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Abstract We call nonlinear dilatational strain gradient elasticity the theory in which the specific class of
dilatational second gradient continua is considered: those whose deformation energy depends, in an objective
way, on the gradient of placement and on the gradient of the determinant of the gradient of placement. It is an
interesting particular case of complete Toupin–Mindlin nonlinear strain gradient elasticity: indeed, in it, the
only second gradient effects are due to the inhomogeneous dilatation state of the considered deformable body.
The dilatational second gradient continua are strictly related to other generalized models with scalar (one-
dimensional) microstructure as those considered in poroelasticity. They could be also regarded to be the result
of a kind of “solidification” of the strain gradient fluids known as Korteweg or Cahn–Hilliard fluids. Using
the variational approach we derive, for dilatational second gradient continua the Euler–Lagrange equilibrium
conditions in bothLagrangian andEulerian descriptions. In particular,we show that the considered continua can
support contact forces concentrated on edges but also on surface curves in the faces of piecewise orientable
contact surfaces. The conditions characterizing the possible externally applicable double forces and curve
forces are found and examined in detail. As a result of linearization the case of small deformations is also
presented. The peculiarities of the model is illustrated through axial deformations of a thick-walled elastic
tube and the propagation of dilatational waves.
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1 Introduction

Albeit the simplified version of continuummechanics (where deformation energy depends on the first gradient
of placement, as established by Cauchy and Navier), has been the most studied, exploited and applied in
Engineering and Physical sciences, already in the pioneering works by Gabrio Piola (active from 1822 to
1850) [24], which preceded Cauchy’s works, it is clearly stated that it is logically possible to conceive more
general continuum models. Piola, by means of a careful analysis including also a micro-macro identification
procedure, did also find some solid physical motivations urging the need of considering more general continua.
Piola’s argument clearly establishes the properties to be verified, at micro-level, that impose the adoption, at
macro-level, of deformation energies depending on higher gradients of displacement field. Among these, the
most relevant seems to be:

(i) the complexity of the geometry of the involved micro-structure and
(ii) the sharp space variation, at the micro-scale, of the different relevant mechanical material properties, as,

for instance, elastic stiffness.

It is to be yet clarified why the intuitions and the results by Piola were not continued until very recently [26]:
we do not believe that the reasons reside in some lack of mathematical tools available or in the exceptional
and visionary capacities shown by Piola in his works.

The second gradient continuummodelsweremore recently revived in the effort of establishingmore general
models in continuummechanics (see discussions in [8,14,27,82–84]) and for giving a solidmathematical basis
to the effort aimed to design novelmetamaterials, see, e.g. [1,9,33,34,102]. The basic idea onwhich Piola based
the theory of second or higher gradient of displacement field can be rather simply explained: when formulating
the Principle of Virtual Work, or its particular case represented by the principle of minimum of energy in stable
equilibrium configurations, one has to consider the expression of internal work (or of deformation energy) on
a virtual displacement field as depending on all its gradients up to order N .

In case of elasticity, in order to generalize Cauchy models, one may assume that the deformation energy
may depend on all the gradients of displacement up to order N . As a consequence all other related constitutive
equations, in such generalized theories, must depend not only on the first gradient of placement, but also on all
its necessary higher-order gradients. The complete study of the objectivity of deformation energy dependence
on higher gradient of placement was performed already by Piola in his fundamental work [25].

After works byKorteweg [71], Cahn andHilliard [15,16] dealingwith so-called capillary fluids, byMindlin
[87–89] and Toupin [128,129] dealing with more general continua, including elastically deformable solids,
and after the more general approaches proposed by Germain [62,63] and Sedov [113], who considered micro-
structured generalized continua, see also [39], the second gradient elasticity was discussed and enlarged in
many works, e.g. [7,12,32,54,134,138]. It has seen a remarkable growth and seems to have been accepted
also by those groups of scholars who had initially doubted about its importance.

The growing interest paid to the second gradient elasticity relates to its success in modelling several
emerging phenomena. A partial list of some among them can be outlined here:

(i) the mechanical behaviour of solids and fluids at the nanoscale, see, e.g. [5,22,58,65,70,79,116] and the
references therein, albeit it has to be yet understood in which sense the concepts of quantum mechanics
or lattice dynamics are related to the continuum modelling of these specific phenomena;

(ii) capillarity phenomena in fluids [18–20,31,43];
(iii) material behaviour of multi scale media endowed with complex internal micro-architecture such as beam-

lattice architectured materials and novel metamaterials [2,6,29,33–35,85,86,91,99,105,107,120,135].
(iv) deformation localization phenomena and dissipation in plasticity, see, e.g. [14,56,57];
(v) damage and fracture phenomena [100,101,103,111,124];
(vi) growth of bone tissues and its effects on bone mechanical properties [60,61,76,118];
(vii) coupled electromechanical phenomena as flexoelectricity and flexomagneticity, see, e.g. [37,46,77,78,

80,132,136] and the reference therein;

Albeit the previous list seems rather limited and definitely incomplete, it relates to the research fields
that are closer to the results presented in this paper. As in the case of simple (Cauchy) continuum models, the
crucial problem inmaterial modelling remains, also for second gradient continua, the determination of material
parameters to be used when describing a specific mechanical system. One should not forget, while presenting
the results concerning second gradient materials, the long debate, mainly occurring in Paris between Navier,
Cauchy, Poisson and Lamé, concerning the number of elastic constants to be used in linearized elasticity for
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isotropic materials. This debate was concluded when George Green introduced, in the debate, the powerful
tools supplied by Lagrangian Variational Principles, see [66,73].

As clearly reported by Benvenuto et al. [10] the controversy about isotropic elastic constants was not so
easy to settle down, see also [125–127]. It is therefore not surprising if a similar debate was started about
second gradient isotropic elasticity: an account of available results and approaches is given in [32].

