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ABSTRACT

In the problem of the synthesis of metamaterials, the pantographic architecture revealed remark-
able potentialities. Indeed it allowed for the synthesis of second gradient 2D (nonlinear) con-
tinua: i.e. 2D shells whose deformation energy depends also on the second derivatives of dis-
placements in the tangent directions to the reference configuration. Moreover, pantographic ar-
chitecture seems to be able to produce metamaterials whose macroscopic elongations are large,
albeit remaining in the elastic regime. The theoretically shown potentialities have started to be-
come of «practical» interest thanks to a series of experiments, which were made possible by the
recent 3D additive manufacturing. The actual construction of pantographic architecture has been
based on the design of two arrays of beams interconnected by small cylinders, whose behavior
can be modeled in different ways: if they are very short they can be regarded as clamps, while
if they are short enough as elastic (or inelastic for large rotations) cylindrical hinges connecting
the beams of different arrays. Otherwise, they must be modeled as elastic (or inelastic) elements
allowing for relative rotations and displacements. In this paper, we focus on this particular case
and we introduce, after a homogenization based on heuristic arguments, a 2D generalized con-
tinuum model whose kinematics is characterized by two placement and rotation fields (one for
each array of beams) and whose deformation energy depends on relative displacements and ro-
tations. The offset between the two beams arrays is proven to be an essential tool for defining
effective invariant kinematical deformation measures. In facts, one wants to postulate a deforma-
tion energy for the introduced 2D generalized continuum which gives predictions in agreement
with those given by the more refined 3D model where the pantographic architecture is described
with its maximum geometric complexity and where the constituting material is assumed to be
modelable as a standard 3D first gradient continuum. In the present paper, in order to arrive at
the correct conjecture for the postulated energy, we consider the concept of averages of rotations
in SO(3) Lie group. The used enriched kinematics is seen to be a possible alternative to the
adoption of second gradient 2D models. Some rather surprising deformation processes are stud-
ied, where interesting non-symmetric post-buckling phenomena are observed in both the models
used. Mentioned post-buckling has been observed experimentally.

1. Introduction
The technological push towards the use of materials having tailored properties for specific applications originated a

renewed interest in theoretical mechanics, a research field that has often been considered exhausted. Furthermomentum
towards the study of interesting novel problems has been impressed by the development of additive manufacturing
technology that allows for the construction of material microstructures whose practical realization has been, until
recently, merely unimaginable. In facts, one of the most remarkable consequences of the advancements related to
additive manufacturing technology consists of the nearly unlimited possibilities that it opens to material scientists
in the realization of lower-scale microstructures for materials to be used at another larger scale (see, e.g., dell’Isola
and Steigmann (2020); Yildizdag et al. (2019); Barchiesi et al. (2019c); Steigmann et al. (2015); Avella et al. (1998);
Rahali et al. (2020); Eremeyev (2019); Niiranen et al. (2019)). An old problem has been revived in this context. The old
problem towhichwe are referringwas the so-called synthesis problem faced in the theory of circuital analog computers.
In facts, before the prevalence of digital computer, a very important scientific problem with great technological impact
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Two layers pantographs

was the following one: given a certain system of ODEs or PDEs, as starting point of the analysis, one had to find
a circuit whose governing equations were exactly the chosen equations (Bush, 1934; Carter and Kron, 1944; Kron,
1945; MacNeal et al., 1951). The found circuit was called the «analog» circuit of the physical problem to be studied
by means of the given equations. These dedicated circuits were very effective in solving exactly one specific PDEs or
ODEs system, and therefore, only for that problem, theywere quick and effective. However theywere absolutely useless
for another, even slightly different, system of equations. The concept of analog circuit has been recently exploited for
designing novel multi-physics metamaterials based on piezoelectric energy transduction (see dell’Isola et al. (2004);
Giorgio et al. (2015); Lossouarn et al. (2016) and the references there cited).

In a completely similar way, one can talk about the problem of «synthesis of mechanical metamaterials». A possible
formulation of such a problem can be the following: given a specific deformation energy and a specific larger macro
length scale one has to find a suitable microstructure, characterized by specific and lower length-scales, such that a
material constituted by using the found microstructure, at the chosen macro scale, is governed by the initially chosen
deformation energy.

