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Abstract

This contribution presents the results of a campaign of numerical simulations aimed at better understanding the propaga-
tion of longitudinal waves in pantographic beams within the large-deformation regime. Initially, we recall the key features
of a Lagrangian discrete spring model, which was introduced in previous works and that was tested extensively as capa-
ble of accurately forecasting the mechanical response of structures based on the pantographic motif, both in statics
and dynamics. Successively, a stepwise integration scheme used to solve equations of motions is briefly discussed. The
key content of the present contribution concerns the thorough presentation of some selected numerical simulations,
which focus in particular on the propagation of stretch profiles induced by impulsive loads. The study takes into account
different tests, by varying the number of unit cells, i.e., the total length of the system, spring stiffnesses, the shape of
the impulse, as well as its properties such as duration and peak amplitude, and boundary conditions. Some conjectures
about the form of traveling waves are formulated, to be confirmed by both further numerical simulations and analytical
investigations.
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I. Introduction

Pantographic materials are a concrete example of how matter can be designed to exhibit some desired char-
acteristics, mechanical characteristics in such a case. Although they were conceived for purposes related to
theoretical mechanics, i.e., to provide motivations for the study of gradient elasticity theories [1] with extremely
relevant non-local effects, pantographic materials show many characteristics that make them potentially useful
for several applications, see, e.g., the recent review papers [2—6].

Owing also to this fact, in the last five years, intensive research was carried out which was devoted to: (i) for-
mulating generalized continuum models able to synthetically forecast the mechanical response of pantographic
structures both in statics and dynamics, see, e.g., [7—12]; (ii) designing experiments on fabrics manufactured
by means of modern additive techniques such as 3D printing, see e.g. [13—20]; (iii) conceiving refined par-
ticle models able to reproduce experiments and to cast the base for constructing continuum models [21-26].
The largest part by far of research on pantographic materials has been focused on the analysis of small and
large deformation static regimes. On the other hand, contributions dealing with the dynamical response of
pantographic materials are rare in the scientific literature, some examples being [27-29]. The development of
reliable modeling and computational tools addressing the dynamics of pantographic materials could accelerate
the exploitation of such materials in cases of practical interest, where the influence of inertia forces cannot
be neglected. Referring to pantographic beams, one could envisage studies analogous to those recently car-
ried out in [30] and [31] about two-dimensional and three-dimensional Euler—Bernoulli beams, respectively.
Pantographic beams, thanks to their highly compliant (actually zero-energy when perfect hinges are consid-
ered at nodes; see [7, 32—35]) accordion-like mechanism entailing relevant total elongation/compression, that
can be triggered acting on a single cell, could be profitably employed to design underactuated exible robotic
arms [36, 37].

The present study attempts to fill the aforementioned gap, namely the lack of a wide literature dealing
with the dynamics of pantographic materials, building on top of the expertise developed and documented by a
series of previous works related to the modeling of pantographic lattices by means of an intrinsically discrete
model, largely inspired by Hencky’s PhD thesis [38]. Pantographic lattices are modeled as assemblies of two
(usually, but not necessarily, orthogonal) families of elastica beams exhibiting geometrical nonlinearities, which
are mechanically approximated as chains of extensional springs with rotational springs in-between adjacent
elements, see [39, 40]. Aimed at matching real experiments involving large displacements and deformations,
a stepwise strategy based on Newton’s method as the predictor and Riks’s arc length as the corrector was
implemented in statics.

Preliminarily to this contribution, a scarcely known stepwise time integration scheme, that was renamed
Casciaro’s scheme after its proponent, was revisited and adapted to the analysis of the intrinsically discrete
modeling of pantographic beams mentioned previously. A useful starting point for readers interested in stepwise
integration schemes, as opposed to time finite-element-based integrators [41], which can be easily adapted to
deal with material nonlinearities and dissipative forces, is Wriggers’s book [42, Chap. 6] which, in addition to
providing an overview of the topic, also contains several references. Although in such a book there is no trace of
Casciaro’s stepwise integration scheme, this method displays some interesting peculiarities and, notwithstanding
that it was proposed in the 1970s, it exploits modern ideas: (i) a quadratic B-spline interpolation in time for
the displacements; (ii) impulse—-momentum relationship in discrete form at each end of time intervals; (iii)
an optimal choice of two parameters to produce the best, in a sense which will be clarified later, response in
analyzing an elastic one-degree-of-freedom linear oscillator once the a priori chosen time step length is given.
Roughly speaking, Casciaro’s scheme ensures numerical stability for any given time step length, in addition
to filtering the round-off errors and avoiding the beat phenomenon for large time step lengths. Clearly, when
problems with nonlinearities are considered, there is no certainty about the fact that the dynamical response
computed by Casciaro’s integration scheme is still the best. However, this is valid for any integration scheme
available in the literature.

In the present contribution, making use of the aforementioned tools, namely a simple multi-degree-of-
freedom discrete mechanical system and a stepwise integration scheme, we investigate the propagation in time
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Figure |I. Geometry, mechanical modeling, and constraints of the pantographic beam.

of longitudinal stretch waves induced by impulsive loads in pantographic beams, attempting to explore the most
interesting features. Following this Introduction, we recall in Section 2 the intrinsically discrete spring mechan-
ical model used for the description of pantographic beams in plane; successively, in Section 3, the stepwise
solution strategy employed to solve the initial value problem is presented and discussed; in Section 4, the results
of several numerical simulations are reported and thoroughly discussed before presenting some concluding
remarks and outlining possible future challenges in Section 5.

2. Mechanical modeling of pantographic beams

Throughout this contribution, the system sketched in Figure 1, i.e., a pantographic beam, sometimes abbreviated
as p-beam, is considered. The p-beam is formed by cross-like unit cells aligned on the horizontal x-axis, each
one made up of two beam-like elements. Beam-like elements are connected through pivots, i.e., hinges with
rotational springs. Past experience acquired in dealing with pantographic lattices formed by two families of
orthogonal beams families of orthogonal beams [40, 43—45], non-orthogonal beams [46], and with pantographic
beams [47, 48], sometimes modeled through more refined semi-discrete modeling based on classical beam
theories [49-51], proves that the discrete spring system sketched in Figure 1 can describe in a simple and
efficient, yet effective, way real prototypes realize by, e.g., additive manufacturing.

The key idea is to describe the mechanics of the p-beam by means of two kinds of mechanical interactions,
the first being given by extensional springs and the second by rotational springs. These interactions aim at
representing, in a very simple form, the resistance of beam-like beams to extension and bending, respectively.
In addition, rotational springs are also employed to confer a torsional stiffness to the pivots connecting differ-
ent beam-like elements. This straightforward mechanical description could obviously be improved in different
ways. As an instance, the beam-like elements in each cross-like unit cell could be modeled as discrete Timo-
shenko beams, see [52], thus obtaining a more refined description. Furthermore, a 4-refinement strategy such as
that described in [53] could be used, where each beam-like element is described by several springs, both exten-
sional and rotational, with the goal of improving the discrete approximation of beam-like elements as regarded
as continuous Euler—Bernoulli beams. Clearly, the same concept could be applied should beam-like elements be
regarded as generalizations of continuous Timoshenko beams. Referring to the simplest case,! namely consid-
ering the beam-like elements as modeled by Euler—Bernoulli theory and avoiding the use of any A-refinement
strategy, the strain energy stored in each spring can be classified among one of the following

1
beam stretching energy: FE, = EaAEZ,

beam bending energy: E, = b(1 + cos B), (1)

. . 1 T\ 2
pivot torsional energy: E. = EC (y — 5) .