In fact, the formulation of the most general possible constitutive equations for linearly elastic isotropic
material in the framework of second gradient continua, as already established by Toupin andMindlin, requires,
in addition to two Lamé classical elastic moduli, the introduction of five more elastic moduli, that introduce
constitutively five characteristic lengths.

Seen the initial difficulties in determining the most general form of deformation energy for second gra-
dient continua and the difficulties in finding meaningful analytical solutions in which all the five possible
characteristic length appearing in linearized models are simultaneously relevant, in the literature one finds
various simplifications of second gradient continuum models, in which less independent material parameters
are introduced, see, e.g. [4,123,134,138]. It has to be explicitly stated here that some authors tried to justify
the study of a particular class of second gradient continua as determined by a smaller number of constitutive
stiffness parameters on the basis of an application of the lex parsimoniae (law of parsimony) or Occam’s razor,
see [36, Chap. 8].

Of course this claim is not justified, in general. Of course we remember Einstein’s quote “Everything
should be made as simple as possible, but not simpler”. On the other hand, one cannot hope to model a
complex physical system with an oversimplified mathematical model. Lex parsimoniae is a logical tool to be
used in choosing a postulation scheme for a mathematical model or a set of axioms for a mathematical theory.
It cannot be evoked for justifying the introduction of a too simple model for a very complex physical system.
If one is not able to handle a complex model, they cannot hope to forecast the behaviour of a correspondingly
complex physical system. Therefore, the objections sometimes raised against second gradient models or other
generalized models of continua (the claim that these theories require too (!) many material parameters) are
totally unjustified from the point of view of a modeller who wants to describe complexity. These objections
do not seem to be based on a clear Archimedean argument: indeed one has to choose the logical structure of
a mathematical model, then they develops it mathematically and only finally finds the experimental evidence
that they is capable to describe. And complex systems obviously need complex models.

As an example of such complex physical system one can consider capillary fluids [59,68]. It is now
universally accepted that the capillary fluids can be described by means of second gradient fluid models, since
they allow for the prediction of all main capillarity phenomena observed in classical experiments. Being rich
enough, second gradient fluid models allow for the introduction of some extra essential or natural boundary
conditions, are characterized by some more constitutive coefficients and therefore can predict the behaviour
of capillary fluids. All the modelling efforts spent in inventing the second gradient fluid models were based
on a very basic assumption: the principle of minimum of energy. A logically less important assumption was
to assume that deformation energy depends only on the current mass density and on the norm of the Eulerian
gradient of Eulerian density. The suitable boundary conditions to be used for second gradient fluids were
determined by means of a mathematical argument (variational approach), and only at the end of the full
development of the mathematical theory, it was necessary to interpret physically the introduced boundary
conditions.

Never in history of science one can observe that a really successful model was formulated by recurring
continuously to “physical evidence”. Instead successful models are based on a set of postulates (chosen
with Occam razor criterion), developed by deducing from the postulates a series of consequences and finally
checking some of these consequences with experimental evidence. Only when a model is fully developed,
the interpretation of all mathematical results becomes possible by using physical intuition. In [31,115], the
previously described modelling process is fully described and all mathematical entities introduced in the
process are fully justified when comparing the obtained prediction with the experimental evidences and with
the physical phenomena occurring in capillary fluids.More specifically, in [114], the novel boundary conditions
involving the normal gradient of mass density at a wall in contact with a capillary fluid is interpreted ex novo
as a powerful predictive capacity of the introduced novel model. In fact, wettability of the wall is interpreted
as the specific physical property that the novel model can describe and that was not accounted for in previous
models. The boundary conditions of the normal gradient of mass density are introduced first on logical grounds
and only subsequently they are physically interpreted. More recent discussion of novel boundary conditions
that can be introduced in second continuum theories can be found in [21,41–43,47,50,109]. In particular, the
interrelations between Toupin–Mindlin strain gradient elasticity with the surface elasticity by Gurtin–Murdoch



V. A. Eremeyev et al.

were analysed in [50], whereas similar comparison of surface phenomena within the lattice dynamics was
provided in [51,117].

In this paper, we discuss a particular class of second gradient models that we want to be the object of
dilatational second gradient elasticity. The model is based on the introduction of a second energy density U
as a function of the placement gradient and of the gradient of its determinant.

Characterizing the place of the discussed model among others let us briefly recall constitutive relations for
(hyper)elastic continua:

– Cauchy continuum (so-called simple material)

UC = UC(F).

– Strain gradient elasticity (Toupin–Mindlin material)

UTM = UTM(F, ∇�F).

– Korteweg or Cahn–Hilliard fluid (gradient fluid)

UK = UK(ρ, ∇ρ).

– Dilatational strain gradient elasticity

U = U(F, ∇� det F).

Here, F is the deformation gradient, ρ is a current mass density. The other notations have an obvious meaning:
they are introduced in the next sections.

So we can state that the dilatational second gradient elasticity is a reduction in the general second gradient
elasticity to the case where simple materials are behaving, only for what concerns second gradient energy
dependence, as second gradient fluids. Equivalently one can regard it as an extension of the second gradient
fluid model obtained by “solidifying” the first gradient part of deformation energy. Indeed, we can see that
the discussed deformation energy density can be treated as a combination of energies for simple materials and
second gradient fluids.

It has also to be remarked that the proposed model has also a strong relation to the so-called generalized
models of continuum with scalar (one-dimensional) microstructure by Capriz [17] or Eringen [52,53], see
also [23,64,94,104,106]. So it can be used for various applications to material modelling of pressure sensitive
materials as those studied in [95,131] or to study some phenomena of phase transitions occurring in solid
materials [69,110].

In particular, the model could be used for modelling pressure induced phase transitions as it was done for
second gradient fluids [30,31,110] but taking into account shear deformations.

