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THE VLASOV-POISSON-BOLTZMANN/LANDAU SYSTEM WITH POLYNOMIAL
PERTURBATION NEAR MAXWELLIAN

CHUQI CAO, DINGQUN DENG AND XINGYU LI

ABSTRACT. In this work, we consider the Vlasov-Poisson-Boltzmann system without angular cutoff
and the Vlasov-Poisson-Landau system with Coulomb potential near a global Maxwellian p in torus
or union of cubes. We establish the global existence, uniqueness, and large-time behavior for solutions
in a polynomial-weighted Sobolev space H%m(('u)k) for some constant k£ > 0. For the domain union
of cubes, We will consider the specular-reflection boundary condition and its high-order compatible
specular boundary condition. The proof is based on an extra dissipation term generated from an
improved semigroup method including the electrostatic field with the help of macroscopic estimates.
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1. INTRODUCTION

1.1. Models and equations. We consider the Vlasov-Poisson-Boltzmann (VPB) and Vlasov-Poisson-
Landau (VPL) systems describing the motion of plasma particles of two species in bounded domain
Q CR3 (cf. [41,44]):

Ol +0 -V Fy = V¢ Vo Fy = Q(Fy, FL) + Q(FL, Fl),
OF_+v-VyF_+V,¢-V,F_=Q(Fy,F_)+Q(F_,F_), (1.1)
F(0)=Fy, E(0)=Ey,

here F(t,z,v) > 0 is a distribution function of particles at time ¢ > 0 with position z € Q and velocity
v €R3, E = —V,¢ is the self-consistent electrostatic field satisfying

—Agp= | (Fy —F_)dv, /Q(;S(t,x)d:r =0. (1.2)

R3
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For the VPB system, the bilinear collision operator @) acts only on the velocity variable v given by
Q(G,F)( / B(v — vs,0)(GLF' — G, F)dodv,.
R3 J§?

Here we use the standard notation F = F(v), G, = G(vs), F' = F(V'), G, = G(v},), where v', v} are
velocities of two particles after collision given by
, UFue v — oy AR S T VRN

_ _ - 2
V= + T i o€ S°.

This representation follows from the physical law of elastic collision:

vtve =0 vy, o+ et = 0+ L

The nonnegative function B(v — v, 0) is called the Boltzmann collision kernel. It depends only on

relative velocity |v — v.| and the deviation angle 6 through cos 6 def v—v.

0.
[v—v.]

In the present work, we consider the non-cutoff kernel B as the following.
(A1). The Boltzmann kernel B takes the form B(v — v4,0) = |v — |7 b(‘z Z - 0), where b is a
nonnegative angular function.
(A2). b(cosh) is not locally integrable and there exists some constant I > 0, such that

KO~172% < sin 0b(cosh) < K7107172% with 0 < s < 1.
(A3). The parameter v and s satisfy the condition —3 <y <1, 1/2<s<1, y+2s>—1.

(A4). Without loss of generality, we may assume that B(v —v,, o) is supported in the set 0 < 6 < 7/2,
ie. \Z:Z*| -0 > 0. Otherwise, B can be replaced by its symmetrized form:

3 ) L

v — v,

B(v - v.,0) = \v—v*|'y(b(|v_7v*-o)+b( v O

where 14 is the indicator function of the set A.

|

Remark 1.1. For inverse repulsive potential, we have v = gf_? and s = p%l with p > 2. It is worth

noting that the condition v+ 2s > —1 is met across the entire spectrum of the inverse power law model.
Generally, the casesy > 0, v = 0, and v < 0 correspond to so-called hard, Mazwellian, and soft potentials
respectively.

For the case of the VPL system, @) is the Landau collision operator given by

V;Vj

Q.1 =0 [ 690 - 00,1 — fOr)dves 90 = o+ (8- 1), 3y <1

We use the convention of summation for repeated indices, and the derivatives are in the velocity variable
0; = Oy, Define the notations g. = g(v.), f = f(v),0j9+« = 0v,,9(v4),0;f = Oy, f(v). Notice that

y y —2(y+ 3|7, if —3<~vy<1,
@wwwrﬂwm,@mww={_&% ity = -3

where d is the Dirac measure. We call it hard potential if v > 0, and soft potential if v € [—3,0).

1.2. Reformulation. We reformulate the VPB/VPL system near a global Maxwellian. For simplicity,
we assume the initial data Fj is normalized such that the equilibrium associated with (1.1) will be the

standard Gaussian function, i.e. p(v) = def (2m) =3/ 2~ v vI’/2 which enjoys the same mass, momentum, and
energy as Fy. For the perturbation framework, we denote F =[Fy,F_] and let f = [f}, -] satlsﬁes
Fy = p+ fy. Then system (1.1) and (1.2) become

Ofr+v-Vofe FVad - Vofe £Vad-vp=Q(f++ f5,1) +QC2u+ fx + f5, f+),

1.3
—Ap = / (f+ — /- /¢ )dz =0, f(0) = fo, ¢(0) = do. (13)

Note that Q(u, ) = 0. We also denote linear operator L = [L4,L_] and £ =[L,,L_] by
L:I:f:2Q(N7f:I:)+Q(f:I:+fZF7/~L)7 £f:_vvmf:va¢Uu+Lfv (14)

where ¢(z) is solved by the second equation of (1.3). The kernel of L on L2 x L2 is the span of
{1,004, [0, 1] g, [1, 1Jop, [1, 1]|v|?p} (cf. [41]) and we define the projection of L2 x L2 onto ker L by

Pf = (ay(t)[1,0)+a(t,2)0,1] + v b(t,2)[1,1] + (fof? = Belt, 2)[1,1]) (L5)



or equivalently by
Pof = (axlt,a) +v-b(t2) + (o] = B)elt, x) ),

where function aL, b, ¢ are given by

1 v|?
ar = [ fedv, b= 5/ vi(f+ + f-)dv, ¢ =/ | | (f+ + f-)dv (1.6)
R3 R3 R3
Taking inner produce of the first equation of (1.3) with 1 over R3, we have the continuity equation
0
g fi( )dv+V, / vfy(v =0. (1.7)

1.3. Domains. In this paper, we suppose the bounded domain (Q is either a torus or the union of finite
cubes.

Torus. For the case of a torus, we set Q = T3 = [—7, 7|3, In this case, the solution (F,¢) to the
VPB/VPL system (1.1) with the initial data Fy enjoys the conservation of mass, momentum, and the

energy, i.e.
i//dedx—i/ F_dvdz =0 i/ v(Fy + F_)dvdr =0

d d (1.8)
7/ / [v|>(Fy + F_)dvdz + 7/ |V.¢(t, 2)|?dr = 0.
dt Jo Jrs dt Jq
Suppose fy have the same mass, momentum and energy as u, then conservation laws (1.8) yield
/ frdvdx = / f_dvdz = 0, / v(f+ + f-)dvdz =0,
R (1.9)

// [|?(fy + f- dvdm—l—/\qubtx|dx—0

Union of cubes. The second type of bounded domain we consider is a union of finitely many cubes,
denoted as:

Q=uN,0, (1.10)

where each ©; is defined as a rectangular region: Q; = (a; 1, ;1) X (a;,2,bi 2) X (@i 3,b;3), with a; ;,b; j € R
satisfying a;; < b; ;. The boundary of this domain, denoted as 0f2, is composed of three types of
boundaries, I'; (¢ = 1,2, 3), each of which is orthogonal to one of the coordinate axes x;. These boundaries
are further divided into connected sets. It is important to note that we assume that each I'; has a non-zero
spherical measure, while the boundaries of these sets themselves have zero spherical measure. Therefore,
we do not distinguish between I'; and their interiors.

On the interior of T'; (i = 1,2, 3), we have a unit normal outer vector n(z) defined almost everywhere
with respect to spherical measure. This vector takes the form n(z) = e; or —e;, where e; is a unit vector
with its ¢th component equal to 1. Additionally, we denote vectors 71(x) and 72 (z) on the boundary 9
such that (n(z), 71 (), 72(x)) forms a unit orthonormal basis for R®. Furthermore, for j = 1,2, 7; takes
the values e, or —e;, for some k.

The boundary of the phase space is denoted as v := {(x,v) € 9Q x R3}. We define n = n(z) to
represent the outward normal direction at x € 9NQ2. This allows us to partition « into three distinct sets:

vo ={(z,v) €N xR®:n(z)-v <0}, (theincoming set),
v = {(z,v) €92 x R*: n(z)-v > 0}, (the outgoing set),
Yo = {(z,v) € 90 x R® : n(z) -v =0}, (the grazing set).

For these sets, we assume that F(t,z,v) satisfies a specular-reflection boundary condition on ~_, where
(z,v) € v is subject to the following reflection operation:

Ryv =v —2n(x)(n(z) - v). (1.11)
This specular reflection condition for f can be expressed as:
f(t,z, Ryv) = f(t,z,v), ony-. (1.12)

Regarding the boundary condition for the electric potential ¢, we further assume that it satisfies a
Neumann boundary condition:

On¢ =0, on z € IN. (1.13)

3



In particular, the Poisson equation for potential ¢ becomes a pure Neumann boundary problem. To
ensure the existence of a solution, we impose a zero-mean condition:

/ (f+ — f-)dvdz =0, fort >0,
o Jrs

which follows from the conservation laws (1.14). Similar to (1.9), it’s also well-known that the solution
to (1.3) in the bounded domain € given by (1.10) satisfies the conservation laws on mass and energy.
Specifically, the solution f to (1.3) satisfies the following identities when the initial data fy satisfies them:

/ f4(t) dvdx = / f-(t) dvdx = 0,
QXR3 QXR3

(1.14)
/" (f+@)*—f—@)ﬂvfdvdm-kjfIVg¢@7xM2dx::0
O xR3 Q

1.4. Notations. Let us first introduce the function spaces and notations. We let the multi-indices «
and 8 be o = [y, g, as], 8 = [B1, P2, B3] and define 83 = 83118;‘;51?5851135228533.

If each component of o’ is not greater than that of the a’s, we denote by o/ < a. o' < a means
o < a,and || < |a|. We write a < b (a 2 b) to indicate that there is a uniform constant C, which
may be different on different lines, such that @ < Cb (a > Cb). We use the notation a ~ b if a < b and
b < a. We denote a > b if a,b are two constants such that a > b and a is sufficiently large.

We denote Cy, q,.... .a,, Dy & constant depending on parameters ai,as,-- ,a,. Moreover, we use the
parameter ¢ to represent different positive numbers much less than 1 and determined in different cases.
We use (f,g) = (f,g)r2 to denote the inner product of f, g over velocity variable for short and, (f,g)r2
to represent the inner product over both spatial and velocity variables. Also, we write

Rz = (g 15Oy = [ $0)r =2x [ 5(6)sinoas

:rv

and for any p € [1,00], [[f(¢)llzz. = [|f(*)[zr((0,7)). Define the Japanese brackets by (v) := (1+v]?)Y/2.

For linear operator £, we write S, as the semigroup generated by L. For real numbers m, [, we define
the weighted Sobolev norm || - ||z by [f[am = [(v > ( 0)™ f(v)|p2, and L} = H} for m = 0. here a(D)
is a pseudo-differential operator with the symbol a(€), and is defined by

(a(D)f)(v e =WE (&) f (u)dudé.

R3 JR3

1/2
The mixed norm ||| gn g is defined as || f|| prp g = (fﬂ I{(Dz)" f(z, )||%{ldx> ,and HOH™ = L2H".

The entropy Llog L space is defined as Llog L := {f(v) Nfllziogr = g | fllog(1+ |f|)dv}
For any k € R, v € (=3, 1], we define

= [ [ atedlo = o1 @P @) dudo. ~ 1712,

ket /2

I£117

k4/2,%
For Boltzmann case, we denote the dissipation norm L%,k by
1Az, =1 lag, o0 Iz =11z, ,-

For Landau case, we denote the anisotropic norm L% (m) by

k+v/2

£l 22, my = [1f 2 (mewy/2) T Vo (M) L2 ()72
and for brevity, we let L2D,k = L% ((v)¥) and L% := L%),o- Here V,, is the anisotropic gradient given by
Vof i= PVof + () (I = P)Vof, Pu&i= (5 - fu’|> o VEER

With multi-indices (a, ), we come to define our weight function with some constant k. For —3 < <
1, we choose the weight function w(«, ) as

(vyFplel=dBltr =g — 65 — 3(y—1), p=q+~y—1,r =2¢ for Boltzmann case,

<v>k_p‘o‘|_q|'8|+r, g=3—(y-1), p=3,r=2q, forLandau case.
4

w(w, B) = { (1.15)



Note that w(«, 3) > 1 for any |a| 4+ |8] < 2 and any k > 0. For brevity, we write w(|al, |8]) = w(«, 5)
throughout the paper. Noticing w?(a, 3) is still of the form (v)¥ for some k > 0, we have

(%

Vv(w2(aa5)) :Aa,ﬁWIUP(avﬁ)v (116)
here A, g depends on a, 3, k, 7, s. In this work, we will apply a useful space-velocity weight
iAa,B‘i’
e 72 (1.17)

to eliminate the dissipation loss term. Next, we define some useful norms in our analysis. For this, we
denote constants by

Clal181 > Clap gy 1B <IBl, Clajt1,18-1 > Clay,a); (1.18)

for any multi-indices «, 8. Then for both the Boltzmann case and Landau case, we denote energy norms
as

£A4,.5¢
£, = D Clapslle” ™% wla, B)05 fl 72z (1.19)
laf+|B]<2
115 = D> Cuapsillwle, 595 f172 2 - (1.20)
lee|+18]<2
We further define the “instant energy functional” & (t) and “dissipation energy functional” Dy (¢) as

Ex(t) 2 IfIx, + 1 Vool2, (1.21)

Di(t) = IfII5;, + IVadllz2, (1.22)

where the explicit definition of &k (t) is given in (3.90).

We fix the weight index kg by assuming kg > 14 for the Boltzmann case, and ko > 7 for the Landau
case.

1.5. Main results. We may now state our main results.

Theorem 1.2 (Global existence, uniqueness and large-time decay). Consider the Cauchy problem (1.3)
for Viasov-Poisson-Boltzmann/Landau system. Suppose v € (=3,1], s € [%,1), v+ 2s > —1 for the

Boltzmann case and v € [—3,1] for the Landau case. Letl =0 for the hard potential case and | > g—‘ for
the soft potential case. Then there exist constants A > 0, M > 0 (small) such that, for any

k>ko+4+1 for Landau case and k > ko +4+1 for Boltzmann case.

Remind & (t) is giwven in (1.21). If the initial data fo satisfies Fo(xz,v) = p+ fo(z,v) > 0, conservation
laws (1.9) for the case of torus (or (1.14) for the case of union of cubes) and

Ero+1(0) < M and &,(0) < +o0, (1.23)

then there exists a unique solution f(t,x,v) to (1.3) satisfying F(t,z,v) = u+ f(t,z,v) > 0 such that
supg<i<r Ek(t) < 281(0) for any T > 0. Moreover, we have the following large-time asymptotic behavior:

Ex(t) < eMEL0) for 420, Ey(t) S (L+1) &) for 4 <O.

Remark 1.3. (1) It is crucial to emphasize that for global solutions with polynomial weight, the require-
ment for smallness of initial data is only in relation to a specific norm. In this context, we solely need
Xio+1 to be sufficiently small, rather than necessitating the general Xy, to be small.

(2) Notably, the cases involving the torus and the union of cubes exhibit similarities. In the case of the
union of cubes, as defined in (1.10), we exercise meticulous care when performing integration by parts.
Conversely, integration by parts in the torus case is a straightforward process.

(3) In the scenario of a soft potential with v < 0 and considering the non-cutoff Boltzmann equation,
the work presented in [8] demonstrates that the optimal decay rate for the non-cutoff Boltzmann equation
cannot exceed k/|y|. Consequently, when the value of k is sufficiently large, the decay rate articulated in
Theorem 1.2 can be regarded as approximately optimal.

(4) Our proof methodology can also be effectively employed to establish results for the high regularity
space HY, ((v)").