These springs are distinguished in Figure 1 by means of different colours: red and blue indicate extensional
and bending (rotational) springs, whereas black indicates torsional (rotational) springs. Strain measures AZ,
stretching, cos 8, bending, and y, torsion, use only current positions of nodes within the p-beam or, equivalently,
nodal displacements.?> More specifically, the strain measures are defined by

stretching measure:  Af = ||p; — pill — |P; — Pill,
2 2 2
. —pill?> + ok — pill* = llpx — pi
bending measure:  cos § = lp; — pill= + llpx — pill” — llpx — pill ,
2|lp; — pillllpx — pyll (2)
Ip; — pull* + ok — pilI> = llpk — pmll?

shear strain measure: y = arccos

b

2llp; — pwlllipr — pjll

where P; and p; are the reference and current positions of the ith node, respectively (an analogous convention
holds for nodes labeled by indexes j, k, and m). We remark that, because for the generic ith node we have
pi = P; +u;, with u; = (1, v;) being its displacement, the stretching elementary contributions to the total strain
energy depend only on the displacements u; and u;, those due to bending depend only on u;, u;, and u;, whereas
those for the torsion strain depend only on u;, u,,, and u;. We also note that, as evident from (2), stiffnesses
used for specifying the mechanics of the pantographic beam are denoted a, b, and ¢, for extensional, bending,
and torsional springs, respectively.’

Note that the elementary strain energy contribution accumulated within each spring, concurring to the total
strain energy accumulated within the p-beam as a whole system, which defines its mechanics, could take forms
different from those utilized in (2). As an instance, different elementary bending energy contributions £, can be
considered such as those reported in [54, 55]. Indeed, the classical expression 2E, = bB? could equivalently be
used, with the stiffness coefficient b clearly different, generally speaking, from b in (2). By using an elementary
Taylor’s series expansion, it is straightforward to show that when § lies in a small neighborhood of 7, i.e., the
value assumed by 8 in the reference configuration, the two choices for £}, are equivalent.

In conclusion, the total strain energy E of the whole p-beam can be easily obtained by adding for all the
elastic elements the elementary contributions listed in (1). We choose as Lagrangian configuration variables of
the system the nodal displacements and collect them within the vector u. We then define the structural reaction
s, in short the reaction, as the gradient of the total strain energy with respect to the Lagrangian variables

dE
s(u) = P 3)

Furthermore, we define the so-called stiffness matrix K(u) as the Hessian of the total strain energy or,

equivalently, the gradient of the reaction
as
K = . )
u
The gradient and the Hessian of the total strain energy of the p-beam are the only tools which are necessary to
build a stepwise strategy to solve the nonlinear equilibrium equations* in statics. Within this contribution we are
dealing with the dynamical response of pantographic beams and, therefore, we shall introduce the total kinetic
energy of the system. To this end, having in mind physical realizations of pantographic structures already studied
in the past, we take into account two kind of contributions. The first relates with the beams, i.e., mass distributed
along the beams, and the second one with the pivots, i.e., mass concentrated at pivots. More specifically, for a
one-dimensional link having length £, the first contribution reads as

1 [t 1 te 1
~ / peAeV(x) : V(X)dx = _ﬁe . / peAeBZBedx lle = _ﬁe : Meﬁea (5)
2 Jo 2 0 2

where p, is its mass density, 4. is its cross-section area, and v is the velocity vector. This latter vector can be
written by using the matrix of the shape functions B,, which is linear in this case, and the Lagrangian velocities
collected in the vector u.. The matrix B,, which collects the shape functions, can be expressed using the local

coordinate 0 < x < £, as
| 1=x/¢, 0 x/l, O
B, = [ 0 1—x/t, 0 x/t, } : (6)



For links with uniform cross-section, some straightforward calculations give the expression of the elemen-
tary mass matrix contribution

2 010
1 0 2 01
M, = gpeAeee 1 02 0 5 (7)
01 0 2
whereas the elementary mass matrix contribution due to the pth pivot can be written as
wd? 1 0
Mp:pprh[O 1 } ®

where d, and h are the diameter and the height of the pth cylindrical pivot, respectively.” The elementary mass
matrix contributions, both those related to the links (7) and those related to the pivots (8), are the only quantities
that are necessary to assemble the global mass matrix M by a straightforward procedure which resembles, even
if it generally less tedious, the standard one operated for assembling the (global) stiffness matrix, which has not
been reported here.

Total strain and kinetic energies, as defined in the foregoing, allow to compute the mass matrix M, which
in the considered case can be recognized as constant, i.e., not depending on the current configuration, and
the reaction s. These are the only quantities which are strictly necessary to write down the final expression
of the system of ordinary differential equations of motion (Euler—Lagrange equations, see [56]) governing the
dynamics of the pantographic beam. In matrix form, the Euler—Lagrange equations of the considered system
read as

Mii(?) + s(u(?)) — f(r) = 0, ©)

where, in addition to the Lagrangian parameters used for describing the motion, i.e., the displacement vector u,
the velocity vector u, and the acceleration vector i, the external force vector f appears too.

3. Solution of the nonlinear equations of motion by a stepwise strategy

The technical literature is highly populated by contributions devoted to solving systems of nonlinear equations
of motion. It is therefore a very difficult task to choose a small set of significant relatively recent contributions.
In the present authors’ opinion, some of them are given in [57-59]. Wriggers’s book [42] is updated up to
the first years of 2000 and provides a very good introduction to stepwise integration schemes. Starting from
a (possibly non-uniform) time discretization that is deemed suitable for the underlying problem, a stepwise
integration scheme aims at recovering the equilibrium path, i.e., the pair made up of time, ¢, and Lagrangian
variables collected in the displacement u and velocity u vectors, by solving a sequence of initial value problems.
Roughly speaking, for each time interval Az, one of the intervals which are employed to discretize the time
domain until the time horizon, the solution at its right extreme point is computed starting from the solution at
its left extreme. Clearly, choosing an appropriate length for time steps discretizing the time domain is crucial,
especially for nonlinear problems, and, generally speaking, it requires both some preliminary analyses and a
noteworthy experience on the analyst’s side.

Numerical integration schemes that do not require, at least in principle, particularly heavy preliminary anal-
yses should be preferable. Among those which are available, the numerical integration scheme presented by
Casciaro [60] in 1975 appears attractive for its adaptability to the (a priori) choice of the time step length.
However, even if it was published in an important journal such as Meccanica, Casciaro’s scheme is still largely
unknown to the scholars engaged in this research field.