It has to be remarked that with the concept of «microstructure», we include both i) the geometric micro-shape inside
which the constituting micro-material is distributed and ii) the stiffnesses distribution inside the micro-shape. Clearly,
one should direct his efforts in finding, also for mechanical metamaterials, some general representation theorems,
exactly as done in the theory of analog circuits. Indeed, in this last theory, it has been proven that every linear,
dissipative n-port circuital element can be synthesized by means of a graph whose branches are constituted by resistors,
capacitors, inductors, transformers, and Tellegen’s gyrators arranged in the most convenient way. In a sense, this
specific representation theorem has reduced the theory of linear dissipative circuits to the study of such elemental
components.

Such kind of general representation theorems in the context of the synthesis of mechanical metamaterials are not
available yet, albeit some interesting results are given in (Milton and Cherkaev, 1995; Vasquez et al., 2011; Milton,
2013; Milton et al., 2017; Spagnuolo and Scerrato, 2020). However it seems that, in view of the search of such
representation results, the pantographic architecture seems to have remarkable potentialities (see, e.g.,Placidi et al.
(2016); Barchiesi and Placidi (2017); dell’Isola et al. (2019a,b); Turco (2019)). The partial results which indicate how
relevant are said potentialities include those presented in (Barchiesi et al., 2019a; Turco and Barchiesi, 2019; Barchiesi
et al., 2020b,a; Greco, 2020; Eremeyev and Turco, 2020; dell’Isola et al., 2017). In facts, by exploiting the pantographic
microstructure, it has been possible to synthesize a rather large class of second gradient 2D continua (Germain, 2020)
that can be called «second gradient shells». These shells have a deformation energy that depends not only on the
second gradient of the transverse displacement field but also on the second gradients of tangential displacement fields
(Steigmann and dell’Isola, 2015; Giorgio et al., 2017; Shirani et al., 2019; Abdoul-Anziz and Seppecher, 2018).

It has been observed also that pantographic micro-architecture seems to allow for the synthesis of metamaterials
having a very useful peculiarity: their elastic elongation can be very large when compared with standard materials (see
for instance dell’Isola et al. (2015); Barchiesi et al. (2020c)). In facts pantographic structures have been introduced
in order to synthesize specific second gradient materials, i.e. materials whose deformation energy depends, in a non-
negligible way, on the second gradient of elongation (see Alibert et al. (2003)).

Moreover the theoretical potentialities, which have been shown by means of numerical simulations and mathemat-
ical considerations, (see Eremeyev et al. (2018); Turco et al. (2018); Eremeyev and dell’Isola (2020); Andres et al.
(2001)) have shown their possible actual technological impact when some specimens could be constructed by using
additive manufacturing technology. A series of experiments has been started (Turco et al., 2019, 2016; De Angelo
et al., 2019b; Nejadsadeghi et al., 2019; Spagnuolo et al., 2019; dell’Isola et al., 2019c) and the agreement between
theoretical predictions and actual experimental evidence seems rather satisfactory (Andreaus et al., 2018; Tran et al.,
2020; Laudato et al., 2019; Ciallella, 2020; Spagnuolo et al., 2020). As a bitter criticism was started in the past about
the logical and/or physical «impossibility» of the existence of second gradient materials by using «perfect» pivots in the
micro-structure it was possible to prove that «purely» second gradient continua may be synthesized (Seppecher et al.,
2011). To transform into real materials the ideal synthesis of a pantographic structure, as obtained in aforementioned
papers, has not been simple. First of all one had to overcome the technological challenge consisting in constructing,
with additive manufacturing, reasonably perfect pivots. The results presented in (dell’Isola et al., 2019a,b; Golaszewski
et al., 2019; Spagnuolo et al., 2019) indicate that this challenge can be won.

The simplest actual construction design of pantographic micro-architecture has been obtained by overlapping two
distinct arrays of parallel beams placed, in the reference configuration, in two slightly translated planes. To construct
in this way a pantographic shell, therefore, an offset between the two beam arrays needs to be introduced.

I. Giorgio et al.: Preprint submitted to Elsevier Page 2 of 22
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a) b)

Figure 1: Interconnections between beams of a pantographic sheet: a) deformable cylinders; b) ‘perfect’ pivots.

