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THE VLASOV-POISSON-BOLTZMANN/LANDAU SYSTEM WITH
POLYNOMIAL PERTURBATION NEAR MAXWELLIAN

CHUQI CAO, DINGQUN DENG AND XINGYU LI

ABSTRACT. In this work, we consider the Vlasov-Poisson-Boltzmann system without angular
cutoff and the Vlasov-Poisson-Landau system with Coulomb potential near a global Maxwellian
i in torus or union of cubes. We establish the global existence, uniqueness and large time
behavior for solutions in a polynomial-weighted Sobolev space H2,((v)¥) for some constant
k > 0. For the domain union of cubes, We will consider the specular-reflection boundary
condition and its high-order compatible specular boundary condition. The proof is based on
extra dissipation term generated from improved semigroup method including electrostatic field
with the help of macroscopic estimates.
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1. INTRODUCTION

1.1. Models and equations. We consider the Vlasov-Poisson-Boltzmann (VPB) and Vlasov-
Poisson-Landau (VPL) systems describing the motion of plasma particles of two species in

2010 Mathematics Subject Classification. 35A23; 35J05; 35Q20.
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polynomial weighted space.
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bounded domain 2 C R3 (cf. [41,44]):

OFy +v-VoFy — Vb VoFy = Q(Fy, Fy) + Q(F_, Fy),
OF_ +v-VoF_ +Ved VoF_ = Q(Fy, F_) + Q(F_, F_), (1.1)
F(0)=Fy, E(0)=Ey,

where F = —V ¢ is the self-consistent electrostatic field satisfying

—Agp= | (Fy—F_)dv, / o(t,z)dxr =0, (1.2)
R3 Q

and F(t,z,v) > 0 is a distribution function of particles at time ¢ > 0 with position = € ) and
velocity v € R3.

For the case of Vlasov-Poisson-Boltzmann system, the collision operator @ is a bilinear op-
erator which acts only on the velocity variable v given by

Q(G, F)(v) = / B(v — vs, 0)(GLF — G F)dod,.
R3 J§2
Here we use the standard notation F' = F(v), G, = G(vs), F' = F(v'), G, = G(v},), where v, v/,
are velocities of two particles after collision given by

v+v V— v+v V=
"= 2* | 2*’0, vl = 2*—| 2*|0, oeS%

This representation follows from physical law of elastic collision:

v, =0+, o]+ [l = P 4 ]

The nonnegative function B(v — v, 0) is called the Boltzmann collision kernel. It depends only
on relative velocity |v — v,| and the deviation angle 6 through

def UV —V
cosf) = .

v — sl
In the present work, we consider the non-cutoff kernel B as the followings.

(A1). The Boltzmann kernel B takes the form

B(v—wy,0) = v — v 70( i

’U —U*| : 0)7

where b is a nonnegative function.
(A2). The angular function b(cos @) is not locally integrable and it satisfies

KO71725 < sinfb(cosf) < K077 with 0 < s < 1,
for some constant I > 0.
(A3). The parameter v and s satisfy the condition
—-3<v<1, 1/2<s<1, v+2s>-1.

(A4). Without loss of generality, we may assume that B(v — v, 0) is supported in the set
0<60<m/2ie. ‘Z:”* -0 > 0. Otherwise B can be replaced by its symmetrized form:

Vx|

V — Uy

B(v —v,,0) = |u—vm(b( ) + b(

where 14 is the indicator function of the set A.

v — ]

Remark 1.1. For inverse repulsive potential, it holds that v = Z%? and s = [ﬁ withp > 2. It
is easy to check that v+ 2s > —1 is satisfied for the full range of the inverse power law model.
Generally, the case v >0, v =0, and v < 0 correspond to so-called hard, Mazwellian, and soft
potentials respectively.
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For the case of Vlasov-Poisson-Landau system, () is the Landau collision operator given by

Qg, [)(0) =V [ @(v=v)(g(v:)Vof(v) = f(0) Vi, g(vs))dvs

R3
=0, [ 60— v)(0.0,f - Oj9.)du,

with

(D(u) = |u"}’+2 (I - u|/l(j)2u> ) -3 S Y S 17

O GRS R (1.9

hereafter we use the convention of summation for repeated indices, and the derivatives are in
the velocity variable 0; = 0,,. We will use the notations

g« =9(vs), f=Ff(v), 0jg«=0u,9(vs), Ojf =0y f(v).
We also mention that
9;¢" (v) = —=2[v|"v;,
g —2(y+3)|v”, if —3<y<1,
ey _
% #”(v) { — 8y, if y = —3,

where dg is the Dirac measure.
It’s convenient to call it hard potential if v > 0, and soft potential if v € [—3,0).

1.2. Reformulation. We reformulate the Vlasov-Poisson-Boltzmann/Landau system near a
global Maxwellian. For simplicity, we assume the initial data F{ is normalized such that the
equilibrium associated to the equation (1.1) will be the standard Gaussian function, i.e.

plv) < (2m) e PP,

which enjoys the same mass, momentum and energy as Fy. In the perturbation framework, we
denote F' = [F, F_] and let f = [f, f—] satisfies

Fo =p+ fr.
Then system (1.1) and (1.2) become
Of++v-Vafs FVa0-Voyfr £Veo-vp
= QU+ f+. 1)+ Q2u+ fx + f5, f2),

— Ay = / (fy — f-)do, /¢ )da = 0, (1.4)

f()*f(ﬁ (b()*(ﬁo
Note that Q(u, ) = 0. We also denote linear operator L = [Ly,L_] and £ = [L4,L_] by

Lif =2Q(n, f+) + Q(f+ + f+, 1),
and
Lf =—v-Vof T Va6 v+ Lf, (L5)
where ¢(x) is solved by the second equation of (1.4). The kernel of L on L2 x L2 is the span of
{[1,0]u, [0, 1], [1, Hwp, [1,1]|v]?p} (cf. [41]) and we define the projection of L2 x L2 onto ker L
by

Pf= (a+(t, 2)[1,0] + a_(t,2)[0, 1] + v - b(t, 2)[1, 1] + ([v]? — 3)e(t, )[1, 1])u, (1.6)

or equivalently by

P.f= (ai(t, z)4v-b(t,z) + (|Jv]* = 3)e(t, x))u,
3



where function a4, b, ¢ are given by

a+ = fxdv, bj = / vi(fy + f-)dv,
K2 R (1.7)

[ P
o= [ S 1

Taking inner produce of the first equation of (1.4) with 1 over R?, we have the continuity
equation

ﬁ fr(w)dv + Vg - vfy(v)dv = 0. (1.8)
(9t R3 R3

1.3. Domains. In this paper, we will consider two kinds of bounded domain {2, namely, torus
and union of finitely many cubes.
Torus. For the case of torus, we set

Q=T = [-n,7)>.

In this case, the solution (F, ¢) to the Vlasov-Poisson-Boltzmann/Landau system (1.1) with the
initial data Fy enjoys the conservation of mass, momentum and the energy, i.e.

d d d
— Fodvdr = — F_dvdx =0 — F F_ )dvdx =0
dt/Q/RS +OVET dt/Q/R:‘s var ’ dt/Q/Rsv( ++ )U.”L‘ ’

d/ W (Fy + F_)dvdz + d/ Vo o(t, 2)%dz = 0.

By assuming Fy have the same mass, total momentum and total energy as u, the conservation

laws (1.9) yield
/ frdvdx = / f-dvdx =0,
q JRr3 3

R o Jr
/ / v(f+ + f-)dvdx =0, (1.10)
o Jr3
/Q/R3 w2(f+ + f-)dvdz + /Q \V.0(t, z)|?dz = 0.

Union of cubes. The second kind of bounded domain is the union of finitely many cubes:

Q=uN,, (1.11)

(1.9)

where ; = (ai71,bi71) X (ai72,bi72) X (ai73,bi,3) with am,bm- € R such that a5 < b@j. Then
00 = U3_,T; is the union of three kinds of boundary I';(i = 1,2,3), where I'; is orthogonal
to axis z; and is the union of finitely many connected sets. We further assume that I'; is of
non-zero spherical measure. Since the boundary of I';’s are of zero spherical measure, we don’t
distinguish I'; and the interior of I';.

The unit normal outer vector n(x) exists on 02 almost everywhere with respect to spherical
measure. On the interior of I';(i = 1,2, 3), we have n(x) = e; or —e;, where e; is the unit vector
with ith-component being 1. We will denote vectors 7i(x), 2(x) on boundary 02 such that
(n(z), 71(x), 2(x)) forms an unit orthonormal basis for R® such that for j = 1,2, 7; = ¢, or
—ey, for some k.

The boundary of the phase space is

v = {(z,v) € 9Q x R®}.
Denoting n = n(x) to be the outward normal direction at z € 952, we decompose 7 as
vo ={(z,v) € Q2 x R3: n(z) -v < 0}, (the incoming set),
vy = {(z,v) € 0Q x R3 : n(z) -v > 0}, (the outgoing set),
{(z,v) € 9Q x R® : n(z)-v =0}, (the grazing set).
4
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Correspondingly, we assume that F'(t,z,v) satisfies the specular-reflection boundary condition:
F(t,xz, Ryv) = F(t,z,v), ony_,

where for (z,v) € v,

Ryv =v —2n(z)(n(z) - v). (1.12)
This is equivalent to the specular reflection boundary condition for perturbation f:
ft,z, Ryv) = f(t,x,v), on y_. (1.13)
For the boundary condition of electric potential ¢, we further assume that
On¢p =0, onz e 0N (1.14)

In particular, the Poisson equation for potential ¢ is a pure Neumann boundary problem and
we require zero-mean condition

/Q/R3(f+ — f_)dvdz =0, fort>0,

to ensure its existence, which follows from the following conservation laws (1.15). Similar to
(1.10), it’s also well-known that the solution to (1.4) in bounded domain 2 given by (1.11)
satisfies the conservation laws on mass and energy. That is, the solution f to (1.4) satisfies the
following identities when the initial data fy satisfies it:

/ f+(t) dvdx = / f=(t) dvdz =0,
QxR3 QxR3 (1.15)

|+ s duds + [ 9,00 ds =0,
QxR3 Q

1.4. Notations. Let us first introduce the function spaces and notations. We let the multi-
indices a and 8 be a = [ag, g, 3], 5 = [51, B2, B3] and define
05 = 0810220200 0507

If each component of o/ is not greater than that of the a’s, we denote by o/ < a. o’ < a means
o < a, and |[o/| < |a]. We write a < b (a 2 b) to indicate that there is a uniform constant
C, which may be different on different lines, such that a < Cb (a > Cb). We use the notation
a~bifa<band b < a We denote a > b if a,b are two constants such that a > b and a is
sufficiently large. We denote Cy, 4,.... ., Dy a constant depending on parameters ay,as,:-- , ay.
Moreover, we use parameter € to represent different positive numbers much less than 1 and
determined in different cases. We use (f,g) = (f,9) 12 to denote the inner product of f, g over
velocity variable for short and, (f,g) 2, to represent the inner product over both spatial and

velocity variables. Also, we write (f, g)Li = ((v)?Ff, 912,

1£0)1, = [, £0)do =2 [ 5(0)sinas
and for any p € [1, 00],
17@zg = 1S Ollzsqoy

For the linear operator £, we write S, as the semigroup generated by L. Define the Japanese
brackets by

() o= (1+ [ol2) 2.
For real numbers m, [, we define the weighted Sobolev norm || - [z by

[Fleg = [0) (Do) ™ f(0)] 3.
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If m = 0, we write L? = H). Here a(D) is a pseudo-differential operator with the symbol a(¢),
and is defined by

(@D)N0) = oz [ [ € ale) wdude

The mixed norm || - [[gp g is defined as

ey = ([ 10D fo ) ) ™

If n =0, we write HBH[” = L%Hlm The entropy L log L space is defined as

LlogL = {£(0): | lluisz. = [ |7l1og(1-+ 11D},

For any k € R, v € (=3, 1], we define
1913, = [ [ el = P10 Pl dud.
k+v/2,% R3 JR3

It is direct to verify that Hf||Li+’y/2,* ~ Hf||Li+’y/2 by noticing

/ () = e (W) dv, ~ (0)2FH7,
R3
For Boltzmann case, we denote the dissipation norm L2D & by

1£lsz,, = £l1a;

+v/2’

and | fllz3, = 1 lzs,
For Landau case, we denote the anisotropic norm LQD(m) by

11122 () = 11 22 muyrzy + VoM 2 gyr2)

and, for brevity, we let L2, := L3,((v)*) and L%, := LQD?O. Here V, is the anisotropic gradient
given by
~ v\ v
Vof i=P,Vyf + (v)(I — P,)V,f, P,§:= <§ : |v|> ol V&R
With multi-indices (a, 8), we come to define our weight function with some constant k. For
—3 < <1, we choose the weight function w(«, ) as

(u)FPlel=dlflHr g = 65 = 3(y—1), p=q+7-1,

r=2q, for Boltzmann case, 116
vl = (oyFrlel=dfltr g =3 — (y-1), p=3, (116
r=2q, for Landau case.

Note that w(a, 8) > 1 for any |a| + |3] < 2 and any k > 0. For brevity, we write w(|a/|,|8]) =
w(a, B) throughout the paper. Noticing w?(a, ) is still of the form (v)* for some k& > 0, we
have
v

Vo(w*(a, B)) = Aa’gwuﬂ(a,ﬁ), (1.17)
for some constant A, g depending on «, 3, k,7,s. In this work, we will apply a useful space-
velocity weight

:l:Aa’ﬂqb

e 7 (1.18)

to eliminate the dissipation loss term. Next we define some useful norms in our analysis. For
this, we denote constants to be chosen in Theorem 3.1:

Clal sl > Cla s> 181 <181, Clajrvisi—1 > Clala)s (1.19)
6



for any multi-indices «, 8. Then for both Boltzmann case and Landau case, we denote energy

norms:
+A, o

I3, = > Clapslle ™ wla, DG flars, (1.20)
laf+|8]<2
and
1% = D> Clapsillwla, D05 fN72 1z - (1.21)
o] +18]<2

We further define the “instant energy functional” &(t) and “dissipation energy functional”
Dy (t) respectively by

&) = I fI1%, + IVadllies (1.22)
and

Di(t) = 113, + Vool F2, (1.23)
where the explicit definition of £(t) is given in (4.83). Moreover, we fix the weight index ko by
assuming

) {14, for the Boltzmann case,
0

7,  for the Landau case. (1.24)

1.5. Main results. We may now state our main results.

Theorem 1.2 (Global existence, uniqueness and large-time decay). Consider the Cauchy prob-
lem (1.4) for Vlasov-Poisson-Boltzmann/Landau system. Suppose v € (—3,1], s € [3,1),
v+ 2s > —1 for the Boltzmann case and v € [—3,1] for the Landau case. Let 1 = 0 for
the hard potential case and | > |12| for the soft potential case. Then there exist constants A > 0,

M > 0 (small) such that, for any
k>ko+4+4+1 forthe Landau case and k > ko +4+1 for Boltzmann case,

if the initial data fo satisfies Fo(x,v) = p+ fo(z,v) > 0, conservation laws (1.10) for the case
of torus (or (1.15) for the case of union of cubes) and

Eko+1(0) < M and &,(0) < 400, (1.25)

then there exists a unique solution f(t,z,v) to (1.4) satisfying F(t,z,v) = p+ f(t,x,v) >0
such that

sup E(t) < 28(0),
0<t<T

for any T > 0. Moreover, we have the following large-time asymptotic behavior. If v > 0, then
Er(t) < e_)‘tgk(()).
If v < 0, then we have

Eri(t) S (L4 TTEL(0).
Here E(t) is given in (1.22).

Remark 1.3. (1) We emphasize that for global solutions with polynomial weight, one only need
to assume the smallness of initial data with respect to a given norm. Here, we only require
Xko+1 to be sufficiently small instead of requiring general Xy, to be small.

(2) Notice that the torus case and union of cubes case are similar and we will do integration by
parts carefully when § is the union of cubes given by (1.11). The integration-by-parts technique
for torus case is trivial.

(3) For the soft potential case v < 0 and for the non-cutoff Boltzmann equation, in [8], the
authors shows that the sharp decay rate to the non-cutoff Boltzmann equation cannot be faster
that k/|7y|. Therefore when k is sufficient large, the decay rate in Theorem 1.2 more or less can
be regarded as the optimal one.
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(4)In this paper, we only prove the results for Hg,v((v)k), but we believe that similar proof
can be made for in high reqularity space Hé\fv(@)k)

1.6. Strategies and ideas of the proof. In this subsection, we will give some literature and
explain main strategies of the proof for our results.

In what follows we recall some known results on the Landau and Boltzmann equations with
a focus on the topics under consideration in this paper, particularly on global existence and
large-time behavior of solutions to the spatially inhomogeneous equations in the perturbation
framework. For global solutions to the renormalized equation with large initial data, we mention
the classical works [6,20-22, 56, 66,67]. We mention [13, 14] for the smoothing effect for the
Boltzmann equation without cut-off. For the stability of vacuum, see [12,40,57] for the Landau,
cutoff and non-cutoff Boltzmann equation with moderate soft potential respectively.

For the non-cutoff Boltzmann equation, [50-54,60] obtains global regularity and long time
behavior in a very general assumption by just assuming a uniformly bound in ¢,z such that

0< mg < M(t,x) < M(), E(t,x) < Eo, H(t,a:) < H(),

for some constant mq, My, Ey, Hy > 0, where
Mits) = [ ftaodo, Bt.o) = [ ftaoloPdo, Hto) = [ fto0) (e 0o
R3 R3 R3

and for the Landau equation the local Holder estimate is proved in [32] for and higher regularity
of solutions was studied in [49] applying a kinetic version of Schauder estimates.

Then we focus on the results in the perturbation framework. In the near Maxwellian frame-
work, global existence and large-time behavior of solutions to the spatially inhomogeneous
equations are proved in [37,38,63,64] for the cutoff Boltzmann equation and in [36] for the Lan-
dau equation. For the non-cutoff Boltzmann equation, it is proved in [2-5,33,34], see also [27]
for a recent work on such topic. We refer to [43,45,46] for existence theory in bounded domains.
The non-cutoff case in union of cubes is considered in [17]. All these works above are based on
the following decomposition

1 1
Ouf +v-Vof = Luf +T(f,f), Luf = ﬁQ(\/ﬁf, p) + ﬁQ(M Vif),

with

I'(g, f) = *TQ(fg,ff)Jr*TQ(\/ﬁfy\/ﬁg),

which means that the solution is constructed in p~/2 weighted space.

For the inhomogeneous Boltzmann/Landau equation with polynomial weight perturbation
near Maxwellian, Gualdani-Mischler-Mouhot [35] first prove the global existence and large-time
behavior of solutions with polynomial velocity weight for the cutoff Boltzmann equation with
hard potential. This method is generalized to the Landau equation in [10,11]. The case of
non-cutoff Boltzmann equation is proved in [7,48] for the hard potential case and [8] for the

soft potential case.