1.6. Strategies and ideas of the proof. In this subsection, we provide a brief overview of relevant
literature and outline the key strategies employed in proving our results.

We begin by revisiting established findings in the context of the Landau and Boltzmann equations,
with a particular focus on the aspects central to this paper—mnamely, the global existence and long-term
behavior of solutions to spatially inhomogeneous equations within the perturbation framework. To shed
light on the global solutions of the renormalized equation, particularly in the presence of substantial
initial data, we draw attention to classic works such as [5,20-22,56,66,67].

For insights into the smoothing effects in the Boltzmann equation without cut-off, we refer to [13,
14]. Additionally, when considering the stability of vacuum states, we consult references [12,40,57],
which cover scenarios involving the Landau equation, the cutoff Boltzmann equation, and the non-cutoff
Boltzmann equation, with a focus on moderate soft potentials.

These references provide the foundation upon which we build our exploration of spatially inhomoge-
neous equations and perturbation techniques to address the questions at hand.

In the context of the non-cutoff Boltzmann equation, prior research efforts like [50-54,60] have achieved
global regularity and elucidated long-term behavior under remarkably broad assumptions. They have
demonstrated that global regularity and long-term behavior can be established by merely assuming
uniform bounds in both time (¢) and space (z), characterized by:

0 < myg SM(t,JJ) < My, E(t,l‘) < Ejy, H(t,x) < Hy,
where mg, My, Ey, and Hy are positive constants, and M (¢, z), E(t,x), and H(¢,x) are defined as:

M(t,x) = . ft,z,v)dv, E(t,x) = /RS f(t,z,v)|v]*dv, H(t,x) = /R3 ft,z,v)In f(t, z,v)dv.

Furthermore, in the case of the Landau equation, local Holder estimates are established in [32], while
higher regularity properties of solutions are explored in [49] through the application of kinetic variants
of Schauder estimates.

Subsequently, we turn our attention to the outcomes achieved within the perturbation framework.
In the vicinity of the Maxwellian distribution, we find substantial progress in demonstrating the global
existence and long-term behavior of solutions to spatially inhomogeneous equations. These achievements
are well-documented, with [37, 38, 63,64] presenting results for the cutoff Boltzmann equation and [36]
addressing the Landau equation within this context.

For the non-cutoff Boltzmann equation, substantial contributions can be found in [1-4,33,34]. A
more recent perspective on this topic can be found in [27], where recent developments are explored.
Additionally, for insights into the theory of existence in bounded domains, references [43,45, 46] are
valuable resources.

Furthermore, the non-cutoff case within the union of cubes is examined in [17]. Importantly, all these
works are founded on the following decomposition:
8tf+v'vwf:[’uf+r(f’f)7 LMf:L

N

1

Q(V/if, 1) + N

Qu,V1f),
where

0(0.) = 5 QRS VES) + 5= QRS Vi),

signifying that the solution is constructed within a p~/2? weighted space.

In the realm of inhomogeneous Boltzmann/Landau equations with polynomial weight perturbations
near the Maxwellian distribution, Gualdani-Mischler-Mouhot (GMM) laid the foundation by first prov-
ing global existence and delineating the large-time behavior of solutions featuring polynomial velocity
weights. Their groundbreaking work began with the cutoff Boltzmann equation involving a hard poten-
tial, as reported in [35]. This method was subsequently extended to encompass the Landau equation,
with significant contributions from [10,11]. For the non-cutoff Boltzmann equation, the achievements in

the hard potential scenario were documented in [6,48], while the soft potential case was addressed in [8].

Moreover, it is noteworthy to acknowledge prior research on the Vlasov-Poisson/Maxwell-Boltzmann /Landau
systems in proximity to Maxwellian distributions. For the cutoff hard sphere case, the Vlasov-Poisson/Maxwell-
Boltzmann system has been proven in [41,42,62], with [29] further exploring the optimal convergence
rate. Various other cases under the cutoff assumption have been studied and can be found in [24,30,31].

For the Landau equation, pioneering results were established in [44] for the torus case and in [65,68] for
the entire space scenario, with additional insights provided by [25].
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In the non-cutoff setting, research endeavors have been directed towards the Vlasov-Poisson-Boltzmann
system [26,69], the Vlasov-Maxwell-Boltzmann system [28], and investigations into the regularizing ef-
fect [18]. The implications of bounded domains are discussed in [9,19,23]. Importantly, all these endeavors
are rooted in the following decomposition:

Oufit v Vafe FVed Vofs £ Vap vyfi% 3 Vad vf = Lyaf + Ta(f. f).

where
L. f = ;ﬁmmfi ) + Qjﬁcxu, NS (1.24)
and
Ty(f,f) = ;ﬁcz«/ﬁfi, Vifs) + ;EQWH’ Jifs),

demonstrating that these studies are conducted within a p~'/2 weighted space. To the best of our

knowledge, our research represents the inaugural effort to address these questions within the framework
of polynomial-weighted spaces.

The foundation of our results lies in the utilization of the semigroup method. This method, originally
introduced by Gualdani-Mischler-Mouhot in [35], forms the basis of our work and has been further
developed and expanded upon, particularly with respect to the macroscopic component P f. The central
concept of this method can be succinctly summarized as follows: Consider the case where v = 0 and the
function space HgLﬁ Drawing from [58], we arrive at the following inequality:

S (Laf f)mzrag-1r2) < “Mfllmzreg-12y,  HPF=0,
+

where A > 0 serves as a crucial constant. Together with the macroscopic estimates from [19,33] for P f,
we can deduce that [[Sz(2) foll m2r2(u-1/2) < e”\t||f0||§{§L2(#,1/2). Next, for some M, R > 0, define

Ay =—v-Vyo+ Ly —Mxr, Ki=Mxr, Bi=-v-Vyo+Li, Ky;==xuv- V.o,

where x € D(R) is the truncation function satisfying 1;_; 1; < x < 1j_2,9] and we denote xr(-) := x(-/R)
for R > 0. By the results in [8] we have

D (Laf, fo)merz < =Cllflirzms + Crll fllFrce,
n

Take M, R > 0 large, we have (Af, f)pz2r2 < _C”fH%(ng’ which implies [|Sa(t) fll g2z < 6_/\t||f0||§{§Li'
By Duhamel’s formula Sg = S4 + Sp * K154 and Sy = S + S, * K25, roughly speaking, we have
t
I1SElzr2 s mzre < (1Sa)ll a2z o m2r2 +/0 1SB ()| H2L2(u-1/2) > H2L2 (172
x ”Kl”HgLiaHgL?(#*l/?)HSA(t - 5)||H3L§—>H§,L§d3 < Ce .
and hence
t
1S 22 wmzrz < 1SE@azr2 212 +/0 ISL() 2L (u-172) = H2L2 (0 172)

X | Kallgzr2 s mzreu-12) |1SB(E = 9)ll 202 m2r2ds < Ce™.

Thus, the rate of convergence for the linear operator L is established. To estimate the nonlinear part,
we need to define a scalar product by

+oo
((F. 00k = (fr )0z +7 / (Se(r)f, Se(r)g)radr.
Due to the fact that
“+o0
/0 (Se(r)Lf, Se(r)f)dr = /

so after choosing proper 7, we deduce that

((LF 00 = CFf)sz 4 [ (Selr)LE, Selr)uadr ~ 1y

e

e d 2 2
o I15e (M) fllzadr = —Ifllze,



Therefore, it is important to note that the linear operator £ can exhibit non-negativity properties within
an appropriate function space. The estimate of £ within this specific function space empowers us to
establish global well-posedness by combining the nonlinear estimates.

The semigroup method serves as a valuable tool in addressing lower order terms. However, it intro-
duces new challenging terms that require estimation, and this approach needs an assumption of s > 1/2.
Precisely, when applying the semigroup method to analyze the Vlasov-Poisson term V ¢(x) -V, f, we
encounter a departure from the usual case, where integration by parts yields the expected result

(Vw¢(m) : V’Uf7 f) =0.

For the semigroup term, we have

/0 T (Se(r)Vab(2) - Vot Se(r) ).

Since the operators S, (t) and V, are non-commutative, integration by parts with respect to V, is not
allowed and we must use upper bound to constrain this term. By [8] and Duhamel’s formula, we have

HSB(t)f”Hng < tfl/Qef/\tHfHHng_;, and ||SL(t)f||H§L% < til/zei}\t”f”Hng_;'
Due to the extra V, term, we need to use
I1Se()Vad(x) - Vo flluzre St 2 MVed@)m2 Vo |2y S 2 M IVeb (@) m2 | fll a2 s,
which requires s > 1/2.

1.6.1. Comments on the weight (1.17). The polynomial perturbation can be regarded as a change of
variable F' = ju + (v) 7 f1 for (1.1) for some constant k¥ > 0. Then we have

Oife +v-Vafs FVad Vo £ Vad - op(v)2F £ kV,6 - &f = Lo f +Tus(f. ),

with
Li+f = QM) ™ (fx + f£), 1) +2(0)*Qu, (v) " f2), Trx(f, ) = ) QUv) *(fx + f5), (v) * f2).
In order to deal with the extra term +kV ¢ - ﬁ f, we follow the idea of [44] and introduce the corre-
sponding weight function
+k
exp {J} (1.25)

(v)?
OF (0 Vo f £ kVoh- #f).

Such choice of weight function allows us to absorb the extra term by taking integration by parts as

which satisfies
+ko +

v-Vgy(e™?f)=e

+k Lo (oL

(£4Va0 i hi @), (0 Tade D
In contrast to the approach in [44], where the weight function was defined solely as e~?, our weight
function potential (1.25) exhibits dependence on the velocity variable as well. Fortunately, the newly

)LgL%

ko
introduced error contributions take the form of (V¢ - vpu, (e ™2 —1)(v)?* f). These contributions can be
effectively managed when ¢ is sufficiently small, and the velocity derivative of ¢ remains under control,
particularly if ¢ is bounded.

1.6.2. Difference between the polynomial case and the erponential weight case. The primary distinction
lies in the symmetry properties of L, f and I'(f, f) as defined in (1.24). In the exponential case, these
operators exhibit symmetry, whereas in the polynomial case, they do not. This lack of symmetry gives
rise to two significant challenges. The first issue arises due to the introduction of an additional P f term
in the linearized equation. To elaborate further, if we denote

P,.f = aw(t,x)y/ju+b(t,x) - v/ + ct, )|v|* /i
Then by L,P,f =0 and L, is symmetric, we have
(Lufa f) = (Lu(Puf + {I - Pu}f)a Puf + {I - Pu}f) = (Lu({I - Pu}f)v {I - Pu}f)-

Only the term with {I—P,}f remains. While for the polynomial weight case, since L is not symmetric,
one merely has

(Lf, [) = (I{I=P}f, f) = (L{I-P}f, P[) + (I{I - P}f,{I - P}f).

8



An extra term (L{I — P} f,Pf) occurs. Fortunately, we can bound it by
(L= PI.PF) < [ PIE: + eI P2z + C{T - Phpe .

Estimating the P f term can be accomplished through macroscopic estimates, while the last term can be
assessed using the semigroup method.

However, the second challenge arises when we attempt to extend our results to z € R? using existing
techniques. In previous works such as [62,65], applied to the entire space x € R?, the following fact is
relied upon: (I'(g, f), P,h) = 0 due to the symmetry of I'. Consequently, in [62,65], the dissipation rate
functional D(t) is defined as follows:

= > Ve dllts + Do PO flTe + Do (e BT -PLIO5O°fI,

lo| <K 1<]a|<K 0<|al+|BI<K

In the exponential case, the estimation of P, f conveniently avoids complications. However, in the
polynomial case, a departure from this simplicity occurs. This is because, in the polynomial case, the
relationship (Q(f,g),u¢d(v)) # 0 holds for functions ¢(v) such as ¢(v) = 1,v, |v|?. Consequently, the
methods employed in [62,65] are no longer applicable in the polynomial scenario. To address this, we
necessitate the assumption that € represents a bounded domain and Poincaré inequality to estimate P f
via V(P f). However, extending our results to the entire space case remains an open challenge.

1.7. Organization of the paper. In Section 2, we first recall some basic properties of the non-cutoff
Boltzmann/Landau collision operator and then compute the basic estimates for the VPB/VPL system.
We obtain corresponding global results and decay of solutions in Section 3.

2. BASIC ESTIMATES

In this section, we recall some critical results on the non-cutoff Boltzmann equation and Landau
equation and prove several weighted estimates for the VPB/VPL equation.

2.1. Preliminaries on the Boltzmann/Landau equation. Before introducing the upper and lower
bound for the non-cutoff Boltzmann and Landau collision operator, we first state the following lemmas.

Lemma 2.1. ( [7], Lemma 2.5) Let v € (—2,0). Then for any function f, we have

1+2J _ 2y 3
sup [ |u — o[ f(os)ldve SUfllps 7 Iflle" when v € (=3,0), (2.1)
veER3 JR3
and
1+l _a
swp [ v — v [f(v)ldve SISl 2 [1flle when € (=2,0). (2.2)
vE R

Lemma 2.2. For any v € [—3,1] and any functions f, g, h, we have

/R 3 / o= ) g(h()dvdo S 11 zllglee Az, (2.3)
/RS / v = v F ) g(h()dvadv S [ Fllzzllglze By (2.4)
and
/ / v = . g (@) dvado < |zl Illzz - 25)
R3 JR3

If v € (-3,1], then we have
[, [ o= o sw)g v 10 loly (2.
Proof. If =2 <~ <1, we deduce that

/ v = v "2 f(v)g()h(v)dvido S I fleallglezlley < 1 F ez llglle (Bl

If =3 <y < —2, by (2.1), we have sup,egs [gs [v — v [7F2 f(vi)dv, S [ fllzz, which implies that

[, to= w2 wg@hw)dv.do 1l [ lat(@)d S 1Fglalle el

9



This proves (2.3). For (2.4), if v > —2, then it reduce to the (2.3). So we only need to consider the case
v € [-3,—2), in which case we have —3 < v+ l <0Oand -2 <~vy+ % < 0. Then we have

v — |72 dvdv,. < ||gll52-
L, o= ut gt v, < ol

Applying (2.2) to h, we have

3 1_a+3/2 y+3/2
/RS . [0 — v "2 () fo) PR() Pdvdv. S (FIZa BP0 AP L2

Here we apply Sobolev embedding || - |[zs S| - || g:. Thus,

/RS / v = v f(v)llg (V)| R (v) [dvdo,

; _ 1
< ([ [ o=t oo Paan) ([ f 22 ”* = g dvan.)
R3 JR3 R3 JR3 *
< [Iflez llgllz2 (1] 21 -
The proof of (2.4) is then finished. Now we come to (2.5). If =1 <~ < 1, we deduce that

/ o — 0. (0 )g()h()dv.dy S f]1s / )y gh@)de S |1l llgll
R3 JR3 R3

11123 1Al

Illzz

v/2+1

If —3 <~ < —1, we have (0)~0*Y < (v,)=0+D (v — v,)~O+1 | which implies
/ o =0T ()g(0)h(v)dv.dv
/Rs /W v =) O o — 0, 7 (0, () O g (0)h(v) [(v) T dv.do
s /R3 /Rs(l + [0 = 07T f(0a) (0a) "D g (0)R(v) | (v) T dvedo == Ty + T

It is easily seen that Ty S [[fllzr  llgllzz . [1Plez , S [ fllzzllgllez ,, I0llze - Iy € [=2,-1), we
have v+ 1 € (—2,0) and by (2.1),
Ty S sup / o= o £ (04) [ (0s)"OF D do, / l9(v) o) do S\ fllegllglee, 1] L
veRd JR3 v/2+1 v/2

If v € [-3,—2), by Hardy-Littlewood-Sobolev (HLS) inequality (cf. [61, Theorem 1.1, pp. 119]) and
Hoélder’s inequality, we have

x| [ o= e ) | gty g
R3
<l IMlzz , < 17z lgllrs . DAllce

with p = 9+27 € [1,2], and (2.5) is proved. Finally, we come to prove (2.6). For v € [-2,1], (2.6) can be
seen as a special case of (2.5). We focus on the case v € (—3,—2). Similarly to (2.1), we have

v — v || f(vs v2v*v v — v, |7 v ) [(v,) ™Y 1121171;*7);:1 .
//' M7 wllg(v)dv.d S/Rs/wmi DI @)~ g@)(v) dv.dv = I +

It is seen that It < ||fllz: llgl3. S fllczllgll3. - For I, by HLS inequality as above, we have
- v/2 2 v/2

gl s

—(v+1) v/2+1 ~/241

Bz || [ o= erlsw)Pera],

SNz lgl? ) lze < ||f||L2HgHL2p S fllzzllgllz .
° v/2

where p = 55— satisfies 2p € [2,6]. This gives (2.6) and the proof of Theorem 2.2 is finished. O

+2

We also recall some basic interpolation on z.