As previously anticipated, considered beam arrays are to be somehow interconnected. This can be done either
by using small deformable cylinders (see Fig. 1a) or by using some ‘perfect pivots’ (see Fig. 1b). In the present pa-
per, we focus on the problem of modeling, with models more detailed than second gradient shells, the behavior of
those specimens designed with interconnecting cylinders, without resorting to a model where the structural elements
of the micro-architecture are modeled as 3D continua. The cylinders mechanical behavior can be modeled in different
ways depending on their geometrical characteristics. If their height/diameter ratio is very small, then they must be
regarded as clamps, therefore the behavior of the homogenized continuum reduces mainly to a standard first gradient
continuum (Pideri and Seppecher, 1997). If instead, their height/diameter ratio is moderately larger, then the intercon-
necting cylinders can be modeled as elastic (or inelastic in the presence of large rotations) hinges. Finally, when the
hight/diameter ratio is large enough then it is more suitable to model them as elastic (or inelastic) elements that allow
for relative rotations and displacements of the beams which they are interconnecting.

In this paper, the case of «high» pivotal cylinders is considered in detail. It is proven that, in order to obtain a
2D generalized continuum model that is sufficiently predictive, one can generalize «second gradient shell» models by
introducing a more refined kinematics. In this way, we introduce an intermediate complexity model between second
gradient shells and aforementioned 3D continua.

In facts, we introduce, after a conjectural homogenization procedure based on heuristic arguments, a 2D continuum
model whose richer kinematics is characterized by two placement and rotation fields (one for each array of beams).
In other words, we assume that each beam, in the considered arrays, can be modeled as a Timoshenko beam and
that the sections interconnected by the cylinders can have a relative displacement and a relative rotation. Moreover we
assume that the deformation energy to be postulated for considered 2D generalized continuum depends on each beams’
deformation and on the beam-sections relative displacements and rotations. As anticipated, it results that the (variable)
offset between the two beams arrays gives a kinematical deformation measure capable to describe pantographic shells
deformation patterns.

In facts, one could also model the considered pantographic shell by introducing a more detailed 3D model where
its complex micro-geometry is fully taken into account and the material constituting it is modeled as a first gradient
3D continuum. The drawback of this modeling choice is clear: with the presently available computational tools one
needs several millions of finite elements (and too many hours of computing time) before solving a single deformation
problem. Moreover, one may have some difficulties in extracting out of the huge amount of information so obtained the
synthetic ones that are required to characterize the behavior of conceived metamaterial. Such a more refined modeling
procedure has been used, in the present paper, to obtain a numerical identification of the material parameters to be used
in the independently postulated reduced order 2D generalized continuum. In facts, by using this 3D refined model one
has confirmed the conjecture that was the starting point in the modeling being at the base of the present paper: the
performed numerical simulations indicate that the beams arrays offset may play a crucial role in the deformation pattern
of the whole pantographic shell.

The main result presented in this paper concerns the determination of the form for the deformation energy to be
postulated for introduced 2D generalized continuum that allows for predictions in good agreement with the predictions
obtained by using themore refined 3Dmodel. The crucial idea needed to obtain the correct conjecture for the postulated

I. Giorgio et al.: Preprint submitted to Elsevier Page 3 of 22
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energy involves the concept of averages of rotations in SO(3) Lie group (see Moakher (2002)).
We verify that the heuristic identification procedure between the introduced 3D refined model and the 2D gener-

alized continuum model (see for more details about identification procedure Placidi et al. (2015); Rosi et al. (2018);
Misra and Poorsolhjouy (2015); Yang et al. (2019); Abali et al. (2016); Harrison et al. (2018); Berkache et al. (2019);
Rahali et al. (2016)) based on Saint-Venant stiffnesses identification for Timoshenko beams produces a satisfactory
agreement between the two models. The obtained identification indicates that the conjectured enriched kinematics is
suitable to capture some of the most important deformation features of pantographic shells when using a 2D general-
ized continuum model. In facts, some rather surprising deformation processes have been found where very interesting
and unexpected non-symmetric post-buckling equilibrium paths are exhibited. These equilibrium paths are observed,
with remarkable qualitative and quantitative agreement, in both used 2D and 3D models. Moreover after having cal-
culated them based on the used models, we could find in the literature some experimental evidence which can be
consequently fully explained now (Ganzosch et al., 2018; Barchiesi et al., 2019b). In fact, Fig. 11 in (Ganzosch et al.,
2018) shows that the out-of-plane displacement field in the shear test fails to be skew symmetric following the same
pattern displayed in Fig. 13 of the present paper.

2. Kinematics of a pantographic structure
2.1. Kinematical description of the fibers

Consider the structure shown in Figure 2 made up by beams regularly distributed on two layers and connected by
elements that we call pivots. Each beam has rectangular (rigid) sections while the pivots are small cylinders.