Here we mention former works on the Vlasov-Poisson/Maxwell-Boltzmann/Landau system
near Maxwellian. The Vlasov-Poisson/Maxwell-Boltzmann system for the cut-off hard sphere
case is proved in [41,42,62]; see also [29] for the optimal convergence rate. We refer to [24,30,31]
for other case with the cut-off assumption. For the Landau equation, it is first proved in a famous
paper [44] for the tours case and [65,68] for the whole space case, see also [25]. For the non-cutoff
case, we refer to [26,69] for Vlasov-Poisson-Boltzmann system and [28] for the Vlasov-Maxwell-
Boltzmann system, see also [18] for the regularizing effect. The theory of bounded domain
is discussed in [9, 19, 23]. We mention that all the works above are based on the following
decomposition

Oufs v Vofs FVab Vofu & Vad - vyt [ Vab0f = Lusf +Ta(f. f),
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where

L. f= ﬁ@(ﬁ(fi o))+ 2;5@@, Vils), (1.26)
and
PL(f f) = jﬁ@wn, VEf) + ﬁ@(ﬁf%mﬁ), (1.27)

which means the result are in /2 weighted space. We remark here that to our knowledge,

our paper is the first to consider such question in a polynomial weighted space.

Then we give some introduction on the semigroup method by Gualdani-Mischler-Mouhot [35]
and we improve the method to macroscopic part P f. The main idea of semigroup method can
be expressed briefly as follows: Taking the case v = 0 and the space H%L% for example, by [58]
we have

Z(ﬁif, fi)H%LZ(“—l/Q) S _)\HfHH%LQ(,U,_l/Q)? lf Pf - O,
+

for some constant A > 0. Together with the macroscopic estimates from [19,33] for P f, we can
deduce that

1Sc(8) foll 22 (u-1/2) < €_M||f0|’§{3Lz(”—1/2)~
For some M, R > 0, define

Ay = —v-Vy+ Ly — Mxgr, Ki= Mxg,
By =—v-Vy+ Ly, Ko=dpuv- Vo,

where x € D(R) is the truncation function satisfying -1, € x < 129 and we denote
Xr(*) := x(-/R) for R > 0. By the results in [8] we have

Z(Liﬂ Je) 2z < _C||f||?{§Hg + Ck“f”%{%L%?
+

then taking M, R > 0 large, we have
(Af, sz < ~CU Pz
which implies
1S4l ziz < e olia s
By Duhamel’s formula Sgp = S4 + Sp * K154 and Sy = Sp 4+ Sg * K25, roughly speaking, we
have
t
1S 22 s mzr2 < 1SAW) 202 212 +/0 1SB(S) g202(0-1/2) s H2L2 (1 1/2)

X HKlHH%L%%H%LQ(M—U?)HSA“ - S)HH%LiﬁH%LidS < Ce .

and hence

t
Hsﬁ(t)‘|H§Li—>H3L§ < HSB(t)HHELi—)HgLi +/0 HSL(S)”H3L2(u—1/2)—>H3L2(u—1/2)

-
x HK?HH%LiﬁH%LQ(,u—l/?)||SB(t - S)HH%LiﬁH%LidS < Ce ™.

Thus, the rate of convergence for the linear operator L is established. To estimate the nonlinear
part, we need to define a scalar product by

+oo
(FaDhi= gz +n [ (Se(rIfSelrhg)zr

9



Due to the fact that

/ " (Se(r)L, Se(r) e = /

+o0o d ) )
EHSL:(T)fHL?dT = *Hf”L%

we deduce that
(LF- D)= (EL. D)z +n | (Se(rILESelr))r ~ 11y

if we choose proper 1. This shows that the linear operator £ can still be non-negative in a
suitable function space. The estimate for the linear operator £ in this space allows us to prove
the global well-posedness by combining the nonlinear estimates.

The semigroup method can help us handle the lower order terms, while it could also produce
new bad terms to estimate, which forces us to make the assumption s > 1/2. Precisely, when
applying the semigroup method on the Vlasov-Poisson term V,¢(x)-V, f, unlike the usual case,
where by integration by parts we easily have

(Vod(x) - Vuf, f) = 0.

For the semigroup term we have

/0 " (Se(r)Vab(a) - Vo, So(r) )dr,

since we are not able to change S, (t) and V,, integration by parts with respect to V, is not
allowed and we have to use upper bound to bound this term. By [8] we have

1S5 fllazez < 2 F | 2 prs
using Duhamel’s formula as before, similarly we can prove
||S[,(t)f||Hng < t71/2€7)\tHfHHgH;;‘
Due to the extra V, term, we need to use
1Sc()Vad() - Vo lmzey S 2 Vad(@) 2| Vo | g2ps

< til/Zef/\tHVm(Z)(x)”Hg”fHHg%Hfz'

which requires s > 1/2.

Since the 0, commutes with £, while J,, does not commute with £, to avoid computing
the commutator [S¢(t), V,], we will apply the semigroup term only to 9 f without taking any
velocity derivative. To avoid taking velocity derivative on the semigroup term, we split the
proof into 2 steps. First we prove a rough estimate in the space for 8;“ f which writes:

1 o Y1
O (51715, + D2 CaClajol0°Vadlli: ) + LI fI,
loo| <2
<1 1s + ClOB L 171, + 192002 + (/80 (8) + 800 (D) Delt). (1.28)
We briefly explain why in the right hand side, the linear term is || f||%,.,, instead of | f[|%, .

For the term V¢ - vy, using integration by parts, we have
(9§ (Vad - vp1), 05 fu(ev, B)) = ((—1)IV,0%6 - O (vpw* (e, 8)), 0°f) S C 325,
Only H2L3, norm of f is needed. For the Lf term, first we have
Do D (Lafifo)pzp < -C Y 117257, + Ci > 1£11Zz2 -
lal+18]<2 + laf+]B]<2 laf+[B]<2

We can use interpolation to estimate the || f[|3,; term. More precisely, if |3] > 1 we have

7 it
Crllog fl7z,, < CIO SN2, o < 5710 I, isves + CulO™ 7, < o2 lFI%, + Cullo™fZ -

10



Since only H2L? term on the right hand side, by adding a H2L? estimate to (1.28) we can prove
there exists functional &;(t) satisfying

E1(6) = 1715, + V20l %,
such that

01 () + Ml FIIF, + A D w00 T = PYHfI72 0 S 1 lx, 11,
laf<2

- Conl{L = P22 + Va6l %z + 1l FBz g0 + C(\ /o (8) + Ex (1) Di(2).

Thus we are able to estimate C, |{I — P}f H%’? 12 by the semigroup method and estimate
NIVa@||32 + nllP fl132,2 by macroscopic estimate.

1.6.1. Comments on the weight (1.18). The polynomial perturbation can be seen as a change
of variable F' = p + (v) 7% fo for (1.1) for some constant k > 0. Then we have
Oufs+ 0 Vafs F Vot Vi Vat vufo)* £ 5900 05/ = LS + Tl f),
with
Lisf = (0)"Q(0) ™ (fe + f7), 1) + 2(0)*Qu, (v) " f2),

and

Tt (£, f) = (0)*QUu) ™ (£ + f5), () 7" f).
In order to deal with the extra term +kV ¢ - (L f, we follow the idea of [44] and introduce the

v)2
corresponding weight function

+ko
which satisfies
£k £k v
v-Vy(e? f)=e?(v-V,f £kVyd- —=f).

(v)?
Such choice of weight function allows us to absorb the extra term by taking integration by parts

as
+ko tko

(v)? 1212

Unlike [44], where the weight function is e~?, our weight function potential (1.29) also depends
+ko

on the velocity variable. Fortunately, new error contributions are of the type (V,¢-vpu, (e ®? —
1)(v)2k f), which can be controlled if ¢ is small and its velocity derivative can also be controlled
if ¢ is bounded.

1.6.2. Comments on the weight function w(a, ). The weight w(ca, 8) was firstly introduced
in [63,64] to deal with the time decay of the Boltzmann equation for soft potentials on torus,
and it was later used in [21,44] to investigate the Vlasov-Poisson/Maxwell-Boltzmann/Landau
system. The choice of w(«, 3) should depend on the weighted estimates for the term v - V. f
and V;¢ -V, f. For Vy¢ -V, f, one has to bound

(VL0 ¢ - Vo051 f, 05 fw? (o, B))
< V206 (0)"2V,05 fuw(a, B)l| | (v) 205 fuw(a, B)] s

For the Landau case we will use

()2 V5~ e Dl zazs < 105~ fwllal = 1)z,

where we need
w(a, B) <w(laf —1,[B))(v)?, Vol >1,[8] > 0.
11



For the Boltzmann case, similarly we use the following interpolation
1 ey S N s + ||f<v>_ks/(1_5)HH%+s.

which requires
w(a, 8) < w(lal =1, 18] w(lal = 1,|8] +1)'*(v)?, ¥ l|a] >1,|8] > 0.

That is, fewer derivatives of f should require stronger weights. Since higher derivatives are
associated with weaker velocity weights, more careful analysis is needed for spatial Sobolev
imbedding to close the energy estimate. Such a cascade of weights takes advantage of the
crucial feature of the Landau operator: a weak gain of V, (for the Boltzmann operator it is a
weak gain of (—A,)2). For the term v - V,f, one has to bound

(057 f, 05w (e, ) S 11057 ¢ fw(lal +1,18] - Dllzz 105 fw(lal, 18Dz ,
where we need
w(e, B) < () w(lel +1,|8] - 1).
so the w(«, B) is taken such that the requirements above holds.
1.6.3. Difference between the polynomial case and the exponential weight case. The main differ-
ence is that in the exponential case, L, f and I'(f, f) defined in (1.26) and (1.27) are symmetric
while in the polynomial case, they are not. Such asymmetry will cause two problems. The

first one is the occurrence of an extra P f term in the linearized equation. More precisely, if we
denote

P.f =as(t,z)/i+b(t,x) - v/ + c(t, ) |v]* /5.
Then by L,P,f =0 and L, is symmetric, we have
(Lpf, ) = LpPuf +{I=Pu1 ), Ppf +{I-Pu}f) = (Lu({I =Py} f) {I-Pu}f).

Only the term with {I —P,}f remains. While for the polynomial weight case, since L is not
symmetric, one merely has

(Lf, f) = I{I=P}f, f) = (L{I-P}f,Pf) + (L{I - P}f {I-P}f).
An extra term (L{I — P}f,Pf) occurs. Fortunately, we can bound it by

(L= P}, Pf) < clPf| +el{l—PH|2 o + Cl{T— P} fllsz,.

The P f term can be estimated by macroscopic estimate and the last term can be estimated by
semigroup method. Such asymmetry also makes it impossible to extend the result to x € R?
using existing techniques. In former works [62,65] for the whole space x € R3, the following
fact is used. Since I' is symmetric, for any smooth functions f, g, h

T'(g, f),Puh) = 0.
Thus in [62,65], defining the dissipation rate functional D(t) by
D(t)= Y IVa0®0liz+ D IPudfll7:, + > lwla, H{I-PuI33f0°fI3,,
la|<K 1<|al<K 0<lal+18|<K

the estimate of P, f is avoided. While for the polynomial case, since

(Q(f-9), no(v)) #0,  ¢(v) =10, ],

such fact does not hold anymore. So the method in [62,65] can not work for the polynomial
case, we have to assume (2 is a bounded domain and use the Poincaré’s inequality to estimate
Pf by V,(Pf). How to extend the result to the whole space case remains open.

1.7. Organization of the paper. In Section 2, we first recall some basic properties of the
non-cutoff Boltzmann/Landau collision operator and then compute the basic estimates for the
Vlasov-Poisson-Boltzmann/Landau system. We prove the local existence and uniqueness in
Section 3 and obtain corresponding global results and decay of solutions in Section 4.

12



2. BASIC ESTIMATES

In this section, we recall some important results on non-cutoff Boltzmann equation and Lan-
dau equation and prove several weighted estimates for the Vlasov-Poisson-Landau/Boltzmann
equation.

2.1. Preliminaries on the Boltzmann/Landau equation. Before introducing the upper
and lower bound for the non-cutoff Boltzmann and Landau collision operator, we first state the
following lemmas.

Lemma 2.1. Let v € (—2,0). Then for any function f, we have

3
swp [ o=l SIAETIIGT when ve (30, (@)
veR3 JR3
and
ol
Suﬂg/R v — v f(vi)|dvs S ||f||L1 : Ifll s when ~ € (=2,0). (2.2)
ve

Proof. Assume f does not equal to 0 otherwise the estimate is trivial. Let A > 0 be a constant
to be determined. We divide the integral into two regions |v — v| < A and |v —v4| > A\ we have

/rv—mwumwmas/‘ |v—mMﬂwomu+/’ v — w111 (02)dos.
R3 |[v—vs | <A [v—vs|>A

The second part is bounded by
[ b= ullsie)de S X0l
[v—vs|>A

For the first part we divided it into three cases, for v € (—%, 0), by Cauchy-Schwarz inequality
we have

3
/ - v = v |[f] (vi)dvs < </| - v — v*\z”dv*> 1z S Al e
V—Ux|S V—VUx|>

For v € (—2,0), by Holder’s inequality we have

2
3
3
/ kaw—wﬁﬂmwm§</ QW—WPWM>HNBSA%WNH-
V—Ux|S V—VUx|>

N

2 1 _1
so the proof is ended by taking A = ||f||L1 A3 I FIZ NIl 2 respectively. O
Lemma 2.2. For any v € [—3,1] and any functions f, g, h, we have
/ / v = 072 f(v)g(v)h(v)dvedv < [|fll 2l gl 21 2, (2.3)
R3 JR3
/ / v =" (w)g()h(v)dvedo S N fl 2llgllez 1]l gy (2.4)
R3 JR3
and
/ / v — v f(v)g(0)h(v)dvdo S (1 Fllzllglmr Pl L2 - (2.5)
R3 JR3 v/2+1 /2

If v € (=3,1], then we have

/'/ v—mPfW)()muv<HﬂuﬂMHl- (2.6)
R3 JR3



Proof. If —2 <~ <1, we deduce that

/ [v = v "2 f(va)g(v)h(v)dvidv S || Fllpallol 2 llhll g S A1z Ngllzz 1Al 2.
If -3 <~y < -2, by (2.1), we have

swp [ o= 02 (02 )don S 1 fla,
veER3 JR3

which implies that

/ 0= 0,2 £ (0.)g(0)h(w)dvedv S |13 / l9()h(©)ldv S 111 z3llgll e 1]l

This proves (2.3). For (2.4), if v > —2, then it reduce to the (2.3). So we only need to consider
the case v € [—3,—2), in which case we have —3 < v + % <0and -2 < v+ % < 0. Then we
have

11
v— w72 v)2dvdv, < 2,.
L, L o= ot Pavas, < ol

Applying (2.2) to h, we have

3
/RB R [v = w772 (o) f () [P (0) [Pdvdo.

9 9 1_’Y+23/2 2 ’Y+23/2 2 2
SIAZeRE = TP S 1A 1Al -

Here we apply Sobolev embedding | - ||z6 < || - [|g1- Thus,

//|U—U*|'V+1|f(v*)|g(v)||h(v)’dvdv*
R3 JR3

< ([, [ p=vrtwyiseopnepad)* ([ [ o))
< 1713 gl 21l

The proof of (2.4) is then finished. Now we come to (2.5). If —1 <~ <1, we deduce that

[ =t swgem@aeds 1., [ @ gwnw)a
R3 JR3 s
SWflighallz , Ilzz

If -3 <y < —1, we have
(W)~ < (3, ) TOFD (y — 9, )~ OFD)]

which implies

[, [ o=l s )gon)dv.do
R3 JR3

/Rs /R v =)o — o T (0) (0.) "0V g(0) () [ (0)H dvsdo
S /R /Rg(l + o — 07T f(00) (02) OV g (0)h(0) [ (0 dvadv == Ty + T

It is easily seen that

TS fllee, gl

<
cnllglez , Mellze SN2z Nl 2
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If v € [-2,—1), we have v + 1 € (—3,0) and by (2.1),

TS sup | fo— o f(0)(0) "0 do, [ g(o)h(v)](v) do

~

veR4d JRR3 R3
SUfzllals Il

If v € [-3,-2), by Hardy-Littlewood-Sobolev inequality (cf. [61, Theorem 1.1, pp. 119]) and
Holder’s inequality, we have

I e (O S N I [T E sl

< <
S T P Y PP 4 P O L

with p = ﬁ € [1,2]. The proof for (2.5) is thus finished. Finally we come to prove (2.6).

For the case v € [—2,1], (2.6) can be seen as a special case of (2.5). We focus on the case
v € (=3,—2). Similarly to (2.1), we have

[ [ 1o eiseligo)do.do
R3 JR3
S /3 /3(1 + [ — v )| f (ve) [(ve) T |g(0) P () dvydv == T; + Is.

R3 JR

It is seen that
< 2 < 2
Lol Nolzz , S 00 eelgllzs -

For I, by Hardy-Littlewood-Sobolev inequality (cf. [61, Theorem 1.1, pp. 119]), we have

I < ||f||L277 ’/RS lv — ve|?|g(v)|? (v) Y dv "

SUFlzz Mgl @) e < I cellglfer < ”f”L%”.ﬂ’%{i/Qv

/2

where p = ﬁ satisfies 2p € [2,6]. This gives (2.6) and the proof of Theorem 2.2 is finished. [

We also recall some basic interpolation on x.
Lemma 2.3. For any function f and constant k € R, we have
I£lz S mim 11l e}

More precisely,

1Fllzge 2 S IF ) lmazz + 1 (o) lmzez, (2.7)
Il re S NF@ N p2re + 1 @) e, (2.8)

and for any constant s € (0,1)
1 Ny S 0 C0) Ny + 11F o)~ O s (2.9)

Proof. Firstly, we use extension theorem [61, Thoerem VI.5, pp. 181] to extend function f in
domain Q with Lipschitz boundary to a function Ef in R? such that Ef = f in Q and

IEflge@sy S IFll e
for any k > 0. By Gagliardo—Nirenberg interpolation inequality on R and R? (cf. [55, Theorem

12.83] and [59, Page 125]), we obtain
IEf||re @y < 100, B @I ELIL @,
1 xl( ) xl( )
and

”Ef”LOO (R2) S ”vzz,mEfHL%Q’mg(R?)-

x9,x3
15



Combining the above estimates, we have
1/2 1/2
1@ S NEflis @l s ey S 1 301 350
which implies (2.7). Also, by Gagliardo-Nirenberg interpolation inequality on R3, we have

1/2 1/2
IE Al S NEAI s s I Va EfHL/Q(Rg

1/2 1/2
S ufuLg(mufu /

which gives (2.8). For (2.9), by Young’s inequality,

_ ks
() < (n)*(0)* + ()2 () 715
and hence () is a symbol in S((n)*(v)*¥+ <77>1+S<v>_1k%s) (cf. [16]), where 7 is the Fourier variable
of v. Then by [16, Lemma 2.3 and Corollary 2.5, we have
1 Ny S 0 C) Wazs +11F o) 707 g
This completes the Lemma. U

2.1.1. Upper and lower bound for the non-cutoff Boltzmann operator. In this section, we con-
sider the Boltzmann collision operator Q(f,g).