Lemma 2.3. For any function f and constant k € R, we have || fg| gz S mineya=2{[|fllacllgllge}. More
precisely,
Aoz S W) Nmiez + 1 ) lmzrz. (2.7)
I fllzaze S Hf<U>k||Lng + ||f<v>7kHH;L%7 (2.8)
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and for any constant s € (0,1)

1£llzry < I1f(0)"

Proof. Firstly, we use extension theorem [61, Thoerem VI.5, pp. 181] to extend function f in domain
Q with Lipschitz boundary to a function Ef in R?® such that Ef = f in Q@ and |Ef|| gr sy S |l mx(0)
for any k > 0. By Gagliardo-Nirenberg interpolation inequality on R and R? (cf. [55, Theorem 12.83]
and [59, Page 125]), we obtain

1/2 1/2
1B a0 S 100 BII I BSNE s and 1B flug, ) S WVenwsBSlus, ooy

IO (2.9)

Combining the above estimates, we have || || Lo () S ||||Ef||L<>o (R)HLOO . (B2) < ||f||}q/£2(Q ||fHZ12 () Which

implies (2.7). Also, by Gagliardo-Nirenberg interpolation inequality on ]RS, we have
1/2 1/2 1/2 1/2
1Ef| 2@y S 1Bl o | Vo EF | arey S IF Kooy 1 Iy

which gives (2.8). For (2.9), by Young’s inequality, (n) < <n>s<v>k+<n)l+s<v>_fi. Hence (n) is a symbol
in S((n)*(v)* + <77>1+S<1}>_1k—35) (cf. [16]), where n is the Fourier variable of v. Then by [16, Lemma 2.3
and Corollary 2.5], we have (V)| s + || f(v)~*3/(=9)|| 14, This completes the Lemma. [

2.1.1. Upper and lower bound for the non-cutoff Boltzmann operator. In this subsection, we consider the
Boltzmann collision operator Q(f, g).

Lemma 2.4 ( [47], Theorem 1.1). Suppose v € (=3,1],s € (0,1),y 4+ 2s > —1. Let wi,ws € R,
a,b € [0,2s] with wy +wy =+ 2s and a + b = 2s. Then for any functions f, g, h we have

(1) if 7 +25 >0, then [(Q(g, h), f)rz| < (llgllx + lgllz2) 1Pl 2, 1N ez, »

+2s+(—w1) T +(-w2) T w1
(2) if v+25 = 0, then |(@(g, 1), Puzl S (lglly. + gl hllms, 171, , where ws = max{s, (—w1)* +
(—wo)t}, with § > 0 sufficiently small.
(3) if =1 < v +2s <0, then [(Q(g,h), f)rz| < (lgllzy, + llgllr2
max{—(y + 2s),7 + 2s + (—wy)T + (—w2)T}.

o o g 1l where wy =

As a first application, we have the following corollaries.

Corollary 2.5. Suppose vy € (—3,1],s € (0,1),7+2s > —1. For any multi-indices | 5| < 2, any constant
k > 0 and any functions f, g, there exists some constant Cy > 0, such that

(Q(0sh, f), 9(v)**) < Cillflzy

Lemma 2.6 ( [8], Lemma 3.3). Suppose that —3 < v < 1. For any k > 14, and functions g, h, we have
+'y 9

gl

k+v/2+2s kt~y/2°

2k . k—
Qb ), 9{0))| < [b(cos ) sin® =5 Tyl Nollz, , +Cullalee . Mollca, .
< fl(eos0) sin* > 3 sz, Nollz, .+ Cullllzz, ., Malliz, . .
(2.10)
for some constant Cy, > 0. Moreover, for any |5] < 2 we have
(@, Dm). 9(0))] < Cillhllz, gl - (2.11)

Remark 2.7. In [8, Lemma 3.3], the authors only prove the first statement of Lemma 2.6, but the second
statement can be proved in the same way by just replacing p by Oap.

Theorem 2.8 ( [8], Theorem 3.1). Suppose that —3 < v < 1,s € (0,1),v+2s > —1, k > 14 and
G =pu+g>0. If there exists A1, As > 0 such that

G20, |[Gller = A1, |Gy +[Gllrogr < A,

then there exist some constants ~v1,Cy > 0, such that

1 0
2y « _ = 2 21, 22 _ . 2
QG DT ™) < —gloteost)sivd Sy, =B, o+ OB
+ckuf||L2 ||g||HW||fHHW + Cullllz 171y "
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Remark 2.9. In [8, Theorem 3.1], the authors explored both exponential weight perturbation and poly-
nomial weight perturbation cases. In the exponential weight scenario, the estimation involves an infinite
sum, mecessitating k > 22 for convergence. However, for the polynomial case, it has been demonstrated
that k > 14 is sufficient, employing the same technique. Note that whenever |g||Ly is small, we have
gl >1—|lgllLy > Ay Moreover, we couldn’t obtain a better estimate for the term (Q(f,g), g(v)?*)
as the Landau case (see (2.19)) and thus we should put the term p+ g > 0 together.

Lemma 2.10 ( [8], Lemma 2.4 4+ Lemma 2.4). Suppose v € (=3,1],s € (0,1),7 + 2s > —1. For any
functions f,g,h and k > 14, we have

QU9 h()™) S 1 fll gz, min{llglla, 0l oo Wl WA, L}
lgllaz, 1y, Bl L (213)
In particular, by duality we have
QU M-, S Wl gllag, oo, + oz, 1, (2.14)

2.1.2. Upper and lower bound for Landau operator. Next, we give some results about the Landau collision
operator Q(f,g).

Lemma 2.11. Denote m = (v)* with k > 7. For any —3 <~ < 1,|3| < 2 and functions f, g, we have
[(QUf,9p11), g(0)**) < Cill fll 29l 2 (2.15)

and

Qs s F(0)*F) < =l f 172 oy + Cill F 72 (2.16)
for some constants v, Cy > 0.

Proof. The first estimate follows from [11, Lemma 2.5] and in [10, Lemma 2.12] with u replacing by dsu
if necessary. The second estimate follows from [11, Lemma 2.3] and [10, Lemma 2.7]. Note that the
work [10] is for the case v € [-2,1] and [11] is for v € [-3, —2). O

Lemma 2.12 ( [10], Lemma 3.5 and [11], Lemma 4.3). For any —3 <~y <1, k > 7 and any functions
f,9,h, we have

(Q(f,9), h{(v)*") < Ol fll 2 min{llgll e, Nbllez, o lgllee, NAllee, , 3 (2.17)

D,k+1 Jk+1

By duality, we have

QU Dl < szl .. (215
When h = g, we have a better estimate:

(Q(f9),9()**) < ClIfllzllgllZs, - (2.19)
Proof. The proof is similar to [10, Lemma 3.5] and [11, Lemma 4.3] with a little modification. Denoting
m = (v)¥, we have

(QUg) ) = [ 03((67 5 o = (0,67 x fg}hmds
= */ (6" % f)0;90;hm*dv */ (6" * £)0ighd;m*dv
R3

R3

+/ (0;6Y % f)gdjhm*dv + / (0;6  f)ghdym*dv := Ty + Ty + T3 + Ty.
R3 R

3
For the T, T; term, by [10, Lemma 3.5] and [11, Lemma 4.3, we have |T1 [+|T2| < C| fl|rz2llgllizz, Az | -
Now we give a better estimate for the T3, Ty term. Since 9;¢ (v —v,) < [v — v, [7T1, 9;m? < C{v)~'m?,
for the term T3, Ty, by (2.5), we have

T5| < Cllfllz min{liglize,, , Alles, o N9lize, MBlze, 3 (Tal < Clifllezllgllzs,  MRllzs,

D,k+1 D, k+1

and (2.17) is thus proved. For the case g = h, we give a better estimate for T3. In fact,

7= [ (06« gdsgmido = = [ (0567« figPmid 5 [ (067 < )oymP v i= Tar + T
R3 R3 R3
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For the T35 term, similar to the Ty term, by (2.5), we have T55 < C’||fHL$||gH2L2 . For the T3y term, if
D,k
v = —3, then 8;;¢"7 = —8mdy. It is easily seen that

2. 2 2 2 2
T <C [ IflgPmtdo < Clifle I%)ss,.. < Clfllalolly, < ClFlzzlolly -

2k+~

For the case v € [0, 1], we have

IR 2 2 2 2
Tu<C [ o= ullfldmidodo. < Clflulol; |, < Clfluslalds -

2

The case v € (-3, 1] follows from (2.6). Collecting the above estimates on T3; and T52, we obtain (2.19)
and complete the proof of Lemma 2.12. O

For the Landau operator, we need another upper bound which writes
Lemma 2.13. For the Landau operator Q, for any v € [—3,1] and any function f,g,h, we have
QU 9) ) < I fllzzllgllezllPllmz,  [(QUf9) M)l < I f ez llgllez, 1Al &,

Proof. By using integration by parts, we easily have
@) = [ (=67« f)oso0i + @507 « Ngdih)do = [ (67« 1adidh + 20,67 = £)gdih) v
R3 R3

then by the homogeneity of ¢/ and 9;¢, we have [¢% (v—v,)| < [v—v, |72, [0;0Y (v—v.,)| < [v—v, [T
So the theorem follows directly from (2.3) and (2.4). O

2.2. High-order specular boundary conditions. When (2 is the union of cubes given by (1.10), we
give the high-order compatible specular boundary condition from [19, Lemma 3.1 and 3.2]. Although
the proof in [19] is given for exponential decay perturbations F = u + p'/? f, similar calculations can be
applied to polynomial perturbations F' = u + f.

Lemma 2.14 ( [19, Lemma 3.1]). Let (f, ¢) be the solution to (1.3) with boundary conditions (1.12) and
(1.13). Fizie {1,2,3}, x € I'; and v-n(x) # 0. Then we have the following identities on boundary T;:

0% f(x,v) = (=1)*0% f(z, Ryv), (2.20)
for any a = (ay, ag, az) € N3.
As a corollary, by definition (1.6), we have the following boundary values for [ay, b, ].

Lemma 2.15 ( [19, Lemma 3.2]). Let (f, ®) be the solution to (1.3) with boundary conditions (1.12) and
(1.13). Define [ax,b,c] by (1.6). Fori=1,2,3, j #1i and any x € T';, we have

O, 0(x) = Op,ax(x) = 0g,b;(x) = 0,0, bi(x) = bi(x) = 0. (2.21)

2.3. Estimates on the weight. Recall the weight function w = w(|al,|8|) = w(«, B) is defined in
(1.15). We have the following properties of w.

Lemma 2.16. Assume —3 <~y <1,1/2<s<1,v+2s > —1 for Boltzmann case and —3 < v <1 for
Landau case. For any multi-indices o, B and k € N, w(a, ) satisfies the following properties.
o For lan| < |a, |B1] < |B|, we have

w(a, B) ()% <w(a, B1), w(a, B))®* <w(ay,B) for the Boltzmann case, (2.22)

w(a, ) (v)* < wle, f1), wla,B)(v)® < w(ar,B) for the Landau case. (2.23)
e For both Boltzmann and Landau case, and any |a| > 0, |8] > 1, we have
w(a, B) < () Mw(lal + 1,18 - 1). (2.24)
e For the Boltzmann case and any |a| > 1, || > 0, we have

w(e, B) < w(la] = 1,18)*w(|al = 1,]8] + 1) ()" (2.25)
13



Proof. Recall that ¢ = 6s — 3(y—1), p = ¢ + 7—1, r = 2¢ + 6, for Boltzmann case, and ¢ = 3 — (y—1),
p =3, r =2q + 6 for the Landau case. (2.22) and (2.23) are just from the fact that —3 <~ <1 and

p=—-3(y—1)+6s+~vy—1>6s, q>6s,
for the Boltzmann case and p, ¢ > 3 for the Landau case. The estimate (2.24) follows from the fact that
k—plal =gl +r < k=plaf+1) —q(fl —D +r+7-1 < qg-p+y-12=0,
and we conclude (2.24) from the definition of p, q. (2.25) is equivalent to
k—plel =gl +7 < (k= p(la] = 1) = qlB[ +7r)s + (k = p(la| = 1) —q(IB| +1) +7)(1 = 5) + 7,
which is equivalent to
0<ps+p(l—s)—qgl—95)4+y <= 0<qg+pP—q) +7 = (6s—3(v=1))s+~v—1+1.
We thus conclude (2.25) from the definition of ¢, 1/2 < s <1 and -3 <y < 1. O
We can directly deduce the following Corollary from Lemma 2.16.

Corollary 2.17. Assume the same conditions as in Lemma 2.16. Then we have

2 K
la‘rﬂ%)l(:lw (o, B)(v)" < w(0,0)w(1,0), (2.26)
Ia\TﬁB}I(ﬁw (ar, B) ()" < w(1,0)w(2,0), Ia\‘;‘@i Y (o, B)(v)* < w(0,1)w(l,1), (2.27)
max  w?(e, B) ()" < w?(2,0)(v)" < w(1,0)" w(2,0)%°, (2.28)

loe|+|81=2
where k = 4s for Boltzmann case, k = 2 for Landau case.