The main idea of Casciaro consists of the use of two free parameters which are being optimized to compute
the best dynamical response for the a priori chosen time step length. More specifically, Casciaro observes that
the numerical solution of the time evolution of a system is always affected by errors depending on the chosen
time step length A¢. These errors may be triggered by choosing a time step length greater than a fraction of
the fundamental (minimum) natural period of the considered system, thus leading to numerical instabilities.
In addition, round-off errors introduced when the time step length is too small may prejudicate, even in a
significant way, the correctness of the numerical solution. Finally, a too large time step length might introduce
spurious beatings, that is beating produced by numerical errors, even for unconditionally stable schemes.



Bearing in mind the aforementioned observations, Casciaro’s algorithm is based on the following features:
(1) within a time interval, displacements are interpolated in time by means of a quadratic interpolation law,
where the interpolation data are given by the values of the displacement and velocity at the beginning and at the
end of the time interval’; (ii) the momentum—impulse relationship in discrete form. The vector collecting nodal
displacements at time ¢, belonging to the time interval #; — #, can be written as

u(E) = uo + o2 — £ + frng?, =0 (10)

Ch—t

with u and u being the displacement and velocity vectors, respectively. Subscripts 0 and 1 indicate the initial
and the final time of the time interval, respectively. The weighting factors By and B;, which are such that
Bo + B1 = 1, are free and may be tuned optimally to improve the performances of the integration scheme.
Evaluating the interpolation law 10 at the end of the time interval (§ = 1), we compute the vector u; as

u; = ug + Boug + Bruy. (1)

The momentum—impulse relationship in discrete form is®

M(u; — wg) + ao(so — fo) + a1(s; — 1) = 0, (12)

where the momentum change M(u; —uy) and the average net impulse «o(so —fy) +a1(s; —f1) can be recognized.
This contains the weighting factors o« and o, which are such that oy + @y = 1, and that, once again, are free
parameters that may be tuned to improve the performances of the integration scheme. Owing to the constraint
relationships og + o; = 1 and By + B; = 1, only two free parameters, say o and 8, among oy, &, By, and B
are independent. These free parameters can be tuned optimally on the basis of 7} (first natural period) and 7,
(last natural period) of the considered problem. In this regard, Casciaro [60] provides analytical expressions of
the parameters o and 8. More precisely, in the case At < T,,/2 one has

1 1 14+ +1+tant T
p=—a= _4_1+_2_ > tan? , O<r<5,
T n?t
. (13)
1 1 1 —+1+tant T
B=—a=,/—+—— — <1<,
4 g2 2tan? T 2

being T = 27 At/T,,. Note that (13), when At — 0, tends to 8 = —a = 1/+/6. Instead, when At — T},/2, we

obtain 8 = —a = 1/m. Conversely, when Af > T, /2, the optimal values are
_ T, n A
o 2nAt 142 (14)
B = T, 4 A
S 2mAt 14263
being
2At—T,
c=——. (15)
Tl - Tn

Formulas (14) contain two additive terms: a hyperbola branch which matches the optimal values of « and 8 at
the end of the interval At < T,/2 and the ratio between two cubic polynomials, which tends, when At — oo,
to the value 1/2. Therefore, the corresponding values of o and § are capable of reproducing a quasi-static
solutions.

In [60], Casciaro does not furnish many details about the properties of the proposed integration scheme
and does not report thoroughly computations leading him to its final formulation. This is probably the main
reason at the basis of its lack of success. Actually, a more detailed description of the integration scheme can
be found in [61], although both [60] and [61] contain some typos in the formulas. Recently, a more thorough
analysis of the Casciaro’s scheme has been carried out in [28], which presents some numerical examples and



analytical computations providing insights into the method, specifically into the rationale leading to the optimal
expressions (13) and (14).

At this point, after having introduced the geometry and mechanics of the pantographic beam as well as the
equations of motion to be solved, we have described almost all the numerical tools which are necessary for
the analysis of the dynamic problems considered within this contribution. What is missing is only a solution
strategy able to get around the geometrical nonlinearities of the p-beam response, i.e., to solve for each discrete
time nonlinear equilibrium equations. First, we expand the reaction s; using a truncated Taylor series

s; =s(ug,uy) ~ so+ Ko(u; — up), (16)

where K, denotes the stiffness matrix computed at the beginning of the considered time interval. According to
(4), we have
as

Ky=—| .
‘ dul,

(17)

From (11) and (12), the displacement variables, i.e., u;, can be eliminated by making use of (11). Equa-
tions (11)—(12), along with the definition of the stiffness matrix (17) and the expansion (16), provide the
necessary ingredients to apply a Newton-like algorithm to the considered problem. In short, starting from what
we define as the solution reminder calculated at the jth iteration

r; = M(uy; — ) + ao(so — fo) + a1(s1; — i), (18)
a new estimate of the solution is found in a Newton-like way by the following recursive relation

ﬁl,j-l—l = ﬁlJ_H/‘_lrja (19)

where the iteration matrix H is defined as

The quantity K; in (20) is the matrix in (4) evaluated at the jth step of the Newton-like iterations performed
within the current time step. At this point, we have also presented all the tools which are necessary to solve
the nonlinear equilibrium problem for each discrete time. We end this section with some remarks. The first
concerns the use of a Newton-like scheme. It is well known that this method is not able to overcome limit
points, i.e., configurations that turn the iteration matrix zero determinant. This is a formidable task in static
problems, where the iteration matrix is the stiffness matrix. In such a case, the Newton algorithm plays the
role of a predictor, which has to be complemented with that of a corrector such as, e.g., the arc-length method
proposed by Riks [62]. Conversely, in the dynamic case, the iteration matrix includes also the mass matrix
contribution, see (20), which regularizes the problem, making the use of a corrector not strictly required.

The second remark concerns the possible inclusion of dissipative phenomena. In such a case, what has been
dealt with above can be easily adapted by considering dissipative forces, as an instance described as d = d(i1).”
It is enough to rewrite the definition of r; including these forces as

r; = M(uy; — o) + ao(so + do — fo) + a1 (s1; +dy — 1), (21)

where a new, adapted, definition of the iteration matrix H; must be used. It must indeed include, in addition to
the mass and stiffness matrices, also the dissipation matrix C;. In formulas, the dissipation matrix is defined as

0C
C_

T daly

(22)

whereas the iteration matrix becomes



Table I. Datasets of material parameters used in the present study.

f a b c
Dataset Cells (mm) (N/mm) (Nmm) (Nmm)
I 200 13 65,000 20,000 22,000
2 1000 13 65,000 20,000 22,000

4. Numerical results

4.1. Preliminary analysis

Before addressing the more challenging large-deformation regime, the results of a modal analysis are to
be reported. These results allow to get an insight into the behavior of the considered system in the small-
deformation regime, around the reference configuration. This kind of analysis turns out to be especially useful
to suitably tune the parameters controlling some features of the time-integration scheme, such as the weight-
ing factors and the time step. A pantographic beam constituted by 200 unit cells was considered. Material
parameters are reported in Table 1.

Kinematic conditions vy = v4 = vg = 0 (u denotes longitudinal displacements and v denotes transverse
displacements) were enforced at nodes 4 and B. Having calculated the mass matrix M and the stiffness matrix
K in the initial configuration, natural frequencies (or, equivalently, periods) and modes were obtained by solving
an eigenvalue problem. They are reported in Figure 2.