Lemma 2.4 ( [47], Theorem 1.1). Suppose v € (=3,1],s € (0,1),7+2s > —1. Let w1, ws € R,
a,b € [0,2s] with wy +wy =7+ 2s and a + b = 2s. Then for any functions f, g, h we have
(1) if y+2s >0, then

[(Q(g, 1), ezl < (llgll e +lgli2)lPlag, (1 e, »

Y25+ (—wp) T+ (—wp) T

(2) if v+ 2s =0, then
(Q(g, ), Nzl < (lgllzy,, + Ngllz2)llPllag, [1F1 e,

where ws = max{d, (—w1)T + (—w2) "}, with & > 0 sufficiently small.
(3) if =1 <+ 2s <0, we have

[(Q(g: 1), Frezl < (lgllzy, +llgliez  OlBllag, 1111w,

—(v+2s)
where wy = max{—(y + 2s),v + 2s + (—w1)" + (—w2)"}.
As a first application we have the following corollaries.

Corollary 2.5. Suppose v € (—=3,1],s € (0,1),v+2s > —1. For any multi-indices |5| < 2, any
constant k > 0 and any functions f, g, we have

(Q(3p1, f), g(0)**) < Cill f |l s

for some constant Cj > 0.

gl

k+~/242s k:+'y/2

Lemma 2.6 ( [8], Lemma 3.3). Suppose that —3 <y < 1. For any k > 14, and functions g, h,
we have

(Q(h, 1), g(v)*")]
< fl(eos0) i~ lpgllhlle  Mollz, . +Cullblz . loliz, . (210)
< fl(cos0)sin* 2 Ul bllz, , lolliz, , +Cellblliz, . lolliz, . .
for some constant Cy, > 0. Moreover, for any || < 2 we have
QU0 Dm), ()™ )] < Cullhllz sz, (2.11)

Remark 2.7. In [8, Lemma 3.3], the authors only prove the first statement of Lemma 2.6, but
the second statement can be proved in the same way by just replacing pn by Ogp.
16



Theorem 2.8 ( [8], Theorem 3.1). Suppose that =3 < v < 1,s € (0,1),y+2s > —1, k> 14
and G = p+ g > 0. If there exists Ay, As > 0 such that

G20, [|Gllpr= A1, (Gl + 1GlLiogr < A,
then
1
(Q(G, f), f{v)?*) < —gllb(cow)(l—cos% 5 )IIL HfHLz e — 271 f[|%s

+ Cill f112: + Crllfll 2, ||g||H ||f||H
k+~/2-1/2

kty/2

+ Cillgll 2, £

k+vy/2 k+vy/2

+ Crll flZ2

k+~/2
1 .
S—*Hb(COS@San*HLleH%z e = mllflE,

+ Cillfllez Mgl e

+v/2
+CngHL A1

k+v/2 k+v/2 k4~ /2

(2.12)
for some constants ~v1,Cy > 0.

Remark 2.9. In [8, Theorem 3.1], the authors prove the result for k > 22. However, the case
k > 14 can also be obtained by applying the same technique. Note that whenever ||g| 11 is small,
we have ||+ gllpy > 1 —|lgllpy > A1. Moreover, we couldn’t obtain a better estimate for the
term (Q(f, 9), g(v)?*) as the Landau case (see (2.19)) and thus we should put the term p+g > 0
together.

Lemma 2.10 ( [8], Lemma 3.4 + Lemma 2.4). Suppose v € (=3,1],s € (0,1),y 4+ 2s > —1.
For any functions f,g,h and k > 14, we have

(QUF,9): h{e)*) S 11 llz, min{llgllmy, Allmg oo ol o Bl )
+llgllze 1 lleg, Al - (2:13)
In particular, by duality we have
QU D e, S Wl gller, o, + Ngllce I e, - (2.14)

2.1.2. Upper and lower bound for Landau operator. Next, we give some results about the Landau
collision operator Q(f,g).

Lemma 2.11. Denote m = (v)* with k > 7. For any —3 < v < 1, any functions f,g and
18] < 2, we have

QS 0510), (W) < Cll fll 2|9l 2 (2.15)
and
(QUus ), F(0)*) < =1l f 1172 () + Crll 1122, (2.16)
for some constants ~1,Cy > 0.

Proof. The first estimate follows from [11, Lemma 2.5] and in [10, Lemma 2.12] with p replacing
by Ogp if necessary. The second estimate follows from [11, Lemma 2.3] and [10, Lemma 2.7].
Note that the work [10] is for the case v € [-2,1] and [11] is for v € [-3, —2). O

Lemma 2.12 ( [10], Lemma 3.5 and [11], Lemma 4.3). For any —3 <~y <1, k > 7 and any
functions f, g, h, we have

(QU.0). h?)| < Cllflzmindllal s | I0llgs, . Nollis, IBls,, 3 (217)
By duality, we have
10U D S 1flzlgllzs, .- (2.18)

When h = g, we have a better estimate:

(QUF 9),9()*) < Clll2lgll2, (2.19)
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Proof. The proof is similar to [10, Lemma 3.5] and [11, Lemma 4.3] with a little modification.
Denoting m = (v)*, we have

(@) k) = [ 0,467« £)oig — (0167 « F)gphmide
= —/ (67 * f)0;90;hm*dv —/ (¢ % f)0;ghd;m*dv
R3 R3

+/ (0;0" * f)gajthdv +/ (0;0" * f)ghajmgdv =Ty +To + T35+ Ty.
R3 R3

For the T1,T5 term, by [10, Lemma 3.5] and [11, Lemma 4.3], we have
T3l + 172l < ClFlizlgll,, bl s, -

Now we give a better estimate for the T3, Ty term. Since 9;¢% (v — v,) < |v — v [T, 9;m? <
C(v)~'m?, for the term T3, Ty, by (2.5), we have
T3l < Cllfllgz min{llgls, I8l lgllzs, IAlzs )

Tal < Clfll szl I0lles,,

and (2.17) is thus proved. For the case g = h, we give a better estimate for T3. In fact,

T3 :/ (aiqbij * f)gajgmzdv
R?)

1 y 1 g
=3 /3(317‘(25” * f)g*m*dv — B /3(8#25” * [)0ym*g°dv == Ty + Tha.
R R

For the T35 term, similar to the Ty term, by (2.5), we have
2
Tip < Ol fllzllols

For the T3 term, if ¥ = —3, then 9;;¢" = —87dy. It is easily seen that

Ty < C/ [flg?m?dv < ClIfll2_llg°llz,, < Cllfllzllgla
R3 Y k+v

2kt

2
L <l llzgllgly

For the case v € [0, 1], we have

< — |7 22 < 2 < 2, .
T3 < C/R3 [ — vi| | fil g"m dvdv, < CHfHL%HgHLi_M/Q < CHfHLgHgHL%’k

The case v € (—3,1] follows from (2.6). Collecting the above estimates on T3; and Tha2, we
obtain (2.19) and complete the proof of Lemma 2.12. O

For the Landau operator, we need another upper bound which writes

Lemma 2.13. For the Landau operator Q, for any v € [—3,1] and any function f,g,h, we
have

QU9 | < IFllzlgllizllblz, Q90 < 112 lglzz, Il

Proof. By integration by parts we easily have
QU b = [ (= (65 Noj90h+ (0,67 « fgdih) o

N / <(¢ij * f)g0idjh + 2(0;¢7 f)gaih) dv,
R3
then by the homogeneity of ¢* and aquij , we have
167 (0 = v)| S v =072, 10507 (v —0.)| S Jo— w7

So the theorem follows directly from (2.3) and (2.4). O
18



2.2. High-order specular boundary conditions. When (2 is union of cubes given by (1.11),
we give the high-order compatible specular boundary condition from [19, Lemma 3.1 and 3.2].
Although the proof in [19] is given for exponential decay perturbations, similar calculations can
be applied to polynomial perturbations. Here we provide the proof for the sake of completeness.

Lemma 2.14. Let (f,¢) be the solution to (1.4) with boundary conditions (1.13) and (1.14).
Fizie{1,2,3}, z €T and v-n(z) # 0. Then we have the following identities on boundary I';:
f(z,v) = f(z, Ryv), (2.20)

and
(9ij($,va) = 87—jf(l',’())7
8Tj7'kf(‘r7 RZ'U) = 87—j7—kf(x’ U)7

for j,k = 1,2, where {7j}j=12 = {ex}rzi are the two direction other than e;. For the normal
derivatives, we have

(2.21)

Onf(z, Ryv) = =0, f(x,v),
nf (2, Ryv) nf (2, 0) (2.22)
8Tj8nf(l‘a RCCU) = _aTjanf(xvv)a

forj=1,2, and

02 f(x, Ryv) = 02 f(,v). (2.23)
Proof. Note that Ryv maps vy_ onto 7. Then it’s direct to obtain (2.20) from (1.13). On
Li, Or.(e) (J = 1,2) is the derivative with direction lies in I';, where 71(x), 72(x) are tangent
vector on I';. Then we can obtain (2.21) by taking tangent derivatives on (2.20). For normal

derivatives, we will apply the equation (1.4). We claim that

Vb Vyfe(Rev) = V- Vyfi(v),
V¢ - Rpvp(Ryv) = Vi - vp, (2.24)

and

Q(f,9)(Rav) = Q(f(Rav), g(Ryv)), (2.25)

on n(x) - v # 0, for any x belongs to the interior of I';. Indeed, by (1.14), we have J,,¢ = 0 on
I';. Notice that R,v sends v; to —v; and preserve the other components on I';. For j = 1,2,3
such that j # i, we have 0y, f+(Ryv) = Oy, f+-(v) on [';. Thus, on T';, we have

Vet Vofe(Rev) =Y 05,00y, fo(Rav) = Vad - Vo fi(v).
J#i
and
V¢ Ryvu(Ryv) = 28 pvjpu(v) = Ve - vp.
J#i

Next we prove (2.25). For the Boltzmann case, we apply the Carleman representation as
in [1, Appendix] to find that

o + h[yH1+2s
h)1
Q(f,9)(Ryv) / /EM o, lel>|h| 713425 |h[3+2s

x (f(Ryv + @)g(Ryv — h) — f(Ryv + & — h)g(Ryv)) dadh
= Q(f(Rm’U),g(Rm’U)),

where we use change of variable («, h) — (Ryc, Ryh) and Ey p, is the hyper-plane orthogonal to
h containing the origin.

For Landau case, we can write

Qf,9) = 0, [{&" + £ }ueg] — 00, [{#" 00t }o]. (2.26)
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Notice that 0y, f(Rzv) = =0y, (f(Rzv)) and Oy, f(Rzv) = Oy, (f(Rzv)) on Ty, for j # i. Then on
I';, we have

S 0, [{ 6+ 1} (Rev)

G k=1
Ou | = {0™ < 1 H(Re) B9 (Ro)| + 3 S0, {&" + £} (Rov) D0 9(Rov)|
1 j#i k=1
Ou, [{0" 4 [F(Ra0)] 00 (g(Rov))| + 37 00 [ {0 ¢ [F(Ra0)] } 00 (9(Ro0))]
k#i
00, [{ 6"+ [F(R0) O (g(Roo) |+ 3 00, [ {7 5 [ (Re0)] }Ou g (Rov)]
i G4,k

0wy [ {7 * [F(B0)] }Ou (9(Rov))

I
[M]

e
Il

—

+

I

<
i

1

where we apply (1.3) to deduce that ¢*(R,v) = —¢™(v), ¢’ (Rv) = —¢ (v) when k # 1,
j # 1. Similar calculation can be applied to the second term of (2.26) and we obtain (2.25) for
Landau case. This completes the claim (2.24) and (2.25).

Noticing that
v-Vef =v-n(x)0nf+v-711(x)0r f+v-12(x)0f,
we can rewrite (1.4) as
v-n(2)0pfr = —v - 11(2)0r fr — v 72()0r, fx — O fx
£ Ve Vofe F Voo vp+ Q2u+ fr + fru+ fr).
Applying (3.3) and (2.24), we can obtain that on 99,
Ryv - n(x)0n f+(Ryv) = v - n(x)0n f+(v).
Since R v-n(x) = —v-n(x), this implies (2.22) by taking tangent derivative. Apply 9, to (1.4)
twice and rewrite it to be
V-0 O fr = —v - T1(2)0r, Op fr — v - T2(2) 07, Op f£ — 04On fx
+ 200 (Vo - Vo f1r) F OnVad - vp+ LiOnf + Q(f+ + fr, f+). (2.27)
Here, by taking tangent derivatives on (1.14), we have 9,0,;¢ = 0 on I'; for j # i and hence,
On V3¢ - Ryvp(Ryv) = 003, 9(Ryv)ipi(v) = —0n 0y, pUif1.
Similarly, we have on I'; that
£ 00 (Vad - Vofe) +0nQ(fx + f5, f+)
=£0,Ve¢ - Vofe £V3¢ - 0nVofr + QO0nft + Onfr, fr) + Q(f+ + f+,0nfs)
= £0p02,0 0p, f+ £ Y 02,0 00y, f+ + Q(Onfs + Onfr, f+) + QUfs + [, 0nfs).
J#i
Together with (2.22) and (2.25), we know that on I';,
£+ 0 (V¢ - Vo fi)(Rov) + 0nQ(fx + fr, f1)(Rv)
= +0n (V2o - Vo f1)(v) + nQ(f+ + f5, [+)(v).
Combining the above identities and (2.27), we have
Ryv - n(2)02 f(z, Ryv) = —v - n(2)02 f (2, v).
This gives (2.23) by taking tangent derivatives. This completes the proof of Lemma 2.14. O

As a corollary, by definition (1.7), we have the following boundary values for [a, b, c].
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Lemma 2.15. Let (f,¢) be the solution to (1.4) with boundary conditions (1.13) and (1.14).
Define lay,b,c] by (1.7). Fori=1,2,3 and any x € I';, we have

O, c(x) = Op,a+(x) = O, bj(x) = Opya;bi(x) = bi(x) =0, (2.28)
for j #1i.

Proof. Fix x € I';. Notice that on the boundary of union of cubes, we have 0, f = 0,,f or
—0z, f. Then by (2.22) and change of variable v — R,v, we have on I'; that

1
Op,c = 5 O, (f(z, Ryv) + f—(z, Rpv)) | Ryv* dv
3
1
:_E ) axi(f+($,’l))—|—f_(.’L',U))|’U‘2dU:O.
R3
Similarly, on interior of I';, we have
ﬁxlai—/ Og, [+ (z, Ryv) d / Og, fx(x,v)d
and for j # i,
1
Dp,bj = 2/ O, (f4+(z, Rev) + f-(z, Ryv)) (Ryv); dv
R3

- /R O, (£ (w,0) + f-(,0) vy do = 0.

On I';, we have (Rzv); = —v; and hence by (2.20) and (2.23), we have
1
i) = 5 / (F+ (2, Rov) + f— (2, Ryv)) (Rov);i dv
R3
1
=5 [ @) + o (m))udo =0
2 R3

and

Oz, 0i = ;/ (02 [+ (@, Ryv) + Onya, f— (@, Ryv) ) (Rgv); dv
R3

__1 / Oy [+ (@, 0) + Oy, [~ (@, v) ) v dv = 0.
2 R3

This completes the proof.
O

2.3. Estimates on the weight. Recall the weight function w = w(|a|, |5|) = w(«, B) is defined
n (1.16). We have the following properties of w.

Lemma 2.16. Assume —3 < v < 1, 1/2 < s < 1,7 + 2s > —1 for Boltzmann case and
—3 < v <1 for Landau case. For any multi-indices o, 3 and non-negative integer k, w(a, f3)
satisfies the following properties.

o For|ai| < |af, |B1] < |B], we have

w(e, B)(v)* <wla, fr),  wla, B)(v)* < w(a, B), (2.29)
for the Boltzmann case, and
w(e, B)(v)? < w(e, fr),  wla, B)(v)? < wla, B), (2.30)

for the Landau case.
e For both Boltzmann and Landau case, and any |a| > 0, || > 1, we have

w(oB) < (o) wlo] + 1, 18] - 1) (2:31)
For any |al + |8] < 2,
(0)* < w(a, B). (2.32)



e For the Boltzmann case and any |o| > 1, |8 > 0, we have
w(e, ) < w(la| = 1,18 w(lal = 1,18 +1)'*(v)". (2.33)

Proof. Recall that ¢ = 6s — 3(y—1), p = ¢ +v—1, r = 2¢ + 6, for Boltzmann case, and
qg=3—(y—1), p =3, r =2q+ 6 for the Landau case. The estimate (2.29) and (2.30) is just
from the fact that —3 <y <1 and

p=-3(y=1) +6s+y—1>6s, ¢>6s,

for the Boltzmann case and p, ¢ > 3 for the Landau case. The estimate (2.31) follows from the
fact that

k=plal—qlfl+r <k—p(al+1) —q(fl - D +r+7-1 <— q-p+7-120,
and we conclude (2.31) from the definition of p,q. From p < ¢ and

L— = min {w(«
0)F = w(0,2) = min_(w(o,5)),

we obtain (2.32). (2.33) is equivalent to

k—plal —qlf] +r
< (k=p(lel =1) = qlB[ +7)s + (k= p(le| = 1) = q(|B] + 1) + r)(L = 5) + 7,
which is equivalent to
0<ps+p(l—s)—q(l—s)+v <= 0<qgs+(p—q)+7=(65s—3(y=1))s+~v—1+1.
We thus conclude (2.33) from the definition of ¢, 1/2 < s <1 and -3 <~ < 1. O
We can directly deduce the following Corollary from Lemma 2.16.

Corollary 2.17. Assume the same conditions as in Lemma 2.16. Then

max  w? (e, 8)(v)" < w(0,0)w(1,0), (2.34)
la|+[B]=1
and
max  w?(a, B)(v)" < w(1,0)w(2,0), max w? (e, 8)(v)" < w(0,w(l, 1), (2.35)
o]+ 8]=2 ||+ 8]=2
18]=1

as well as

o w? (e, B){v)" < w?(2,0)(0)" < w(1,0)5w(2,0)%7, (2.36)

where K = 4s for Boltzmann case, k = 2 for Landau case.