Figure 2: A sample of pantographic structure.

The axes of two prototype beams, one for each layer, in the reference configuration, are shown in Figure 3 where
the layers are denoted by the labels 1 and 2. Besides, with s1 and s2 we will denote the abscissas along the axes 1 and
2, respectively.

The kinematics of the beams will be described by the fields

1u(s1), 1R(s1),
2u(s2), 2R(s2),

(1)

u being a vector describing the displacement of the points laying on the beam axis andR an orthogonal tensor describ-
ing the rotation of the beam sections.

The left superscripts will denote, from now on, that the quantities are referred to the beams lying on the sets 1 and
2, respectively.

With reference to the orthonormal bases bi and ci shown in Figure 3, the fields in (1) can be given the following
component form

I. Giorgio et al.: Preprint submitted to Elsevier Page 4 of 22
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Figure 3: A detail of the pantographic geometry and reference frames.

1u = 1uibi 2u = 2uibi (2)
1R = 1Rijbi ⊗ bj 2R = 2R̃ijci ⊗ cj = 2Rijbi ⊗ bj . (3)

A useful representation of the components 1Rij and 2R̃ij is given in terms of the Bryant angles {1'1, 1'2, 1'3} and
{2'1, 2'2, 2'3}, respectively.

The deformation measures for each beam are assumed to be

�e = �R⊤(�X ,� + �u,�) − �X ,� (4)
�� = (�R⊤�R,�)× (� = 1, 2), (5)

where X denotes the position of a point lying on the axis in the reference configuration, the index after the comma is
used to denote differentiation with respect to the abscissa along the beam axis and �� is the axial vector of the skew
tensor �R⊤�R,�

1.

2.2. Kinematical description of the pivots
As written in Section 2.1 the pivots are cylinders and we will denote by r and ℎ their radius and height, respectively.
We assume that the kinematics (and the mechanical behavior) of a pivot can be described by the sole motion of its

bases that, in turn, are assumed to be rigid (circles).
Now let us denote byX1, X2, the position of two points belonging to the bases 1 and 2, respectively, in the reference

configuration.
In this way, a deformation of the pivot will be described by the transplacement, i.e. the change of the space

placement, of its bases by means of the quantities

x1 or u1(X1) = x1 −X1

x2 or u2(X2) = x2 −X2

R1, R2 (6)

where x1, x2, are the new positions of X1, X2, the vectors u1, u2, their displacements, and R1, R2, the orthogonal
tensors that give the rotations of the bases 1, 2, respectively.

If the pivot undergoes a rigid transplacement we have

R1 = R2 = R
x2 = x1 +R(X2 −X1) (7)

1Given a skew tensorW , we denote byW × the axial vector satisfying the identityW u = W × × u, ∀u.
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X1

X2

X1 � X2

u1 u1

X2 + u1

x2

x1

R1(X2 � X1) u2 � u1

Figure 4: Rigid Transplacement.

while, for a regular transplacement we put

R1 ≠ R2

x2 = x1 +R(X2 −X1) + e (8)

where R is any rotation and e is a deformation.

3. Change in observer: invariance
Given a reference frame let us denote byX,x the position of a point in the reference and deformed configurations,

viewed in that frame, respectively.
Given a fixed point whose position in the reference frame is  and an orthogonal tensor Q, a change in observer

applied to the deformed configuration, is defined by the following transformation

x∗ = ∗ +Q(x − ) (9)

where ∗ and x∗ are the positions in the new frame of the point whose positions in the reference frame were x,,
respectively.

In this way the points in the deformed configuration that occupied the positions x1,x2 as observed from the refer-
ence frame will occupy the positions

x∗1 = ∗ +Q(x1 − )
x∗2 = ∗ +Q(x2 − ) (10)

as observed by the new frame.
Besides a displacement vector changes in the following way

u∗ = x∗ −X∗ = Q(x −X) = Qu. (11)

*
Now we state that the strain energy density of the pivot in the deformed configuration is a function of the shape

identifiers x1,x2,R1,R2, that is

 =(x1,x1 +R(X2 −X1) + e,R1,R2) (12)
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where (8) has been used.
We then require that the strain energy density be frame indifferent, that is

(x1,x2,R1,R2) =(x∗1,x
∗
1 + [R(X2 −X1)]∗ + e∗,R∗

1,R
∗
2). (13)

3.1. First condition
Making the following assumptions

∗ =  − (x1 − )
Q = I

⇒ x∗1 =  (14)

from (14), (13) we obtain

(x1,x2,R1,R2) =(, +R(X2 −X1) + e,R1,R2)
=( +R(X2 −X1) + e,R1,R2) (15)

that is, can not depend on x1.