It is worth remarking that (see Figure 2) the only uniaxial (extensional) mode is the 10th (with period
T = 0.0530 s), where uniform extension of the pantographic beam is achieved through its characteristic
accordion-like mechanism. All the remaining modes are flexural. Based on these data, the time step was chosen
as At = 10~* s whenever 200 cells, each having length f = 13 mm, the stiffness values, a, b, and c, in
Table 1, and clamped (on the left) boundary conditions were considered for the p-beam. Although most of
the simulations reported in the sequel fulfill all these conditions, a few variations were explored. Clearly, any
variation required a dedicated preliminary modal analysis, as natural periods and modes change when, generally
speaking, the mass and stiffness matrices change. In the sequel, should the present analysis not hold, this will
be signaled, and the most relevant results of the dedicated modal analysis will be reported.

Making use of formulas presented in the previous section, the first and last periods of the pantographic beam,
Ty =19.7sand T, = 3.3 x 107 s in the present case (see Figure 2), respectively, were employed to select the
optimal values of the two free parameters in the time integration scheme.

4.2. Hammer test

In this test, longitudinal vibrations of the pantographic beam (with no pre-stressed elements) as induced by a
compressive impulsive longitudinal load applied to the central point of the right end cell, i.e., node C, see Figure
1, are studied in the time domain. At first, results obtained employing as impulse the triangle-shaped function in
Figure 3 are to be reported. The quantity p in Figure 3 is fixed to be p = —4000 N. The influence of the impulse
duration, denoted with 2r in Figure 3, has been studied through a parametric analysis.

Each row of plots in Figure 4 reports, on the left, the evolution in time of the longitudinal displacement uc,
namely the displacement of node C. In the center, each row of plots in Figure 4 reports the evolution in time of
the velocity u¢. Finally, each row of plots in Figure 4 reports, on the right, the phase portrait of the displacement
uc, i.e., velocity uc versus uc along the system’s trajectory. Results reported in the first row of Figure 4 have
been obtained for 2r = 0.01 s, whereas results for the second and third rows of Figure 4 have been obtained
for 2r = 0.005 s and 2r = 0.002 s, respectively. It is worth remarking that the displacement u¢ in Figure 4(a)
shows a periodic oscillating behavior around its initial value, namely zero.

Each plot in Figure 5 reports stroboscopically the longitudinal stretch profile s,,, namely the difference
between longitudinal displacements of successive central nodes. Stroboscopic profiles correspond to t = 0.005 s
(cyan), 0.01 s (red), 0.15 s (yellow), and 0.2 s (violet). The stretch is amplified by a factor of 100 to make the
plots more readable. Each plot in Figure 5 corresponds to a different impulse duration (2r = 0.01 s, 2r =
0.005 s, and 2r = 0.002 s).

Initially, during the impulse, the pantographic beam undergoes, through the accordion-like mechanism, a
seemingly uniform compression, u#¢ becoming increasingly negative. As soon as the externally applied force
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Figure 2. First |12 natural modes and periods of the p-beam: (a) Ist mode, 71 = 19.7 s; (b) 2nd mode, 7, = 3.14 s; (c) 3rd mode,
T3 = 1.12 s; (d) 4th mode, Ty = 0.572 s; (e) 5th mode, T5 = 0.166 s; (f) 6th mode, T = 0.125 s; (g) 7th mode, 77 = 0.0970 s; (h)
8th mode, 73 = 0.0888 s; (i) 9th mode, T9 = 0.0777 s; (j) 10th mode, T1¢ = 0.0530 s; (k) | 1th mode, 711 = 0.0449 s; (1) 12th mode,
T12 = 0.0385 s. Red and gray denote the natural modes and the initial configuration, respectively.

acting on point C becomes zero, the pantographic beam does not further compress uniformly, hence the dis-
placement u reaches a plateau. At this point, a longitudinal (non-uniform) stretch profile starts to propagate
from the right extreme of the system, see Figure 5.

The observed dynamics can be thus subdivided neatly in two phases, i.e., the initial uniform compression
followed by the compressive stretch profile propagation. Initially, the propagating stretch profile has compact
support. Upon reaching the left boundary of the system, it bounces back and, when it returns to the right bound-
ary, a seemingly uniform extension is observed: the displacement uc grows until reaching a positive plateau,
which corresponds to a second stretch profile propagation. Eventually, such a profile reaches again, owing to
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Figure 3. Triangle-shaped impulse having duration and amplitude equal to 27 and p, respectively.
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Figure 4. Hammer test for a pantographic beam with 200 cells and triangle-shaped impulse. Longitudinal displacement (left column)

and velocity (middle column) evolutions, and corresponding phase portrait (right column) for the central point of the right end cell,
i.e.,, node C. Considered durations of the impulse are (a)—(c) 2r = 0.01 s, (d)—(f) 2 = 0.005 s, and (g)—(i) 2 = 0.002 s.

reflection, the right boundary and the displacement u¢ decreases until reaching zero. Then, the evolution of u¢

repeats periodically.

It is worth noting that the time derivative of the displacement u¢ is zero during the propagation of the stretch
profile, whereas it is non-zero otherwise. It is also noted that the form of i resembles the impulse when it is
non-zero. Note that, looking at the evolution of the displacement u¢, rather surprisingly, it seems that nonlinear
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Figure 5. Hammer test for a p-beam with 200 unit cells and triangle-shaped impulse. Stroboscopic plots of the stretch profile, for

(@) 2r = 0.01 s, (b) 2r = 0.005 s, and (c) 2r = 0.002 s, at time instants = 0.005 s (cyan), 0.01 s (red), 0.015 s (yellow) and 0.02 s
(violet, At = 104 s). Stretch profiles are multiplied by a factor 100 to make the pictures more readable.

pantographic beams, in longitudinal wave regimes, behave as a kind of nonlinear converter, transforming a
concentrated impulse of different forms (see also the results of the simulations presented in Figures 11, 12, 15,
and 18 into large-amplitude square waves.

There is another issue that deserves to be addressed, namely the quantification of energy which is lost by the
system as a result of numerical errors. Time integration schemes that do not enforce conservation of energy, but
only solve balance equations approximately, accumulate small errors that for large times could lead to solutions
which are very far from the real one. As the properties, potentialities, and limits of the time integration schemes
used in this study are largely unexplored, assessing a posteriori to what extent conservation of energy is fulfilled,
because it is not enforced a priori, would provide important information about the scheme. To this end, the total
energy, i.e., the sum of the total deformation energy and the total kinetic energy, has been plotted for each time
instant in Figure 6. Such a computation is reported only for one exemplary case, i.e., the hammer test with
triangle-shaped force impulse, see Figure 3. This figure shows that the total energy initially increases, this being
clearly due to the initial force impulse. After the duration of the impulse, no more energy is supplied into within
the system and, therefore, the total energy should remain constant in time. Figure 6 shows instead a slight, yet
appreciable, decrease, which should however be considered physiological and completely acceptable for the
scopes of the analyses presented in this paper.
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Figure 6. Pantographic beam with 200 cells: evolution of kinetic, potential, and total energies for the hammer test with triangle-
shaped force impulse.