2.4. Weighted estimates. Next we come to the nonlinear term for the Vlasov-Poisson term.
Noticing w?(a, 3) is still of the form (v)* for some k > 0, we have

Vo (w¥(a, B)) = Aaﬁ&w%a,ﬁ), (2.37)

for some constant A, s depending on «, 3,k,y. Then we can apply the space-velocity weight
:I:Aaﬁd)
e ? . To the end of this section, we will assume

[pllee < C < +oo, [YllLge < C < +oo. (2.38)

and hence,

+A, 3¢
e 2 ‘ < C < oo,

22
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Lemma 2.18. Suppose that —3 < v <1 for Landau case and —3 < v < 1 for Boltzmann case.
For |a| + |B| < 2 and any functions fi, for any function ¢ satisfies (2.38), we have

+A, 8¢ +A, B¢

’(U-angfi& () 3§fiw2(a,5))Lg F (Voo Vo3 fe,e @ 95 fruw(a, Bz,
SIVeolluzl fIR,, (2:40)

and for |B| > 0,
+4, 56
> (08,0 Vad§ g, fre @7 05 fu(a, B))1z |
[B1]=1
<C Z \\8§§fw(a2,/Bz)HLng/QH@%fw(a,ﬁ)HLng/Q- (2.41)
|B2|=|8]—1
|laz|=|af+1
For |ayi| > 1, we have
+A, 5o
(V20 ¢ - V05~ fe @7 08 fu(e, 8))2 | S Vet mall F13; (2.42)

where Aq g is given by (2.37), for some constant Cy, > 0 for both Landaw and Boltzmann case.
Proof. For (2.40), taking integration by parts with respect to V,, we have

iAa’zﬁ¢ Aoc v-Vy o qu «
(v Vadf froe @7 08 frw(a, B)) =+ 25( L %Bfi,e @ 0f frw(a, ) 1p

aﬁ¢
/ / v-n(z)le 27 05 frw(a ,B) > dvdS ().
o0 JR3

For the torus case, the right hand side is equal to zero. For the case of union of cubes, we apply
Lemma 2.14 to obtain |05 f+(v)| = [0F f+(Rev)| for x € 0 and R, is given by (1.12). Thus,
by change of variable v — R v,

Ay p9
[ [ vnt@le T o5 eyt o) avasa)
o0 JR3
a6¢
/ / Ryv - n(x)]|e2Fa)? 0F fi(Ryv)w(a ,8)|% dvdS ()
o0 JR3

aﬁd’
—— [ [ vn@le 7 g av)uta, 5)P duds(a) =0, (2.43)
8(2 ]R3

where R,v - n(z) = —v-n(z). Taking integration by parts with respect to V,, and using (2.37),

we have
iAa,ﬁ¢

F (Voo - Vi fr e @7 95 frw(, 8)) 2

Ap,p0 - Vad =Aa,p0
= F (T e e O G (e, B,

1 A a,BU - V@ 0,59

+ 2( <U> aﬁfiae B 8ﬂfiw (047,6))[/%,”.

< (v)Y for —3 < 4 < 1 and taking summation of the above two estimates, we

have
+A, £A, 50

‘(U-Vmaﬁfi, —or 3afiw (av, ﬂ))Lz T (Voo Vi fr,e 07 05 frw?(a, B)) 2

S IIVm¢|ngo||<v>%8,3fiw(a,ﬁ)HLg,UH(@2%fiw(a,5)lng,v
S Vel m2ll F113 -

This yields (2.40). Here we used the fact (2.38) and its consequence (2.39).
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Notice that
O - V0§ ., f =057 f, Vi=1,23,
where e; is the unit vector with i-th component being 1. Then (2.41) follows from (2.31) and
(2.39).

When 1 < |a;] < 2, we have
+A, 5é

>

(Va0 V05" fre % 0f fw(a, B)) 2

T,v

< (0 Va0 bl ) "E V05 Fuola, Bl 2

o |=1
£ IV 6l () "85 frolen B) gz ) I1(0)2 05 fro(er B) arz
o |=2
SIVabllms Y 1) 2 V005 fule, B) 2z | fllvi (244)

lai|=1

For the Boltzmann case, (2.33) implies

w(a, ) < w(lal = 1|8 w(la] = 1,181+ 1)'(v)7, ¥ |a| > 1|8 > 0.
Together with (2.9), we have for |a1| = 1 that

1(v) "2 V,05 ™ fw(a, ) 212 < [(0) 2057 fw(ev, )| r2

S 105" fwllal = L B)lc2 s, + 105" fw(lal = 1,181 + Dl 2 s < I fllvi-
Ty /2
For the Landau case, it follows from (2.30) that
w(e, B) <w(lal = 1,|8))(v)?, Vol = 1,8 = 0.

Thus we have

o) "2 V005~ fula, Az < () 205 feo(e, B) |2 iy
S 057 fwllel =1, B)llzz2r2 < I llvi-
The proof of (2.42) is finished by plugging the above estimates into (2.44). O
Next, we compute the linear part for Poisson term.

Lemma 2.19. For |a|+|B| < 2, any functions f+, ¢ satisfying (1.4) and any ¢ satisfies (2.38),
there exists C, > 0 such that
iAa,Bw )
(05 (Vadp-vp), e % OF frw™ (o, B)) 12, | < CullVadl 2 fll m2rz- (2.45)
When |5| = 0, we have

iAa,B’#’

D £(0°Vad - vpe 07 0% frw?(a,8)) s > Calil|0Vadl|7
+ " '

= ClOVeol 20T = P} fll 22 = CllO*Vadll 2 Vet | fllvis (2.46)
for some Cy, > 0.

Proof. From integration by parts about dg, we have
iAa,Bw
(03(Vat - vs) e 05 fu?(a, B)) 2
iAa,Bw
= (V206 - (vp)w (e, B), e % 95 f) 12,
ﬂ:Aa’ﬁzp

= ((-1)/AIV,0%¢ - 95(9s(vp)e” @ w?(ev, B)),0%f) 1» - (2.47)

z,v
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By Fourier transform, Cauchy-Schwarz inequality and using the exponential decay of u, it is
direct to show that (2.47) is bounded by

/ 0“fos( 8g(vu)ei?:> 5 w?(a, B))dv’

When S = 0, we temporarily define the projection

IV20“9| 2

) S S IVl 2| fllmzez-

-3
Pf = ( f(u)du—i—v'/ uf(u)du+(|v|2—3)/ [l f(u)du),u.
R3 R3 R3 6
+A, ¥ +A, gY
Then we splite ®° =14e ®* —1and fx =Pf+{I— P}f to obtain
A, g

+(0°Va¢ - vpe @7 w(a,000%f1),, = £(0Vad - v, w?(a,0)POfy)
+ (aavx¢ “Ul, ’LU2(O[, 0){I - P}aafi)Lz

tAa ¥

+ (0°Va - v, (e @07 — 1)w2(a,0)8°‘fi)L2u . (2.48)

Then one can check that
{I - P}fe={I - PH{I: - Py}f. (2.49)
For the first right hand term of (2.48), we have from (1.8) and (1.4)y that

Y0Vt - v, w? (@, 00 PO fa) s
+

3
- (070 vpwt (.0 | Sul0n(f = 1)) )

L3,
=20, / Va0%6 - 00 (f4 — f_)(v) dvda
R3
= —-2C, /8°‘¢V / vO*(fy — f-)(v) dvdzx
= —QCa/Qaagb@tquSda: =C, at||8"‘vx¢llig, (2.50)

for some constant C, g depending only on «, 3. Here we can directly take integration by parts
for the case of torus. When (2 is the union of cubes, we need to verify the zero boundary values
as the following. Fix ¢ =1,2,3. If o; = 1, then 0,,¢ = 0 on I';. If a; = 0,2, then by Lemma
2.14 and change of variable v — R,v, we have on I'; that

/ wid®(f4 — f-)(v) dv = / (Ro0)id®(fs — =) (Rov) dv = — / 0id(fs — f-)(v)dv = 0.
R3 R3

R3
Note that tangent derivatives doesn’t affect the zero boundary values. This completes the
integration by parts in (2.50). For the second right hand term of (2.48), noticing exponentially
velocity decay in p and using (2.49), we estimate it by

(Va6 - o, w? e, LT = PYO f2) | S 10°Va0l 12 l0°{Ls = Puk e,

For the third term in (2.48), noticing

A, 50
e @7 —1] S Auslltllze S AasllVatbllm,

we have
£A, g0

.8
[(0°Vad-vp, (e @7 — 1)w2(a’5)0afi)%v! S 10°Vadll 2 Vet | f v

The above four estimates imply (2.46) and we conclude Lemma 2.19.
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In [8], one only need to compute x derivative term, but for our Vlasov-Poisson system we
also need estimates about v derivative term.

Lemma 2.20. Suppose that v € (=3,1],s € (0,1),y + 2s > —1 for Boltzmann case and
v € [=3,1] for Landau case. For any |a| >0, |B] <2, k > 7, there exist constants Cy, > 0 such
that, for any functions f, g,v, we have

+A, g

(O5Q(f, ) e @7 g gw?(a, B)) 12 |

0
s k—2
< [1b(cos 0) st 2 3105 (e B) 22, 105gw(en B)llae

+ Ck||3§fw(0¢75)||L3L3/2_1/2||5§9w(04aB)HLng/Q_l/Q
+C S 108 Jwles B sz 105 gw(as O)llzzse .
B1<B
for the Boltzmann case, and
+A P
« L’Qﬁ le¥ 2 « fel
(05Q(f, 1) e @7 95 guw(c, B) 2 | < Ch > 1108, Fllr2 21|08 9l 2 r2.
B1<B

for the Landau case.
Proof. For both cases, it’s easily seen that

+A P +A P

le Q’QB le' 2 le O472'8 le" 2
(O5Q(f, 1) e 7 95 gw’ (@, B)rz, = > (Q05,f,05-pp),e @7 95gw(a, B))12,-

a1 <a

For the Boltzmann case, we split it into two cases: 81 = 5 and 1 < 8. For the case 51 = 3, by
(2.10) and integration about z, we have

’(Q(agfa /J,), 8(597«02(0% B))L%’U ’

20 fed re%
<||b(cos ) sin® 2§HL5Haﬁfw(ayﬁ)\\Lng/Q’*Haggw(@,ﬁ)HLng

/2,%
+ CkHaEffw(Oéaﬂ)HLng/Q_mHaggw(a:5)”L§L3/2_1/2-
Notice that
A, 50
e~ — 1| < A gllblliee (0) 2 S AnslIVatll i ()2 (2.51)
By (2.11) we have
+A, g9
(QOFf, ), (e @7 = 1)05gw*(e, B)) 12 |
:EAO“[;’(Z)
<Ol fto, B)w) M pzzz e O~ 1)o5gwla, B))lzzse
<Cillog fule, Ml zzz , , I0GgwleB)lizse ,

For 1 < 3, by (2.11), (2.39) and integration about x, we have

40,87

(Q98,f,05-p)se 7 Bfguw’(e, B))1z |
<G Y 10, fw(e. Alizzrz 105 gw(e B)ll 212

/2
pr1<p
So the proof for the Boltzmann case is completed by gathering the three terms. The Landau
case can be prove similarly by taking integration in (2.15). O

The next two coercive estimates play a key role. For the Boltzmann case, we have the
following.
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Lemma 2.21. Suppose that —3 <~y <1,s € (0,1),7+2s > —1 and k > 14. For any function
f,g, let G =u+ g >0 satisfies

1Gllr = Ar, (|Gl + Gl < A

for some generic constant Ay, As. Then for Q as the Boltzmann collision operator, and any
la| + 8] < 2, we have

(05Qu+g, ), 05 fw? (e, B) 12,

1 .90 o a
< —gub(cos 0) sin® iuLéHaﬁfw(aﬂ)HigLi/% - 71||85fw(a,ﬁ)||%gH3/2

2.52
T Cull @) Pz Ngllvilf i + Coll @)l 1711, (2.52)
+Cil|0§ flI72, + O > 105, fw(a, Bu)l s, 105 9w(e, B) || &z,
B1<pB
for some constant v1,Cy, > 0, where || - ||y, is given in (1.21). Moreover, suppose 1 satisfies

(2.38), we have

Ea pv

[(05Q(g. ), (e @ = 1)9ghw* (e, 8)) 1 | < Cill (W) gllz IVt mllF v IRl vi
+ Ol ) fllaz IVt lgllvi kv, (253)

and

£4, 59

>

(95QU9. ), 0800, B)) s | +](05Qg f)re” O 0w (a,6) o |

< Cill{0) gl 2, min{[[(0)* Fllvi | Bllvi [ £ lvi[€0)**Rllvi} + Crll(0)™ Fllaz Nlgllyi 2]y
(2.54)

Remark 2.22. To apply Lemma 2.21, one can easily check ||G||py = |+ gl > A1 when
assuming ||g|| . is small enough.

Proof. First we have
(D3QC. ), FuX( Bz, = S (QUO5GL 58 ), 95 fu(e B))1a .
a1<a,/1 <8

We split it into several cases. For the case a; = 51 = 0, after integrating about x in Theorem
2.8, we have

(Q(G, 95 1), 05 fu? (e, B)) 12,

]. . 0 o fe% o
< —§Hb(cos ) sin? §”L{§H8,8fw(a75)‘|%%[%/2 . ’YlHanw(av/B)HQL%Hi/Q + CkHQBfHZL%U

+ /Q Cila5 £l g (e, B) L

/2

105 fw(e, B)llnz , + Crllgllzs, 105 frla, B) |7, da.

For the case |81] > 0,1 = 0, using 0g, G = 0, 1t + 03,9, we split it into two parts. By (2.29),
if |81 > 0, we have

’U)(Oé,ﬂ)('l))Qs S 'l,U(Oé”B - /81)
Then by Corollary 2.5, we have
|(Q(851,U,, 8g_ﬁlf)7 8§fw2(a7 B))L%’v |
< Cull9g_s, Frole Dz ., 198 Fulon )iz,

< Cyl|05_p, fw(a, B — 51)"L§H§/2”agfw(av5)”L§.H§/2~
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For the 03, g term, by Lemma 2.10, we have
(8,6’19, 8181131 f)7 ngwQ(aa B))L%,U |

@
< /Q Cillog s, £z, 19,9 (v, )|z 1105 Froler, B) s,

+ Cillopgll 2, 1955, fw(er, B)ll s , ., 198 fw(er, B)l| s, da,

For |ag| > 0, since 0 pp = 0, we have
(QUOSIGL O35 1), 05 F V) 1 = (QUOS 9, 0551 ), D5 F (0)) 1z .

By Lemma 2.10 we have

QO 9, 0575 ), 05 (0)) 13 |

< /Q Cull 955, 12,105 9w (v, B) s, 105 frwten, )2

+Cu [ 1052013, 10575, Fe ), 105 Sl )

Gathering all the terms, we have
(agQ(.u +9, f)7 agwa(oz, ﬁ))L%,v
1 .90
< 5 lb(cos0) sin® 21113 108 Fuole B2y e+ Cullo§ 1Rz, — 05 Sw(a, B) By

+Cr Y 1108 fwle, B)llczms 108 fw(e Az

/2

/2
181]<|8]
v [ 105 i 05 (e Bl 106 (e ) o
2 a1<a,pi<p
o ) 195 gl 2, 105752 v Bz ., 195 Fuo(ae B,
2 a1<a,B1<B a1 |+]81]>0
e /ﬂ lollo2, 108 o 8) e dir (2.55)
Now we only need to prove that
| Nz, 108 Futar )1 do S 16 ol 17 (2.56)
and for all oy < a, 81 < B, || + |B1] > 0,
/Q 105, gll 22, 10525, fw(e, B)llss , , 10§ fwle, B)llms ,dx < [[w) Hgllmz IFI,.  (2.57)

The fifth terms on the right hand side of (2.55) follows similarly by changing the order f and
g. First, for the case |ay| = |fB1| = 0, we have

2 2
/Q Iz, 105 Fro(a B) s do S 9l g 12,195 Fro(, )3

4
< ) gllaz £, -

This gives (2.56). For (2.57), we split it into two cases: |a1| + |81 =1 and |a;| + |51] = 2. For
the case Jou| + |81] = 1. by Ifgllz2 < [1/l1z2 gl we have

[ 1858l 1055 fuoter Bl

v/242s

/2

||3§fw(a,ﬁ)||Hf//2dx
105 fw(a, 5)||L%H§/2 (2.58)
I fllvs-

a—aq

S IIOEjQIIL% Hag,m fuw(e, B)HLgHg

< 1) gl NO5=5,! fwla, Bl ms
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We again split it into two parts || + |3] = 1 and |a| + || = 2. For the case |aq| + |f1] =
la| 4+ |8] = 1, we have |a — 1| = |3 — 1| = 0. Then by (2.8) and (2.34), we have

”fw(OZ?ﬁ)HLgHi S ||fw(0,0)||L§H;/2 + ”fw(laO)HH;Hj/z Sl

We then consider the case |aq| + |51] = 1, |a| + |8 = 2. This time we have |a — ay| = 1,
|8 —pB1|=0or | —ai| =0, |8 — B1| = 1. For the first case, by (2.35),

1% fwlew, B)l| L rs < ||fw(1a0)HH;H§/2 + ||fw(2a0)\|H§H;/2 S I .-
For the second case, |3| > 1 and by (2.35), we obtain
1055, frote Dz ., < 1000 Dz pisg + 170l Dll s S 17

For the case |a1|+|51] = 2, it is easily seen that this time |a|+|5| = 2 and |a—a1| = |5—51| = 0.
So we have

/2+42s

/2+2s

/242s

/Q 1057 g2, 19552 Fuar, B) e ., 1108 (e, )| dx
\\3§fw(a75)\\LgH§ (2.59)

S N959ll 2z [l fwle, H)lliens,, ., /2
£l

S H<U>149HH§W”fw(a75)HLg°H§
By (2.7) with suitable k£ and (2.36), we have
e Bz, ., < 1F0(LO)as , + 1020 [z , S [l

These estimates implies (2.57). Substituting (2.56) and (2.57) into (2.55), we obtain (2.52). For
(2.53), by (2.13) and (2.51), we have

/242s

LA, g

(05QU0. ). (e~ 1)hu(0,6) 2

+Aq v

S Z <min{H\|8gllg||L§4H8g:g‘11fw(a,B)||H§/2HL%H(e w)? _1)<U>25‘9§hw(a75)||L3H5/27
a1 <a
B1<B

A, g

11952 gllzz, )05 52 Fuer Dl |l (e~ = 1) Ol B) 2z, |

1
£A, g

8
+[[195; fllz, 10525, gw(e, Oz , || 2l (e @7 = 1)6§‘hw(a,ﬁ)||LgH$/2).
(2.60)
Applying L>® — L? and L? — L5 Hélder’s inequality and using the first term in the minimum,
the first right-hand term of (2.60) can be estimated as

Z 105, 9l Lee 2, 1055, fw(e DIy

/2
o1 |+[811=0
Y 105 el 1955 Fule )l e,
laa[+|B1]=1
+ > H8§119||L3L§4||5§:gllfw(oz,B)HLgon//Q)Aa,ﬁIIVx%Z)HH;||8§hw(a,ﬁ)||L%H:/2
[ +]B1]=2
S 1) gl NVaro I v 105 he(e, B 2, (2.61)
The second right-hand term of (2.60) can be estimated similarly and then we deduce that

+Aq g%

>

B
(5@, 1), (¢ —1)3huR(. ) 5 |
S H<v>149||Hg,UIIVx¢IIH;HfHYkHaEhw(a,ﬁ)l!LgH§/2
+ 1) fllaz Ve L9l 05 haw(er, B)| s prs
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A, 5% +A, g
The proof of (2.54) is similar by replacing the term (e > —1) by 1 and e > . Note that
we keep the minimum in (2.60) this time, and the proof is omitted for brevity. This completes
the proof of Lemma 2.21. O

We can also prove the similar result for the Landau case.

Lemma 2.23. Let —3 < v <1, Q be the Landau collision operator and k > 7. There exists a
constant Cy, > 0 such that for any function f, g, h, and any function ¢ satisfies (2.38), we have
the followings.