The paper is organized as follows. In Sect. 2, we briefly introduce the basics of the second gradient elasticity
for media undergoing finite deformations. In the general case for second gradient materials, a deformation
energy density depends on two independent deformation measures that are the so called Cauchy–Green strain
tensor C and the third-order tensor K related to the gradient of F. As a particular class of nonlinear second
gradient media, we focus here on the dilatational second gradient elasticity model. Within this model the
deformation energy depends only on C and on the gradient of the determinant of the placement gradient k. The
general constitutive equation in this class is presented and few classes of anisotropic materials are discussed.
In Sect. 3, the comparison with strain gradient fluids is given. In Sect. 4, the linear dilatational second gradient
elasticity is introduced as in [48]. The comparison of the dilatational strain gradient elasticity with other models
of continua with scalar microstructure as the Cowin–Nunziato poroelasticity [23,94] is then given. We show
that the dilatational second gradient elasticity can be derived using the Lagrange multipliers technique. Using
the Hamilton–Ostrogradsky variational principle, in Sect. 6, we extend the models for dynamics. Finally, we
discuss linear dilatational waves and plane axial deformations of an elastic thick-walled tube in Sect. 7.

In the following, we utilize an index-free tensor calculus notation as in [44,74,93,119,133]. So vectors,
second- and higher-order tensors will be denoted all by boldface symbols.
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2 Dilatational strain gradient elasticity under finite deformations

2.1 Basic equations of nonlinear strain gradient elasticity

Let us consider a finite deformations of an elastic body B within the strain gradient elasticity. As in nonlinear
elasticity, a deformation of B is described as an invertible smooth enough mapping from a given reference
placement � = �(B) into a current (deformed) placement χ = χ(B)(t), where t is time. For a given material
particle x ∈ B, we denote its position vectors in � and χ as X and x, respectively. So a deformation � → χ is
given by

x = x(X, t). (1)

We introduce the corresponding deformation gradient F and its gradient G by formulae

F = ∇�x, G = ∇�F = ∇�∇�x, (2)

where ∇� is the three-dimensional (3D) nabla-operator. For example, in Cartesian coordinates XM with
corresponding unit base vectors iM , M = 1, 2, 3, we have

∇� = iM
∂

∂XM
, F = iM ⊗ ∂x

∂XM
, G = iM ⊗ iN ⊗ ∂2x

∂XM∂XN
,

where Einstein’s summation rule is adopted and ⊗ denotes the dyadic product.
For a hyperelastic material there exists a strain energy density function U . Let us introduce it in a general

form assuming its dependence on all possible arguments

U = U(x, F, G; X). (3)

Here, we consider dependence onX for inhomogeneousmaterials. The principle of material frame indifference
[130] states that U must be invariant under changes

x → a + x · Q, (4)

where a and Q are a constant vector and a constant orthogonal tensor, respectively, and the centred dot stands
for the scalar (inner) product of two vectors. Indeed, a and Q may depend on t but this does not change further
derivations. So we get the identity

U(x, F, G; X) = U(x + a, F · Q, G · Q; X) ∀ a, Q. (5)

From (5), it follows the standard conclusion that U does not depend on x, whereas dependencies on F and G
transform into

U = U(F · FT, G · FT),

where for brevity we hide dependence on X and T denotes a transposed tensor. Indeed, let us consider the polar
decomposition of the deformation gradient [44] F = U ·R, where U = (F ·FT)1/2 is a symmetric second-order
tensor and R is an orthogonal tensor. Substituting into (5) Q = RT, we get

U = U(U, G · FT · U−1),

see [12,44] for more details. This equation can be transformed into

U = U(C, K), C = U2 = F · FT, K = G · FT. (6)

where C is the Cauchy–Green strain tensor, and K is the third-order tensor which is the second Lagrangian
strain measure in the nonlinear strain gradient elasticity. Note that we keep the same notation U for different
functions. Another form of the constitutive equation as

U = U(C,∇�C)

was discussed in [32]. Reiher and Bertram [108] also used another Lagrangian strain measure defined as
follows:

˜K = G · F−1, (7)
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so the constitutive equation takes the form

U = U(C, ˜K).

In the framework of the strain gradient elasticity, the equilibriumequation can be derived using theLagrange
variational principle as in [8,43,44], see also “Appendix”. The Lagrangian equilibrium equations takes the
form [44]

∇� · T� + ρ� f = 0, (8)

where ρ� is the mass density in �, f is a vector of mass forces, and T� is the total stress tensor of the first
Piola–Kirchhoff-type. It is given by

T� = P� − ∇� · M�, (9)

P� = ∂U
∂F

, M� = ∂U
∂G

, (10)

where P� is the first Piola–Kirchhoff stress tensor andM� is the first Piola–Kirchhoff hyperstress tensor, which
is a third-order tensor. Note that by its definition M� has the same symmetry as G = ∇�∇�x. Introducing the
transposition with respect the first two indices of a third-order tensor, we denote this symmetry asGT (1,2) = G,
MT (1,2)

� = M� . For example, for a triad, we have

(a ⊗ b ⊗ c)T (1,2) = b ⊗ a ⊗ c.

So as an example of such third-order tensor, we can consider (a ⊗ b + b ⊗ a) ⊗ c.
Let A = ∂V be the boundary of a domain V which is occupied by B in �. In what follows, we assume

that A consists of a finite number of smooth faces A j separated by edges Lm , where normal N undergoes a
discontinuity jump or where external line forces are applied, see Fig. 1. The corresponding natural (static)
boundary conditions on A = ∪ j A j have the form

N · T� − 2HN · (N · M�) − ∇S · (N · M�) = t, (11)

N · (N · M�) = c, (12)

where N is the vector of unit outward normal to the boundary ∂V , H = − 1
2∇S · N is the mean curvature of

∂V , ∇S is the surface nabla-operator defined as

∇S = (1 − N ⊗ N) · ∇�,

1 is the 3D unit tensor, t is a vector of the surface traction, and c is a vector of external double forces, see [44,
pp. 288–293] for details.