Looking at Figure 4 it is clearly seen that, when 2r is decreased, some disturbances appear in plots of
the displacement up and its time derivative. These disturbances are due, most likely, to the shape change of the
stretch profile during propagation, which can be observed in Figure 5. When 27 is decreased while keeping fixed
the total number of cells along with their size, the ratio between 27, i.e., the support of the impulse, and the total
length of the pantographic beam decreases. As shown by Figure 5, this entails that the propagating stretch profile
changes its shape during propagation. More precisely, for a given time, the stretch profile is increasingly different
from its initial shape when 2r decreases. For a given 2r, the modified propagating stretch profile is accompanied
by an increasingly wide and broad oscillating tail, whereas the amplitude of its initial peak decreases. This
shape change indicates that the propagating stretch profile is not, strictly speaking, a traveling wave. Namely,
the stretch is not a function of the phase, kx 4+ wt, with k the wave number, x the space abscissa of mid-points in
the reference configuration, w the pulsation, when no interaction with boundaries is taking place. On the other
hand, it is known that, in the large-deformation regime, existence of traveling wave solutions is generally not
granted and, most likely, does not hold. It is worth remarking that deformations experienced by elastic elements
within the systems are large in the considered tests, as each time step of the time-integration scheme required
many steps to converge, whereas in the small-deformation regime one iteration should be ideally sufficient to
reach convergence.

Note also that the presented simulations seem to indicate an interesting nonlinear longitudinal stretch wave
propagation property: when 2r is large enough compared with the cell size, the imposed impulse seems to
generate a traveling stretch wave, at least for sufficiently short time intervals. On the other hand, when 27 is
comparable with the cell size, one can observe, even after short time intervals, a relevant stretch profile variation.
Aimed at verifying that to observe changes in the stretch profile during propagation one should let the system
evolve for larger times when large 2r are considered, the total size of the pantographic beam has been augmented
by considering 1000 cells while keeping the size of each cell and stiffness values unchanged. The hammer test
was then performed on the pantographic beam, using as impulse duration 27 = 0.01 s and as impulse amplitude
p = —1000 N. Obviously, for this system, natural periods and modes are different from those reported above
for 200 cells and range from T; = 321.3967 sto T, = 3.3142 x 1073 s. The lowest purely extensional mode
is the 21st, with period 75; = 0.34159 s. Based on this evidence, the time step length has been chosen to be
At = 0.001 s. Figure 7(a) reports stroboscopically the stretch profile for five time instants, i.e., t = 0.009 s
(cyan), 0.029 s (red), 0.049 s (yellow), 0.069 s (violet), and 0.089 s (green). Once again, stretch is amplified by
a factor 100 to make the plot more readable. Figure 7(a) suggests that the stretch wave profile is significantly
varying during propagation even for larger impulse durations 27, provided that sufficiently long, compared with
a given cell size, pantographic beams are considered. It is therefore clear that, while the existence of propagating
longitudinal waves seems likely in pantographic beams, more investigations are required to determine the wave
profiles generating traveling waves: in fact, after a sufficiently long time interval, the impulse applied on the
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Figure 7. Hammer test for a p-beam with 1000 unit cells and triangle-shaped impulse: (a) evolution of the stretch profile; (b)
evolution of the current shape. Stroboscopic plots of the stretch profile and of the current shape, for 2r = 0.01 s, at time instants
t = 0.009, 0.029, 0.049, 0.069, and 0.089 s. Stretch profiles and transversal displacements are multiplied by factors of 100 and 2000,
respectively, to make the pictures more readable.

right end of the pantographic beam decomposes in a series of waves, some of which may be traveling waves. In
this context, some further investigations may be necessary.

Aimed at giving a more complete picture of the obtained results, Figure 8 shows stroboscopically the current
shape of the pantographic beam made up of 200 cells at time instants, from top to bottom, ¢t = 0.005, 0.002,
0.011, 0.016, and 0.021 s, being the employed duration of the impulse 2» = 0.01 s. Transversal displacement
is multiplied by a scale factor of 500 to make the pictures more readable. Analogously, Figure 7(b) shows
stroboscopically the current shape of the pantographic beam made up of 1000 cells at time instants, from top to
bottom, £ = 0.009, 0.029, 0.049, 0.069, and 0.089 s. Transversal displacement is multiplied by a scale factor of
2000 to make the pictures more readable.

The hammer test was performed numerically also making use of compressive impulsive loads different from
the triangle-shaped load discussed so far. More specifically, trapezoid-shaped and zig-zag-shaped loads were
considered for the pantographic beam with 200 cells, see Figures 9 and 10, respectively.

Figures 11 and 12 report, for the hammer test with trapezoid-shaped and zig-zag-shaped impulse, respec-
tively, the longitudinal displacement (left) and velocity (center) evolutions, together with the corresponding
phase portrait (right), for the right end cell midpoint, i.e., node C. The impulse was set in both cases equal
to 2r = 0.01 s. Comments on these figures are analogous to those made for the same test when the impulse
function was triangle-shaped.

We now delve more deeply into the reason why the zig-zag-shaped impulse function was considered. As is
noticeable when looking at Figures 5 and 7, when subjecting the clamped pantographic beam to a compressive
triangle-shaped impulsive load acting on its right end, the stretch profile, which is initially triangle-shaped,
changes while propagating. Indeed, the initial peak lowers its magnitude, whereas a smaller peak arises and
progressively increases in magnitude. A kind of oscillating tail is also forming. Seemingly, a redistribution of the
strain energy along the beam axis occurs during the stretch profile propagation. A legitimate question concerns
whether this redistribution leads to a stationary, i.e., persistent, propagating profile. Aimed at checking whether
the modified profile is (close to be) persistent or not, a compression force impulse, i.e., the zig-zag-shaped
impulse, shaped similarly, albeit not equally, to the modified stretch profile has been applied at the right end.

Figure 13 reports stroboscopically the stretch profile for five time instants, i.e., t = 0.009 s (cyan), t =
0.029 s (red), t = 0.049 s (yellow), t = 0.069 s (violet), and r = 0.089 s (green). The stretch s,, is amplified by a
factor of 100 to make the plots more readable. Analogously to what we have observed previously for the triangle-
shaped impulse, also for the zig-zag-shaped impulse function 27 = 0.01 s is too large with respect to the total
length of the system to appreciate possible changes in the stretch profile during propagation. Therefore, as done
for the triangle-shaped impulse, the total size of the pantographic beam has been augmented by considering
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Figure 8. Hammer test for a p-beam with 200 unit cells and triangle-shaped impulse. Stroboscopic plots of the current shape, for (a)
2r = 0.01s, (b) 2r = 0.005 s, and (c) 2r = 0.002 s, at time instants t = 0.011 s, # = 0.016 s and # = 0.021 s. Transversal displacements
are multiplied by a factor 500 to make the pictures more readable.
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Figure 9. Trapezoid-shaped impulse having duration and amplitude equal to 27 and p, respectively.