(1) For any o] + 18] < 2,

(95Q(u, £), 08 fw? (e, B)) < —71l105 fw(ex, B)l|72 12 + CullOg 2212

o a 2.62
+ G Y108, Fwla B2z 108wl Dllpage.  26P)
B1<B
(2) For any |a| + |5| < 2, we have
|(05Q(g. £, 05 fw*(e. 8)) 1z | < Cillg(®) Iz, I £11% (2.63)

tha,pv

(05Q(9, ), (e % =1)95hw(@. 8)) 15 | < Cillg(w) Iz, IVt fllvillbllvi, (2:64)

and
+A

(35QUa. £). 050, 8)) 1y |+ (05QUg. P o Ofhu(a,B),, |
< Cillg() Nz, min{ | fllvi o)Al 1 0) fllvi IBlly, 3 (2:65)
where ||f||§/k is given in (1.21).
Proof. Notice that
(05Q(p, 1), 0 fu (@, B)) 2, = > (Qpy11,05_5,f), 05 fw’ (e, B)) 2,

z,v
aq §a751 Sﬁ

We split it into two cases: S = 0 and |51] > 0. If 81 = 0, after integrating about z in (2.16),
we have

(Qn. 93 1), 05 fw*(a, B)) 1z, < —mll0§ fwle B) 722 + Crlldf fliZ2zs-
For the case |51] > 0, by (2.30), if |51]| > 0, then
w(e, B){v) < wla, B —P1).
Then by Lemma 2.12 we have
Q15,055 £, 98 PP (0 )iz | < Cull OB Fro(ce B2, 108 gw(a Bz
< CullB5._p, fro(e, B — 1)l za 2 059w (e, Bz

So (2.62) is thus finished by gathering the above two terms together. Next, for (2.63), notice
that

(05Q(g, 1), 05 fw* (@, B2, = D (959,05 51 f), 05 fw?(a, B)) 12 -

a1 Sauﬂl <g

We again split it into two cases: |a1| = |51] = 0 and |aq|+ 81| > 0. For the case |a1| = |51] =0,
by (2.17) and (2.51), we have

(@0.05.). 951008z, | < [ Cullalzzl(e S 1) )08 fwla, B2 de

< Cillgl oo 2V atbll a3 105 fro(er, B)72 2

7
< Cillg(0) Mz IVl I 15,
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For oy < «, 81 < B, |oa| + |B1] > 0, by (2.17), we have
(QO51 g, 03751 1), 05 Fu (e, B) 2
/ Cull9g gl 2055 frolen B) 1z, 195 Fro(an, B)ll 13 .

We split it into two cases, |a1| + 81| = 1 and |aq| + |51]| = 2. For the case |ag| + |51] = 1, by
1fgllzz < Ifllzsllgllzs and similarly as (2.58), we have

| 1051al51105 75 Futan Dz 105 Futa 5]y da

< 1) gz, NO5=52 Frolon )l sz, 1l

We again split it into two parts |o| + |G| = 1 and |a| + |5| = 2. For the case |a1| + |B1] =
la] + 8] = 1, we have |a — ay| = |B — 1| = 0. By (2.34) and (2.8) we obtain that

| fwlen B)lzses,, < 17w(0,0)l 25 + 17w, 0z, < 1]y,

For the case |a| 4|8 = 2, either |a —ai| =1,|8—f1| =0or |a —ay| =0,|5 — B1| = 1. For the
first case, by (2.35) and (2.8), we have

1697 fu(on Bz, . < 1FwLO)lmzs + 170 Ol 2z, S 1],
For the second case, this time |$| > 1. By (2.35) and (2.8), we have
19550 Fro( Dllzyz,, < IVafw(0, D2 + Vo0l Dllszs < 1l

For the case |a1| + |B1] = 2, we have obviously |a| + |8 = 2 and |a —aq| = |8 — 1| = 0. Similar
(2.59), we have

/ 195, 91l 219525 fw(er, B)lI 2, 0§ fw(e, Bl gz da < 1(0) gllmz | fuoler ) gerz,  [1f Iva-
We obtain again from (2.7) and (2.36) that
I Fwe B)lers, , < IFw(L0)lrs + £ 0) 2z, < Il

The proof of (2.63) is done after gathering the above terms. For (2.64), by (2.17) and (2.51),

we have
+Aq 5%

(05Q(9. ), (¢ %~ 1)05hu?(0,5) 5 |

+A, g
[ 19519l min {10875 fwlas ) e = 1)@t g, (266)
041<O¢ /3<,31
+A,, g

()55 fuer, B) g | (e~ % — 1)0§hw(er, B) | 12, }
SO 10500l rzllOs=5 fule, Ay

v |[+1]81]=0
[e%1 a—Q]
+ Z 105, 9ll L3 211955, Fwlew, B)ll Loz
ot [+81]=1
+ D 1059l 2llog” gffw(aa5)||L30L§,>Aa,ﬁ||vx¢||1{;Haghw(a’ﬁ)HLgL%
ot |+]B1]=2

S 1) gll iz IVl | £yl Al

where we apply L>® — L? and L3 — L5 Hélder’s inequality. The proof of (2.65) is similar by
£A, 5% A, g

replacing the term (e @ — 1) by 1 and e ? . Note that this time we keep the minimum
n (2.66), and we omit the proof for brevity. This completes the proof of Lemma 2.23.
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3. LOCAL SOLUTIONS

The main goal of this section is prove the local-in-time existence and uniqueness of the
equation (1.4). Define the series of functions f" := F™ — y by f° =0 and

fn+1+v vw n+1:|:v.r¢n v fn+1:|:V ¢TL+1‘,U
:Q(f:t+fq:7 )+Q(M+f:|:’ n+1 +Q(M+fq:a n+1)’
st oy g

SHH0) = 51 ETTH0) = ES“-

If Q is the union of cubes given by (1.11), then we further assume

flt,z, Ryv) = f(t,x,v), on y_,

On¢® =0, on 0f.
For the Boltzmann case, we further define
£l == D Clapallof fwle, ﬂ)HLsz : (3:2)
|| +18]<2

In order to solve (3.1), we first consider the following linear problem.

Lemma 3.1. Suppose that —3 < v <1, v+ 2s > —1 for Boltzmann case and —3 < v <1 for
Landau case. Let kg be given in (1.24). There exist constants 1o, Ty > 0 such that, for all k > ko
(and let k sufficiently large for Boltzmann case), if fo € Xk, g+ € LEXx N L%OY;C, (RS L%’)H%
satisfying p+ fo >0, p+g >0 and

L follxi, + 1Vatllnge g + 10|55 2o + lgllzge xi, < 70, (3.3)
suppose also ¢, satisfies (2.38), then the Cauchy problem
Oufe +v-Vofs FVoh - Vyfe Vo0 vp
= Q9= + 95, 1) + Qu+ g+, f2) + Q1 + g5, f2),

3.4
o= [ = [ o B4
£(0) = fo, E(0) = Ep.

admits a weak solution f(t,z,v), ¢(t,x) in [0,Ty] satisfying
:u“—l_fzov fEL%?)Xk,
with the energy bound

1
Hf||%;%xk + ||V:c¢”%g%Hg + 10l g2 Lo + ”fH%%on < M| foll%, + §(|’9||%2Toyk + Hvaﬂ/}H%%%H;),
(3.5)
for some generic constant M > 0. If Q is the union of cubes given by (1.11), then we consider
(3.4) combined with

f(t,x, Ryv) = f(t x,0), on -,
On® =0, on 0.
Proof. For |af + [B| < 2, we apply 9§ to (3.4) and obtain
005 f++05(v-Vafs) FO5(Varh - Vo f1) £ 05(Vad - vp)

= 05Q(g9+ + g5, 1) + 05Q (1 + g+, f+) + 95Q(u + g, f+).  (3.6)
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iAC!wa
Thus, taking inner product of (3.6) with e ()? wQ(a,,B)agfi over 2 x R3, one has

1 tAa,p¥ iAaﬁw
*atue 27 8,3fi||L2 ( a,ﬂat¢<> 8ﬁf:|: e ©* w2(047ﬁ)agfi)@v
:i:Aasz ’
+ (v Vo0 fre @ Q(a,ﬁ)ﬁgfi)L%U
iAa,Bw
+ Y (95,0 Vo0 g, fre 07w, B)OFfr) 12,
[B1]=1
:i:Aa ,8’/’
F (Vo Vol fre 7 w0, $)0§ f) 1z |
+A, g¥
F Y 0V Vudg ™ fre 0 w0 )05 1) s
o1
iAa”Bz,/;
i(@g(vxqﬁ-vu),e (v)2 w2(a,,3)8gfi)L%v
+Ay ¥

:(85Q(gi+g:!:nu’)ve )2 w2(aaﬁ)agfi)[/%m
+ (agQ(H‘f‘Qi,fi) +agQ(M+g:!:’fi)aw2(a7/8)8gfi)[/§v

tAa g

+(05Qu+ g2, f2) + 05Q(+ g3, f1), (e @ = Nw(a, )5 f), - (BT

We denote the second to tenth terms in (3.7) by I; to Iy and estimate them one by one. For
I, we make a rough estimate:

11| S N0l 111, - (3.8)

Notice that [[¢||Lee < [[Va9llg2 < 7o, which verify (2.38) and we can apply estimates in Section
2.4. By (2.40), we deduce that

I+ L] S Va2l £15, -
Applying (2.41), when |3] > 1, we have

LIS Cy > 105 fulaz, B)lTape , +mllOf foles Bl e

|B2|=|8]—1
|ova|=]a|+1

for any n > 0. By (2.42), we have
Is| S IVl msll F113,-
When || = 0, using (2.46), we have
Is > Cady|0°V 20|72 — Cl0°Vad| 2 10T = P} fll 1212 — CllO“Vadl 12 Vot |2 | £l
> Cudll o Vaol, — m Voo, —nllw(@, 07 sy
— Cyll0° 125, — CUOV a2 1Vatb v
for any n > 0. When || > 1, we have from (2.45) that

6| < Cil|Va@l a2l fll r2r2- (3.9)
For I, since 6 € [0, 5], we have sin? g < % and hence if k > 14 we have
. 50
§||b(0089) sin® 2 EHLéHfH?/,C < 33\|b(0089) sin §\|L;||f|!§7k- (3.10)
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applying Lemma 2.20, we have for any n > 0 that

. ko0
|I7] < [lb(cos ) sin® 2 | 110§ gw (e, B) 1212 | 110§ fwle, B)ll 212
27" /2% Ty
Sl FIZ, +nllgl, + Cyll L,

+ Clc IBZB Haglgw(Oh [31)||L3L3/2\\8§fw(a, B)HL%L?Y
1<

1 2 0 [ 2
< gy llb(cos0) sin® ol 110 frwle, BT, 12

/2%

/2

/2,%
L ib(coso in? 2 0% 2 2 2 +C

+ 5 lIb(cos0) sin® || 1|05 gw(e, B) 722~ +nllfll5, +nllglls, + Coll fll a2
32 2 0 Ty /2,% k k

+ Ch Z Haglgw(aa51)\’L3L3/2\\5§fﬂ)(0¢75)\\L§L§
B1<p
for Boltzmann case. For Landau case, it follows from Lemma 2.20 that
171 < Ce D 1089M2 20108 N2z < allFII, + nllglis, + CullFl7z
|| +8]<2
For Ig, we deduce from (2.52) that

1 . o0 o a
Z:I::IS < —gllb(cos ) sin’ §||L(g||aﬁfw(a75)||%gL3/27* _'71"8,8fw(047/8)”%§H§

/2’

/2
+ Cill() Fllaz Nlgllvill £ llvi + Crllw) gl a2 I F1F,

£ OGS I2 . +Ci S 1185, Frolan B0l 959 (e, ),
B1<pB

for Boltzmann case. Note that and from (2.62) and (2.63),
ZIS < —nllog fw(ey, 5)”%3% + CkHa‘ﬁinng
+

+C Y 1108, fwla, Bi)llparz 105 gw(a, ) 1212 + Cilla(0) a2, IIF115
B1<p

for Landau case, with some constants v1, Cy > 0. For Ig, we have from (2.53) that
sl < Cr(Iw) gllmz,, + ONIVatlla I I35 + 110) Lz, V2l (gl + OISy
for Boltzmann case and, from (2.64) that
1ol < Cr(Ilw) gl 2, + OV IVatollmnll I,

for Landau case. Combining the above estimates, we take summation 3, 1 5<2 1 Clal,15 % (3.7)
with 0 < 7 < 1 and constants C|,) g satisfying (1.19) to deduce that for the Boltzmann case:

1 N 1 50
SOl f 5, + 0 Y CaCla0ll0*Vad|72 + g llb(cos ) sin® I 11, + il £

<2

1 Lo 0 1 .50
< oo lIb(cos 8) sin® g 113, + = l1b(cos 0)sin? Sl ol +llal, + Corll i3z,
+ C10b e 1B, + o (19l £ + 192802 + 1 lxaallglvi v + gl 1B,
+ (ol + OVIVallallF13; + 17101929l (gl + €)1, ), (3.11)

and for the Landau case:

1 (0%
iatHfH_sz +0; Y CaClajoll0°Vadllzs + +7 15,

laf<2
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<nllgl¥ + Cosll flzz, + Clollellf %, + Ck<HVszHngH?@
+ IVadlFr + 11l lgllyvill £l + gl 1115,

+ (lgllx + OVl F 15, + 11 Vel (gl + C)Ilfllyk), (3.12)

for some generic constant 7 independent of k, where we let k& > 14. Here || f||y, is defined by
(3.2) and || f||x, is given by
iAawa

2 —vr 2
173 = > Clapsille @ 95 f2llzz -
lo|+18]<2, £
Next we estimate the term |[V2¢||2 ;.. Using (3.4)2, we have
T xT
IV20lZ: SIIValedlliz S IVafl7zze S IfI%,, - (3.13)

Here, for the case of union of cubes, we apply embedding [15, Theorem 6.7-5] with boundary
values 0z,¢ = 0 on I'; to obtain (3.13). Taking difference of (1.8) over £, we have

ilas —a_) =V, /R olf — S )do,
and hence,

10blzz < 170021V 06013 S IV208] 2 S 1800112

S 0iay —a)llez S IVaflzzrz S Mfllx,- (3.14)

Therefore, for both Boltzmann and Landau case, taking integration of (3.11) and (3.12) over
t € [0,T], we have

Lo 2 2 1 .90 2
§||f||L<;9Xk + )\vaéf’HL%OHg + 71||f||L2Tyk =+ EHb(COS 6) sin 5”Lé||f||L2TYk

1
< Slfollk, + Co

T3 2, + ClO e 17132 x, + Cr(1V26125
+ IVl ez + gl x, + Coll A x,, + 19000 I Vel o) 1 £ 122,

1 . 90
o2y, + IVl 2 012y, + 1002y ) + 5 b(cosB)sin? Oy ol 5
for the Landau case, taking integration of (3.11) and (3.12) over ¢ € [0, 7] we have

1
iﬂf”%gsxk + )‘Hvr¢”%§9H% + ”YIHfH%%Yk
1
< Slfollk, + Cokll flZ2 12, + CllOllngree 1 £1IZ5 x, + Ok(nvmui%
+ (Ve lpgems + 9l g xiy + Call flligexi, + N9llege xiy I Vatll o) 1172,

g2y, + IV 12y, + V25 1, ). (3.15)

for some generic constant A > 0 independent of k,7n. Assume the a priori assumption corre-
sponding to (3.15) to be

HfH%stkO + ”foﬁH%;gHg < €o, (3.16)

with some small &9 > 0. Noticing || - |2 < T| - [|Lge, choosing 0 < 70 = 70(n) < 7 in (3.3),
g0 = eo(n) > 01in (3.16) and 0 < T = T'(n, k) < n sufficiently small, for the Landau case, we

obtain from (3.15) that
]. )\ Y1
Z”f”%%oXk + §||Vx¢”%%ng + EHfH%%yk

1
=< inoH%(k +llglZ2y, + IVatliemllolizy, +0lVa e 1
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where we used the fact that HfHLQTH%v < T(fllzeom2, and ||<Z>HL2TH% < T||¢ll Lo 2. Now we
choose n = n(\,71) > 0 sufficiently small, which is independent of k, T, 79,c9. Then we have
1
£l Zeex, + Hvx¢||%%°Hg + Hf”i%yk < M| foll%, + Q(HQHi%yk + ||Vx¢H%oToH;)7 (3.17)

for some generic constant M > 0 depends only on A, ~;. Choosing 7y in (3.3) small enough and
noticing k > ko, we close the a priori estimate (3.16) and deduce (3.5). Therefore, it’s standard
to apply the a priori arguments to obtain a solution to (3.4) in time interval [0,7p] for some
small Ty > 0. For the Boltzmann case we have

1, .9 A 2 Y1y 212 1 o0 2
B, 5 IVeblB s + 17125, + 5 leos ) sin® 2y 1125,

1 1 50
< Slfoll%, + g5llbeosO) sin® Dl llgllza v, + nllalzay, + IVatlige i llglizy, + 0l Vet Loy

Similarly, we have
1 0
2 2 2 .2 2
11750 x, + HVMHLOOHg 1 FlIzgy, + 75 lb(cos ) sin® Sl [l flzz v,

1 0
2 2 .2 2
<M follx, + (HgHLzYk + Ve tbllzge s + F5llb(cos 0) sin® Sl llglz 5, ),
Thus the Boltzmann case can be proved similarly.

We next prove the non-negativity for Boltzmann case. The Landau case can be proved by
using the same method, thus we omit the proof for brevity. Set

F=pu+f, G=p+g>0
and assume F'|;—¢ > 0. Then (3.4) becomes
OiFy +v-V Fre FV -V Fy = Gi,Fi)-f—Q(G:F,Fi)

A= / (P, - / b(t, )
F0)=F >0, E(0)=
Denote F'* := +max{+F,0} and §(s) = %(s‘) with s~ := min{s, 0}. Notice that

a8

dS(F):F_, F~|i=0 =0,

and

/R3 Q(Gy, Fy)FL <’U>2kd’U

- / QG FI)Fy (v)*dv + / Q(Ge, FH)FL () dv
R3

:/RSQ(Gi,F;)Fgm%dH/ /}Rs/S (GL)L(FHYFE ()2 dv,dvdo

—/ //B(Gi)*FIFi@}%dv*dvda
R3 JR3 Js2
< [ QMG FO R (0 e

R

Note that Ff Fy =0 and (F})'FL < 0. Similarly, one can obtain

/ QG F)FT (0)%dv < | Q(G, F)F5 (v)*do.
R3 R3

Then we have

d - —
T /Q \ B(Fi) () dvde = —(v- Vo Fe, FL (0)) 2 £ (Veth - Vo Fy, FL (0)*%) 12
R )
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+(Q(Gx, Fi), Fi (v)) 2, + (Q(G, Fi), L (0)*) 12,
(Vo - VoFa, FL (0)*) 12 |+ (Q(G, Fi), Fi (0)) 12|
+(Q(G+, Fy), F <>> : (3.18)

Notice that for the case of union of cubes, similar to (2.43), (v -V F, F{ <’U>2k)L%v = 0 by
using change of variable v — R v. For the first term we have

(Vat) - VoFy, FL(0)*) 2 = =2k(Vatp - v(0) 72, (F)%) 12,
< Crll Vatpllzze ol (0)* 2 FE | 2 12 1 (0) *FX Il 22 12
< CkvawHHQ%”Fi_H%%Li'
For the second term, we deduce from (2.12) that
(Q(Gx, Fi), Fi (v)™) 12,

< [ -nlFz I,
Q

o T ORI + Cell P g Nloxlla, NP i,

+ Crllg+l 2 ||ch||H,§Jr 1,02

+ Gl FEIIZ; + CullFE 1172 o=l

+v/2 k4 /2

et _
< /Q (2~ Cullg 2 IFE g,

71 —n2
< (5 = Cullgelloers PN emy ) + Cel Fillza + CullFellz o Nowlieory -
Choosing 79 > 0 in (3.3) small enough that
gt
lg<llzzors, < Cllgllegxi, < Co < 55—

Thus,

(Q(Gx, F2), FE ()12, < Cull FE 722 + CrllFE 17212 92115,
and similarly,

QUG FE), FE ()12, < Chll Fx a3 + CullFE 212 o 13,

Plugging the above estimates into (3.18), we obtain

d, _
prLL H%%Li < 2Ck(1 + |92l + I Vatllm) I Fi H%gLi'

Recalling that V, ¢ € LQTOH; and g € L%OYk, the Gronwall’s inequality implies F'y = 0 on
[0, Tp]. We then deduce that F' > 0 on [0, Tp]. O

We finish this section by proving the theorem below.