3.2. Second condition
Besides, if we assume

∗ =  − (X2 −X1)
Q = RT (16)

we obtain

(∗ +
[

R(X2 −X1)
]∗ + e∗,R∗

1,R
∗
2)

=( − (X2 −X1) +

RT
[

R(X2 −X1)
]

+RTe,RTR1,RTR2)

=( +RTe,RTR1,RTR2)

=(RTe,RTR1,RTR2). (17)

Finally, if we choose R = R1, (17) becomes

(RT
1e, I ,R

T
1R2) =(RT

1e,R
T
1R2). (18)

Looking to (17) and (18) , we can choose the deformation measures of the pivot depend on RTe and RT
1R2, R

being any orthogonal tensor.
Now, if we label with the 1p and 2p upper left superscripts quantities related to the bases of the pivot connected to

the beams lying on the sets 1 and 2, respectively, see Figure 5, eqn. (19), that describe a pivot’s deformation, becomes

1px or 1pu(1pX) = 1px − 1pX
2px or 2pu(2pX) = 2px − 2pX
1pR, 2pR (19)

where 1pX, 2pX stand for the reference position of the bases’ centers.
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Figure 5: Kinematical descriptors adopted to describe the pivot.

Finally, in view of (17) and (18), we are allowed to choose the following deformation measures for the pivot,

pe = R
T
(2pu − 1pu) + (R

T
− I)(2pX − 1pX) (20)

pE = R
T (2pR − 1pR

)

= 2 skew
[

(

1pRT 2pR
)1∕2

]

(21)

where skew
[

(

1pRT 2pR
)1∕2

]

denotes the skew part of
(

1pRT 2pR
)1∕2

and R is the Riemannian mean between the

two rotations 1pR and 2pR, defined as follows

R = 1pR
(

1pRT 2pR
)1∕2

= 2pR
(

2pRT 1pR
)1∕2

. (22)

It is worth noticing that the mean rotation satisfies the relationship

1pRTR = R
T 2pR (23)

namely, the relative rotation between 1pR andR is equal to that betweenR and 2pR. In other words, if the Riemannian
metric is adopted, R lies midway between 1pR and 2pR along the shortest geodesic curve connecting them in SO(3)
(Moakher, 2002).

Analogously to the case of fibers, the axial vector of the skew tensor pE, i.e.,

p� = pE× (24)

represents the deformation measures associated to the relative change of rotations between the two bases of the pivot.
To evaluate Eq. (20) and (21), we introduce the orthogonal tensor

Q = Q��b� ⊗ b� (25)

that defines the basis transformation
c� = Q��b� (26)

specifically, a counterclockwise rotation of �∕2 around the b3 axis

(

c1 c2 c3
)

=
⎛

⎜

⎜

⎝

0 −1 0
1 0 0
0 0 1

⎞

⎟

⎟

⎠

T

(

b1 b2 b3
)

. (27)
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Therefore, the relative rotation between the two bases of the pivot can be expressed by components in the basis {bi} as

12R = 1pRT 2pR = 1pR�iQ�

2pR̃
�Qj� bi ⊗ bj . (28)

By using Rodrigues’ formula, the relative rotation can be expressed as follows

12R = I + sin ( )K + [1 − cos ( )]K2 (29)

depending on a counterclockwise angle  , and the axis of rotation k = K×, where K is a skew tensor defined by

12R = exp( K)→ Log(12R) =  K . (30)

By knowing the matrix 12R, it is possible to determine the angle  by the relationships

cos( ) = 1
2
[

tr
(12R

)

− 1
]

, (31)

sin( ) = 1
2

√

[

3 − tr
(

12R
)] [

1 + tr
(

12R
)]

. (32)

An efficient way to do this is to use the ‘2-argument arctangent’ function, which returns a single value of  such that
−� <  ≤ �. Moreover, the tensor K can be calculated by

K =

{

0, for  = 0
1

2 sin( )

(

12R − 12RT
)

, for  ≠ 0 and | | < �.
(33)

Finally, recalling that the square root of a rotation matrix is a rotation matrix with the same axis and a rotation angle
which is half of that of the original matrix, we have