2.4. Weighted estimates. Next, we come to the nonlinear term for the Vlasov-Poisson term. Noticing
w?(a, B) is still of the form (v)* for some k > 0, we have

Vo (w?(a, B)) = w?(a, B), (2.29)

v
BaCE
+A, 59

for some constant A, g depending on «, 3, k,y. Then we can apply the space-velocity weight e ®)*
To the end of this section, we will assume

[Allre < C < +oo, |[[Y]|re < C < +o00. (2.30)

and hence,

tA, 9

A, gv
e <>2 ‘<C<oo

e 7 | <O <oo. (2.31)

Lemma 2.18. Suppose that —3 < v < 1 for Landau case and —3 < v < 1 for Boltzmann case. For
lal 4+ 8] < 2 and any functions fi, for any function ¢ satisfies (2.30), we have
tA,,59 +A, g¢
‘(U'Vzaf}fi, T g frw(a, 5))L§U¢(Vz¢~vv5§fi7 o 05 frw (e, )z | S IVatlluz | fI3,,
' (2.32)
and for |5] > 0,

S 100, 0Va05 s fre OF O futa e |<C Y 1052 fwaz, B2)ll 22 195 fw(e, £) 212

/2"

[B1]=1 |B2|=[B]—1
laz|=|orf+1
(2.33)
For |aq] > 1, we have
2T )
(V0% ¢ -V, 05~ fre” @7 05 fw® (e, B)) 2 | S IVadllmzllF13 (2.34)

where Aq g is given by (2.29), for some constant Cy, > 0 for both Landau and Boltzmann case.
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Proof. For (2.32), taking integration by parts with respect to V,, we have

+A,.59 Aq +A,
(v Vo0 fr,e” @7 0F frw?(a, ﬂ))ngi 5 (U V>¢65fi, BT 8afiw (a, /3))

+A, g9
/ / v-n(x)e 27 05 frw(a, B)|? dvdS(x).
oQ JR3
For the torus case, the right hand side is equal to zero. For the case of union of cubes, we apply Lemma

2.14 to obtain [0f f1(v)| = 0§ f£(Ryv)| for z € 9Q and R, is given by (1.11). Thus, by change of
variable v — R,v,

iAa ®
[ vl T 08 frwpula, 9 duas(o)
oQ JR3

£A,.89
/ / Ryv - n(z) |35 08 fi (Ryv)u(a, B)|2 dudS(z)
o0 JR3

iAa @
_ / / v n(@)le T 03 f1 (v)w(e, ) dudS(z) = 0, (2.35)
00 Jr3
where R,v-n(zx) = —v-n(z ) Taking integration by parts with respect to V,, and using (2.29), we have
+A, Aa,BU . V$(b¢ +A,

:F(V:v¢ V’Uagfi, <U> 8Bfiw (a ﬁ))LQ = :F(

x,v

g fae 05 fuu(, B

1 Agpv-Vad £ha gt

£ (Ff o fe O 0 w0, B))ag

< (v)Y for —3 <~ <1 and taking summation of the above two estimates, we have

x,v

+A, go +A,
(0 Vatf fere OF 05 feut (@, 9) , F (Vb Vud e o7 "0 fau(0, 0)) iz
SIVaolliz l1(v) 205 few(a, Bz I1(0)2 0 frw(e, B)lzz,, S IVl mzll 11T,
This yields (2.32). Here we used the fact (2.30) and its consequence (2.31).
Notice that d;v - V.05 . f = 32‘;:5; f, Vi=1,2,3, where e; is the unit vector with i-th component
being 1. Then (2.33) follows from (2.24) and (2.31).
When 1 < |a;| < 2, we have

tA, 50

(Vad™ -V, 05 fe o 05 fu?(a, B)) Nez, S (D 192076l ()" 3,057 fu(e, B)lara
[ar|=1
+ ) ||anm¢>||Lg||<v>*%vvag*“1fw(a,B)HLng)||<v>%6§fw<a,ﬂ>\|Lng
|a1]=2
SVl D 11w) 2 Ved5* fuw(a, B)l 22|l fllvi- (2.36)

lar|=1

For the Boltzmann case, by (2.25) and (2.9), we have for |a1]| = 1 that
1(v) =2 V05 fw(a, B) L2z < [[(w) "2 05~ fw(e, B)l| 2 2

S 957 fwllal =1, A)licz s, + 1105 fwllal = 1181+ Dl 2 gt S 1 fllvi-

For the Landau case, by (2.23) we have
1) #V,057 fule, Dllizss < 1) 205 fwle, Hlamy S 105 fulle - 1L, Dll2zs S Iflv-
The proof of (2.34) is finished by plugging the above estimates into (2.36). O
Next, we compute the linear part for the Poisson term.

Lemma 2.19. For |a| + |B] < 2, any functions fi,¢ satisfying (1.3) and any ) satisfies (2.30), there
exists Cy, > 0 such that
+A,

Ehagv
(05 (Vo - vp),e” @7 95 frw?(a, )2 | < Cull Vol m2 | fll 2Lz (2.37)
When || = 0, there exists some Cy, > 0, such that
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tAa,5Y

Z i(aavwd) "V, € w2 aafiwz(aa ﬂ))Li > CaatHaavxcf’H%g
T v

— Cll0°Vedl 21104 = P} fll 2z — CllO“ Va2 Vot | fllvi-  (2.38)

Proof. From integration by parts about 93, we have

+AL Y ) ) +A, g
(05 (Voo -vp),e @7 05 fuw(a, B)) 2, = (Vo0%¢ - Og(vp)w™ (e, B), e 7 05 f)rz
+Ay Y
= (~1)V1V20%¢ - 9 (9p(vp)e” ™" w?(a, B)),0°f) 1 .

(2.39)

By Fourier transform, Cauchy-Schwarz inequality, and using the exponential decay of u, it is direct to
show that (2.39) is bounded by

iAa,B’/f’
/ 0% f0g (8ﬁ(vu)e ()2 uﬁ(a,ﬁ))dv‘
]Rd
When g8 = 0, we temporarily define the projection

pr=( Rgf(u)du+v~/R3uf(u)du+(|v|2—3)/R3

A, v A, 59

Then we splite 2 =14e > —1land fo = Pf+{I — P}f to obtain

IV20“9| 2

Lo S IVedlluzllfllzzrs-

u* =3

f(u)du) L.

£A, 3%

+ (aavx(rb CUl, € () ’LU2(057 O)aaf:t)Lz = :l:(aavx(b T UL, wz(aa O)Paaf:t)Lz

Ay 50

+ (OO‘VI(;S ~op, w? (o, 0){I — P}(‘?O‘fi)L’2 + (8C“Vz¢ cop, (67 @7 — Dw?(ay O)OO‘fi)m . (2.40)

Then one can check that

{I-P}fe ={I - PH{I+ —P+}f. (2.41)
For the first right hand term of (2.40), we have from (1.7) and (1.3)3 that
& 1
Z (Va6 - vp, w?(a,0)PO* f1),, = Z <8O‘V$¢ o, w? (e, O)Ui,u/ —v0%(fy — [-)(V) dv’)
+ oy i=1 RS 2 Lz,

=2C, /Q /RS V0% - 00 (f+ — f-)(v) dvdz = 720(1/98%% . /RS vO%(fy — f-)(v) dvdx

= fzca/ D¢ O Apdpdr = Co 04]|0°V 1|22, (2.42)
Q x

for some constant C, g depending only on «, 3. Here we can directly take integration by parts for the
case of torus. When (2 is the union of cubes, we need to verify the zero boundary values as the following.
Fixi=1,2,3. If a; =1, then 0,,¢ =0 on I';. If a; = 0,2, then by Lemma 2.14 and change of variable
v — R,v, we have on I'; that

o= )@ o = [ (R (s = Ry do == [ 037 (4 = ) 0) do =0
Note that tangent derivatives don’t affect the zero boundary values. This completes the integration by

parts in (2.42). For the second right hand term of (2.40), noticing exponentially velocity decay in pu and
using (2.41), we estimate it by

(020 v, DU — PYOfs) 1y | S 10°Vablza |0° (L — P}l
iAa,Bw
For the third term in (2.40), noticing [e” 7 — 1| < Aq gl[¥]le S A8l Vat)| 11, we have

:EAQ,gw
09Vt vp, (e 0% = Dw(e, £)0°fi) 1z | SN0Vl ez Vet mp | fllvi:

The above four estimates imply (2.38) and we conclude Lemma 2.19.
O

In [8], one only needs to compute z derivative term, but for our Vlasov-Poisson system we also need
estimates about v derivative term.
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Lemma 2.20. Suppose that v € (—3,1],s € (0,1),7 + 2s > —1 for Boltzmann case and vy € [—3,1] for
Landau case. For any |a| >0, |B] < 2, k > 7, there exist constants Cy, > 0 such that, for any functions
f,9,v%, we have for the Boltzmann case,

iAa,ﬁw . _ 9
(O5Q(f e g gud(a A))1s | < llbleos0) sin™ 21,105 Fuotes, D22, |05l Dlzaie,,
+ Cullog fulos Blzzsz 1050w B)lzzsz ., +Cr 3 108, Fwolen 80l 2z |05 gw(o Hllizse .
B1<p
and for the Landau case,
+A, gv )
1(05Q(f, 1), e O5gw(a,B))rz | < Cr Z 105, fll L2205 9l L2 L2-
B1<B
Proof. For both cases, it’s easily seen that
£ha,5v 9 t4a,pv 9
O5Q(f, 1) e @7 Oggu(a, )z, = Y (QO8, [, 05— )6 7 9ggu(a, )1z,
a1 <a

For the Boltzmann case, we split it into two cases: 51 = 8 and 81 < . For the case 51 = 3, by (2.10)
and integration about x, we have

k20 e o7
(QO5 1), 05 gw? (e, B)rz | <lbleos 0) sin® 2 |y 105 fwe, Bz sz, 105 gw(e B)l|z r2

Y/2,% Y/2,%
+ Cullog fulen Blszsz , 1050wl B)lzsz , ..
Notice that
+A, Y 9 9
|€ 2 — 1| < Aaﬁ”wHL;C <'U>_ ,S Aa,ﬂHVIwHH,} <'U>_ . (243)
By (2.11) we have
+A, gY 5
Q05 f, 1), (e " —1)dggw™(a, B))r2 |
1 :{:Aaﬁw
<Cil|05 fw(a, B)(0) g2z ll(e % —1)0ggw(a, B){(v)|lL2L2
Ty /2 Ty /2
<Oul0g fuol D)z, I08ow(e B)lparz , .
For 81 < 8, by (2.11), (2.31) and integration about x, we have
A, gY
(QO8, f.05-p, 1), e 7 05 gw? (e, B))zz | < Cr Y 1105, fwle, Bl rare , |05 gwle, Bl parz -
B1<p
So the proof for the Boltzmann case is completed by gathering the three terms. The Landau case can
be proved similarly by taking integration in (2.15). O

The next two coercive estimates play a key role. For the Boltzmann case, we have the following.

Lemma 2.21. Remind || - ||y, is given in (1.20). Suppose that =3 <~y < 1,s € (0,1),7+2s > —1 and
k > 14. For any function f,g, let G = p+ g > 0 satisfies |G|lp = A, ||Gllpy + |GllL10g L < A2 for
some generic constants Ay, As. Then for Q as the Boltzmann collision operator, and any |a| + |8| < 2,

(05Q(p+g.f),05 fuw(a, B))Lim < —§||b(COS 0) sin” §||L}, 105 fw(a, 5)”2@@/2,* =105 fw(e, ﬂ)”%ng/
+ Cull @) Fllz, gl 1 v, + Coll (o) gllmz £, + Cull 05 132
+ Ck Z 105, fw(a, B1)las

v/2
B1<B

/2

||aﬁgw(a7ﬂ)”H,3/25

(2.44)
for some constants v1,Cy > 0. Moreover, suppose i satisfies (2.30), we have

£A, g0

[(95Q(g, f), (e ™% — 1)0§hw2(a,6))L3,v} < Cull ) gl NIVl ll £l Bl
+ CrllW)* fllmz IVatllmz lgllvillklly,,  (2.45)

and
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+tAL 8¢
(95QU9 1. 05 hw*(@.9) 1y | +|(05Qg, e & Oghu(a,8) ., |
< Cull(wy gl ming | )2 Fllve I0lyic 1y 002 Rl } + Coll(w) ™ a2

x,v x,v

Remark 2.22. By assuming ||g||z: small, we can check ||G||r1 = [ +gllzy > Ay to apply Lemma 2.21.

Proof. First we have (agQ(G,f),@o‘wa(a,B))Lzyv =Y an<am<s( @05 G, 055! ),8gfw2(a,5))Li,v.
We split it into several cases. For oy = 81 = 0, after integrating about x in Theorem 2.8, we have

(Q(G>agf)a agfw2(a,5>)Li,v

1 . o0 o o o
< —Slb(cos ) sin® 5113195 frwle B)3ape | =05 Sl Dlidzn: , +Crldg f13s
T /Q Cullog fluz, lgw(en B)l1as 105 frote, B)l1mz , + Crlgllzz, 10§ froler ),

For the case |f1] > 0,1 = 0, using 0p, G = Jp, pt + O, g, we split it into two parts. By (2.22), if |51| > 0,
we have w(a, 3)(v)?* < w(a, 3 — B1). Then by Corollary 2.5, we have
Q011355 1), 05 (s D)1z | < ChlIGG s, fuoler, Bz, 105 fuwler, Bz ,

< Cill0§—p, fwle, 8= Bu)llL2ms 1105 fw(a, B)l L2 ms -

For the Jg, g term, by Lemma 2.10, we have

Q05,995 5, 135 fu?0 iz | < [ Cullog s Sl 0 guler Dl 105 Fua B,

+ Cll9s,gllz 105 g, fwla, B)llus ., 105 fwla, B)|lms ,dr,
For [a1] > 0, since %' p = 0, we have (Q(03, G, 955! f), 8§f<v>2k)L§)v = (Q(95 9,955 f), 8gf(v>2k)Lz,u
By Lemma 2.10, we have

1

(@519.955: 0550z 1 < [ CullOg=51 £l 105 gt B) s, 195 Futn D) d

+C [ 1051011, 10575: fuoten Bl ., 195 Futes D)l

Gathering all the terms, we have
(e} o 1 . 0 o
(%Q(M +9,f), 8/3 fw2(04, 5))Lg,v < —§||b(COS 0) sin” §||Lg) Ha,@ fw(a, 5)||%gL3/2 .

— 0 fules B)Ban: , +CulOgfI32 +C 3 108, Sl Bo)llez s, 108 frolen llnz s,

1611<l8
+a | 2 18R 051t A 05 e Dl
a1sSo,01 S
+ Ck > 105, 9llz2 1055, fw(e, B)llas ., 105 fwla, B)|a: , dx
2 oy <a,B1<B s | +|61]>0
+Co [ Ngllzg, 105 fute 8)I  da. (2.47)
Q v
Now we only need to prove that
/Q||9||L§4||3§fW(a’B)II%;/de S ) P allaz I1F13 (2.48)
and for all oy < a, 81 < B, || + |B1] > 0,
/Q 1052 9ll 22, 10552 fwle, B)llas 105 fFwle, B)lla: ,dz < (1(v) *gllmz I FI3, - (2.49)

The fifth term on the right-hand side of (2.47) follows similarly by changing the order f and g. First,
for the case |az| = |81] = 0, we have

| Naloz, 195 rutes D) o S Lol 2,195 foten )

18
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This gives (2.48). For (2.49), we split it into two cases: |a1| 4 |B1| =1 and |a1| 4+ |B1| = 2. For the case
loa| + B = L, by [ fgllzz < I fllzgllgllzs, we have

[ 1052 0ll,10551 Fute D)l o, 105 P D o

y/2+42s
<105 gll e 2, 105752 fwlew, B)l| s mre . . 1105 fwla, B) 2 s (2.50)
~N9s, 9liLg 2,119, ’ L3HS 540,198 ) LZHS
Sl gl 10575 fwla, B)llcsms .., 1FIv:

We again split it into two parts |a| 4+ || = 1 and |a| + |3] = 2. For the case |a1| + |51] = || + 8] = 1,
we have |a — ay| = |8 — B1] = 0. Then by (2.8) and (2.26), we have

Il Dllosne .. S 1F0O0) | czm , + 1w Ol , < 1l
We then consider the case |a1| + |51 = 1, |a| + |8] = 2. This time we have o —a;| =1, | — S| =0 or
o — a1 =0, |8 — 1] = 1. For the first case, by (2.27),

0%~ fwle, D)l s s ., < Ifw(L0)mrms , + [1fw(2,0)[520: , S 1 F v

v/2+2s v/2 ™

For the second case, |3| > 1 and by (2.27), we obtain
95—, (e B) g ., < N0, Dz s + 0L Dy s < 1

v/2+2s

For the case |a1| + |51] = 2, we have |a| + |8] =2 and |a — a1| = |8 — 1] = 0. Thus
| 19539122, 105 5 Ften Bl ., 195 Fote )

S 059l Lz s, | fwles D)lliens,, , 105 fwla B)lzm: , < ||<U>149||ng||fw(a,ﬂ)||L;oH;/2+25||f||Yk-
(2.51)

By (2.7) with suitable k and (2.28), we have
| fw(a, B)|| Lo mre < fw@0)laza: ,, + 1fw®,0)la26:s , S 1]y

v/242s ~/2 ™
These estimates imply (2.49). Substituting (2.48) and (2.49) into (2.47), we obtain (2.44). For (2.45),
by (2.13) and (2.43), we have

W

(03Qg. . (¢ &% — 1)oghu?(.B),, |

x,v

£A, 5% ,
< 3 (min {1052z, 195752 Froen Bl sl = 1) 02" 0 hav(er B) 12,
a1 <a

B1<B
e o A, gt
+ 19529l 3, 100552 Fu(a, Bl ol O = 1) 05w, Bz, )

—o 7iAa’5w o
195 Pl 1055 w(a Bl 2l €% — Doghw(aBllzzms ). (252

Applying L>® — L? and L? — L5 Holder’s inequality and using the first term in the minimum, the first
right-hand term of (2.52) can be estimated as