1000 cells while keeping the size of each cell unchanged. The same test, i.e., the hammer test with zig-zag-
shaped impulse, was then performed on the pantographic beam, using as impulse duration 2r = 0.01 s and
as impulse amplitude p = —1000 N. As mentioned previously, for this system natural periods and modes are
different from those computed above in the case of 200 cells and, accordingly, the time step length has been
chosen to be At = 0.001 s.
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Figure 1 1. Hammer test for a pantographic beam with 200 cells and trapezoid-shaped impulse. Longitudinal displacement u¢ () and
velocity i1¢ (b) evolutions, and corresponding phase portrait for the displacement u¢ (c) for the central point of the right end cell,
i.e., node C. The considered duration of the impulse is 2r = 0.01 s (At = 1074 s).
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Figure 12. Hammer test for a pantographic beam with 200 cells and zig-zag-shaped impulse. Longitudinal displacement u¢ (a) and
velocity i1 (b) evolutions, and corresponding phase portrait for the displacement u¢ (c) for the central point of the right end cell,
i.e. node C. The considered duration of the impulse is 2r = 0.01 s (At = 104 s).

Figure 14 reports stroboscopically the stretch profile for five time instants, i.e., # = 0.02 s (cyan), f = 0.04 s
(red), t = 0.06 s (yellow), ¢ = 0.08 s (violet), and = 0.1 s (green). The stretch s,, is amplified by a factor
of 100 to make the plots more readable. Figure 14 suggests that, as for the hammer test with triangle-shaped
impulse, the stretch profile is significantly varying during propagation provided that sufficiently long panto-
graphic beams are considered for a given cell size. Evidence collected so far, while suggesting that the problem
of finding a persistent propagating stretch profile generated by an impulse loading is difficult, does not provide
however a definitive answer on the existence of such stretch profiles. Nevertheless, we believe that the previ-
ously exposed ideas underlying the use of the zig-zag-shaped impulse should guide future investigations. Such
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Figure 13. Hammer test for a p-beam with 200 unit cells and zig-zag-shaped impulse. Stroboscopic plots of the stretch profile, for
2r = 0.01 s, at time instants ¢ = 0.005 s (cyan), = 0.01 s (red), = 0.015 s (yellow), = 0.02 s (violet), and ¢ = 0.025 s (green,
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Figure 14. Hammer test for a p-beam with 1000 unit cells and zig-zag-shaped impulse. Stroboscopic plots of the stretch profile,
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investigations might involve parametric studies on the features that characterize the zig-zag-shaped impulse,
such as the support of each triangle-shaped component of such a zig-zag, the amplitude of the peaks, etc.

4.3. Jerk test

What we call jerk test is very close to the hammer test with triangle-shaped impulse described in the foregoing,
except for the fact that, in this case, the impulse is a traction force (p = 4000 N) applied on the central point
of the right end cell, i.e., node C. Parameters of the time-integration scheme were set equal to those utilized for
the hammer test performed on a pantographic beam with 200 cells. In particular, the time step was chosen equal
to At = 10™* s. Figure 15 reports the longitudinal displacement (left) and velocity (center) evolutions, together
with the corresponding phase portrait (right), for the right end cell midpoint, i.e., node C. The impulse was set
equal to 2r = 0.01 s, 2r = 0.005 s, and 2 = 0.002 s. Comments on this figure are analogous to those made for
the same test when the impulse function was triangle-shaped and compressive.
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Figure 15. Jerk test for a pantographic beam with 200 cells and triangle-shaped impulse. Longitudinal displacement (left column) and
velocity (middle column) evolutions, and corresponding phase portrait (right column) for the central point of the right end cell, i.e.,
node C. Considered durations of the impulse are (a)—(c) 2 = 0.01 s, (d)—(f) 2» = 0.005 s, and (g)—(i) 2 = 0.002 s.

Figure 16 reports stroboscopically, for different durations of the impulse, i.e., 2r = 0.01, 0.005, and 0.002 s,
the longitudinal strain profile for four time instants, i.e., # = 0.005 s (cyan), t = 0.01 s (red), t = 0.015 s
(yellow), and ¢t = 0.02 s (violet). The stretch s,, is amplified by a factor of 100 to make the plots more readable.

Figure 17 shows stroboscopically the current shape of the pantographic beam made up of 200 cells at time
instants, from top to bottom, for £ = 0.011, 0.016, and 0.021 s, with the employed duration of the impulse being
2r = 0.01, 0.005 and 0.002 s. Once again, transversal displacements are multiplied by a scale factor of 500 to
make the pictures more readable.

4.4. Double hammer test

In this test, the pantographic beam made up of 200 cells is subjected to the following kinematic constraints
vy = up = ug = v¢ = 0, with D and E being the nodes of the p-beam lying on its vertical symmetry axis
and having, respectively, coordinates (L/2,0) and (L/2,f), see Figure 1. Essentially, two horizontal rollers are
applied at central points of both left and right end cells. In addition, vertical rollers are applied to the upper
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Figure 16. Jerk test for a p-beam with 200 unit cells and triangle-shaped impulse. Stroboscopic plots of the stretch profile, for (a)
2r = 0.01 s, (b) 2r = 0.005 s, and (c) 2r = 0.002 s, at time instants £ = 0.005 s (cyan), £ = 0.01 s (red), t = 0.15 s (yellow), and
t =0.2 s (violet, At = 10~4 s). Stretch profiles are multiplied by a factor of 100 to make the pictures more readable.

and lower points of the central cell. These constraints are sufficient to avoid any rigid motion, while being
compatible with the symmetry of the sought deformed shape with respect to the vertical and horizontal axes of
the beam. Clearly, this change in the constraints affects the natural periods and modes found by means of modal
analysis, which are thus different from those computed above in the case of 200 cells for clamped boundary
conditions. For these boundary conditions, the period of the lowest purely extensional mode is 773 = 0.044307 s,
whereas the first and last natural periods are 7) = 7 s and T, = 3.3065 x 107> s, respectively. Accordingly,
the time step has been set as At = 10™* s. The quantities p and 2r were fixed, respectively, p = 4000 N and
2r = 0.01 s. Figure 18 reports the longitudinal displacement (left) and velocity (center) evolutions, together
with the corresponding phase portrait (right), for the central point of the right end cell, i.e., node C. Figure 19
reports stroboscopically the stretch profile for five time instants, i.e., t = 0.005 s (cyan), # = 0.01 s (red),
t = 0.015 s (yellow), t = 0.02 s (violet), and t+ = 0.025 s (green). Stretch s,, is amplified by a factor of 100
to make the plots more readable. Figure 20 shows stroboscopically the current shape of the pantographic beam
at time instants, from top to bottom, ¢ = 0.005, 0.01, 0.015, and 0.02, and 0.025 s, with the employed duration
of the impulse being 2r = 0.01s. Transversal displacements are multiplied by a scale factor of 250 to make the
pictures more readable.
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Figure 17. Hammer test for a p-beam with 200 unit cells and triangle-shaped impulse. Stroboscopic plots of the current shape, for
(@) 2r = 0.01 s, (b) 2 = 0.005 s, and (c) 2r = 0.002 s, at time instants # = 0.011, 0.015, and 0.021 s. Transversal displacements are
multiplied by a factor of 500 to make the pictures more readable.
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Figure 18. Double hammer test for a pantographic beam with 200 cells and triangle-shaped impulse. Longitudinal displacement (a)
and velocity (b) evolutions, and corresponding phase portrait (c) for the central point of the right end cell, i.e. node C. The considered
duration of the impulse is 2r = 0.01 s (At = 10~4 s).