Using (12), we can simplify (11). Indeed, substituting (12) into (11), we get

N · T� − ∇S · (N · M�) = t + 2Hc. (13)

This means that for a curved boundary (H �= 0), a surface double force contributes to an external surface
traction.

Unlike nonlinear elasticity of simple materials, we get also non-trivial boundary conditions along edges.
Let Lm be an edge between faces A+ and A−. Then, we have

ν+ · (N · M�)+ + ν− · (N · M�)− − tm = 0, (14)

where tm is a vector of external edge forces defined along edges, N± are normal vectors to A±, and ν± are
vectors of unit outward normals to Lm lying in the tangent plane to A±, see Fig. 2.

Let us notice that in the strain gradient elasticity external line forces are admissible, so we can also assign
(14) to any surface curve L on ∂V . In this case, we have that N± = N and ν+ = −ν− = ν, so we transform
(14) into a jump compatibility condition

ν · (N · M�+) − ν · (N · M�−) − q = 0, (15)

where q is a vector of line forces given along L .
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Fig. 1 Domain V in the reference placement � with faces Ak and edges Lm
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N+

N−

Lm

ν+

ν−

Fig. 2 Two faces A± with common boundary Lm

The boundary-value problem (8), (11), (12), and (14) can be also transformed using theEulerian description.
First, we introduce the Cauchy-type total stress tensor T by the relation

T = J−1FT · T�, J = det F. (16)

Using Piola’s identities
∇� · (JF−T) = 0, ∇ · (J−1FT) = 0, (17)

one can easily prove that for any tensor-valued field T, we have

J−1∇� · T = ∇ · (JF−T · T), (18)

where ∇ is the nabla-operator in χ related to ∇� by

F · ∇ = ∇�. (19)

For example, in Cartesian coordinates xk with corresponding base vectors ik it has the form

∇ = ik
∂

∂xk
.

Using (18), we transform (8) into
∇ · T + ρf = 0, (20)
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where ρ = J−1ρ� is a mass density in the current placement χ .
Similarly to (16), we introduce the Cauchy stress tensor

P = J−1FT · P�. (21)

As M� is a third-order tensor, its transformation into Cauchy form is more complex. First, we introduce
the Rayleigh product ∗ for dyads and triads as follows:

Q ∗ (a ⊗ b) = (Q · a) ⊗ (Q · b) = Q · (a ⊗ b) · QT,

Q ∗ (a ⊗ b ⊗ c) = (Q · a) ⊗ (Q · b) ⊗ (Q · c). (22)

Obviously, it can be easily extended to tensors of any order. Then, the Cauchy hyperstress tensor is given by
the relation

M = J−1FT ∗ M� · F−1. (23)

For the derivation of the Eulerian form of the boundary-value problem, one can use a transformed Lagrange
variational principle as described in “Appendix”. As a result, one gets

x ∈ v : ∇ · T + ρf = 0, T = P = ∇ · (∇ · M), (24)

x ∈ a f : n · T = dA

da
t + ∇s · [(n · M)] + 2h(n ⊗ n) : M, (25)

J (n ⊗ n) : M = c, (26)

x ∈ �m : [[η · (n · M)]]m = dS

ds
tm, (27)

x ∈ � : [[η · (n · m)]]� = dS

ds
q. (28)

In (24)–(28), v is a domain which B occupies in the current placement χ , v = χ(V ), a = ∂v is its boundary,
a = χ(A). Similarly, a f , �m , and � are images of A f , Lm , and L under transformation � → χ, a f = χ(A f ),
�m = χ(Lm), and � = χ(L), respectively. In addition, : denotes the double dot product. For two dyads, it is
defined as

(a ⊗ b) : (c ⊗ d) = (a · c)(b · d)

and can be easily extended for higher-order tensors [44,93]. For example, we get

(a ⊗ b ⊗ c) : (d ⊗ e) = (b · d)(c · e)a.

2.2 Dilatational gradient elasticity

The peculiarity of the dilatational strain gradient elasticity is a reduced dependence on second gradient of
deformation G. Here, we assume that U depends on G only though the gradient of determinant of F, i.e. on
∇�(det F). In this case, we have

U = U(F, ∇� J ). (29)

Applying again the principle of material frame indifference to this dependence, one arrives at

U = U(U, ∇� J ), or to U = U(C,∇� J ), (30)

where U is an even function with respect to ∇� J : U(C,∇� J ) = U(C,−∇� J ).
As a result, we consider the strain energy density function within the dilatational strain gradient elasticity

in the following form:
U = U(C, k), k = ∇� J, (31)

where U is an even function of k, U(C, k) = U(C,−k) for all C and k in the domain of U .
Let us consider an isotropic material. The material symmetry analysis for strain gradient media was

developed in [38,92,108]. In case of isotropic media, the strain energy density has the following invariance
property

U(C, k) = U(Q · C · QT, Q · k) ∀ Q : QT = Q−1. (32)
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In other words, U is an isotropic function of its arguments. Using the theory of invariants [121,137], we get
the following representation of U

U = U(tr C, tr C2, tr C3, k · k, k · C · k, k · C2 · k), (33)

where tr is the trace operator. Instead of traces of Cp, p = 1, 2, 3, its principal invariants I1 = tr C, I2 =
1
2 [tr 2C − tr C2], I3 = det C, can be also used.

As an example of a constitutive relation, we can consider the following extension of the Saint Venant–
Kirchhoff model with

U = μj2 + 1

2
λ j21 + 1

2
αk · k, j2 = S : S, j1 = tr S, S = 1

2
(C − 1), (34)

or the harmonic (John) material model

U = μs2 + 1

2
λs21 + 1

2
αk · k, s2 = (U − 1) : (U − 1), s1 = tr U − 3, (35)

where λ and μ are Lamé elastic moduli and α is an additional elastic modulus related to the gradient of
dilatation.