Theorem 3.2. Suppose that —3 < v < 1 for Boltzmann case and —3 < v <1 for Landau case.
For any k > ko+2 (and let k sufficiently large for Boltzmann case), there exist small constants
0,70, 10 > 0, such that if fo € Xy, satisfies p+ fo >0 and

&k (0) < 20, ER(0) < A, (3.19)
for some A > 0, then the Cauchy problem
Ofr+v -Vaofe FVad-Vyfr £V -vp
=Q(f++ fr, 1) + Qu+ fx, f+) + Q1 + g7, f+),

A= / s~ I / e (3.20)

f(0) = fo, E(0) = Ex,
flt,x, Ryv) = f(t,x,v) on v— and Op¢d =0 on O, if Q is given by (1.11),
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admits a unique weak solution f € Ly Xy satisfying p+ f > 0 and

sup &, (t) <70, sup &(t) < A. (3.21)
0<t<Tp 0<t<Tp

Proof. We only prove the Boltzmann case and the Landau case can be proved similarly. We
recall the sequence of approximate solutions defined in (3.1) with f° = 0. Applying Lemma 3.1
by taking f = f**!, ¢ = ¢"T!, g = f™ and ¥ = ¢", choosing ¢¢ in (3.19) such that
2V ME[) S 70,
where M is defined in Lemma 3.1, we have u + f™ > 0 and
17" g xi + "Nz v, < 70 (3.22)

Then there exists a weak limit f € L X, N L2, Y}, such that f, — f weakly in L2, Yj.. Then by
To To To

(3.22), f satisfies (3.21). We next prove the strong convergence of the sequence of f". Define

h" := f**1 — " Then we have from (3.1) that

athi +v- vxhi + an : Vvhi + vx(¢n - ¢n_1) ’ vvfi + vx(¢n+1 - ¢n) CUp
= QW + R u+ M)+ Qu+ f2,hL) + Qu+ f2, kL),

-t = [ = e, st = [ (2= e 1(0) =0,

\f”“(t,x, R,v) = f"(t,z,v) on v_ and 9,¢" ! =0 on 99, if Q is given by (1.11).
(3.23)
Let |a| +[B8] < 2. We apply similar arguments in Lemma 3.1 by applying 9§ to (3.23); and

LA, g

>

taking inner product of the resultant equation with e () w2(a,/6’)(v)_48§ " over  x R3.

Here we illustrate the different terms:

iAa,,(‘}w
(05(Ta(6" = 6"1) - VufD)se O w(a B)(0)O5HL) ., . (3.24)
and
iAa’ﬁiﬁ
(O5QUL + W, f), e 7w, B)(0) 0L 1, (3.25)
Since s > %, we estimate (3.24) by
+A, g¥
[ D (0 Va(9" — 0" 1) - 95T Vufl e P wi(a, B)(0)HOgRY) 1, |

a1 <a

X 1 Ja—a1 en
S [ 1096 = 6" ) o)l YD 057 £
€0p((v)7/2(n)*w(a,B))
A, ¥
_Y 9 1 —5— 9 —4 aqapn
x [ () 2w (o, B)(Dy)ze 7 w(a, B)(v)" " Igh't|dx,
€0p({v)7/2(n)*w(,B))
where we let s = 1 for the Landau case. Here an operator T' € Op(m) means T is a pseudo-

differential operator with symbol in S(m). Then by [16, Lemma 2.3 and Corollary 2.5], we can
estimate (3.24) by

We(o" — "™ )2 (Dy) w(a, (v
S [ ater - ol D e 905 A2 )

a1 <a

4(D,) w(a, B)OgHL| du
S IV 6" = 6™ a2l i I .
Applying (2.13), we estimate (3.25) by
S s g lute 1955 .o,

a1<a, /1<
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105 i (e, B3GR s

v/2-2
S A" e L i+ 1 I 1Ry ) A" v

where we let k > ko + 2. Noticing we use weight w(c, 8){v)~* instead of w(a, 3), applying
similar arguments for deriving (3.17) and choosing 7y in (3.22) sufficiently small, we obtain

)lw(e, B)ogh" s, da

2

1 0
9 +1 2 2 2 2
1By + Va8 = &™) [0 g + 75lIb(cos 8)sin® Zlly IhallFa g, 1A 22,

/b

Lon—1p2 —1y 2 1 o0 2
< §(||hn Z2y, _, +11Va(@" = " )ige g + 15 lIb(cos ) sin §”L61)||hn71HL2TYk72)
1 1 . o0 70
T (”flﬂzﬁTyk_Q + |’Vx¢1H2L5-9Hg + 15 llb(cos 0) sin? §HL})Hf1H%2T}7k_2) < e (3:26)

Thus {f"} and {V,¢"} are Cauchy sequence in L3 Xy_o and L H? respectively. Then their
limit (f, ¢) solves (3.20) and satisfies (3.21).

For the uniqueness, suppose that there are two solutions (f1,¢!) and (f2, ¢?) satisfy (3.20)
and (3.21). Then h := f! — 2 satisfies

(Oihs 4+ v - Vihe T Vo' - Vohe £ V(0! — ¢2) - vp
= Q(hs + e, i+ f2) + Qu+ fi, ha) + Qu + [+, hs),

~8u(6 =) = [ (b= hoydo, h0) =0,

| h(t,z, Ryv) = h(t,z,v) on v_ and On (¢t — ) = 0 on 9Q, if Q is given by (1.11),

We apply the same method for deriving (3.26) to obtain that ~ = 0 and the solution to (3.20)
is unique. This completes the proof of Theorem 3.2. O

4. GLOBAL REGULARITY

The main goal of this section is to prove the Theorem 1.2. Firstly, we establish the macro-
scopic estimates.

4.1. Macroscopic estimate. We recall the operator P defined in (1.6).

Lemma 4.1. For any k > 4, we have

ST < IPFI% + 0T~ P) IR < CullFI%. IPFlz < Cell iz (4)
for some constant Cj > 0.
Proof. Since f =Pf+ (I — P)f, we have
F2 < 2Pf +2/(T— P)f2.
This proves the first part of (4.1). For the second part of (4.1), we have
{T- P} < 2P + 272
For the part P f, by the definition (1.7), we have
IPFls < Cllflly )z < Cillflz
This completes the proof of (4.1). O
It is direct to obtain
lalZs + 6125 + 122 ~ P12 .
We also rewrite the equation (1.4) as
Ofr +v-Vafe £Vad-vp—Lif = Ni(f),

o= [ (- )i



with initial data f(0) = fo, E(0) = Ep, where L = [Ly, L_] and N = [Ny, N_] are given by
Lif:=Q(f++ f+, 1) +2Q(1 1),
Ni(f):=%Vad - Vofs + Q(f+, f+) + Q(f+, f2)-

Our next goal is to estimate a(t,z),b(t,x),c(t,z) in terms of {I — P}f. In contrast to [39],
our P is not symmetric and we can not compare the v;, v; terms on both side. The following
Lemma gives the macroscopic estimates.

(4.3)

Lemma 4.2. For both Landau and Boltzmann case, suppose f solves (4.2). For any integer
m > 0, there exists function G = G(t) satisfying

G() S 310" Fl 2z, 10°VuP fllzs (4.4)
o<1
such that
AG(t) + M+, a—, b, |72 + Al Vo |l
S P s + N + [Vadllda, (45)
Here N|| is the inner product of N(f) with some linear combination of (1,vs,vivj,v3, viv|*) over
v e RS
Proof. Here we only consider the non-cutoff Boltzmann case and the Landau case is similar.
The proof follows the idea in [39, Section 6]. Splitting f = Pf + {I — P} f, we rewrite (4.2) to
be
(Oras + Opb - v + ore(vf* — 3))u+v-Ve(ar +b-v+ c([v]? = 3)) £ Vg - vp
=—(Or+v-Vo){Ie —Py}f — Li{T-P}f+ N.(f). (4.6)
Taking the inner product of (4.6) with 1,02, |v|?, vv;, i,j = 1,2,3, i # j over v € R?, we have
Orar +Vy b= (=0 +v Vo {Ie =Py} f — Lo{l = P}f + Ni(f),1)12,
Orat +20;c+205,0; + Vg b= (—(0r+v -V ){I+ =Py} f— Li{I-P}f+ NL(f), U?)L%,
30iar +60;c+5Vy b= (=0 +v -Vu){Ix —Py}f — L {I-P}f+ NL(f), |U‘2)Lg.
(4.7)
and
Ou;bi + 02,05 = (—(0r + v - Vo {I = Pi}f — Li{I = P}f o)) 2 + (N (f), vivy) 2
= Y1+, ©F J. (4.8)
By taking the subtraction of (4.7)2 and (4.7);, we have

b2 w2 —
e+ 0= (— (Ot v- VoL~ Pu}f — La(T- Py 02y v, R

=1 + V2. (49)
’2

Taking the inner product of (4.6) with v, v|v|? over v € R3, we have

O:b + Vx(ai + ¢) + 2V,c = (—(8t +v- Vm){Ii — Pi}f — Li{I — P}f + Ni(f),U>L%,
50ib + 5V (ax £ ¢) + 20Vee = (—(0s + v - Vo ){Ix — P2} f — Lo{I — P}f + Na(f), v|v[*) 2.

(4.10)
The two identities in (4.10) implies
2 _
Vee= (= (@+v- Vol ~ Pa)f — Laft— P4 Na (), =0
and
2
Vear = —0bFVad+ (= (0r+0- Vo) {Le =Pi} f— Lo {I-P}f+ N1 (f), M)Lg. (4.12)
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Here we use the fact that

/ |v|>udv = 3, / lv|* pdv = 15, / |v|®pdv = 105.
R3 R3 R3

By the definitions (1.6) of Pf and (4.3) of L, we have for ¥(v) = 1, v;, |v|? that
{1+ = P:}f,9(v)) =0, (Le{I—-P}f,9(v)) =0,
and
(O{Ie =Py} f,0(v)) =0, (v-Vo{I+ —P1}f,1)=0.

Thus the first, third identities in (4.7) and first identities in (4.10) (i.e. inner product with
1,v;, |v|?) become

Orat +Va - b= (N+(f), 1)z,
b+ Viar +2Vec+ Vi = —(v- Vo{le = Pi}f,v) e + (Nx(f),v) 12, (4.13)
30t +60,c + 5V b= (v Vo{le = P} f, o)1z + (Nx(f), |vf*) 2.
Combining (4.13); and (4.13)3, we have

1 1 5 |v]?2 — 3
Ot 5V b= —c(v Volle = Pa}f o)z + (Ni(f), G )L%- (4.14)
For brevity, we define
(10 — [v]?) 202 — 5 v(|v|* = 5)
a — 3 7 — L 5 c — . 41
€ 5 &b 5 3 10 (4.15)

It follows that
(v Vo{Lle = PL}f,6) [+ (v VodIe = PL}f,6)| + [(v - Ville — P} f, vivg)]
(v Vo{le = P2}, &) < [[Vo{le — P} f] 12
For the Boltzmann case, by Lemma 2.4, we have
Qs ), €| < Nall iz 11122 allzs < ClLF Nz,
QU 1), &)l < ez el 2 N1€all r2s, < ClIf Il 2, -
For the Landau case, by Lemma 2.13, we have
Qs ), €| < Nall iz 1122 allz. < ClLF Nz,
QU 1) &)l < Nz il 2 Nall g2, < ClIf Iz, -

Similar arguments can be carried on inner product with &, v;v;, . Recalling the definition
(4.3) of L = [L4, L_], we have

(LS €a) 2l + [(Lf, &ei) 2] + [(LF,vivg) 2| + |(Lf, &) 2| S 11112, (4.16)

Step 1: Computation of V,0%. Let |a| < 2. Applying 0% on both side of (4.11) and taking
inner product with V,0% over z € €2, we deduce that

IVz0%ell7s = — /Q (O +v- Vo) {le = P1}0"f, &) 12 - Vo0 cdz

- / (Le{I-P}o"f, fC)L% - Vg0%dz + / (8aN:t(f)a‘SC)L% Vg0%dx
Q Q

<—— | ({Ie =P1}0%f, &)z - Vo 0%cdx
dt Jo 2

- / ({(Ls — PL)V,0°1, ) 12 - 0% cda
Q
+ O V20|l 2 (10°{Ts = Pa}fllgazz, + 10°N| |l L2). (4.17)
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Here, for the torus case, one can take integration by parts directly. For the union of cubes case,
we have from boundary (1.7) that 0;,¢ = 0 on I';. On the other hand, when a; = 0,2, we have
from Lemma 2.14 and definition (4.15) of &, that for x € T';,
({Ix = PL}0%f, &) 2 = ({Ix = P}O f(Ryv), Ee(Rev)) 2
—({I+ = P+}0%f(v),&(v)) 2 = 0.
Note that 0°Py f(Ryv) = 0*P4 f(v) by using (2.28). This implies the integration by parts
about V, in (4.17). For the term 0,0% in (4.17), it follows from (4.14) that
|2

6_3>L2'

v

lv

1 1
0107 = SV, — (0 Vo{le — Pu}0"f, o) 3 + (9°Na(f),
By Cauchy-Schwarz inequality, for any small € > 0, we have
— / ({1 = P1}V20°f,&c) 12 - 0:0%cdx
Q
C
< &]| V. 0°D||* + Va0 {Ls — P} fl7are, +el0"Nj|IZ:-
Plugging this into (4.17), we deduce that

d
[V.0%|? < o /Q ({I+ = PL}0%f, &) 2 - Va0 cdr + £[|V0“b||* + €] Vz0%||?

C (0% (0%
+ ;(Ha {IL - Pi}foq;Lgo + |0 Nu”%g)- (4.18)
Step 2: Computation of V,0%b. For fixed i, we use (4.8), (4.9) to compute

ji
= Z ac,ac]b + axj (’lej + '721])) + 8@ (71i + 72i) - 8taa:ic
J#i
- Z 81583%0 .Il ’Ylj + 72] + Z 83;] ’Vlzg + ’722]) + 83,’1 (711 + '721) 87&8&61'0
J#i J#i
= 040y, c+ Z (0z; (145 + Y2i5) — Oy (15 + 725)) + O, (Y15 + 720)
J#i
= Z (0, (V155 + 72i5) — Oz, (V15 + 725)) — Oyars bi + 200, (715 + 723)- (4.19)
ji

We can rewrite the linear terms Z#i (&ijylij — &cﬂlj) + 20,,71; including 14, v15, Y145 as the
linear combination of

Oy (—((Oy + v - Vo){Ie =P} f,&ij) 2 — (La{I —P}Yf, &) rz2)

where &;; are certain linear combinations of the basis {1, v;v;, [v;|*}3 Similar to (4.16), we

have

1,j=1"

(LS &)zl S 1INz, -
Note that
—(Axé?o‘bi,&o‘bi)L% = ||vxaabiH%2.a (8:Jciwiaabiyaabi)L§ = _Haﬂfiaabi”%??

which is trivial for the torus case and follows from (2.28) for the union of cubes case. Applying
0% on both side of (4.19), taking inner product with 0%b; over x € 2 and summation over
i =1,2,3, we deduce that

V200|172 = / D (02,0 (1i + Y2i5) — 0, 0% (15 + 25)) - Oy dfﬁ)

JF#i
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_Zdt/ ({Is — P1}0,,0°f,&j) 2 - 0°b; da

o Z/ ({I+ - Pi}amjﬁaf, 613) - 0,0%b; dx

+ OV 00l (0°{Le = P} fllgrge, + 10" Nyllz2)- (4.20)

Here we used integration by parts on d,, and 9,,. For the case of union of cubes, we need
the following boundary values to complete the integration by parts. For ¢ = 1,2,3 and a =
(a1, a9,a3). If a; = 0 or 2, then it follows from (2.28) that 9%b; = 0 on I';. If o; = 1, then
applying Lemma 2.14 and change of variable v — R v, we can obtain from (4.9) that

0%; =0, onTy for j =1,2,3.

Similarly, for j # i, if a; = 1, then 0“b; = 0 on I';. If o;j = 0 or 2, then it follows from (4.8)
that

0“5 =0, onI'; for j #i.
Next we calculate the term 0;0%b;. Applying 0 to (4.13)9 yields
0t0%b; = =V 3,0% s — 2V 3,0 F V3,0% — (v - Vo {IL = PL}0f + 0*Ni(f),vi) 2.
Then by Cauchy-Schwarz inequality, we have

— [ (T = P00, €)1z - 0o < (19,0 + V0%l + 9001

+ell*NylI72 + = HV 0 (L = PL}fll7aps .
and (4.20) becomes

1,072 < Zdt/ (L = PLYOF, )13 - 00,0 du + =] 7,070 2,

+ el Vad®asllz; + €| Vadelzz + = (Haa{li =P} flFpe +I0°N 7). (4.21)

where we choose € small enough.

Step 3: Computation of V,0%. Taking the addition and difference of (4.12) over =+, it
yields that

Vae(ay +a-) = —28tb+z (9 +v- Vo){le = Pe}f — LfI = P} + Na(f), &) 1o,
(4.22)
and
Va(ay —a-) = —2Vx</>+zi (@ + v Vo){le = Pi}f — La{T =P} + Ni(f), &) -
(4.23)

Applying 0% derivative on both side of (4.22) and taking inner product with V,0%(ay + a_)
over 2, we deduce that

V2% (ar +a_)[2, = — /Q ) (a% +({Ly — PL}o°F, ga)Lg) V.0%(ay +a_)dx

- /Q (v Vo{le =P} f + Lo {I - P} f + 0°N+(f), ga) Vz0%ay +a_)dz. (4.24)
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By integration by parts about 0; and V,, we have

- /Q ) (8% + ({1 — PL}O°S, ga)Lg> V,0%ay +a_)da

d
_ _dt/Q (9 + (L ~ P4}0"1.60)13) - Vo0 (0 + ) d
- /Q V- (8% + ({1e — PL}O°S, fa)L%) 8:0%(as + a_) da. (4.25)

To apply the integration by parts for the union of cubes case, we write the following boundary
values by using (2.28). If o = 1, then 0%(ay +a-) =0on I';. If oy = 0,2, then 0%b; =0 on I;
and by change of variable v — R,v and the definition (4.15) of &,, we have
{1+ = P1}0%f,&0) 12 = ({1 — PL}O” f(Ryv), Ea(Rev)) 12
=—({Ix —P+}0%f,&)r2 = 0.
The time derivative and tangent derivatives doesn’t affect the zero boundary values. This

completes the integration by parts in (4.25). In view of (4.25) and (4.24), applying (4.13)1,
(4.16) and Cauchy-Schwarz inequality, we have

d
19:0%(0s + )P + 5 3 /Q (070 + ({Le ~ P2}0"f, €)1z - Vad™(ay +a)da

10 L~ Pa iy, + 107Ny I3 + 1920003, (4.26)
Similarly, noticing that
(V20%9, V0% (ay —a_)) —(A,0%,0%(ay —a_)) 18:0%172,
we apply 9% to (4.23) and take inner product with V,0%(a4+ — a_) over 2 to deduce that

Lz Lz

d
19207 (0 — a )3 + 218,003, + = /Q S (L = Pu}o®f, &) pa - Vad?(ay —a_) da
+

SN0Le =Pa}fllgare, + 10°N |72 + [V20bl|72.  (4.27)
Notice that
lay +a_|? +lar —a_|? = 2lay|* + 2]a_|*.
For the torus case, by Sobolev inequality, we have
V20l S IVEN? = [1A:0]Z: - (4.28)

For the zeroth order, we apply the Poincaré inequality to a, b, c in x and use the conservation
law (1.10) to deduce that

2
las|2, < C ( / ai@,x)dx) +CVaasls S [Vaos |2,
2
b2, < © ( [ o x)dx) £ IV, < Vb2, (4.29)

2
le2, < © ( /Q c<t,x>dx> + ClVacl2s S VadllLs + 1 Vacle.