4.5. Hammer test on a pantographic beam with perfect pivots

The hammer test with triangle-shaped impulse function is considered for a pantographic beam with 200 unit
cells. All pivots are assumed to be perfect hinges and, therefore, the stiffness ¢ is set to zero. The stiffnesses



20

Sw

270 4

-80 |

it

-90

1
0 500 1000 1500 2000 2500
T

Figure 19. Double hammer test for a p-beam with 200 unit cells and triangle-shaped impulse. Stroboscopic plots of the stretch
profile, for 2r = 0.01 s, at time instants # = 0.005 s (cyan), t = 0.01 s (red), = 0.015 s (yellow), = 0.02 s (violet), and # = 0.025 s
(green); At = 10~ s. Stretch profiles are multiplied by a factor 100 to make the pictures more readable.
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Figure 20. Double hammer test for a p-beam with 200 unit cells and triangle-shaped impulse. Stroboscopic plots of the current
shape, for 2r = 0.01 s, at time instants ¢t = 0.005, 0.01, 0.015, 0.02, and 0.025 s (At = 1074 s). Transversal displacements are
multiplied by a factor of 250 to make plots more readable.

a and b are chosen according to Table 1. With this change in the stiffness ¢, the system becomes statically
undetermined when an axial force, such as the considered impulsive load, is applied to the pantographic beam.
Therefore, having in mind to fix the elongation of the mid-line, the constraint up = 0 was prescribed. This
also corresponds, at the macro-scale, i.e., for the homogenized continuum (see [55]), to applying a (reactive)
double force. Clearly, this change in the stiffness ¢ affects the natural periods and modes found by means of
the eigenvalue problem to be solved around the initial configuration. The lowest purely extensional mode is
the first, which has a period 77 = 28.372 s. Accordingly, the time step has been set as At = 0.05 s. The
quantities p and 2r were fixed equal to, respectively, p = 0.1 N and 2r = 1 s. Figure 21 reports the longitudinal
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Figure 21. Hammer test for a pantographic beam with perfect pivots, 200 cells, and triangle-shaped impulse. Longitudinal displace-
ment (a) and velocity (b) evolutions, and corresponding phase portrait (c) for the central point of the right end cell, i.e., node C. The
considered duration of the impulse is 2 = 1 s (A7 = 0.05 s).

LI L T
NEROO
[CESICREIN]
wownn

SRS

-35

o
o
S
=]

Figure 22. Hammer test for a pantographic beam with perfect pivots, 200 cells, and triangle-shaped impulse. Stroboscopic plots of
the stretch profile, for 2r = 1 s, at time instants t = 0.2 s (cyan), t = 0.7 s (red), t = 1.2 s (yellow), t = 1.7 s (violet), and t = 2.2 s
(green); At = 0.05 s. Stretch profiles are multiplied by a factor of 100 to make the pictures more readable.

displacement (left) and velocity (center) evolutions, together with the corresponding phase portrait (right), for
the central point of the right end cell, i.e., node C. Figure 22 reports stroboscopically the stretch profile for four
time instants, i.e., t = 0.2 s (cyan), = 0.7 s (red), t = 1.2 s (yellow), t = 1.7 s (violet), and = 2.2 s (green).
The stretch is amplified by a factor of 100 to make the plots more readable. Figure 23 shows stroboscopically
the current shape of the pantographic beam at, from top to bottom, # = 0.2 s (cyan), t = 0.7 s (red), t = 1.2's
(vellow), t = 1.7 s (violet), and ¢ = 2.2 s (green). Once again, transversal displacements are multiplied by a
scale factor of 500 to make the pictures more readable.

In the case of perfect pivots, the characteristic length scale for the elastic energy of the equivalent continuum,
which is related to the bending stiffness of micro-beams, becomes infinite. Therefore, it is not possible to assume
that high gradients of displacement are concentrated inside small internal boundary layers. As a consequence,
the generation of the square-like wave observed for the displacement u¢ in the case of non-negligible pivots’
stiffness disappears: the elastic deformation energy is never concentrated in a small space interval during wave
propagation.

It is worth expanding the previous sentences, as we stress that this point is crucially characterizing the
mechanics of pantographic beams and, more generally, pantographic structures. The contribution [63] has
recently proven that, for a pantographic beam, shear-rotational springs result at the macro-scale in an addi-
tive strain energy density term depending only on the stretch of the centerline. The contribution [55] has instead
proven that, when bending-rotational springs are much weaker than extensional springs, which is what we con-
sidered in Table 1, then no dependence on the stretch of the centerline is implied at the macro-scale, except that
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Figure 23. Hammer test for a pantographic beam with perfect pivots, 200 cells and triangle-shaped impulse. Stroboscopic plots of
the current shape, for 2 = 1 s, at time instants # = 0.2, 0.7, 1.2, 1.7, and 2.2 s (At = 0.05 s). Transversal displacements are multiplied
by a factor of 500 to make plots more readable.

mentioned previously owing to shear-rotational springs. Hence, when perfect pivots are considered along with
stiffnesses a and b in Table 1, the equivalent homogenized one-dimensional continuum exhibits an infinite inter-
nal length scale, which is roughly (there are, in fact, many of them) given by the square root of the ratio between
the second gradient and first gradient stiffnesses (note that the stretch depends only on the first gradient of the
placement field, whereas curvature and stretch gradient depend also on the second gradient of the placement
field). This entails a high non-locality, namely that the deformation spreads uniformly in a wide area, which is
our explanation of the absence of trails in the case of perfect pivots.

It is thus possible to conclude that trails observed for previous tests are directly related to the parameters a,
b, and c in Table 1.

5. Concluding remarks and future challenges

Pantographic beams have the peculiarity of experiencing local large elongations associated to low deformation
energies. As a consequence, one may expect the onset of peculiar propagating stretch profiles in dynamics
which could possibly be persistent and produce traveling waves. The challenge of identifying a traveling wave
in these structures presents non-trivial difficulties from the mathematical point of view. Indeed, in order to find
traveling waves, one should find a wave form depending on one phase variable only and then solve a generalized
eigenvalue problem to determine the possible propagation speeds together with the associated wave forms. This
conceptual procedure applies more simply to equations having a field structure. Therefore, it may be useful
to work out the homogenized equations associated with the discrete pantographic beam studied in the present
work, which have been derived, albeit for a slightly simpler system, in [55]. This will be the subject of future
investigations, as the asymptotic homogenization of the pantographic beam gives strongly nonlinear equations
that generalize Euler’s elastica.