Note that for isotropic media, we consider in (32) orthogonal tensors. If we restrict ourselves to proper
orthogonal tensors, i.e. rotation tensors, we come to the model of a hemitropic material. Here, we have an
additional invariant [137] and the representation of the strain energy density of a hemitropic material reads

U = U (

tr C, tr C2, tr C3, k · k, k · C · k, k · C2 · k, k · [(C · k) × (C2 · k)]) , (36)

where × stands for the cross product.
Considering other symmetry groups we can find the related reduced representations of the constitutive

equations for anisotropic media. For example, let us consider a transversely isotropic solid. Let e be a unit
vector defining an axis of transverse isotropy. Then, a strain energy density should be an isotropic function of
C, k and e or e⊗e if two directions e and−e are undistinguishable. For the last case, we get the representation
in the form

U = U (

tr C, tr C2, tr C3, k · k, k · C · k, k · C2 · k,

(k · e)2, e · C · e, e · C2 · e, (k · e)(e · C · k)
)

. (37)

This representation corresponds to the one of five possible transverse isotropy groups in the three-dimensional
space, i.e. to the group D∞h for which the structural tensor is e ⊗ e, see [137, p. 563] for details.

Orthotropic materials constitute another often observed class of anisotropic materials such as composites
or rocks. Here, we have three orthotropic symmetry groups [137]. In particular, the groupO3 includes reflection
transformations in planes normal to orthogonal unit vectors ek and the mirror reflection. For this group, the
structural tensor is given by S = e1 ⊗ e1 − e2 ⊗ e2 and the representation of the strain energy density has the
form [137, p. 566]

U = U (

tr C, tr C2, tr C3, k · k, k · C · k, k · C2 · k,

tr (S · C), tr (S2 · C), tr (S · C2), tr (S2 · C2),

k · S · k, k · S2 · k, k · S · C · k
)

. (38)

In a similarway,we can consider the representations of constitutive relations for other anisotropicmedia. Let
us note that as one faces herewith function of a second-order tensor and vector, invariants-based representations
of a strain energy density is similar to fibre-reinforced composites [122] of simple materials and simpler than
in the general Toupin–Mindlin strain gradient elasticity or even in the micropolar elasticity [49,55].

Equation (31) is a reduced form of (6). Indeed, in (31) a dependence on K appears trough k. Let us express
k through K explicitly. First, one compares the identities

dJ = dX · ∇� J,

dJ = J,F : dF = (JF−T) : dF = dF : (JF−T) = dX · ∇�F : (JF−T)
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and get that

k ≡ ∇� J = ∇�F : (JF−T) = J (∇�F · F−1) : 1.

For brevity we denote the derivative of J with respect to F as J,F. Here, we used the formula for differentiation
of J = det F, J,F = JF−T, F−T = (FT)−1 = (F−1)T, Since G ≡ ∇�F = K · F−T finally one gets

k = J (K · F−T) : F−T = J (K · C−1) : 1. (39)

Using K = ∇�F · F−1 introduced by (7), one gets another representation of k:

k = J˜K : 1. (40)

With (40) we can transform the general constitutive equations of the strain gradient elasticity (10) for the
case of dilatational strain gradient elasticity. To this end, let us consider dU . From (10), it follows that

dU = M�

... dG + P� : dF, (41)

where
... stands for the triple dot product. For example, for triads, it is given by

(a ⊗ b ⊗ c)
...(d ⊗ e ⊗ f) = (a · d)(b · e)(c · f).

On the other hand, one gets

dU = ∂U
∂k

· dk + ∂U
∂C

: dC

= m� · dk + P� : dF, (42)

where m� is the first Piola–Kirchhoff-type double force vector. Using the identities

dC = dF · FT + F · dFT,

d(JF−T) = dJF−T + Jd(F−T)

= dF : (JF−T)F−T − JF−T · dFT · F−T,

dk = d∇� J = d(∇�F : (JF−T)) = dG : (JF−T) + G : d(JF−T)

= dG : (JF−T) + G : (JF−T)(dF : F−T)

− G : (JF−T · dFT · F−T),

one arrives at

m� · dk = dG
...(Jm� ⊗ F−T) + G

...(Jm� ⊗ F−T)(F−T : dF)

− J
[

F−T · (m� · G)T · F−T] : dF.

Comparing (41) and (42), one has

M�

...dG = (Jm� ⊗ F−T)
...dG, (43)

P� : dF =
[

2FT · ∂U
∂C

+ G
...(Jm� ⊗ F−T)F−T

− J
[

F−T · (m� · G)T · F−T]] : dF. (44)

Since dF can be treated as an arbitrary second-order tensor from (44), it follows

P� = 2FT · ∂U
∂C

+ G
...(Jm� ⊗ F−T)F−T − J

[

F−T · (m� · G)T · F−T]

. (45)

As it was alreadymentioned,G has the symmetry propertyGT (1,2) = G, so the same symmetry is inherited
by dG. Thus, from (43), it follows that M� coincides with the symmetric part of Jm� ⊗ F−T:

M� = 1

2
Jm� ⊗ F−T + 1

2
J (m� ⊗ F−T)T (2,1). (46)
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2.3 Lagrange variational principle

Let us find the Lagrangian equilibrium conditions within the dilatational strain gradient elasticity using directly
(31). To this end, the Lagrange variational principle is applied by using the same technique as in [40,43]. Let
V be a domain occupied by B in a reference placement, V = �(B). The total energy stored in V is given by

E =
∫∫∫

V

U dV . (47)

Equilibrium conditions follow from the variational equation

δE − δA = 0, (48)

where δ is the symbol of variation and δA is a work of external actions which will be specified later. Let us
note that δA does not constitute the first variation of any functional, in general. Calculating the first variation
of E, one gets