For the union of cubes case, it follows from (1.14) that d,,¢ = 0 on I';. Then by Sobolev
embedding (cf. [15, Theorem 6.7-5]), we also have (4.28). The second equality in (4.28) can
be obtained by using integration by parts. For the zeroth order, the conservation laws (1.15)
give the conservation on mass and energy and hence, the estimates for a4, ¢ in (4.29) still hold.
For the estimate on b, we have from (2.28) that b; = 0 on I'; for i = 1,2,3. Then by Sobolev
embedding (cf. [15, Theorem 6.7-5]), we obtain

1oll2 S IVabll2-
m



In view of these facts, we take linear combination A x (4.27) + X x (4.26) 4 (4.18) + (4.21) and
summation over |o| < 1 and + with sufficiently small \,e > 0 to deduce that

G(1) + A Y 0[as.ac.bd][2 + MVadlhz S 1L~ P} Zape + 1Ny + [Vaoll2s.
|| <2
where

a=>"% (/Q ({Le = PL}0%f, &) 2 - Vad cda

£ |a|<1

+ Z/Q({Ii —PL}0%f,&ij) 2 - 05,0 da
(2]

+ /\/Q (8% 4 ({L — PLYo°F, ga)Lg)  V,0%(ay +a_) dx

F A/Q({Ii —P1}0%f, &)z - Va0 (ay —a) dfﬂ)-

This implies (4.5) and the estimate (4.4) can be directly deduced by Cauchy-Schwarz inequality.
U

4.2. Estimates about the energy. In this section, we give the energy estimates on (1.4).

Lemma 4.3. Let T > 0, n > 0 and k > ko. For the Boltzmann case, we further assume
k = k(n) > 0 sufficiently large. Suppose [f, @] is the solution to equation (1.4) satisfying
w+ f >0 and

E(t) <C.
There exists functional & (t) satisfying
1) ~ 1%, + Va0l %, (4.30)
such that, for any T > 0 and sufficiently large k > 15, we have
O () + Ml F I3, + A D w(a, 00T =Py 1T, 12 < 1/ lx,, 11,

o] <2
ol = Py I + 0l VadlZz + 0P FZa sz + O /€0 (t) + E(D)DR(D). (4.31)
for some generic constant A > 0 and any sufficiently small n > 0.
Proof. We proceed by considering spatial derivatives and mixed derivatives. Notice that
16l S I Vadllm S E(E) < C.

which verify (2.38) and we can apply estimates in Section 2.4.

Step 1. Estimates with mixed derivatives. We first consider the Boltzmann case. Recall

that A, g is given in (1.17). For any |af+|3| < 2, we apply 05 to (1.4), take inner product with
+A, 50

e @ w(a, B)0g f+ over 2 x R3. Similar to the calculation from (3.7) to (3.11), i.e. replacing
(9,v) by (f,¢) in (3.11), applying (3.10), (3.13), (3.14) and choosing n < I}, we have

1
or(51715%, + D CaClajo

o 71
*Vaol3z ) + LIS,

|| <2
< CullfBya , + ClOBl 1115, + Co(IVabllg 171, + 1Vl + 1 lxi, 1
+ (£ + OV bl 113, + 1 s IVl (1 i+ C) 1), (4.32)
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for some generic constant 1 independent of k. Here C,, and C|y o are given in (2.46) and (1.19)
respectively. If |3] > 1, by interpolation we have
Cillog fllz: , < Cllo° fI? feawile

+Cllo° fl7z, < L1113, + Crllo* Il -

(4.33)

L2H|ﬁ| —= 24| LQHWHS =91

Also, by Sobolev embedding or Poincaré’s inequality,
IVadllz S UVESlay = 18@llay S 1 ez S nllfllvi + Coll Fll iz

In view of the above two estimates, choosing 7 > 0 small enough, (4.32) implies that

1 o 0%
(= If1%, + CaClapoll®*Vad|2: ) + 1 £I13,
2 e 4

|| <2
S22 + CllOls 171, + [ Vobl%e + (/€ (8) + Era () Dr(t). (4.34)

For Landau case, one can apply similar calculation as (3.12) instead of (3.11) to derive (4.34)
by using the same technique and we omit the details for brevity.
Step 2. Estimates with spatial derivatives. For any |a| < 2, we apply 0% to (1.4), take

+Aq,00
inner product with e % w?(a,0)0 f+ over  x R3 to deduce that

:i:Aaoqb 2 :i:Aanb 9
SOl T 0 a2+ (Aag@ioe) 20" fare O w0, 0)0°)
iAa’Ozb

+ (v Vg0 fr,e @7 w?(a, 0)0% fi)

ac v
iAa 0

F (Vao - Vo fuye @ w(a, 0)0%fx) 12
+Aqy 00
F Y (0MVe6 - VT e 0F w(,0)0° f1)

oq<a
lar|>1

+Aq, 00
+ (8a(v$¢ : Uﬂ)? e @7 wQ(a7 O)aafi)LQ
+Aq 00

= (0°Laf +0°QUs + fr. fo) e 7 w(@,0007fx) s (4.35)

where Ly is given in (4.3). We denote the second to seventh terms in (4.35) by J; to Jg and
estimate them one by one. Similar to the calculation of I; to I from (3.8) to (3.9), i.e. replacing
(9,%) by (f, @), one can obtain the following estimates by using (2.40) and (2.42):

[T+ Jo + T+ Ja S (10egllze + 1 Vadlluz) /13,
< Cllodll e 1 F5, + I Vel m2ll F1I3,
S 1l 115, + 4/ Ero (YD (1),

where we apply (3.13) and (3.14) for the terms [|[V3¢|/ 2 and [|0;¢]| e respectively. For Js,
using (2.46), we have

J5 > Cad|0°Vudl[72 — Cll0°Vao || 21|0°{T = P} fll 22 — ClO“Vadll 2 Vadl | f I vi
> Cadil|0°V o175 — nll0*Vod|72 — nllw(a, 0)0*{T — P}f\\%ng/Q
~ Cyll 0 (I =P} fll7212 — O/ Eo () Di(t),
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for any n > 0. Here C, is given in (2.46). For the term Jg, we need some different estimates.
Noticing L+ (0%f) =0, we split Jg into
+A, 00
Jo = (6“@(2,u + f+ + f£. {1+ —PL}f), e ™7 w(a, 0)8O‘fi)Li )

+A4,00

+ (aaQ(f:I: + f:Fﬂ P:I:f)7 e (* w2(a7 0)8afi)L%,v

iAa,O‘z’

+(0°QUIs = Pi}f + {T5 = Px}fop) e % w(@,0)0%fa) 1,
= Jr+ Jg + Jo.
We further split J7 as
Jr=(0°QQ2u+ f+ + f+, {1+ — P} [), w?(a,0)0*{Ls — Pﬂ:}f)L%U
+(0°QR2p+ fx + fr. {Le = P1}f), w0, 000°Prf) 1,

+Aq, 00

+(0°Qu+ fr + fr, {1t —P1}f), (e @7 — Dw(a, 0)8af:t)L% )
=:Jr1+Jr2+ J73.

For Boltzmann case, we deduce from (2.52) that J7 ; satisfies
1 .90
> Jra < —llb(cos ) sin® Z pyllw (e, 000°{I = P} |75,
¥ 8 2 0 Ty /2,

~ D, 0001 = PY By, + o/ (0D(0) + Cill 0 (T = PR, .
For J72 and J7 3, for the Boltzmann case, we deduce from Lemma 2.4 that
22l £ (C + [0} Fllmzez) I{T = P fllazrs w? (o, OP fll gz gz,
S P Fl 2z + Col{L = P}l Z212 + Cry/ Exo () D (1)
It follows from (2.53) that
|J7,3] S IVl s ((C + (o) Fllaz )L — P} flly, [P £ly;
I =P} fllmz (C + HfHYk)HPfHYk>

S (V/Ero(8) + Eky (1)) Di ().

For the Landau case, it follows from (2.62) and (2.63) that
> Jra < = (e, 00T =PI, 2 + Cullo™{L = P} (725 + Oy € (DDA (2),
+
with some constants 7y, Cy > 0. Applying Lemma 2.13 and (2.64), we have
[J72l S (C+[flle) I = Pifllmze2 [P fl g2
S0Pz + Col{T = PYf[I3212 + Crn/ Ere () Di (1),

and

7.3l S (C+ 1) Flmz Vel [{T = Pl fllv < (y/€ra () + Ex (8)) Di(2)-
For Jg, we deduce from (2.54) that for the Boltzmann case:

sl < 160 Fllaz, 102 P Ellvi L v+ 10) P F Lz Il llF v S \/Ero () Dx (),
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and from (2.65) that for the Landau case:

sl S 1) llmz, 10P LIyl v S /€ (D(1).

Here we let k > kg. For Jy, we split it as
£A4,00
Jo =(0°QULL ~Pu}f + {Te —Pe}fop) e O wi(a,000%(Ls — Pulffs)
iAa 0¢’

+(0°QULt = Pu}f +{Iy = Pz}fip).e @ w(a,000°Pfy) s
=:Jg 1+ Jo 2.
Then for Boltzmann case, applying Lemma 2.20, we have for any n > 0 that
| Jo,1| < [|b(cos 8) sin®~ *HLlllw(a 0)0* I =P} fllpzpz , 10°{1 = P}fwla,0)z2p2
+ Cillw(e, 0)3a{1 —Phfllpzre [0°4T - P}fw(a O)llL2r2

v/2—1/2 v/2—1/2

-2 2
< Ellb(coS 0) sin §||Lg)|\w(a, 00" X =P} l7ap2

+nllw(a, 0)0{T - P}fH%ng/Q + Crog[HI = P} flI 2 2,
For the term Jy o, by Lemma 2.4 we have
[Jo,2| < Cllw(a, 0)0{T = P}fl[r2p2 |l s [ 0“P fo(e, 0) | 22
<n0°P [z +nlw(e, 0)0{I - P}f||L3L3/2 + Crn{I = P} f Iz
For Landau case, we have from Lemma 2.20 that
[ Jol < Crl|0{L = P}fllp2r2ll0% fll a2
< nflw(e, 00T = P}f[7o 2 +nll0"PFIIZ: |+ Cyl{I = P}Hf 72,

Taking summation ), Zla\§2 (4.35), combining the above estimates for J; to Jy, applying
(3.10) and (4.33), we deduce that for small n > 0,

+A,

1
0% (Sl 0y + Call o) + 2 Yl 000 (1 - PY 1

ol <2 o] <2
Sl 113y + Cod T = PY g2+ 0ll Va0l + P12

+ C( 5k0 (t) + 5160 (t))Dk(t) (4.36)

Here, for the Boltzmann case, we use the fact that

||b(cos 8) sin® — ||b(cos #) sin® ||L},v

20y <
which follows from k > kg.
Taking linear combination 1 x (4.34) + (4.36) and applying (3.14), we obtain

() + Ml FI; + I D (e 00" (T~ PYfl}s

|| <2
< g 1B, + 10 F a2 + Okl T = PYA s + 1l Vs + 1lIP F 22
+ C(\ ko (t) + Eky (8))Di(t). (4.37)
where &;(t) is given by

n a
&i(t) = §HfH_2Xk +n Z CaCly0ll0 quﬁH%g

laf<2
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1 iAa’0¢ 9 9
303 (Glle =0 o ral3e, + Call Vsl ). (4.38)

+ Jol<2
It’s direct to verify that & (t) satisfies (4.30). For the second right-hand term of (4.37), we split
it as
M sz S 1P A + 1 Y (e, 000" (T PYfIy s (4.39)
o] <2

Choosing 7 sufficiently small, the second right hand term of (4.39) can be absorbed by the left
hand side of (4.37) and we obtain (4.31). This completes the proof of Lemma 4.3.
O

4.3. Recover the energy from semigroup method. According to Lemma 4.3, we only need
to deal with term |[{I — P} f||g272 without velocity derivative on the right hand side of (4.31).
In order to eliminate this term, we define the semigroup generated by L given in (1.5) to be
Sr(t). Then we first give some estimate on S (t), which is the solution operator to equation

8tf+v'vwfivm¢"uﬂ:Lﬂ:f7 f(O) :an
A= /IR (Fe— ), /Q o(t, z)dx = 0.

If the domain §2 is union of cubes given by (1.11), then we further assume

On¢ =0 on 0N (4.41)
To obtain the estimate of (4.40), we denote

A7 ()= ()=dv
R3

(4.40)

to be the solution operator to the second equation of (4.40). Then we define linear operators
A= [A+,A7], B = [B+,B,] and Kl,KQ as

Ay =—-v-Vy+ Ly — Mxp,

K, = MXR7

By =—-v-V,+ L4,

Ko =0 Vot [ (4= 0)-) o

L= —U-in/w-VxA;I/Rs (()+ = ()=)dv+ Ly

where M > 0 is a large constant and x € D(R) is the truncation function satisfying 1|_; ;j < x <
1j_59) and we denote xr(-) := x(-/R) for R > 0. For the case of union of cubes, we consider
the domain of these operators, i.e. A, B, L, with restriction of specular-reflection boundary
condition for f and Neumann boundary condition for ¢:

f(Re) = @) on ey 0,870 [ (fi = £-)dv=0on o0
R3
Then we have the following lemma.

Lemma 4.4. Consider both Boltzmann and Landau case. For k > kg, there exists g > 0 such
that if

[l 22, < €o, (4.42)

ko+4

then we have

_1
1Sc®) fllazez < O8N lmzrs

k4a’

(4.43)
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and

(] 10 5e) 1z @) S WM, (4.44)

/2
Here we suppose that s =1 for Landau case.

Proof. We will prove (4.43) and (4.44) in two steps. We only prove the Boltzmann case and the
Landau case can be proved similar.

Step 1. By Duhamel’s principle, we have

Su(t) = Salt) + / (1 — $)K1Sa(s) ds, (4.45)
and ’

Se(t) = Sp(t) + /Ot Se(t — s)K2Sp(s) ds. (4.46)

Using Lemma 2.6 and Theorem 2.8 with g = 0 for the Boltzmann case and Lemma 2.11 for the
Landau case, we deduce that for k > kg,

71 ok
(—Af, )z, > 5!\<”>ka%;% 2 o) 2 £I1%s (4.47)
where ko is given in (1.24). Here (v-V,0%f,0%f)r2 = 0 by using change of variable v — R, v
for the case of union of cubes. Moreover, we use Lemma 2.14 to obtain
(0-Vaf, () f)a, =0 (4.48)

for the case of union of cubes, and by using change of variable v — R,v. For the case of torus,
(4.48) also holds. Then A generates a semigroup on L7 such that

1S4 lr2zz < 112z (4.49)
Also, by definition of semigroup, we have equation
nSa(t)f — ASA(t)f = 0. (4.50)

Taking inner product of (4.50) with (v)2¥S4(t)f over Q x R3, we have from (4.47) that

SO SAO 2+ M) Sa()fI221 <0 (4.51)
For the hard potential case, i.e. v > 0, we have
(0)*Sa(®) fll 222, 2 I1(0)*Sa(®) fll 213,
and hence,
1Sa()fllzzzz < e Fllzaz. (4.52)
for some A > 0. For the soft potential case and k > k; > ko, it follows from (4.51) that
OSADI 1z S ~ISaOgrz

2

< —A(R)’YHSA(t)fH%%Lil + (R84 (1) 125

for some A > 0. Solving this ODE and using (4.49), we have

t
ISAOF s, < e B + (RFEH [N a2, )

< efMRmeH%gLil + <R>2(kfk1)HfHQL%Li.

_ 2(k—kg) _1
A

Choosing (R) = ((t)[log(t)] )" 7, we have

_ 1 —1/2
1Sa@®) fllzzzz <& P fllzzzz, (4.53)
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k—kq—1/2
For k > ki + 4, since |y| < 3, we know that (¢) g < <t>7%. Together with (4.52), we
deduce that

_7
1S4 Flz22z. S 0752z (454)
For the semigroups Sp(t) and S, (t) in exponential weighted space, we have

0:Sp(t)f — BSp(t)f =0,

0:Sc(t)f — LSe(t)f = 0. (4.55)

Taking H2L? inner product with =1Sg(t)f and u=1S.(t)f over Q x R3 respectively, we have

_1 _1 1
Ol S50 I3z s + N T = Pt }(Sp()) iz , <0, o
4.56

_1 _1 1
O8O f 20z + 0l VadlFr + M2 {I - PW}(SL(t)f)H?{gH;/Q < 0.

where the dissipation rate of Ly for exponential perturbation can be found in [33,36] and ¢ is
given by

o= a1 [ (Self)r — (Se)s)- dv. (4.57)

Here, in the second estimate of (4.56), we used the fact that

at/Rs Sg(t)fdv+/Rgv-VxSE(t)fdv 0,

and thus,

S (0 Voo A7 [ (Selt)f)r = (Se0)f) - dv 9 (SeO)s),

T,v
+

= (0%¢, / v Va0 ((Sc(t)f)+ — (Sc(t)f)-) dv)
R3 T
= (0%¢,— 010" / ((Sc®)f) = (Se(®)f)-) dv)
R3 z
= S0V 0l,.