Yo M08 gl 2 10575 fwle B)lleems , + D 195 9llarz 10552 fwle )l e n:

/2 /2
[ |+]B1]=0 |1 |+]B1]=1
b 105l 15T Fuen Bz, ) Aa sl T s 95 b B) s,
|a1[+]B1]=2

< I(v) gllaz

z,v

Vel fllvi 105 (e, ) 2 s
The second right-hand term of (2.52) can be estimated similarly and then we deduce that

. (2.53)

a,fB

tAy 5v
(95Q(g, ), (e * " = 1)dfhw* (e, 8)) 1 | S () gllaz I Vatilliz | F v |05 hew(er, Bl e

x,v ~/2
1) fllaz IVl llglv log hw (e, B)ll Lz as -
LA, gt A, g0

The proof of (2.46) is similar by replacing the term (¢~ 2 —1) by 1 and e 7. Note that we keep
the minimum in (2.52) this time, and the proof is omitted for brevity. Thus Lemma 2.21 is proved. O

We can also prove a similar result for the Landau case.
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Lemma 2.23. Let —3 <y <1, Q be the Landau collision operator and k > 7. There exists a constant
Cr > 0 such that for any function f,g,h, and any function @ satisfies (2.30), we have the following.
(1) For any |a] + 8] < 2,

(05Q(u. [), 08 fu?(a, B)) < —711105 fw(a, B)II72 12 + CrllOf fll72 2

+Cu Y (105 fwlon Bz 10Ggw(@ Dllany. FPY
B1<B
(2) Remind the norm || - ||y, is giwen in (1.20). For any |a| + |8| < 2, we have
|(95Q(9, 1), 05 fw*(e 8)) 1z | < Cillg(w) 1z IIf I, (2.55)
LA, g0
(95Q(g, 1), (™ ™" = 1)dghw(@, B)) 1o | < Cillg(w) Iz, Vet mallf villPllvi, (2.56)

and

(05Q9, ), 05 h?(@. 9) x| +|(05QUg. 1) e & D5, 9) |
< Cellg(®) a2, min{ i | @Yhlvi, o) llvi IBli b (2.57)

Proof. Notice that (BE,“Q(M,f),aawa(a,B))Li’v = Zalga’ﬁlgﬁ(Q(aglu, 5 ﬁlf),agfw%a,ﬁ))@m. We
split it into two cases: 81 = 0 and |B1| > 0. If 51 = 0, after integrating about z in (2.16), we have

Q1,95 1), 05 fw?(a, B))rz, < —mll0F fwle, B)l[72 2 + CrllOf fll7zrs-
For the case |B1| > 0, by (2.23), w(a, 8){v) < w(a, 8 — B1). Then by Lemma 2.12 we have
Q03,1493 5, 1), 05 Fu* (s )12 | < CillFp froln, Bz, N5 gw(as Bl zars,
< Cill05_p, fw(e, B = B1)ll2r2 105 gw(e, B)|| L2 22,
So (2.54) is thus finished by gathering the above two terms together. Next, for (2.55), notice that

(33@(9,]”),agfwz(a,ﬂ))L%v = Z (Q(aalgaag gll )7agfw2(aaﬂ))l/%v'

ar1<a,f1<pB

We again split it into two cases: |az| = |f1] = 0 and |az| + |B1] > 0. For the case |az| = |B1] = 0, by
(2.17) and (2.43), we have

(@0.05.).95 008z, | < [ Cullallall (e = 1)(0)05 fulo. 8) do
< ckngnL;oLgnvmwnH;Hagfww,mni% < Cullg) Nz, 192wl 11
For oy < v, f1 < B, |aa| 4+ |B1] > 0, by (2.17), we have

Q851 9,05=51 ), 05 fuw?(a. B))rz | < /QCkllagfglngllag 5, Jw(e, Bz, 105 fwla, B)| 1z de.

We split it into two cases, |ai| + |81] = 1 and |aq| + |F1] = 2. For the case |oy| + |f1] = 1, by
I fgllce < [ fllzellgllzs and similarly as (2.50), we have

/Q\\ag;muzuag “5, fwla, B)le, 0§ fwla, Bl g dz < 11(v) gllmz, 10525) Fwle, B)ll s e, IIflvi-

We again split it into two parts |a| + |3] = 1 and |a| + |3] = 2. For the case |a1| + |51] = o + 8] = 1,
we have |a — ay| = | — f1] = 0. By (2.26) and (2.8) we obtain that
lfwle, B)llzarz , S 1fw(0,0)l[rzrz, + [1fw(, 0z, S Iy

For the case |a| + |8| = 2, either & — a1| = 1,|8 — 1] =0 or |a — ay| = 0,|8 — B1| = 1. For the first
case, by (2.27) and (2.8), we have

1097 fuw(e, B)llzars, , < Ifw(L0)lmizs, + 1 fw(2,0)ll k223, S I fllvi-
For the second case, this time |3| > 1. By (2.27) and (2.8), we have
108—p, fw(e, B)llLzrz | < Vo fw(0, Dlrzrz + [[Vofw(l, Dllgrz < 1fvi-
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For the case |a1] + |fB1| = 2, we have obviously ||+ |3] = 2 and |a — a;| = | — f1| = 0. Similar to
(2.51), we have

/ 195, 9ll 2219525} fw(e, B)lla, 105 frw(a, B)llLs, du < [I(v) gl 2

x,v

fwla, Bz, [1fllvi-
We obtain again from (2.7) and (2.28) that
[fw(a, H)llLeers,, < Ifw(l0)l[mies, + [[fw(2,0)lmz2e3 < [ fllvi-

The proof of (2.55) is done after gathering the above terms. For (2.56), by (2.17) and (2.43), we have
P

(@500 9). (¢~ 1)ogm(.9),, |
A, gt

Y /Haalg\lwmm{llag “gifw(e, )l (e = 1) (0)dghw(a, £)| (2.58)

a1 <a, B<B1
+A, gY
{v)a5 =5 fw(e, Bllzz I(e™ ™% —1)05hw(a, B)ll 2, }
5( Z ||3alg||LooL2||3§ E‘ffw(oz, )||L§,L2D + Z \\3"‘19||L3L2||8§ ET w(a 75)||L2L2D

[ar|+]B1]=0 |ar[4B1]=1
+ > 1052 gl 22105751 Fw(e, 5)||L30L33)Aa,6 Vel |05 hw(a, B)|| L2 2,
ot [+]B1]=2

S ) gllmz Vel el F v 1Bl v,

where we apply L™ — L? and L3 — L% Holder’s inequality. The proof of (2.57) is similar by replacing

£A,.8% £A, 8%
the term (e T — 1) by 1 and e (? . Note that this time we keep the minimum in (2.58), and we
omit the proof for brevity. This completes the proof of Lemma 2.23. O

For the local existence, similar to [6] we have

Theorem 2.24. Suppose that —3 < v < 1 for Boltzmann case and —3 < v < 1 for Landau case. For
any k > ko + 2, there exist small constants o, 7o, To > 0, such that if fo € Xy, satisfies p+ fo > 0 and

Eko(0) <0,  Ex(0) < A, (2.59)
for some A >0, Then the Cauchy problem
atf:l: +vaf:t :sz¢v1)fi :I:VTgbvu: Q(f:l: +f¥7.u“)+Q(:u+f:|:af:t)+Q(:u‘+f$7fﬂ:)7

—m¢:Agﬁ—ﬂMu Awwm:a £0) = fo,  E(0) = By,

flt,z, Ryv) = f(t,z,v) ony— and 0,¢ =0 on 9N, if Q is given by (1.10),
(2.60)
admits a unique weak solution f € L3, Xy, satisfying p+ f >0 and

sup &, (t) < 70, sup &x(t) < A. (2.61)
0<t<T, 0<t<T,

3. GLOBAL REGULARITY

In this section, we prove the Theorem 1.2. We first establish the macroscopic estimates.

3.1. Macroscopic estimate. We recall the operator P defined in (1.5). It is direct to obtain |lal|7. +
0122 + [lc||22 ~ ||Pf]|2. . We also rewrite the equation (1.3) as

Ofs+0-Vofs £ Vo0 ou—Laf = NP, ~Aeo= [ (F= 1o (31)
with initial data f(0) = fo, E(0) = Ey, where L = [L4,L_] and N = [N;, N_] are given by

Lif:=Q(fs+ f5, 1) +2Q(u, f£), Nx(f) :=£Vad - Vofe +Qf+, f+) + Q(f%, f+)- (3.2)

Our next goal is to estimate a(t,z),b(t,x),c(t,x) in terms of {I — P}f. In contrast to [39], our P is
not symmetric and we can not compare the v;, v; terms on both sides. The following Lemma gives the
macroscopic estimates.
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Lemma 3.1. For both Landau and Boltzmann case, suppose f solves (3.1). For any integer m > 0,
there exists function G = G(t) satisfying

)< D 10 fllears, 10°VaPfz . (3:3)
o<1
such that
aG(t) + Mlas,a,b.dfz2 + MVasllz S IHL = PHfllFere, + INIFiL2 + [Vadllzz, (3:4)
Here Ny is the inner product of N(f) with some linear combination of (1,v;, v;vj, v}, v5|v|?) over v € R3.

Proof. Here we only consider the non-cutoff Boltzmann case and the Landau case is similar. The proof
follows the idea in [39, Section 6]. Splitting f = Pf + {I — P}f, we rewrite (3.1) to be
(Oras + b v+ Ohe(|v]? =3))u+v-Va(ar +b-v+c([v)* = 3))pt Veg-vp
(O +v-Vo){Ie = Pi}f = Li{I - P}f + Ni(f). (35)
Taking the inner product of (3.5) with 1,v2, [v]?, v;v;, i, = 1,2,3, i # j over v € R3, we have
Oat +Va b= (—(0 +v- Vo {I+ —P}f — La{I - P}f + Nx(f), 1)12,
Orax + 20, + 2050, + Vo - b= (—(0y + v - Vo ){Ie = P} f — Lo{l =P} + Ni(f),v])12, (3.6

30ia+ + 60c+ 5V, - b= (—(6t +v- Vw){li — Pi}f — Li{I — P}f + Ni( ), |’U| )L%

and
0z;bi 405,05 = (—(Or+v- Vo ){Le =P} f — Lo {I-P}f, vivj)p2 + (Ne(f), vivj) 2 =t 145 +72i5, @ # J-
(3.7)
By taking the subtraction of (3.6)2 and (3.6)1, we have
vi|T — 1 (o 2 1
e +0,b = (= 0+ v- VoL ~Payf - Lofi—P L) vy 2

=710+ V2i- (3.8)
Taking the inner product of (3.5) with v, v|v|? over v € R3, we have
b+ Vi(axr £¢) +2Vic= (=0 +v Vo {Ie = PiL}f — Lo{I = P}f + Ni(f),v)r2,

50D + 5V (ax £ 6) + 20V,0 = (—(y + v+ Vo) {Le — Po}f — La{l = P} + Na(f), vfo]?) e (3.9)
The two identities in (3.9) implies
2 f—
Voc= (= (0 +v - Vo){Is =Py} f — Li{I—-P}f + Ni(f), %05))%, (3.10)

and
v(10 — [v[*)

Vear = —0bFVep+ (— (0 +v-Vo){Ie —Py}f — Lo{I-P}f+ No(f), f)%. (3.11)
Here we use the fact that [q [v]Pudv = 3,  [os [v[*udv = 15, [gs [v]°udv = 105. By the definitions
(1.5) of Pf and (3.2) of L, we have for ¢(v) = 1,v;,|v|? that
({Ix =P=}f,9(v) =0, (LI = P}f,9(v)) =0, ({ls = P1}f,¢(v)) =0, (v-Vo{le =P}/, 1) =0.
Thus the inequalities (3.6);, (3.6)3 and (3 9); (i.e. inner product with 1,v;, |v|?) become

Orar + Vi -b=(Nx(f), 1)Lz,
Ob+ Vyay +2Vapc £V, ¢ =—(v-Vo{le = Pi}f,v)p2 + (Ne(f),v)L2, (3.12)
30ia4 + 60;¢ + 5V, —(0-Vo{le =Py} f, )2 + (N (f), [v]*) L2
Combining (3.12); and (3.12)3, we have

1 1 ) |v]?2 — 3
e+ 3V b= —c(v- Volle = PL}f, [o])1z + (Ni(f), G )L (3.13)
For brevity, we define
~ (10 — [vf?) 207 -5 ~o(Jv]* = 5)
ga - 5 ) fln - 2 ) gc - 10 . (3'14)

It follows that
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|(7} : vz{I:I: - P:t}f7 fa)' + |('U : vw{I:t - P:I:}f7 gbi)| + |(7) : vw{Ii - Pﬂ:}fﬂ Uivj)|
(v Vo{le =P} f, &) < [Vafle = Py} fl 22

For the Boltzmann case, by Lemma 2.4, we have

[(Qu, ), €a)l < Nz 1 f 12z, 1€allmr2e, < Cllfllzz, QU m) &)l < Iz llez,1€all 2y < Clifl 2,

For the Landau case, by Lemma 2.13, we have

1@k, [), &)l < Nlellzz 22 WEallrz, < Cllfllzz,, QU 1), €l < M f M2yl ez, 1€all 72, < ClIfll 2, -

-5 —
Similar arguments can be carried on inner product with &;, v;vj, {. Recalling the definition (3.2) of
L =[L4,L_], we have

(LS, 8a) ezl + [(LF &pi) 2| + (LS, vivg) 2 | + [(Lf, €2 | S N1 f s, - (3.15)

Step 1: Computation of V,0%. Let |a] < 2. Applying 0% on both side of (3.10) and taking inner
product with V,0%c over z € €, we deduce that

d
||anac||ii < —a/ ({Ii - Pi}aaf, fc)L% . Vmaacdx - / ({Ii - Pi}Vmé)"f, SC)L% : ata%dx
Q Q
+ CI V0%l 2 (10°{1e = P} fll gz, + 10Nyl L2)- (3.16)
Here, for the torus case, one can take integration by parts directly. For the union of cubes case, we have
from boundary (1.6) that 0;,¢ =0 on I';. On the other hand, when «; = 0,2, we have from Lemma 2.14
and definition (3.14) of £, that for 2 € Ty,

({Ie = P30 f. &)z = ({Ix — P }0% f(Rov), &c(Rav)) 2 = —({Ix — P£}0” f(v), &c(v)) 2 = 0.