δE =
∫∫∫

V

δU dV =
∫∫∫

V

(

∂U
∂F

: δF + ∂U
∂k

· δk
)

dV

=
∫∫∫

V

(P� : ∇�v + m� · ∇�δ J ) dV, (49)

where v = δx and
P� = ∂U

∂F
, m� = ∂U

∂k
(50)

are the first Piola–Kirchhoff stress tensor and the first Piola–Kirchhoff double force vector, respectively.
Using the identity

δk = ∇�δ J = ∇�

[

JF−T : ∇�v
]

and integrating by parts in (49), one gets

δE = −
∫∫∫

V

[

(∇� · P�) · v + (∇� · m�)J (F−T : ∇�v)
]

dV

+
∫∫

∂V

[

N · P� · v + (N · m�)J (F−T : ∇�v)
]

dA. (51)

Integrating again by parts as follows:
∫∫∫

V

(∇� · m�)J (F−T : ∇�v) dV = −
∫∫∫

V

[∇� · (∇� · m�)JF−T] · v dV

+
∫∫

∂V

(∇� · m�)JN · F−T · v dA

one has

δE =
∫∫∫

V

[−∇� · P� + ∇� · [

(∇� · m�)JF−T]] · v dV

+
∫∫

∂V

[

N · P� − (∇� · m�)N · JF−T] · v dA

+
∫∫

∂V

(N · m�)J (F−T : ∇�v) dA. (52)
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In order to transform the last integral in (52), the decomposition of ∇�v into normal and tangent parts is used
as follows:

∇�v = N ⊗ ∂

∂N
v + ∇Sv.

So one gets

∫∫

∂V

(N · m�)J (F−T : ∇�v) dA

=
∫∫

∂V

(N · m�)JN · F−T · ∂v
∂N

dA +
∫∫

∂V

(N · m�)J (F−T : ∇Sv) dA. (53)

In order to integrate by parts in (53), the surface divergence theorem is used, which consists of the relation
[44]

∫∫

A

(∇S · Z + 2HN · Z) dA =
∫

L

ν · Z dS (54)

for any differentiable tensor-valued field Z and any smooth enough surface A with a contour L . Here, H is
the mean curvature and ν is the outward unit normal vector to L , such that N · ν = 0. Using (54), one has the
following formula of integration by parts on a surface

∫∫

A

Z : ∇Sv dA = −
∫∫

A

(∇S · Z + 2HN · Z) · v dA +
∫

L

ν · Z · v dS. (55)

With (55), the last integral in (53) is transformed as follows:

∫∫

∂V

(N · m�)J (F−T : ∇Sv) dA

= −
∫∫

∂V

[∇S · [

(N · m�)JF−T] + 2H(N · m�)N · JF−T] · v dA

+
∑

m

∫

Lm

[[(N · m�)ν · JF−T]]m · v dS, (56)

where [[(. . .)]]m means a jump across Lm . For example, if Lm is a common boundary between two faces A−
and A+ as shown in Fig. 2, one has

[[(N · m�)ν · JF−T]]m = (N+ · m�)ν+ · JF−T + (N− · m�)ν− · JF−T,

where m� and JF−T are also calculated as unilateral limits at Lm .
As a result, one gets the formula for δE

δE =
∫∫∫

V

[−∇� · P� + ∇� · [

(∇� · m�)JF−T]] · v dV

+
∫∫

∂V

[

N · P� − (∇� · m�)N · JF−T] · v dA

+
∫∫

∂V

(N · m�)JN · F−T · ∂v
∂N

dA



On nonlinear dilatational strain gradient elasticity

−
∫∫

∂V

[∇S · [

(N · m�)JF−T] + 2H(N · m�)N · JF−T] · v dA

+
∑

m

∫

Lm

[[(N · m�)ν · JF−T]]m · v dS. (57)

Obviously, δE includes integrals over domain V , its surface A = ∂V and edges Lm , where the surface
integrals are linearly dependent on v and its normal derivative. So one can assume the same form for δA

δA =
∫∫∫

V

ρ� f · v dV +
∫∫

A f

[

t · v + gJN · F−T · ∂v
∂N

]

dA

+
∑

m

∫

Lm

tm · v dS +
∫

L

q · v dS. (58)

In (58), a mass force vector f , a surface traction vector t and surface double force scalar g, line force vectors tm
and q have been introduced. Here, it is assumed that t and g act on a part of the boundary denoted as A f ⊂ A,
whereas tm acts on Lm and q is given on a closed curve L or on a finite number of closed curves or curves
ending on other edges or on other curves in L , see Fig. 1. Unlike the general case (139) here δA contains only
a particular surface double forces.

As a result, from (48) we get the equilibrium equation in V

∇� · P� − ∇� · [

(∇� · m�)JF−T] + ρ� f = 0, (59)

the natural (static) boundary conditions on A f

N · P� − (∇� · m�)JN · F−T

− ∇S · [

(N · m�)JF−T] − 2H(N · m�)JN · F−T = t, (60)

N · m� = g, (61)

and the static conditions along Lm and L , respectively,

[[(N · m�)ν · JF−T]]m = tm, (62)

[[(N · m�)ν · JF−T]]L = q. (63)

Introducing the total stress tensor of the first Piola–Kirchhoff-type T� as

T� = P� − (∇� · m�)JF−T (64)

Eq. (59) is transformed into the classic form

∇� · T� + ρ� f = 0. (65)

Using (64) and (61), one can also simplify (60) as follows:

N · T� =˜t, ˜t = t + ∇S · [

gJF−T] + 2HgJN · F−T, (66)

whereas (62) and (63) become

[[gν · JF−T]]m = tm, (67)

[[gν · JF−T]]L = q. (68)

Obviously, from (66) it follows that the scalar surface double force gives a contribution to the apparent surface
traction˜t. Conditions (67) and (68) constitute a certain compatibility condition for applied loadings g, tm and
q.
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Let us reformulate the boundary-value problem using Eulerian description. To this end, one can transform
δE and δA using Eulerian coordinates. Changing coordinates X → x in (49) and using (19) and (21), one has