The preliminary results on discrete pantographic beams that we have presented consist of some numeri-
cally calculated propagating profiles, that seem under specific conditions to propagate without a relevant shape
change. We have identified a stretch profile in compression emerging during propagation, having a larger pos-
itive maximum value ahead and a smaller negative minimum behind with a tail, whose residual oscillations
did not seem, for short traveled distances, to be associated with the unperturbed propagating profile. We have
thus imposed on the free boundary an impulsive external load having these characteristics, i.e., zig-zag-shaped.
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Although we could not find evidence of persistent stretch waves, we are convinced that the ideas guiding our
numerical experiments deserve to be applied more extensively because, as mentioned previously, the problem
of identifying a persistent propagating stretch wave is not easy. It is for this reason that the obtained results
also suggest that the homogenized continuum equations must be studied in order to determine with analytical
or semi-analytical methods whether propagating wave profiles could exist and possibly exhibit a solitary-like
pattern. Indeed, exploring the multitude of possible situations through numerical computations guided by a
trial-and-error method is much more difficult than being guided by the understanding that one might get with a
synthetic continuum model [64-67].

Aimed at guiding the mathematical determination of solitary-like waves, we examined the interference and
superposition of two nonlinear profiles originating from left and right end points of the pantographic beam.
The obtained results indicate that a more in-depth theoretical study is required: in fact, the two profiles travel,
respectively, from the left to the right and vice versa without any apparent relevant interaction. We expect that
this result may be confirmed by the study of the homogenized continuum equations derived in previous works.

The persistence of the propagating profile with no disturbances has been studied by varying the size of the
pantographic beam and the duration of the externally applied impulse. Albeit the presented results are rather
preliminary and a deeper analysis is required to reach a conclusive assessment of the nature of nonlinear waves
in pantographic beams, we are laid to conjecture that zig-zag persistent propagating profiles could exist and
depend critically on the propagating velocity and on the amplitudes of their maximum and minimum peaks.
Should these conjectures be confirmed, one could deduce that the nonlinear dynamics of pantographic beams
shares the extreme exoticity and peculiar mechanical behavior with the statics of pantographic beams. Owing
to the results reported in Figure 14, one cannot obtain a definite answer to the raised question concerning the
existence of traveling waves: in fact, an energy spillover from the original wave form to a modulated wave queue
is observed. This fact could mean either that the conjectured profile is not of solitary type, or that we could not
find the correct amplitude—speed relationship that assures its unperturbed propagation.

It is worth remarking that the analysis presented so far has considered three kinds of external loading.
First, a triangular load in time was considered. Then, a trapezoidal load was considered. Finally, a load was
considered such that it resembles, up to a velocity, the modified propagating wave shape obtained by using the
triangular external load. The immediate next steps for future numerical investigations will consist of the analysis
of wave propagation when amplitude—speed parameters are varied for the impulse profiles considered here. Such
a parametric analysis can be made more efficient once longer pantographic beams and initial-boundary value
problems with non-zero initial displacements and velocities will be incorporated within the numerical time
integration scheme. In fact, one could apply iteratively the numerical initial-boundary problem solving scheme
giving as an input for each iteration the evolved wave form calculated at the end of the previous iteration step.
In other words, we may use the numerical solver as a filter that iteratively selects the wave form until a traveling
wave is obtained.

Future outlooks also include the quantification of the dependence of the numerical dissipation on the param-
eters By and ;. Please note that, by changing 8, and g;, generally speaking, the accuracy and stability of the
method may be affected negatively (this is very likely, actually, and Casciaro’s scheme is indeed based on this)
to an extent that should be quantified, especially for nonlinear systems. Thus, as in the solution approach we do
not enforce any energy balance, this shall affect the conservation of energy. A systematic study on the effect of
the parameters By and §; is non-trivial and goes beyond the scopes of the present paper. We thus leave it for
future studies.

We remark that it is possible to retrieve the forward Euler’s quadrature method by fixing 8y = 1, 8 = 0,
and considering ¢ = #;, which corresponds to & = 1, in (10). Analogously, it is possible to retrieve the backward
Euler’s quadrature method by fixing 8y = 0, 81 = 1, and considering ¢t = #;, which corresponds to £ = 1, in
(10). We also remark that, although Euler’s methods are retrieved considering & = 1 in (10), the interpolation
in (10) is quadratic rather than constant, as it usually implied when dealing with Euler’s methods. Looking at
(11), it is also easy to conclude that Casciaro’s method, because of the constraint 8y + 8; = 1, falls within the
class of generalized o methods. In addition, although non-optimal values for the parameters «y and «; may be
chosen in (12) to match the standard Newmark-g scheme, the main feature of this scheme, namely the first-
order approximation of velocities with respect to time, such that the acceleration appears, has no immediate
connection with the scheme employed in this article.

We also note that trails similar to those observed for ¢ > 0, namely such that the first peak is followed by a
tail, are visible also in the ingenious analytical solutions found by E. Schrodinger, in terms of Bessel functions,
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for the problem of the vibrations of a linear infinite chain of molecules. A translation into the English language
of this article by E. Schrodinger, originally in German, has recently been made available, see [68].
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Notes

The reader who wishes to deepen the adopted modeling strategy will find many more details in [39].

Nodes are sketched in Figure 1 as small circles located at the intersection points between the beam-like elements.

Within this contribution, we assign the same extensional and bending stiffnesses to all the beam-like elements, i.e., uniform and
balanced pantographic structures are considered, and we assign, for each unit cell and within each cell, the same pivots’ torsional
stiffness ¢. These hypotheses, obviously, can be easily removed to generalize the model.

We note that, while in principle both the stiffness matrix and the reaction could be assembled using a blind element-by-element
procedure, the efficiency of the algorithm in terms of the occupied memory can be remarkably increased by taking into account
the symmetry and the sparsity of the stiffness matrix to keep in memory its entries in a compact way.

We indeed remark that the size of the pivots may be varying along the system, in space. As an instance, given a base material,
pivots, modeled in three dimensions as homogeneous cylinders, could have a varying radius. In statics, such a case has been
studied in [69], where a (constrained) optimization of pivot diameters has been carried out. Note that pivot heights must be
considered uniform under the plane motion assumption. Henceforth, the pivots will not only be considered as having the same
stiffness, as mentioned earlier, but will also be considered as having the same mass. Physically, having in mind their realization
into cylinders, this means that they are all made with the same material and present the same geometrical dimensions.

This is proved, e.g., by its low number of citations in the Google Scholar database: only 32 as of 28 December 2020).

The idea underlying this interpolation is analogous to that leading to the use of B-spline interpolation, which is at the basis of
modern NURBS. It is worth remarking that, in 1985, this interpolation was used by Aristodemo [70] within the formulation of
an efficient finite element for two-dimensional elastic problems.

Although not described in this work for the sake of brevity, Casciaro’s stepwise strategy can be easily adapted for including
dissipative forces, see, e.g., [71-73].

Please note that, without much more effort, more complex dependencies could be considered, such as d = d(u, u). Also note
that, indeed, such a case cannot be reconducted to the case d = d(u) (redefining the dissipation force and the structural reaction
of course) when d cannot be additively decomposed into a term depending only on the displacement vector and a term depending
only on the velocity vector.
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