(12R
)1∕2 = I + sin

( 
2

)

K +
[

1 − cos
( 
2

)]

K2. (34)

By expressing the deformation measurements by components in the base {bi}, we obtain

pe =
[

Rji
(2puj − 1puj

)

+
(

Rji − �ij
)

(2pXj − 1pXj
)

]

bi (35)

and
p� = pE32b1 + pE13b2 + pE21b3. (36)

4. Continuum modeling
Being l the distance between two neighboring pivots, the Representative Elementary Volume (REV) of our struc-

ture is assumed to have a square base of length l centered in a pivot (see Fig. 6) and height t equal to the thickness of
the structure.

The specific geometry of the fiber lattice allows us to take the following identifications for granted

1pX = 1X(s1), 2pX = 2X(s2), (37)

1pu(1pX) = 1u(s1), 2pu(2pX) = 2u(s2), (38)
1pR = 1R(s1), 2pR = 2R(s2). (39)

According to the previous definitions, we can easily interpret the components of the vector fields

�e = (�", �
p, �
n), �� = (��� , ��n, ��g), (40)
pe = (p
1, p
2, p"), p� = (p�1, p�2, p�� ), (41)
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Figure 6: Beam lattice and unit reference cell for the homogenization (light blue square).

as measures of deformation for the fibers and the pivots that are continuously distributed over the considered domain.
Specifically, they are: the elongations �", the shears along the in-plane �
p, and the out-of-plane direction �
n, the
torsions ��� , and the normal ��n, and geodesic ��g bending for the fibers; the shears along the in-plane directions
p
1 and p
2, the elongation p", the bending along the in-plane directions p�1 and p�2, and the torsion p�� for the
connections due to the pivots.

We assume that the strain energy density is a quadratic form with the following two contributions

�f (�e, ��) =
1
2

[

fKe(1"
2 + 2"2) +K
p (

1
2p +
2
2p)+

K
n (
1
2n +

2
2n) +
fK� (1�

2
� +

2�2� )+

Kn (1�
2
n +

2�2n) +Kg (1�
2
g +

2�2g)
]

(42)

and

�p(pe, p�) = 1
2

[

K
 (p
1
2 + p
2

2) +Kb(p�1
2 + p�2

2)

+pKe
p"2 + pK�

p��
2
]

, (43)

respectively, for the fibers and the pivots, when the limit for l tending to zero is carried out. The material parameters
fKe,K
p ,K
n ,

fK� ,Kn, andKg are positive constants, assumed to be equal for the two embedded fibers, and repre-
sent the stiffnesses related to the elongation, in-plane and out-of-plane shear, twisting, normal and geodesic bending,
respectively. Besides, pKe, pK� , K
 and Kb are the constitutive positive constants related to the elongation, torsion,
shear and bending stiffnesses of the pivots. All these parameters can be evaluated as a first approximation with the
formulae

fKe =
E fA
l

, K
p =
kp G fA

l
, K
n =

kn G fA
l

,

fK� =
qG fJ�

l
, Kn =

E Jn
l

, Kg =
E Jg
l

,

pKe =
E pA
l2ℎ

, K
 =
12E pJ
l2ℎ3

,

pK� =
G pJ�
l2ℎ

, Kb =
4 E pJ
l2ℎ

,

(44)

where E and G are the Young and shear moduli, respectively, fA is the cross-section area, Jg is the second moment of
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Table 1
Fiber and pivot dimensions in mm.

bb ℎb rp L l l

1.6 1.0 0.45 210 70 4.95

Table 2
Material parameters of polyamide PA 2200.

Mechanical property Value

Mass density, % 0.93 g cm−3

Young’s modulus, E 1600 Nmm−2

Poisson’s ratio, � 0.4

area for the geodesic bending, Jn is the second moment of area for the out-of-plane bending, fJ� is the polar moment
of area, while kp, kn, q are positive constants. Finally, pA, pJ� , and pJ are the area, the torsional, and the flexural second
moment of area of the pivot, respectively. In this paper, we have proposed a possible choice for the deformation energy.
Nonetheless, a more general form of energy also involving couplings (possibly non-quadratic) between the measures
of deformation can be postulated (see, e.g., Rizzi and Tatone (1996)). In the light of the findings presented in (Auger
et al., 2020), where a not negligible Poynting effect2 (Poynting, 1909) could be associated with the pivots, this kind of
generalization may result in a better predictive ability of the macro model.