Note that 0°P4 f(R,v) = 0°P4 f(v) by using (2.21). This implies the integration by parts about V, in
(3.16). For the term 0;0%c in (3.16), it follows from (3.13) that

1 1 -3
Dc = TV — LoVl ~ Pa)or [ oP)ss + (0°Na (), U2

v

By Cauchy-Schwarz inequality, for any small € > 0, we have
~ [ ({1 = Po)V.0° 601z - 0% cde < el 00 + TIV.0" (L — Pa} g, + 207N
Plugging this into (3.16), we deduce that
[V.0%]|* < —% /Q ({1 = P1}0%f, &)z - Vo0%cdx + e[| V0°b||? + || V.0%¢||?
£ S0~ P By, + 10N ). (317)

Step 2: Computation of V,0%b. For fixed i, we use (3.7), (3.8) to compute
Agbi = a0 bi+ Oniwbi = Y (= 0nyz, b5 + O, (Vi + 2i5)) + O, (11 + Y2i) — OpOac

j#i J#i

= Z (010z,¢ = Op, (715 + 725)) + Z O, (M1ij + 72i5) + O, (Y15 + 72i) — 0t 0y,
JFi j#i

= (0n, (v1ij + Y2i3) = Ox, (V1) + V25)) — Oy, bi + 20a, (13 + 720)- (3.18)
j#i

We can rewrite the linear terms Zj# (8mj'ylij — 8wi71j) + 20,,v1; including 14, 715, Y145 as the linear
combination of 8, (—((0¢ + v - Vo) {I+ — P2} f &)z — (LI —P}f,&j) 12 ), where &; are certain lin-
ear combinations of the basis {1, v;v;, |v¢|2}§”j:1. Similar to (3.15), we have [(Lf,&;)r2| < || fl[z2,- Note
that 7(Azaabi7 aabi)Lg = ||Vx8abz\|%2 and (ﬁzixiaabi, 8abi)Li = 7”(9:”8&1)2'“%27 which is trivial for the
torus case and follows from (2.21) for the union of cubes case. Applying 0 on both side of (3.18), taking
inner product with 9%b; over x € ) and summation over ¢ = 1,2, 3, we deduce that

IV0°bl72 = ( - /Q > (02,0% (13 + 72i5) — 0,0% (115 + 727)) - 0°b; d‘T)
i £

— Dy, 0%b; |2 da — /ax.aa i i) - 0%b;
Z(/ s =2 [ 0,,0% (i ) 0% da)
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d (0% (0% (6% (873
< zjj% /Q ({(Ls — Py}, 071, &)1 - 0°b; da —ij /Q ({(Ls — P2}y, 0%, &) 12 - 0,0°b; da

+ CIVL0°b)| (0% T = Pi} fllrazz, + 07Ny llz2).- (3.19)

Here we used integration by parts on 0., and 0,,. For the case of the union of cubes, we need the following

boundary values to complete the integration by parts. For ¢ = 1,2,3 and o = (a1, a2, a3). If a; =0 or

2, then it follows from (2.21) that 9%b; = 0 on T';. If ; = 1, then applying Lemma 2.14 and change of

variable v — R,v, we can obtain from (3.8) that 9%y;; =0, on I'; for j = 1,2,3. Similarly, for j # i, if

a; =1, then 0°b; =0 on T';. If a; = 0 or 2, then it follows from (3.7) that 0%v;,; =0, on I'; for j # i.
Next we calculate the term 9,0%b;. Applying 0% to (3.12)2 yields

010%b; = =V, 0% — 2V, 0% F V0% — (v- Vo {I4 = PL}0%f + 0" No(f),vi) Lz
Then by Cauchy-Schwarz inequality, we have

— [ (1 = P2)0,, 0 6z 0% do < e(|9.0% 0l + [V.0%l3s + [V.0°95)
Q
feY ¢ o
+ello N7 + V.0 {Le = Pe}fl 2z
and (3.19) becomes

d
IV0°b|* < =) 7 /Q ({Ie = PL}0f,&ij) 3 - 00, 0%b; da + €] V,0% 9|72
,J

(6% (03 C (6% (6%
+el|Vedasl7s + el Va0¥el 7 + ;(Ha {Is — Pi}f||?1;L§0 +[0°NylIZ2),  (3.20)
where we choose € small enough.
Step 3: Computation of V,0%. Taking the addition and difference of (3.11) over =, it yields that

Valay +a-)==20b+ > (= (0 + v Vo){I —Pi}f — L {T-P}f + Ni(f)ba)par (320
+

and

Volas —a-) = =2Vu6+ ) (= (@ +v- Vo) {Ie =Pe}f — Lo{I - P}/ + Ni(f),6a) - (3:22)
+

Applying 0% derivative on both side of (3.21) and taking inner product with V,0%(a+ + a_) over Q, we
deduce that

V20" (as +a_ )2 = — / 0(9°b + ({Ls ~ P2)0" . &)z ) - Vol (ay +a_) da
’ Q
— / (v Vo{ly —PL}Of+ Lo {I-P}O*f + 5‘O‘Ni(f),fa)L2 -V 0%ay +a_)de. (3.23)
Q 3
By integration by parts about d; and V., we have

- /Q B, (aab +({I — Py} S, ga)L%) V,0%(ay +a_)dz

-4 [ (0704 ({1 = PL)9° 1. &)sz ) - V20" (0s + ) da
- /Q o (8% + ({1 —PL)O°f, ga)Lg) 8:0°(ay + a_) dz. (3.24)

To apply the integration by parts for the union of cubes case, we write the following boundary values by
using (2.21). If a; = 1, then 9%(ay +a—) =0 on T';. If a; = 0,2, then 9“b; = 0 on T'; and by change of
variable v — R,v and the definition (3.14) of &,, we have

({Ii - Pi}aafv fa)L% = ({Ii - Pi}aaf(RxU)vga(va))L% = _({Ii - Pi}aafv ga)L% = 0.

The time derivative and tangent derivatives don’t affect the zero boundary values. This completes the
integration by parts in (3.24). In view of (3.24) and (3.23), applying (3.12)1, (3.15) and Cauchy-Schwarz
inequality, we have

24



V20 (s +a )+ > [ (0 + (1 = PL)or.60)12) - V.07 (0 ) d

SN0 {Te = P} fllarrz, + 10°Nyl[72 +[V20°blIZ:.  (3.25)

Similarly, noticing that (V,0%¢, V,0%(ay —a-)),, = —(8;0%,0%ay —a-)),, = [|A,0%¢[7., we
apply 0 to (3.22) and take inner product with V,0%(ay — a_) over Q to deduce that

d
V.0 (= )l +218,0%00; + 5 [ SR =~ P}0 . €a)us - Va0 (ay — o) do
+

SN0 {Te =P} fllurrs, + 10" N7z + IV20°blIZ;.  (3.26)
Notice that |ay +a_|? +|ar —a_|* = 2|ay|? +2|a_|2. For the torus case, by Sobolev inequality, we have
IV20l* S IV2el* = 182017 (3.27)

For the zeroth order, we apply the Poincaré inequality to at,b, ¢ in x and use the conservation law (1.9)
to deduce that

2
losly <€ ([ as(taldn) +ClIVaasly < 1oasly,
Q
2
I3 < ¢ ([ oitard )+ CIVabIE < 19.005 (3.9

2
ez <€ ( [ cltoyie) +CI.cli £ I9:0lL; + [Vacly.

For the union of cubes case, it follows from (1.13) that 0,,¢ = 0 on I';. Then by Sobolev embedding
(cf. [15, Theorem 6.7-5]), we also have (3.27). The second equality in (3.27) can be obtained by using
integration by parts. For the zeroth order, the conservation laws (1.14) give the conservation on mass
and energy and hence, the estimates for ay,c in (3.28) still hold. For the estimate on b, we have from
(2.21) that b, =0 on I'; for ¢ = 1,2,3. Then by Sobolev embedding (cf. [15, Theorem 6.7-5]), we obtain
[bll2 S (Vb 2. In view of these facts, we take linear combination Ax (3.26)+Ax (3.25)+(3.17)+(3.20)
and summation over |a| < 1 and £ with sufficiently small A, e > 0 to deduce that

0G() + A Y 110%ay,am, b, dlIZe + AIVedlizs S =P} fllEzre, + INlI7 + 1 Vadlze,

lal<2

where

a=> > /Q ({14 = P4}0°f.6) 2 - Va0 cda + 2 /Q ({4 = P4 }0°f.&ij) 2 - 0, 0%b; dov

* Jal<t

+ )\/ (aab + {1y — PL}O"f, ga)LQ) Va0%(ay +a_)dz
. 2

¥ )\/ ({1 = P}0%f,&0) 12 - Vo0 (ay —a_) dm).
Q
This implies (3.4) and the estimate (3.3) can be directly deduced by Cauchy-Schwarz inequality. O

3.2. Estimates on the energy. In this subsection, we give the energy estimates on (1.3).

Lemma 3.2. Let T > 0, n > 0 and k > ko. Suppose [f, @] is the solution to equation (1.3) satisfying
w+ f >0 and E(t) < C.Then there exists functional & (t) satisfying

&) = 1%, + IVadlle, (329)
such that, for any T,n > 0 and k > ko, we have

D& () + MllFIIT, + A D [w(e, 000 (T =PYflI7a e < I fllx, 1115,

lor|<2
+ Cok{L = P}l 12 + 0l Vadllzr + 0P flF2 2 + C(V/Er (8) + €k, () Dic(t).  (3.30)

for some generic constant A > 0 and any sufficiently small n > 0.
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Proof. We proceed by considering spatial derivatives and mixed derivatives. Notice that |¢] Lo S
Vedllg: < E() < C, which verify (2.30) and we can apply estimates in Section 2.4.

Step 1. Estimates with mixed derivatives. Recall that A, g is given in (1.16). For any |a|+|8| < 2,
we apply 95 to (1.3), and obtain

atagfi + ag('v . wai) + ag(vw¢ : vai) + 8g(vw¢ : UM)
=05Q(f+ + fx, 1) + 05Q(p + fx, f£) + 05Q(p + f5, f£). (3.31)

+tA, 8¢

Thus, taking inner product of (3.31) with e~ % w?(a, 8)95 f+ over Q x R?, one has

+A, 59

1 iAa’gd) el 2 —2 qa 4';
§at||€ 2(v) aﬁfiHLQ . + (Aa’lgat(b<’l)> 85fi,e (v) w ( 6)6ﬂfi)

T v

A, 50 A, 50

+ (v V05 fare ©F w(a, B)05fs) e + D (Opv- Vel g fere 7 wi(a, B)05 fiu)ia
BN
iAaﬁab +A, 5o )
(v ¢ \% aﬁfﬂ:ve (=) ( ﬁ)aﬁfﬂ: L2, + Z 0"V, ¢> Vo aoc alf:l:ae W w (aaﬁ)agfi)];iu
ol
+A, g¢ +A, g

+ (ag(vrd) ! ’U[L), (1;)2 w2(a7ﬂ)agf:|:)Liyv = (agQ(f:t + fIvM)?e @2 w2(aaﬁ)8gf:|:)Li’v
+(05QUu+ f f2) + QU+ f, fi), 0P (0, B)O f) 1z

+A

4
+(O8QUE+ fa 1) +05Q+ f, f1), (6 O = 1)wP(a, )05 2) s (3.32)

We denote the second to tenth terms in (3.32) by I to Iy and estimate them one by one. For Iy, we
make a rough estimate:

L] S 10l 1 1%, (3.33)

Notice that [|¢]|z> < [V¢lla1 < C, which verify (2.30) and we can apply estimates in Section 2.4. By
(2.32), we deduce that |l + I4] < [|Va@| m2 I f]3, - Next, after applying (2.33), when |3] > 1, we have

IS C Y0 1052 fula B Bars |+ ull0f fule, B)2as

|B2]=|B|—1
|az|=]a|+1

for any n > 0. By (2.34), we have |I5| < ||V ¢l us| fII3, . When |3] = 0, using (2.38), we have
Y Lo 2 Cadil|0°Vullze — Cl0* Vol 12110°{1 = P}l 1212 — ClO* Vol 2 IVotd |l [lf Iy
+

> Cadi||0°V o8l Tz = nll0*VadlTz — nllw(e, 0)0° fIl7z 2 |

= Cyllo*fllzz , — ClO*VadllLz Vel ]l flv
for any n > 0. When |8 > 1, we have from (2.37) that

Z 6| < CrllVadl a2 fll m2r2- (3.34)
+
For the Boltzmann case and for convenience, we define
Ifll =" > Claliaillof fwle B)liars , - (3.35)
lee|+181<2
For I, since 0 € [0, 2], we have sin® § < 1 and hence if k > 14 we have
Ib(cos 6) sin® *||L sIFI%, < 16||b(0089)Sln *HLlllnyk (3.36)

For Boltzmann case, applying Lemma 2.20, we have for any n > 0 that

g2 o
>zl < [Ibleos 0) sin® 2 1y 105 Fuw(a, B)ll 2 cz , 105 Fuw(e, B)llz c2
276 v/2,%
+
+nllfI%, + Coll I3+ C Y 1105, Fwle, B2z 105 fola, A2

B1<pB
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1 50 o
< 7 Ib(cos 0) sin” 321198 fw(a,ﬁ)llimm +allfI3, + CollFlZz
+ Ck Z 105, fw(a, ﬁl)”LiLf//Q 105 fw(a, 5)“L3L3
B1<pB
For the Landau case, it follows from Lemma 2.20 that

SMl<ce Y 105 FII722 < nllfII%, + Cn”f”%{gW,
* || +|8]<2

/2°

For I3, for Boltzmann case, we deduce from (2.44) that

1 . 50 o o
ZIB < _§||b(C050) sin? §||L(19Haﬁfw(avﬁ)||2L§Lf{/2 L 71||‘96fw(0‘75)||2L§H3/2 + Ck||<”>14fHH2
T ,

fI3,

x,v

F ORI +Co S 108, Futen 6l 108 Fuole Bl .
B1<p

For Landau case, note that and from (2.54) and (2.55),
D Is < =m0 fwle, B)l[7a 2 + CrllO5 fl1Zare
+

+C, Y 1108, fwle, B g2 02 108 fw(e, B L2z, + Crllf () Nlmz, 1£13,,
B1<p

for Landau case, with some constants 1, Cy, > 0. For Iy, for Boltzmann case, we have from (2.45) that

o] < Cr(I(0) " fllz, + OVl lF I35 + 1) Fllz V2ol (1 v + OISl

and for Landau case, from (2.56) we deduce

o] < Ci(I{v)" fllzz, + O IVadllm I £

Combining the above estimates, we take summation Zla\+lﬁl<2 + Cla),8 x (3.32) with 0 < n < 1 and
constants C|,| |5 satisfying (1.18) to deduce that for the Boltzmann case:

1 . 1 L0
§5t\|f||§ck +0r Y CaClapoll0*Vadll7z + g”b(COS@) sin? §||Lé||f||§7k +nllfII3,

o] <2
< Liblcost in? 2 2 2 +C 2
< 16H (cosO)sin” Sl Ly I Il +nll flly, + Cosell fllzz,
+ ool fl1%, + Ck(Hvx(b”Hng”%/k + IVaolliz + £l x5

+ (1 llxas + OVIVodllm £ + 110 Va6l (£l + C)Hfllyk>, (3.37)

and for the Landau case:

1 (0%
§3t||f||§(k + 0 Z CaCla)0ll0 Vz¢||%g +’Yl||f||§/k

lor|<2
< 1% + Cosll e, + ClOBIL 111, + Co(IVabliz 1713, + IV 261
171 + (1710 + C) IVl I F1, + 11 Vel (v + Ol ), (338)
for some generic constant v, independent of k, where we let k > 14. Next notice that
IV2612: S IV 20003 < Vo fI2a sz S 171, - (3.39)

For union of cubes case, we apply embedding [15, Theorem 6.7-5] with boundary values 9,,¢ = 0 on T';
to obtain (3.39). Taking difference of (1.7) over £, we have 0y(ay —a_) = =V - [ v(f4 — f=) dv. So

10:llee < V20 0I5 | Vatidllr S IV20bl1z S 800812
Slovas —a )z SIVafllzzes S Iflx,- (340)

For the Boltzmann case, applying (3.36), (3.39), (3.40) and choosing n < %, we have

1 o ol
0 (51513, + Y CaClagoll®™VadliZ: ) + 2SI,

| <2
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< Cellfldz, + Cllfllx, 111, + Ck(IIVMIIHngIIka + VeIl + 111, 1135
+ (£ + OVl A5 + 1150 Vol (1f i + C)IIfHYk), (3.41)

for some generic constant v, independent of k. Here C, and Cj,| o are given in (2.38) and (1.18)
respectively. If | 5| > 1, by interpolation we have

Crllog fll72 , < CllaaflleH\m < 24||3“f|\L2Hw+> +Cull0°fll7z | <
Also, by Sobolev embedding or Poincaré’s inequality,

IVadllaz S IVl = 1200l S Il S ll Fllve + Cyll Fllare.

In view of the above two estimates, choosing 1 > 0 small enough, (3.41) implies that

< LS, + Cullo s, (342)

1 o gl
0 (51713, + 3 CaClagoll®™VadliZ: ) + 2113,

| <2

S22 + Ol llx 11, + V2@l + (VEka (8) + Eky (1)) Di(t). (3.43)

For the Landau case, one can apply a similar calculation as (3.38) instead of (3.37) to derive (3.43) by

using the same technique and we omit the details for brevity.