∫∫∫

V

P� : ∇�v dV =
∫∫∫

v

P� : ∇�vJ−1 dv =
∫∫∫

v

P : ∇v dv, (69)

where v = χ(B) is the volume of body B in the current placement χ . As δ J = J∇ · v, one gets also
∫∫∫

V

m� · ∇�δ J dV =
∫∫∫

v

m · ∇(J∇ · v) dv, (70)

where m is the Cauchy double force vector introduced as follows:

m = J−1FT · m�. (71)

So δE takes the form

δE =
∫∫∫

v

[P : ∇v + m · ∇(J∇ · v)] dv. (72)

Now the derivation performed above for Lagrangian coordinates can be mimicked. Integrating by parts in (72),
one gets

δE = −
∫∫∫

v

[(∇ · P) · v + J (∇ · m)∇ · v] dv

+
∫∫

∂v

[(n · P) · v + J (n · m)∇ · v] da, (73)

where n is the vector of unit outward normal to ∂v. Using formula 5 from [74, p. 19]

n da = N · JF−T dA (74)

and (18) one can easily obtain (73) from (51). Integrating by parts again one gets
∫∫∫

v

J (∇ · m)∇ · v dv

= −
∫∫∫

v

∇ [J (∇ · m)] · v dv +
∫∫

∂v

J (n · m)n · v da. (75)

For further derivations, the decomposition of ∇ on the surface is introduced

∇ = n
∂

∂n
+ ∇s

and the surface integral in (73) is transformed as follows:
∫∫

∂v

J (n · m)∇ · v da +
∫∫

∂v

J (n · m)

[

n · ∂v
∂n

+ ∇s · v
]

da. (76)

Using the surface divergence theorem formulated in Eulerian coordinates, one rewrites the integration by parts
formula (55) as

∫∫

a

Z : ∇sv da = −
∫∫

a

(∇a · Z + 2hn · Z) · v da +
∫

∂a

η · Z · v ds. (77)
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Here, h is the mean curvature of a, h = −1/2∇s · n, η is the outward normal vector to ∂a such that η · n = 0.
With (77), one obtains the formula

∫∫

∂v

J (n · m)∇s · v da =
∫∫

∂v

[∇s (J (n · m)) + 2h J (n · m)n] · v da

+
∑

m

∫

�m

[[J (n · m)η·]]m · v ds. (78)

Here, �m = χ(Lm) are images of edges under mapping � → χ .
Finally, one gets the Eulerian form of δE given by

δE =
∫∫∫

v

[−∇ · P + ∇ [J (∇ · m)]] · v dv

+
∫∫

∂v

[n · P − J (∇ · m)n] · v da +
∫∫

∂v

J (n · m)n · ∂v
∂n

da

−
∫∫

∂v

[∇s [J (n · m)] + 2h J (n · m)n] · v da

+
∑

m

∫

�m

[[J (n · m�)η]]m · v ds. (79)

In a similar way, we δA is transformed

δA =
∫∫∫

v

ρf · v dv +
∫∫

a f

[

t · v
dA

da
+ gn · ∂v

∂n

]

da

+
∑

m

∫

�m

tm · v
dS

ds
ds +

∫

�

q · v
dS

ds
ds, (80)

where da
dA and ds

dS are the elementary changes in surface area and in curve length, respectively.
Now the Eulerian boundary-value problem within the dilatational strain gradient elasticity takes the fol-

lowing form

x ∈ v : ∇ · P − ∇ (J∇ · m) + ρf = 0, (81)

x ∈ a f : n · P − ∇s [J (n · m)] − 2h J (n · m)n = dA

da
t (82)

J (n · m) = g, (83)

x ∈ �m : [[J (n · m)η]]m = tm
dS

ds
, (84)

x ∈ � : [[J (n · m)η]] = q
dS

ds
. (85)

As in the Lagrangian case from (83), and (84), (85) static compatibility conditions along edges follow

[[gη]]m = tm
dS

ds
, [[gη]] = q

dS

ds
.

From the last equation, it follows that for g �= 0 an action of a line force may produce an edge in a current
configuration.

From the Eulerian statement, it is clear that the dilatational strain gradient phenomena result in appearance
of normal forces on a free surface and “hydrostatic” pressure in the equations for the bulk. In Sect. 5 our model
is compared with models of materials with voids where pressure plays an important role.
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3 Reduction to gradient fluids

As it was mentioned in Introduction the dilatational strain gradient elasticity is closely related to the model of
capillary fluids [12,44,116]. In order to discuss this matter in more details, let us consider another form of the
strain energy function. One can use the decomposition of F into its dilatational and distorsional parts

F = J 1/3F, where F = J−1/3F, det F = 1.

Here F describes isochoric (distorsional) deformations. Such decomposition is used for description of nearly
incompressible materials [96]. With this decomposition, one can write the constitutive equation (29) in the
form

U = U(F, J, k). (86)

For isotropic materials instead of (33), one can use the following representation

U = U(I 1, I 2, J, k · k, k · C · k, k · C
2 · k), (87)

where I 1 = tr C, I 2 = 1
2 [tr 2C − tr C

2], and C = F · F
T
.

Since the referential ρ� and current ρ mass density relates to each other through the mass balance

ρ� = ρ J,

one can further replace (88) by
U = U(F, ρ, ∇ρ). (88)

Here, the following substitutions were performed

J = ρ�

ρ
, k ≡ ∇� J = −ρ�

ρ2 ∇�ρ = −ρ�

ρ2 F · ∇ρ = −ρ�

ρ2 J
1/3F · ∇ρ

So one can see that a strain energy density of capillary fluid UK is a dilatational part of U measured per unit
volume in a current configuration

UK = ρ

ρ�

U(1, ρ, ∇ρ). (89)

Using (89), one can see that the dilatational strain gradient elastic material may demonstrate the same
behaviour as a capillary fluid. In particular, for dilatational deformations interfacial layers of finite thickness
may appear between two phases as observed in [31,110]. For further extensions towards viscous gradient
fluids, one is referred to [13,72]. Similarly, the dilatational strain gradient elasticity can be extended towards
models with viscosity.