5. Numerical simulations
To test the proposed model, we perform some numerical simulations directly employing the weak formulation

� ∫

(

�f + �p
)

dΩ = 0 (45)

in a finite element code. Unless stated otherwise, the code solves the variational problem (45), making use of essential
boundary conditions on displacements and rotations fields and void of external actions that exert a further work con-
tribution. Table 1 lists the main geometrical characteristics of the specimen used in the tests, namely the sizes of the
rectangular cross-section of the fibers, the width bb and the thickness ℎb, the radius of the pivots rp, the dimensions of
the entire sample, L and l, and the pitch between fibers, l. Table 2 reports the material characteristic of the sample
assumed to be made of polyamide PA 2200.

As far as concern the height of the pivots, we consider three values, i.e., 1 mm, 2.5 mm, 5 mm. Naturally, the more
they are high, the more they are deformable. Thus, accurately describing their deformation becomes progressively
essential. As it can be seen from Eq. (33), the reference configuration is characterized by an undetermined axis of
rotation being the relative rotation 12R equal to the identity. To overcome such an issue in the numerical code, we
initialize the numerical analysis starting from a configuration slightly different from the reference one. The code,
indeed, implements a damped Newton’s method approach, which automatically updates the Jacobian.

A first testing taken into consideration is the common bias extension test. In Figs. 7, 8, and 9 are displayed the
equilibrium shapes for the samples with 1 mm, 2.5 mm, 5 mm high pivots, respectively. The colors indicate the average
value of the out-of-plane displacement, i.e.

1
2
[1u3(X) + 2u3(X)

]

whereX is the center of the surface of the sample in its reference configuration. These figures exhibit how the consid-
ered macro-model is able to catch the chiral effect of the structure. As a matter of fact, an extension produces, because
of the offset between the beams, a macroscopic twist of the specimen. We find that this behavior, as can be expected,
increases as the offset rises.

2Poynting effect is the lengthening of a wire (in our case a slender beam) when twisted.
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Also, we analyze the deformation energy stored into the specimen during the bias test, by plotting its overall value
and the values relative to the pivots and the beams.

In Figs. 10, 11, and 12, for the sake of comparison, we plot the total energy, and the two main contributions of it
(pivots and beams) for diverse models. In detail, we consider

1. the standard Cauchy model in non-linear regime (micro model);
2. the proposed model with average rotations (labeled with AR);
3. the model with (latent) internal microstructure characterized by the fact that the only possible deformation of

pivots is the torsion around their axis, assumed normal to the surface of the sample (labeled with C) Giorgio
et al. (2017);

4. and a model where the deformations of the pivots are all allowed but with the hypothesis that they are small
(labeled with Rs) Giorgio et al. (2019).

From these figures, we see that all the considered models provide results that are compatible with each other by an
energy point of view (globally). Still, the model with latent internal microstructure is clearly not able to catch the chiral
effect because lacking offset. Besides, the model with small rotations has a limited range of applicability. It is worth
noticing that the material stiffnesses employed in the calculations are just roughly evaluated by the formulae (44). A
more accurate estimate of them requires the solution of an inverse problem of identification, as done in (Placidi et al.,
2017; De Angelo et al., 2019a).

Secondly, a shear test is performed to investigate also the buckling and post-buckling behavior of the considered
model. In this case, we apply some small forces in the out-of-plane direction as a defect to favor the rising of the
buckled shape. In particular, Fig. 13 shows the deformed equilibrium shape for an imposed shear displacement of
7 cm along with the out-of-plane displacement through colors. The deformed shapes obtained by the micro-model,
which is very detailed and numerically expensive, and by the macro model AR are reasonably close. Moreover, it is
worth noticing that the two peaks of the buckled shape are not anti-symmetric as one could be expected. This lack of
symmetry in the equilibrium configuration is not only confirmed with the micro-model, but there is also experimental
evidence that corroborated it, as shown in (Ganzosch et al., 2018; Barchiesi et al., 2019b). A possible explanation of
this feature could be the effect of the interaction of two o more buckled modes with a very close energy content. In
future works, we will investigate this aspect more deeply.

A similar good match can be found for the energy contributions, see Fig. 14. To have some hints about the post-
buckling behavior, we also plot the out-of-plane displacement in two probe-points near the peaks of the buckled shape
to monitoring their trend varying the imposed displacement. In this case, the critical displacement predicted by the
macro model is a little overvalued due to the coarse approximation of the stiffnesses. However, with the exception of
the critical value, the global behavior is notably similar.