Here we take integration by parts on V, with (4.41) and use boundary condition (1.13) to
deduce

/Rg v((Sc®)f)+ = (Sc)f)-)dv =0

on 0f) for the case of union of cubes.
In order to derive the weighted version of (4.56), taking H2L? inner product of (4.55) with
(Y18 (t) f and (v)*u=1S,(t)f over Q x R? respectively, we have

_1 -1
Ol (o) 12 S () fll 322 + Al (W) * (1 2S5(t) )iz
< CRHXRM%SB(t)fH?Hngv
_1 -3
Ol ) i Se(t) f iz + Ol Vadllzys + AIw)* (02 S0 ) 1z

_1
< CylIVadlfz + Corllxri™ 2 Sc(t) fllFLe-
51
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(4.58)
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By macroscopic estimates from [19, Theorem 3.4] for the case of union of cubes and exponential
perturbation, we have

Ouint (1) + M~ Py Sp(0)f gy | < Cllu™ {1 = Py }Sp(Nllzze
OrEint,c (1) + 0| Va@llirz + M~ 2Pz SE(0) flfagss | + MVl (4.59)
< Ol T = Pp2}S() e, + 11Vl
where ¢ is given by (4.57) and Eint B, Eint,c are functional satisfying

Eint,B(1) S ||M_%53(t)f||§{nga Eint,c(t) S ||N_%Sﬁ(t)f||%{§L%‘ (4.60)

respectively. Although the macroscopic estimates from [19] is for union of cubes, the case of
torus can be similarly derived with simpler calculations; see also [44]. Taking linear combinations
(4.56) + K2 x (4.58) + Kk x (4.59) and assuming the a priori assumption

IV20ll2 < e, (4.61)
with € > 0 sufficiently small and ¢ given by (4.57), we have

1

OER(t) + M) =2 Sp(0) fll32ps, <0,

. 1 , , (4.62)
K& (t) + All(v) F‘_Esﬁ(t)fHH%Hi/Q + AIVad|z2 <0,

where
1 1
Ep(t) = =2 Sp(O) fll32rz + w2I1(0) ™2 SB() fIIF22 + KEint.c,
_1 _1
Ec(t) =l 2Se(t) 2z + K210 12 S () fllie 2 + K€t + IV2 @l 712
With (4.60), it’s direct to check that
_1 _1
En(t) ~ |13 Sp(0)f 323 + 1 (0) 1 2S5 3212
_1 _1
Ec(t) ~ 13 S fIZage + 110 13 S Fags + [ Vaolle.
We calculate the first inequality of (4.62) and the second one is similar. When v > 0, we have
1
OEp(t) + A (v)* 12 Sp(t) [}z 1z <0,
and thus,
_1 _ _1
o) 172 S5 T2y < e 1) 172 fllfars-
When v < 0, we have
HEB(t) + MI(0) 3 ™2 Sp (1) f 3213 < 0.
Then we apply similar arguments for obtaining (4.53) to deduce that

2(3— %) )

_1 — 2 _1 _T _1
I 3850 I2age S0 T Na 3 e S O M0 e (463)

The estimate for hard potential case is also included in (4.63). Similarly, it follows from the
second estimate of (4.62) that

_1 _7 _1
I3 Se () fpars + IVabliy < (075 (i3 flaps + [ VadhoolZs).  (4.64)

Now we turn back to Duhamel’s principle (4.45) and (4.46). For any f, we have from (4.45),
(4.54) and (4.63) that for k1 > ko,

t
1
1S5 fllrzez < ISa@)fllazez, +/O =2 Sp(t = ) K1Sa(s) flluz2r2 ds
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_7 t _7 _1
SO 5 e+ /O (t— ) llu 2 KiSa(s)fll oz ds

k144

7 t 7
<O e+ /O (t— )75 Sa(s) 2z ds

ki+4

_7
SO N e,

Thus, recalling ¢ is given by (4.57), it follows from (4.46), (4.64) and (4.65) that for k; > ko,

(4.65)

t
1
152 zzz, < 1S5 ez, + [ 1+ Selt =) KaSn(s) fllznz ds

_I ¢ _I _1
S Ol f ez +/O<t—5> 5 (Iln~2 K2Sp(5) fll 212

1987 [ (aS5(5) )1 = (aSp()f) - dvllg) ds. (466)

Note that by using odd property on pv, we have

[, (aSa(5) )1 = (aS()f)- o

=2 [ 0o Van7 [ (Se(9))+w) - (Sa(s)1)- () dudy = .
R3 R3

Also, letting
o1 =82 [ (S5 0) = (Sp(f)- () du
when € is torus, we know that

IVaoillzz < [Azdrllr2- (4.67)

If © is union of cubes given by (1.11), noticing from (4.41) that d,,¢1 = 0 on I';, by Sobolev
inequality [15, Theorem 6.7-5], we also have (4.67). Then we obtain from (4.66) and (4.54) that
for k1 > ko,

ki+4

7 t _7 1
1S fllmzez < 051 fll 2z +/0<t—s> 5[ (v) 2 (0)v - Vi || 212 ds

_7 t _T7
SO e+ / (t—5) F | Badilppzre  ds

ki+4 ky+4

t
SO e+ / (t = ) F1S(3) 213 ds

ki+4

_1
S 076 fl 22

kyta

(4.68)

Next we check that (4.61) is fulfilled if &g > 0 in (4.42) is small enough. Indeed, similar to
(4.67), we have

IVadllmz S 1Azl = || /Rs(Sz:(t)f)Jr — (Sc()f)-dvl| gy (4.69)
Then it follows from (4.68) that

IVadllmz S NSc) fllairz S 1l gz

ko+4
This closes the a priori assumption (4.61) and completes the proof of (4.43).

Step 2. For brevity of notations, we let s = 1 for the Landau case. In order to obtain (4.44),
we consider the dual A} of A; = (v)!A((v)~!f) for any | € R. Notice that

(AL1, ) 1) a0 = (00U A7) 12 g0 = (0229, Ag) 1y o,
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where we let g = (v)2*~!f. Then the taking L2L? inner product of
OSar () f — A7 Sar(t)f =0
with (v)QkSAl* (t)f, we have
AU S ar (1) F 3 arz + (ATSa; (0, 004 (1)) g =0,
and hence, for [ — k > ko,

Ol (w)' " gllT2 e + (<U>2l_2k97Ag)L%L% =0,

where g = <v>2k—lS’Al* (t)f. Taking integration over ¢, we have
[o.¢]
o i Py [T
0 T 7/2 v
That is, for [ — k > ko,
3 N S O g, it < 1000 P (4.70)

Observe that if f satisfies equation 0;f = Af then g = (v)!f satisfies 0;g = A;g, and also that
(Af, (v)glf)L%v = (Ai9,9)r2 - Thus, (V)LSA(t)f = Sa,((v)!f). Moreover, by duality, we have

(Safs9)rz, = (f,54:9)r2 -

Therefore, for some sequence {¢;} in Schwartz space such that [l¢nl[2 rz < 1, we have from
(4.70) that

/O ||<v>kSA(t)fH2L%L%dt:/0 nli_>1r010‘(<U>2kSA(t)f,@n)L%’v}th
= lim inf / |((0)f, Sas, ()pn) > |*dt
O T,V

n—oo
. OO k
<tmint | 10T 10 S, (Ol ,
< Y721 e (4.71)

for k > ko. This is the estimate for S4(t). To obtain the estimates for Sp(t), it follows from
Duhamel’s principle (4.45) that
1

([ 1 ssslee: @) < ( | 10t sa®)f e ok
2 dt)? (4.72)

(o [ oral,,

v

Using (4.71) and (4.63), the second right-hand term of (4.72) can be estimated by
oo 00 1
/ (/ 52 Sn(s) KrSalt = 5)f |32y dt) ds
0 s
0o oo - 1
S (] @ I e KaSa0) 1 de) ds
0 0
x )
S ([ 1886 Mz d5)" S Wz
0 0

—/2

Note that V, commutes with S4(¢). The first term on the right hand side of (4.72) can be
estimated by using (4.71). Thus, for k > ko, we have from (4.72) that

(] 1405500 rssg ) S Wl (4.73)

v/2
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Next we apply (4.46), and (4.73) to derive the estimates on S, (t):

([T tse sl a) < (
+ (/OOO <u>k/OtS£(s)KQSB(t—S)de‘

00 o] 1
Sl ,+ /0 ( / ()" Se(s)KaS(t — 5) fl3paps dt) ds. (4.74)

Applying (4.64), (4.67) and (4.73), the second right-hand term of (4.74) can be estimated by
00 0 1
L (] 1w ses) KaSue = )51 dt) ds
0 s
< -1 > k4, -1 2
S [T n e S0 s

00 1
2

(0" S 125 )

2 1
2
dt)
HZL?

VAT [ (KaSa0f)s — (KaSp(0))- dv [y i) ds

-~

=0

S (/OOO H<v>k+4,u_%,uv VAL /RS ((Sp(t)f)+ — (SB()f)-) dv| pzp2 dt)i

[e's} 1
2
S( ] 1550z @) <1z

/2

The term with brace equal to zero because [ps vpdv = 0. Inserting this into (4.74), we obtain
(4.44). This completes the proof of Lemma 4.4.
U

Next we can introduce a norm

2 oo
AP s= 32 [ ISe)o 1B, (4.75)

o] <2

where the associate inner product is given by

“+oo
(Fo)= [ (Seror s Ser)o") sz zar

|| <2
Note that 0% commutes with £ and hence, commutes with Sz (t). Then by (4.43) and (4.44),
we have

A N a2

kg+4’

(4.76)

and

WAV Nz rr=s ., S WS rzrr— (4.77)
kg ko+

_2 3
2

2

where we let s = 1 for the Landau case. Then we can recover the loss energy by using this
norm.

Lemma 4.5. For both the Boltzmann and Landau case, suppose (f,$) is the solution to the
equation (1.4). Then we have

1 (6%
0lo I+ 1 iz S o/ Ero ()DR(1), (4.78)

where |||-|| is given in (4.75), Ek(t) and Di(t) are given in (1.22) and (1.23).
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Proof. Recall the first equation of (1.4):

Ouf+ =2Vad-Vof + Lf +Q(f++ f+. f+), (4.79)
T 1 Tv2 T 3

where £ is given in (1.5). Then we take the ((-,-)) inner product of (4.79) with f and compute
every term separately. Since 0, commute with L, we know that d; commute with S, (7) and
hence,

(00,0 1) = soullor 7>

Next we compute the Term 1. Since s > % implies 1 — s < s, by Lemma 2.10 and (4.77), we
have

+o0
| 3 e (96 up). Ser)o Ny

|a|<2

S D 10%(Vad - Vo f) leame, Z 10 fll 22

Tk +3/2
lor| <2 | |<2
N HVzaSIIHngHHgH; o M llzes

&0 +3/2
5 gko (t)Dk (t)v

for the non-cutoff Boltzmann case, where we let k > kg + 3/2. Similarly, for the Landau case,
we have from (4.76) that for k > ko + 4,

oo
/ S (Se(r)0(Vato- Vo f), Se(r)0° )12 padr
|| <2

S 10%(Vad - Vo f)ll 22

ko+4
|| <2

S Vel f gz

gk‘o (t)Dk (t) .

For the term 2 and for both Boltzmann and Landau case, since limtﬁoo<t>% =0 in (4.43), we
have

.

[RAIZERE:

ko+4 ko+4

/ S (Se(r)L0° f, Se(r)0° )y padr

0 al<2

C>C>d
/ S 1Se(r)0° 12 dr

7 lal=2
== 110722
laf <2

Finally, we consider the nonlinear part, i.e. Term 3. For the Boltzmann case, by (2.14), (4.76)
and (4.77), we have

/ Z (Se(r aaQ(fi+fq:7fi) Se(r)o® f)L2L2dT

la|<2

<Gy 3 2 QO™ (fe+ f2), 07 fi)llpzpe MO Flliarz,

|| <2 a1 <«

< C'k(HfHH2L2 [RAIFPEFeR ||f”H2L2 1S a2 )HaafHL%LiO

z kg +v/2+2s T ko +v/2
< O/ Ero (1) D (1)
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Here we let kg > 14, k > ko + /2 + 2s and apply similar discussion on a4 as in (2.61). For the
Landau case, by (2.18), (4.76) and (4.77), we have

|3 (Se() QU + o o), 5610 Przasds

0 |a<2

<G Y Y QO™ f + f:F78a_a1fi)HL%H;01+3/2HaafHLgLio

|a|<2 a1 <«

(6%
< Ck“f”H%LiOH)MHf”H%L%’kOerQHa f||L§LiO+5/2

< Ck gko (t)Dk(t)a

where k > ko + 4 and we also apply similar discussion on «; as in (2.61). Combining the above
estimates, the ((-,-)) inner product of (4.79) with 0% f yields

1 o
SOULIE+ 30 10° 1, 1z S o/ (OD(0)
|| <2
Then we conclude Lemma 4.5.

O

4.4. Proof of the main theorem. We start this subsection by proving the main stability
theorem below. Theorem 4.6 and 4.7 together with local existence from Theorem 3.2 imply
Theorem 1.2. To prove Theorem 1.2, we assume the a priori assumption as

sup &k, (t) < 2M, (4.80)
0<t<T
for the case v € [0,1] and
l
sup (14 1)71E, (1) < OM, (4.81)
0<t<T

for the case v € [—3,0), where | > IlQI is a constant and we further assume k > ko + [ in this
case.

Theorem 4.6. Assume that fy satisfies the conservation laws (1.10) and Foy = pu+ fo > 0.
There exists k1 > ko such that for

k > ko for Landau case and k > ki for Boltzmann case,
there exists a small constant M > 0 such that if
gko(o) < M, gk<0) < o0,

then there exist a unique global solution f(t,z,v) to the Vlasov-Poisson-Boltzmann/Landau
system (1.4) with F' = p+ f > 0 satisfying

k() + ADk(t) S I1f 1, Ex(t), (4.82)
for any T > 0, for some generic constant A > 0.

Proof. We take linear combination k x (4.5) + (4.31) 4+ Cy x (4.78) with k,Cy > 0 to deduce
that

0 (t) + Arill[at, a—, b, ll3z + Ak Vas | + Ml £,

+ Collflrze +A Y llw(e,0)0°{I ~ P}fII7s 12
<2

< g 171, + AT =P}l + £V s

+ Cy{I = PY fll 2 r2 + 1l VadllEz + 0l Pl 2 + O\ Ero () + Exy (1)) Di(2),
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for some generic constant A > 0, where &£(t) is given by
G o
Ee(t) == KG(t) + E1(t) + 70 > o fII? (4.83)
oo <2

Here G(t), &1(t) and |||-||| are given in Lemma 4.2, Lemma 4.3 and (4.75) respectively. Choosing
k > 0 sufficiently small, and then n > 0 sufficiently small, and finally Cy > 0 sufficiently large,
we have

Ok (t) + ADi(t) S [1f 1| x4, Ex () + KINY 11 12 + (/ Ero (B) + Eno () Di(2), (4.84)
for some generic constant A > 0, where Dg(t) is given by (1.23). Then one can check (1.22)
A4 00

by using (4.4), (4.38), (4.76) and (4.77) with sufficiently small x. Note that e 2»? =1 as in
(2.39).

Next, recall from Lemma 4.2 that

Ny = (Va0 Vofe)) + Q(fx + f5, f1))
= (£Va¢ - Vo fe, &) + (Q(fe + f+. f1), ),

where ¢ is some linear combination of 1,v;, v;v;,v?, v;|v|?. For |a| < 1, we have

10°(Vad - Vo f ) palliz S Y 107 Vadllell0* Vol 212

|1 |[=0

+ Y 10Vl g 0* Vo fll oz

lar|=1

S IVedllmz 1l mrms S ) Ero (H)Dr(?)- (4.85)

For the Boltzmann case, by Lemma 2.4, we apply similar discussion on «; as in (4.85) to deduce
that

[0(Q(f+ + f+. fi),f)”%gm S 2z 11 2z 1160 a2

S\ € (8)Die(t)-
For the Landau case, by (2.17) we have

10(Q(fx + . f), €)WV DTz S Il mzrzl fllzrs, €N L2

S/ ko () Di(2).

D 10%Nyl72 S Ero () D (t).

o<1

Therefore, we obtain

Then (4.84) implies

& (t) + ADr(t) S [[f 11 x00 € () + (\/ Ero (1) + Eko (1)) Die(2).- (4.86)

Choosing M in the a priori assumption (4.80) and (4.81) sufficiently small, we have from (4.86)
that

& (t) + ADy(t) < || fll x5, Ex(2),
for some A > 0. This concludes Theorem 4.6. O

To conclude Theorem 1.2, we need to prove the large-time behavior as the following.
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Theorem 4.7. Let | = 0 for hard potential case and | > % for soft potential case. Let
k> ko+2+1 (and let k sufficiently large for Boltzmann case). If the solution (f,¢) of (1.4)
satisfies

Ekor2+1(0) < M,  &(0) < 0.

Then there exists a constant X\ > 0, such that for any t > 0, we have

sup &i(t) <2£(0). (4.87)
0<t<T

Moreover, if 0 < v <1, then
Er(t) < e MEL(0).
If v < 0, then we have
Eri(t) S (L+) TTEL(0). (4.88)

Proof. 1f 0 < v < 1, noticing that |- [|rz < |- HLz and choosing M in (4.80) small enough, we
have || f|x,, < &k < M, and hence, by (4. 82) we have

D& (t) + AEk(t) <0

Solving this ODE, we obtain & () < e *&(0). This close the a priori assumption (4.80) and
conclude the case of hard potential.

Next we assume v < 0. For any [ > %‘, we have from (4.81) that

2
111 X0y S Ero () S M(1412) 1. (4.89)
Let p = 7+2l and p/ = # Then by L — LP" Hélder’s inequality, we have

e )25 11y = [ 007 ) (o 995 1 o

< [[(w)w(a, )%fIIL”WIK Yw(a, ﬁ)f?gfllﬂ“’

'v+2l ~/+2l
D gk—H :

—y+2l o

From definition (1.22) and (1.20), we know that &, *' &2,
and (4.89) that

< Dy. Then it follows from (4.82)

—y+21 211 21
DER(t) + AE, 7 (t)( sup 5k+,) < OM(1+1) &), (4.90)
0<t<T

Neglecting the second left hand term of (4.90), we have
21
W) <K CM(1+t) ME(t).
Taking integration over ¢ € [0, T] yields

T
sup Er(t) < &E(0) + C’M/ (1+ t)f% dt sup Ex(t).
0<t<T 0<t<T

Since 2 = ‘ > 1, choosing M > 0 sufficiently small, we have

Sup Er(t) < 2&(0). (4.91)
0<t<
This gives (4.87). Next we solve (4.90) directly. It’s direct to obtain that
x -2t A CM 2L X
DET (1) = LET (1)OE(t) > — 2 swp &) a L OMY L ytred),
21 2l \o<i<r 2l

and thus,
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CM|v|?
8t(exp{2l kel

m(l + t)_%ﬂ}gk% (t))

o P p MBI
-2 20(=20 + |v|)
Note that —21 + |y| < 0. Taking integration over ¢ € [0, T], we have

exp{%
20(=21 + |7|)

and hence,

2

21
(1+ t)_mﬂ}( sup 5k+l)
0<t<T

ol

t
(1+ t)_\%lﬁ_l}gk% (t) > C%lgk% (0) + C%l/ 1 dt( sup (C/'k_H) 2l,
0 0<t<T

2l
v sup Epq(t).
0<t<T

Ep(t) < Cyu(1+41)

Replacing k by k — 1 > ko, we apply (4.91) to deduce
T osup Eu(t) < (14 1)7 E(0).
0<t<T

Eri(t) S(1+1)

Choosing k — [ = kp and applying (1.25), we close the a priori assumption (4.81). Using the
standard continuity arguments, we obtain (4.88). This completes the proof of Theorem 4.7.
O
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