Step 2. Estimates with spatial derivatives. For any |a| < 2, we apply 0% to (1.3), take inner
+Aq,00

product with e~ ™% w?(,0)0% f+ over Q x R? to deduce that

1 +An 09 5 +A, 00 9
SOle =T 0 a2+ (Aa0Bid(v) 20 fare T w?(@,000° fi)

tAq,09 +Aq, 00

(v V.0%f1,e o wz(a,O)aafi)Liy ( 2@V, 0%f1, ¢ Wz 2(a70)8“fi)L2

z,v

+An 00 +A,, 00

F Y (0MVe- V0" fae @ w(a,000%fx),, £ (0%(Vad-vp) e @2 w?(e,000%f+)
o1
+Aq,09

= (0°Laf +0°QUs + [y fo)ie OF wia,000°f1), , (3.44)

where Ly is given in (3.2). We denote the second to seventh terms in (3.44) by J; to Js and estimate
them one by one. Similar to the calculation of I to Is from (3.33) to (3.34), one can obtain the following
estimates by using (2.32) and (2.34):

[Ty + T2+ I3+ Ja| S (100l + 1Va@llms) ILF1F,

S Cllodllz 1%, + IVadlmz I 15 S 1 lx 11, + v/Ere () Di (1)

where we apply (3.39) and (3.40) for the terms [[V36||z> and [|0;¢| Lo respectively. For Js, using (2.38),
we have

Js > Codi]|0°V 0|72 — Cll0°Vao|| 2 [|0°{L = P} fll 212 — Cl0°Vod L2 [ Vet mr | fllvi
> CaatHaavacd)H%% - 77||6avx¢||2L3 - 77||w(017 O)aa{l - ]-)}f”igr[‘?y/2

= Cyllo (T = P} 7212 — O/ Eny (8)Di(?)
for any n > 0. Here C,, is given in (2.38). For the term Jg, we need some different estimates. Noticing
L (0*Pyf) =0, we split Js into
tA4 06
Jo = (0°QQu+ fi+ for{Te —Pi}f)e F wi(a,0)0°fs)
+ A, 00
+ (aaQ(fi +f:F’Pif)’e @) wz(a’o)aafi)b% v
£da,00 Y2
+ (aaQ({Ii - P:l:}f + {I$ P¥}f7 ) e W w (avo)aaf:t)Lz Y
=: Jr+ Jg + Jy.

We further split J; as

= (aaQ(2:u + f:l: + f3F7 {I:t - P:I:}f)aw2(av O)aa{lﬂ: - Pi}f)Li Y
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+ (8aQ(2M + f:l: + f:F7 {Iﬂ: - P:I:}f)7w2(a70)aapif)lliwu

+ (6(1@(2” + fi + f:F7 {Ii - Pi}f)a (6 @ — 1)7112(0(, O)aafi>Li.v
= Jr1+ 72+ Jr 3.

For Boltzmann case, we deduce from (2.44) that J7 ; satisfies

1 L0 .
S < — < Ib(cos ) sind Sy (e, 000 (T~ P}f2,
I Ty /2,

— Dlw(e 00 (L= P}l e | + Civ/Er (ODu () + Cull0*{T— Pl .
For J7 2 and J7 3, for the Boltzmann case, we deduce from Lemma 2.4 that
|72l S (C+ [0) * fllmze2) T = Pl a2z llw? (0, O)P F 2z,
SIPflIze + Col{T = PYfl3212 + Civ/Eno (DD(1).
It follows from (2.45) that
[J78] S IVl ((C 1) fllaz KT =Py v P fllyi + [{0) T =P} fllmz (C + ||f||Yk)||Pf||yk)
S (Ve () + €y (1)) D).
For the Landau case, it follows from (2.54) and (2.55) that
S < = (e, 000" (T~ Py + Cello™ T~ PYfIF 1 + Co/Ex, (D4(0),
+

with some constants 71, Cx > 0. Applying Lemma 2.13 and (2.56), we have
[ Jr.2l S (C+ 1 F1l2)HE = Py fllazrz [P flazaz S nllPfllHzre + Col{I = P} fllF2 2 + Ci/Eke () Di(1),

and

T2l S (C+ 1(0) Fllz Vel I = PYfllvill v S (VEro () + Exo (8)) Dic(t).

For Jg, we deduce from (2.46) that for the Boltzmann case:

sl < I1Ko) Fllz 12 P F vl fllvi + 1) P Fllz vl fllve S Vo (DD (),
and from (2.57) that for the Landau case:

[Tl S () |laz
Here we let k > ky. For Jg, we split it as

)P fllvilfllvi S V/Eko (1) D ().

Jo =0 QUL ~ P} + (I ~ P} fup) e o w(0,0)0° (L ~ PL}ffs)
FO°QUL ~ P} + (I~ e} O (0,000 PLfy) .

=:Jo1 4+ Jo 2.
Then for Boltzmann case, applying Lemma 2.20, we have for any n > 0 that
. ko0
ol < lbcos 0) a2 1y o, 0)0° (T = P} fll g 07 (T~ P} e 0l ez,
+ Cillw(a, 0)0°{T — P} f[|p2 2 10°4T = P} fw(a, 0)|| 2 2

v/2-1/2 v/2-1/2
< < 1b(cos0)sin? Ly (o, 000 (1~ P} S,
+nllw(e, 000 T =P}z 2 |+ Crnl{T =P |21z,
For the term Jg 2, by Lemma 2.4 we have
[Jo.2| < Cllw(e, 000 = P} fl|pa 2| pll r2: [|0°P fw(ex, 0) | 22,
<nll0°PfIIZ: |+ nlwle, 00T =PHfl7ap2  + Cryl{T =P}z,
For the Landau case, we have from Lemma 2.20 that

|Jo| < CyllO“{T =P} fllr22210% fl 212
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< nllw(a, )0 (I =Pyfl[72 2 +nll0°PflZ:  + Cyll{T=P}fl7p .

Taking summation } -, }7, <, (3.44), combining the above estimates for J; to Jy, applying (3.36) and
(3.42), we deduce that for small n > 0,

1 i’gtp « 2 2 71 « 2
00 Y (e 0% el + CallVadlh) + 5 D (e, 000 (1= PYf |22

|| <2 |a|<2
S e, 11y + Cot L = PYF 1212 + 1l Va6l + 1P Iz 2 + C(/E(6) + Exy () Di(8):
(3.45)

Here, for the Boltzmann case, we use the fact that ||b(cos6)sin®~2 %IlL; < & |b(cos ) sin® %IIL;» which
follows from k > kq. Taking linear combination n x (3.43) + (3.45) and applying (3.40), we obtain

K&t + Ml FIF, + T D (e, 000 (L= P 1

|| <2

S Wi 1 Ve, +ll £ 1172 22 +Con e

{I=P} f[lr2 2+l Vo bl 72+l P f |12 2 +C (/ En (£)+Eny (£)) D (1),
(3.46)

where & (t) is given by

1 +Aq 09
&) = TNk +1 Y CaClaoll*Vaslta + 3 D7 (Glle =07 0% fellfa | + Cathl| Vaollis )-

N T |al<?
(3.47)
It’s direct to verify that & (t) satisfies (3.29). For the second right-hand term of (3.46), we split it as
2z S nlPflFzce +1 ) lw(e, 000 (I =P}f|72 . (3.48)
o] <2

Choosing 7 sufficiently small, the second right hand term of (3.48) can be absorbed by the left hand side
of (3.46) and we obtain (3.30). This completes the proof of Lemma 3.2.
Il

3.3. Recover the energy from semigroup method. According to Lemma 3.2, we only need to deal
with term [[{I — P} f||g22 without velocity derivative on the right hand side of (3.30). In order to
eliminate this term, we define the semigroup generated by £ given in (1.4) to be Sg(t). Then we first
give some estimate on S, (), which is the solution operator to the equation

Wf+v-Vof £Vad-vp=Lsf, [f0)=fo, —Dad= / (f+ = f-)dv, / ¢(t, x)dr = 0. (3.49)
R3 Q
If the domain 2 is union of cubes given by (1.10), then we further assume
Ond =0 on 9N. (3.50)

To obtain the estimate of (3.49), we denote —A;" [os(-)+ — ()= dv to be the solution operator to the
second equation of (3.49). Then we define linear operators A = [A4,A_], B=[B;,B_] and K, K as

Ay =-v-Vy+ Ly —Mxgr, Bi=-v-Vy+ Ly, K;=Mxg,
Ky =*+pv- VIA;I/ (V4= ()=)dv, L=-v-Vydtmw- VmAgl/ ()4 = ()=)dv+ Ly,
R3 R3

where M > 0 is a large constant and x € D(R) is the truncation function satisfying 1j_; 1) < x < 1j_z 9
and we denote xgr(-) := x(-/R) for R > 0. For the case of the union of cubes, we consider the domain
of these operators, i.e. A, B, L, with restriction of specular-reflection boundary condition for f and
Neumann boundary condition for ¢:

f(Rwv) = f(v) ony_, 0,A;" /RS (f+— f=)dv=0on o0.

Then we have the following lemma.
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Lemma 3.3. Consider both Boltzmann and Landau cases. For k > kg, there exists g9 > 0 such that if

[fllzzr2 < eo, (3.51)

ko+4

then we have
_z
1Sc®) fllazr: S O Flfllazz

and (suppose s = 1 for Landau case)

(] 140821V ez )" S Wz (3.53)

/2

(3.52)

2 )
kta

Proof. We will prove (3.52) and (3.53) in two steps. We only prove the Boltzmann case and the Landau
case can be proved similarly.

Step 1. By Duhamel’s principle, we have

Su(t) = Sa(t) +/Ot St — s)K1Sa(s) ds, (3.54)
and

Se(t) = Su(t) + /O St — 5)KaSi(s) ds. (3.55)

Using Lemma 2.6 and Theorem 2.8 with ¢ = 0 for the Boltzmann case and Lemma 2.11 for the Landau
case, we deduce that for k > kg,

(—Af ™ Pz, > TN Fars 2 10 EFIZ (3.56)

here (v - V;0%f,0%f)rz = 0 by using change of variable v > R,v for the case of union of cubes.
Moreover, we use Lemma 2.14 to obtain

(0 Vaf, (0)* f)r2, = 0. (3.57)

x,v

For the case of the union of cubes, and by using change of variable v — R,v. For the case of torus,
(3.57) also holds. Then A generates a semigroup on L? such that

1Sa(®) fllzzrz < 1fllzzrz- (3.58)
Also, by definition of semigroup, we have the equation
OeSa(t)f — ASA(t)f =0. (3.59)

Taking inner product of (3.59) with (v)2¥S4(t)f over Q x R3, we have from (3.56) that

SO S IRy + AN Sa) 1 5, <0 (3.60)
For the hard potential case, i.e. 7 > 0, we have
(0)*Sa(t)fllzzr2, Z 10 Sa()fllrars,
and hence,

1Sa®) fllzzrz < e M fllzzrz, (3.61)
for some A > 0. For the soft potential case and k > ky > ko, it follows from (3.60) that

ONSABfars S —ISaOFI3arz S MRS Bagy + (RPEEIHS AWz,

for some A > 0. Solving this ODE and using (3.58), we have

t
1Sa@flars S e MBH(IF 12 + (RO / AP ds| 12, 1)

S e M f e + (R ETSIIZ, 1

Choosing (R) = ((t) [log(t}]_M)_%, we have

k—k

_ 1—1/2
[Sa@®)fllzez, SO fllzz Lz, (3.62)
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k—ky—1/2
~I

For k > k1 + 4, since |y| < 3, we know that (¢)” 1 < (t)~%. Together with (3.61), we deduce that

ISa(®)fllzzez. S O8N Fnzrz, (3.63)
For the semigroups Sp(t) and S, (t) in exponential weighted space, we have
OSp(t)f — BSp(t)f =0, 0Sc(t)f —LSc(t)f =0. (3.64)

Taking H2L? inner product with p=1Sg(t)f and p=1S.(t)f over Q x R? respectively, we have
Ol 2 S0 f r2rs + Allu™*{T = Pu}(Sp(t) )l , <0,
O3 Se(t)f gz a + OVl + M (T = Pt} Sc()Dldas , <0
where the dissipation rate of Ly for exponential perturbation can be found in [33,36] and ¢ is given by
0= 85" [ (Se()s = (Sef)- v (3.60)
In the second estimate of (3.65), we used the fact that 0y [s Sc(t)f dv+ [z v - VeSc(t)fdv = 0. Thus

S (0 Voo A7 [ (Se)f)s = (SeOf) - dou 0% (Sel))2)

+

= (079, | v V0 (Sc®)+ = (Se()f)-) dv)

(3.65)

1

= (070.-00" [ (Sc)s = (Sel)))-)dv) ;= 500"Vl

Here we take integration by parts on V, with (3.50) and use boundary condition (1.12) to deduce
Jrs v((Sc(t) f)+ — (Sc(t)f)-) dv =0 on 9N for the case of union of cubes.

In order to derive the weighted version of (3.65), taking H2L? inner product of (3.64) with (v)?*u=1Sg(¢t) f
and (V)2 1S, (1) f over Q x R3 respectively, we have

Wl () 12 Sp(t) fll3212 + )‘||<v>k(U7%SB(t)f)”3{§ny
< CRHXRM%SB(t)fH%{gLy

Ol ()2 Se ()12 2 + 0| Vad |3z + A||<v>k(ﬂ_%sﬁ(t)f)||§{§H§
< ClIVatl3z + Crllxrn™2 Sc(t) 1142 -

By macroscopic estimates from [19, Theorem 3.4] for the case of the union of cubes and exponential
perturbation, we have

Orint. (1) + M~ s P Sp(0)lfzrs | < Cll™ ST~ Pz} Sp( g2z
Ou€int,c(t) + 0u[[Vao ||z + Allu_%PM%SL(t)f||§ng;/2 + Vol (3.68)
<O|lp™ {1 =~ Pus}Se(f)llfzse , + [ Vadlis,
where ¢ is given by (3.66) and Eine, B, Eint,c are functional satisfying

Eine.p(t) SIn™2 S5O flltzrs,  Eintc() S ™28t flz12- (3.69)

respectively. Although the macroscopic estimates from [19] are for the union of cubes, the case of
the torus can be similarly derived with simpler calculations; see also [44]. Taking linear combinations
(3.65) + k2 x (3.67) + K x (3.68) and assuming the a priori assumption

||Vm¢\|?{g <, (3.70)
with € > 0 sufficiently small and ¢ given by (3.66), we have
OEp(t) + >\||<v>ku_%53(t)f||§zgp1§/2 <0, 9Ee(t) + /\|\<v>ku_%5£(t)f||§ng3/2 +A[Vaoll3z <0,
(3.71)

/2

(3.67)

/2

where
Ep(t) = ln=2 S ) I3z 2 + K211 (W) 12 Sp() 3212 + Kine.5,
Ec(t) = =2 Sc(t) fl3zrs + K210 ™2 Sc () I3 2 + K€int.c + Va2
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With (3.69), it’s direct to check that
En(t) ~ 1= Sn(t) 32z + 100 1w S f 212,
Ec(t) ~ 11 Se() s +110) ™2 Se(t)f Iizzp2 + V20T
We calculate the first inequality of (3.71) and the second one is similar. When v > 0, we have
(1) + | (0) 113 Sp(t) f 31z <0,
thus

1

() =2 Sp(t) Iz < e 1(0) 02 fllFrage-
When v < 0, we have
KEp(t) + M) F 2S5 (1) 3215 < 0.
Then we apply similar arguments for obtaining (3.62) to deduce that

-39 2 < _26;77\%) -3 f|2 < B E | FI12 3.79
6250 g S0 T 1 Flags 0 F I e (372)

The estimate for hard potential case is also included in (3.72). Similarly, it follows from the second
estimate of (3.71) that

b= Se ) f5r2rz , + IVadllF S O7F (72 fllfzr2 + Vadleollfr2)- (3.73)

Now we turn back to Duhamel’s principle (3.54) and (3.55). For any f, we have from (3.54), (3.63) and
(372) that for kl Z ko,

t
1950 lizrz, < ISaOFlizrz, + [ 1t So(t = )KiSa(e) izis ds

t
SO N fllpzrz |, + / (t— )8l 2 K1Sa(5) fll 2z ds
0

k44

t
_T _7 _7
SOz, + [ (=0 HISaO azis ds < 071 ey

kp+a’

(3.74)

Thus, recalling ¢ is given by (3.66), it follows from (3.55), (3.73) and (3.74) that for k1 > ko,
t
IS0 lmzzs, SISO lizas, + [ I Selt =) KaSa(s) lluses ds
! 0

t
<O F e+ / (t = 5)7F (I KaS(5) fll 22

ky+4

VAL [ (aSa(5) )1~ (aSp())- dullz) ds. (375

Note that by using odd property on pv, we have

/RS(K2SB(5)f)+ — (K28p(s)f)-dv = 2/ p()o- VoA [ ((SB(8)f)+(u) = (SB(5)f)-(u)) dudv = 0.