Finally, a torsion test is performed, twisting the short ends of the rectangular pantographwith respect to one another.
Specifically, the displacement fields 1u and 2u are fixed on one of the constrained edges as well as the Bryant angles
{1'1, 1'2, 1'3} and {2'1, 2'2, 2'3}. At the opposite edge, instead, in order to avoid the elaborate evaluation of the
Bryant angles, a narrow strip is added, and a rigid torsion is imposed via displacements (taking into account the offset
due to the presence of the pivots) until the twist angle of �∕2 is reached (see Fig. 16). This edge is free to move in the
longitudinal direction of the specimen. The results concerning the different contributions of the deformation energy
are reported in Fig. 17, where a comparison between the micro model and the proposed macro model is exhibited.
Fig. 18 gives evidence of an elongation due to torsion, that we can call a Poynting effect, characterizes the torsional
behavior of the pantographic structure.

6. Conclusions
A 2D shell endowed with a microstructure characterized by 12 scalar parameters has been introduced in order to

model the nonlinear mechanical behavior of a pantographic structure (Altenbach and Eremeyev, 2014; Eremeyev and
Pietraszkiewicz, 2016). The parameters account for the displacements and rotations of the beams’ sections on the two
layers of the pantograph. Effective invariant kinematical deformation measures have been defined, taking into account
the offset of the two layers and introducing averages of rotations in SO(3) Lie group. A nonlinear elastic deformation
energy, that is quadratic in the components of the deformation measures, has been defined. A rectangular continuum
initially flat and subjected to extensional, shear, and torsion tests has been considered. The boundary value problems
have been numerically solved by means of the COMSOL multiphysics software. The results have been compared with
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a)

b)

Figure 7: Pantographs with 1 mm high pivots under bias extension test: plot of the out-of-plane displacement for an
imposed displacement of 5 cm. Comparison between a) the 3D micro model and b) the proposed 2D macro model.

a)

b)

Figure 8: Pantographs with 2.5 mm high pivots under bias extension test: plot of the out-of-plane displacement for an
imposed displacement of 5 cm. Comparison between a) the 3D micro model and b) the proposed 2D macro model.

the ones obtained by using a model recently proposed by some of the authors and those obtained by modeling the
pantograph with 3D nonlinear elastic FEs. The comparison has shown that the model proposed in the present paper
is sufficiently effective. It is worth noting that both the extensional and shear tests show that the structure exhibits
a buckled shape that, in the shear case, is not shew symmetric as one would expect. This behavior is confirmed by
experimental tests (Ganzosch et al., 2018) and seems to be an effect of buckling modes interaction and deserves to
be more carefully analyzed. In particular, more refined experimental tests need to be performed in order to confirm
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a)

b)

Figure 9: Pantographs with 5 mm high pivots under bias extension test: plot of the out-of-plane displacement for an
imposed displacement of 5 cm. Comparison between a) the 3D micro model and b) the proposed 2D macro model.

or revise the results obtained until now. Besides, the strain energy involving only quadratic terms of each one of the
components of the deformation measures should be reconsidered in the light of some recent results that seem to show
that the pivots can exhibit a non negligible Poynting effect. Finally, the torsion test shows that the proposed macro
model is able to describe the Poynting effect characterizing the examined pantographic structure.
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Figure 10: Pantographs with 1 mm high pivots under bias extension test: stored energies for different models, a) total, b)
pivot, c) beam contribution.
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Figure 11: Pantographs with 2.5 mm high pivots under bias extension test: stored energies for different models, a) total,
b) pivot, c) beam contribution.
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Figure 12: Pantographs with 5 mm high pivots under bias extension test: stored energies for different models, a) total, b)
pivot, c) beam contribution.
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Figure 14: Pantographs with 5 mm high pivots under shear test: stored energies, a) total, b) pivot, c) beam contribution.
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Figure 15: Pantographs with 5 mm high pivots under shear test. Out-of-plane displacement in probe points P1 and P2
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Figure 16: Pantographs with 5 mm high pivots under torsion test: plot of the out-of-plane displacement for an imposed
torsion of �∕2 rad. Comparison between a) the 3D micro model and b) the proposed 2D macro model.
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Figure 17: Pantographs with 5 mm high pivots under torsion test: stored energies, a) total, b) pivot, c) beam contribution.
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