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