R3 R3
Also, letting
o1 =82 [ ((S8(5)0)+ () = (Sn(5))-(w) du
when €2 is torus, we know that
[Vadillz S 1Azp1llzz. (3.76)

If © is union of cubes given by (1.10), noticing from (3.50) that 9,,¢1 = 0 on I';, by Sobolev inequality [15,
Theorem 6.7-5], we also have (3.76). Then we obtain from (3.75) and (3.63) that for k; > ko,

t
1Sc(®)fllazre < O fllmzrz +/<t—S>‘€Il<v>4u§(v)v~VI¢1||H3L3 ds
! 0

kq+4

t
_T _T7
<O F e+ / (t—5) | Dnbill sz ds
0

ki+4 ki+4
t
_z _7 _T
SO, + [ (=9 S5O oy ds S O F Sl - BT

33



Next, we check that (3.70) is fulfilled if 9 > 0 in (3.51) is small enough. Similar to (3.76), we have

IVadllaz S 18x0llm1 = || /RS(SL(t)f)—&- = (Sc(®)f)-dvllm;- (3.78)

Then we can obtain that ||Vod|lmz < Sc(t) fllairz S Hf”HiLiOH‘ This closes the a priori assumption
(3.70) and completes the proof of (3.52).

Step 2. For brevity of notations, we let s = 1 for the Landau case. In order to obtain (3.53), we consider
the dual A7 of A, = (v)!A((v)~!f) for any I € R. Notice that

(AT 00 1) 1210 = (W) £ ACP) s = (0079, 4g) 1,
where we let g = (v)?*~!f. Then the taking L2L2 inner product of 8,Sa: (t)f — A Sa-(t)f = 0 with
<v>2kSAl* (t)f, we have
O 0)* S (O Bz + (A7 Sz (DF. (0)* S (1) a0 = 0.
Hence for [ — k > ko,
at||<®>l_kg||%§L% + (<U>2l_2kgvAg)LiL22} = 07

where g = <v>2k_lSA7 (t)f. Integrate over ¢, we have

o0
-k 12
A [ ol
0 Y

PR 1) " gli=oll72 -

That is, for I — k > ko,
A / 105 S0 (0 F 12t < (0 Fl3as. (3.79)

Observe that if f satisfies equation 0;f = Af then g = (v)'f satisfies ;g = A;g, and also that
(Af, () )z = (Aig,9)r2 . Thus, (v)'Sa(t)f = Sa,((v)'f). Moreover, by duality, we have

(SAlfa g)L%,v = (f7 SA;‘Q)L%JJ-

Therefore, for some sequence {¢,} in Schwartz space such that ||y 1212 < 1, we have from (3.79) that

[ sa @ B dt= [t [(@Sa0f00) s [Pt =timint [ (012,85, 0000) 1 e
0 4 g n—roo z,v 0 z,v

n—oo

oo
<timint [ e 10 S, (el , e S 1021

n—oo

for k > ko. This is the estimate for S4(t). To obtain the estimates for Sp(t), it follows from Duhamel’s
principle (3.54) that

([ 10 sa0 e a))” < ([ 1008 8a051z0s ar)
n (/OOO <v>k/0tSB(5)KlSA(ts)fds

Using (3.72), the second right-hand term of (3.80) can be estimated by
[ (] i sumisat =)l ) ds < [ ([ Fle K Sa 0 s de) ds
0 s 0 0

1

o0 2
< (/0 154(5) Iz 2 ds) S Hf”H.EH;Zj_W

Note that V, commutes with S (¢). The first term on the right-hand side of (3.80) can be estimated in
the same way. Thus, for k > ko, we have from (3.80) that

(] 100 Brzss @) < 1N, (3.81)

/2

(3.80)

[

2
dt)
H2L2

/2

Next we apply (3.55), and (3.81) to derive the estimates on S, (¢):

( / St dt)%
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’ dt)%

H2L2

([T 10 5y )+ ([t [ setormasiste s

1
2

SHfHHng_j‘”z "‘/0 (/ [1{v)"Sc(s)K2Sp(t — S)fHHng dt) ds. (3.82)
Applying (3.73), (3.76) and (3.81), the second right-hand term of (3.82) can be estimated by

1
2

L (] 1t semasnt = o),z i) s
S [T Ittt Kasa) s

0

[ME

VAL [ (aSp(0))1 = (KaSp())- dv iy ) ds

=0

(S5 = (SpE)-) dvl3z s dt

Nl=

S(f It vaa

0 R3
= :
2
S( [ 1550 rzss ) S 1z

The term with brace is equal to zero because [, vpdv = 0. Inserting this into (3.82), we obtain (3.53).

/2

This completes the proof of Lemma 3.3. (I
Next, we can introduce a norm
+oo
2 le'
WP = 30 [ ISe(mon i (3.83)
la<270

where the associated inner product is given by

+oo
(F)= [ X (5e(r)o" . Se(r)o" iz rzdr

laf<2
Note that 0% commutes with £ and hence, commutes with S, (¢). Then by (3.52) and (3.53), we have
WA S W prz WA W Nz S W g2, (3.84)

ko+4a’ ~

2

2

where we let s = 1 for the Landau case. Then we can recover the loss of energy by using this norm.

Lemma 3.4. For both the Boltzmann and Landau cases, suppose (f,d) is the solution to the equation
(1.3). Then we have

1

SO + 1 £ 132202 < v/Exo 6Dk (1), (3.85)
where ||-||| is given in (3.83), Ek(t) and Dy(t) are given in (1.21) and (1.22).
Proof. Recall the first equation of (1.3):

Oufe =2Vad-Vof+ Lf +Q(fx+ f5,[4), (3.86)
| S —— ~—~ —_——
Term 1 Term 2 Term 3

where L is given in (1.4). Then we take the ((-,-)) inner product of (3.86) with f and compute every
term separately. Since d; commute with L, we know that d; commute with S, (7) and hence,

(00" £,0° ) = 5oullo fII°.

Next, we compute Term 1. Since s > % implies 1 — s < s, by Lemma 2.10 and (3.84), we have

—+oo
/0 S (Se(r)0 (Vo - Vo f), Se(r)0 )2 padr

lo <2

S Y10 ab VoD llane, S N0 lzz

|| <2 || <2

SIVablll iz o, I lmaez, L S VERODLO)

ko+3/2
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for the non-cutoff Boltzmann case, where we let k > ko + 3/2. Similarly, for the Landau case, we have
from (3.84) that for k > ko + 4,

1 |z

+oo
| X 8e9 (Vo0 Vo). e frzizdr S 3 10°(Va- Tulias

2
ko+4 ko+4
la|<2 |a]<2

SIVedllm2 Iz a2z | SV Ek () Dr(?).

ko+4 ko+4 ™
For the term 2 and for both Boltzmann and Landau case, since lim;_,o(t)~% = 0 in (3.52), we have
o0 o0 d

| X e s semor uandr = [ 3 18e(mo fludr == X 10 sz

O Jal<2 0 o] <2 o] <2
Finally, we consider the nonlinear part, i.e. Term 3. For the Boltzmann case, by (2.14), (3.84), we have
| X (8o Qs + fr. 1), Selr)o" Pz

0

la|<2

<Ck Y D 1100 (fe 4 f5), 0™ f)llamze N0 Flleaes,

la|<2 a1 <«
< Cr(llf 2z, 1 f 11

Here we let kg > 14, k > ko + /2 4 2s and apply similar discussion on «; as in (2.53). For the Landau
case, by (2.18), (3.84), we have

217 F a2z 1 zey IO FllL2rz, < Cov/Exo (H)Di(D).

kg4 /2428 ko+v/2

| S (Se(n)° QUi + i, f1), Se(r)0® )z padr

O jal<2

<Gy HQ(aalfi+f¢75a_a1fi)”LgH;01+ 10% FllLa ez,

la|]<2 1< o/
< Cullfllazee W llmzez Lo 10%F ez |, < Ce/ €k (O)DR(1),

where k > ko +4 and we also apply similar discussion on «; as in (2.53). Combining the above estimates,
the ((+,-)) inner product of (3.86) with 0% f yields

1 2 o
SOLAII™ + D0 fl7z 2 S VER (DDx(1).
lo]<2
Then we conclude Lemma 3.4. O
3.4. Proof of the main theorem. We start this subsection by proving the main stability theorem as

below. Theorem 3.5 and 3.6 together with local existence from Theorem 2.24 will imply Theorem 1.2.
We give the details as the following. To prove Theorem 1.2, we assume the a priori assumption as

sup &, (t) < 2M, (3.87)
0<t<T
for the case v € [0,1] and
sup (1+ )18, (t) < CM, (3.88)
0<t<T

for the case v € [—3,0), where | > g—‘ is a constant and we further assume k > ko + in this case.

Theorem 3.5. Assume that fo satisfies the conservation laws (1.9) and Fo = p+ fo > 0. There exists
k1 > ko such that for

k > ko for Landau case and k > ki for Boltzmann case,

there exists a small constant M > 0 such that if £, (0) < M, E,(0) < 0o, then there exist a unique global
solution f(t,x,v) to the Vlasov-Poisson-Boltzmann/Landau system (1.3) with F'= p+ f > 0 satisfying

& (t) + ADx(t) S [1f 1| xi, Ex (1), (3.89)

for any T > 0, for some generic constant A > 0.
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Proof. We take linear combination & x (3.4) + (3.30) + Cy x (3.85) with , Cy > 0 to deduce that
OuE(t) 4 Ml bl s ARVl + X0l 13, +Coll Iz +A 3 o, 000" (1P} |24
o <2
S x5, + KILT =P 2, + KIN 2 + Cosl{T = PHIr21
IV a Iz + 1P Iz + C(V/Er (0) + Exy (D) DD,

for some generic constant A > 0, where & (t) is given by

C

En(t) = KG(t) + &1 (1) + 70 S o f11P. (3.90)
<2

Here G(t), £1(t) and |||-|| are given in Lemma 3.1, Lemma 3.2 and (3.83) respectively. Choosing x > 0

sufficiently small, and then n > 0 sufficiently small, and finally Cy > 0 sufficiently large, we have

0 (t) + ADi(t) S I1f | x00 Ex(8) + KIN 1 Fr2 12 + (VEno (8) + Eky (1)) Di(8), (3.91)
for some generic constant A > 0, where Dg(t) is given by (1.22). Then one can check (1.21) by using
+ «,0

(3.3), (3.47), (3.84) with sufficiently small k. Note that e 2»? =1 as in (2.31).
Next, recall from Lemma 3.1 that

Ny = (Va0 - Vyfa) +Qf« + fx, f1)) = (EVad - Vo f1,8) +(Qf= + f5, [£):6),

where ¢ is some linear combination of 1, v;, v;v5, v, v;|v|?. For |a| <1, we have

10°(Vad- Vo f O)rzlliz S D 107 Vol 0** Vo fllizrz + Y 10 VadllLa |07 Vo fl g 12

|1 |[=0 Jai]|=1
SIVedllmzll fllma: S v Ek () Dr(t). (3.92)
For the Boltzmann case, by Lemma 2.4, we apply similar discussion on «; as in (3.92) to deduce that
10°(Q(fx + fr: f2), T2, S WFlmzz 1 ez rz, €] mr2e S v/ Ery () D (2).
For the Landau case, by (2.17) we have

10°(Q(fe + fr. f2), €))Lz | S W lmzeell fllzrs, N€lLs, S VEk @)Di(2).

z,v

Therefore, we obtain 3, <, [0 N 22 < Eko (t)Di(t). Then (3.91) implies

O (t) + ADk(t) S (1 £l x, Ex(8) + (V Eko (8) + Eko (1)) Di(#)- (3.93)
Choosing M in the a priori assumption (3.87) and (3.88) sufficiently small, we have from (3.93) that
NHEx(t) + ADy(t) < || fllxy, E(t) for some A > 0. This concludes Theorem 3.5. O

To conclude Theorem 1.2, we need to prove the large-time behavior as the following.

Theorem 3.6. Let I = 0 for hard potential case and | > % for soft potential case. Let k > ko + 2 +1
(and let k sufficiently large for Boltzmann case). If the solution (f,¢) of (1.3) satisfies Exyr241(0) <
M, &;(0) < co. Then there exists a constant A > 0, such that for any t > 0, we have

sup & (t) < 2£(0). (3.94)
0<t<T

Moreover, we have E(t) < e MEL(0) if 0<~v<1, &) S (1+ t)_%gk(()) if v <O.

Proof. 1f 0 < v < 1, noticing that || - [[z2 < || - [[z2, and choosing M in (3.87) small enough, we have

Too N

[ fllxy, S Eke S M, and hence, by (3.89) we have 9;E(t) + A&,(t) < 0. Solving this ODE, we obtain

Ep(t) < e MEL(0). This closes the a priori assumption (3.87) and concludes the case of hard potential.
Next, we assume v < 0. For any | > %, we have from (3.88) that

21

[l x0y S Ero(t) S M(1+1)" 1T (3.95)

—vy+21
21

ot B35 1z = [ (0= (o)~ (o, )05 12 do
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and p’ = . Then by LP — L¥ Holder’s inequality, we have

— —y+21
Let p = —



41 2y 21 it
< 1) Pw(e, B)OFF1 2 7 I w) wle, BYOF fIl 27 < D ET

k-t
—a+2l oy
From definition (1.21) and (1.19), we have &, E 51§l+z < Dy. Then it follows from (3.89) and (3.95) that
—v+21 =
DEn(t) + AE, 7 (t)( sup &m) T L OM(1+t)FE(). (3.96)
0<t<T

Neglecting the second left hand term of (3.96), we have 0,&x(t) < CM (1 +t)7%8k (t). Taking integration
over t € [0,T] yields

T
sup 5k(t)§5k(0)+CM/ (1+t)7ﬁ dt sup E(t).
0

0<t<T 0<t<T
Since % > 1, choosing M > 0 sufficiently small, we have
sup Ex(t) < 28,(0). (3.97)
0<t<T

This gives (3.94). Next, we solve (3.96) directly. It’s direct to obtain that

a =2t A w CM _2
HET (1) = S:67 WA =~ T3 sup &)™ + =1+ TFIER (1),
21 21 \o<e<T 2l
and thus
CM@| — 21y o5 YA CMy -+ 3
17) —(14+t) T LER(E)) > — = ———(141¢) " WI & .
t(eXp{Ql(—Ql + h’l)( ) } k ( )) = 2] eXp{Ql(—Zl—f— |’7|)( ) }(OE?ET k—H)

Note that —21 + |y| < 0. Taking integration over ¢ € [0, 7], we have

2
2

exp{%(l +t)*%ﬂ+1}5,§ll(t) > 0715,%(0)+Cvl/tldt( sup Ew) "
2(=20+ |7]) - " Jo 0<t<T
and hence & (t) < Cy (1 + t)%l supg<;<1 Ex+1(t). Replacing k by k — 1 > ko, we apply (3.97) to deduce

Et) S(U+)5 sup E(t) S (1+1)7&,(0).
0<t<T

21
=

Noticing v < 0, choosing k — | = ko and applying (1.23), we close the a priori assumption (3.88). Using
the standard continuity arguments, we complete the proof of Theorem 3.6. O
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