4 Linear dilatational strain gradient elasticity

For infinitesimal deformations, the vector of displacements is introduced

u = u(X, t) = x(X, t) − X.

Here, there is no difference between � and χ , and one has the following approximations

∇� ≈ ∇, F = 1 + ∇u, C ≈ 1 + 2ε, K ≈ ˜K ≈ G = ∇∇u,

J ≈ 1 + ε, ε = tr ε = ∇ · u, k ≈ ∇∇ · u, ε = 1

2

(∇u + (∇u)T
)

,

where ε and ε are the linear strain tensor and the linear dilatation.
For an isotropic material (33) transforms into

U = λ

2
tr 2ε + με : ε + α

2
k · k, (90)
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where λ and μ are Lamé moduli and α is an additional elastic modulus. So unlike the Toupin–Mindlin strain
gradient elasticity with five additional moduli here one has only one related to higher gradients. For a general
anisotropic material one has a strain energy expressed by a quadratic form

U = 1

2
ε : Λ : ε + 1

2
k · Γ · k + k · Υ · ε, (91)

where Λ is a forth-order tensor of elastic moduli which has the same symmetries as in linear elasticity, i.e.
21 independent elastic moduli, Γ is a symmetric second-order tensor (three moduli), and Υ is a third-order
coupling tensor having 18 independent components. So for general anisotropy the total number of elastic
moduli becomes equal to 42. For centrosymmetric materials, Υ = 0, and one has no coupling.

For infinitesimal deformations, one has also that stress tensors and vectors coincide to each other as follows:

P� ≈ P, T� ≈ T, M� ≈ M, m� ≈ m.

For isotropic materials, one gets

P = 2με + λ1tr ε, m = α∇∇ · u,

T = 2με + λ1tr ε − α1∇ · ∇(∇ · u).

Unlike finite deformations, for linear isotropic solids, stresses and hyperstresses are decoupled, as the stress ten-
sor depends only on strains, whereas the double force vector depends on the gradient of dilatation. Considering
the representation of T as a sum of spherical and deviatoric parts, we can see that

T = T 1 + devT, T = 1

3
tr T, devT = T − T 1,

one can see that the deviatoric part does not depend on the second gradients of displacements,

devT = devP = 2μ devε,

whereas the spherical part depends on the gradient of the divergence of displacements

T = 1

3
(2μ + 3λ)ε − α∇ · ∇ε = 1

3
(2μ + 3λ)∇ · u − α∇ · ∇(∇ · u).

Here, dev means the deviatoric part of a tensor. So the discussed model is a particular class or strain gradient
model proposed by [138].

Relation (46) between the third-order hyperstress tensor M and the double force vector m takes now the
form

M = 1

2
m ⊗ 1 + 1

2
iM ⊗ m ⊗ iM .

For a homogeneous material, the equilibrium equation (65) is

μ∇ · ∇u + (μ + λ)∇∇ · u − α∇∇ · ∇(∇ · u) + ρf = 0.

The well-posedness of boundary-value problems within the linear dilatational strain gradient models was
studied in [48].
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5 Cowin–Nunziato poroelasticity with constraints

As it was mentioned in Introduction, the above-discussed dilatational strain gradient elasticity has some
relations to the so-called generalized models with one-dimensional microstructure [17]. Among such models,
it is worth noticing the poroelasticity model proposed by Cowin and Nunziato [23,94]. Let us briefly recall the
basic equations of this model. In addition to x, one has an additional kinematic descriptor ϕ which describes
the voids fraction. So the strain energy density has the form

W = W(F, ϕ,∇�ϕ), F = ∇�x.

In the following a particular class of materials is considered with W given by

W = W(F, ∇�ϕ). (92)

Applying the principle of material frame indifference to (92) one gets

W = W(C,∇�ϕ). (93)

Calculating the first variation of the energy density functional

ECN =
∫∫∫

V

W dV (94)

one gets

ECN =
∫∫∫

V

(P� : δF + μ� · ∇�ω) dV

= −
∫∫∫

V

[(∇� · P�) · v + (∇� · m�)ω] dV

+
∫∫

∂V

[

N · P� · v + N · μ�ω
]

dA, (95)

where v = δx and ω = δϕ.
The consistent form of the virtual work of external actions is given now by

ACN =
∫∫∫

V

(ρ� f · v + cω) dV +
∫∫

∂V

(t · v + τω) dA, (96)

where the extrinsic equilibrated body force c and the equilibrated surface stress τ have been introduced.
From the variational equation

δECN = δACN (97)

one derives the Lagrangian equilibrium equations

∇� · P� + ρ� f = 0, ∇� · μ� + ρ�c = 0, X ∈ V (98)

and the natural boundary conditions

N · P� = t, N · μ� = τ, X ∈ ∂V . (99)

In order to underline the similarity of the model with scalar microstructure and the dilatational strain
gradient elasticity, let us introduce the following constraint

ϕ = J. (100)

For small deformations, it takes the form ϕ = tr ε.
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Now, one can apply again the variational approach using the Lagrange multiplier technique. The modified
functional has the form

ECN =
∫∫∫

V

W dV +
∫∫∫

V

Λ(ϕ − J ) dV, (101)

where Λ is a Lagrange multiplier. Repeating the calculation of the first variation of ECN, one gets

ECN =
∫∫∫

V

(P� : δF + μ� · ∇�ω) dV

+
∫∫∫

V

δΛ(ϕ − J ) dV +
∫∫∫

V

Λ(δϕ − δ J ) dV

=
∫∫∫

V

[−∇� · P� + ∇� · (ΛJF−T)
] · v dV

+
∫∫∫

V

(−∇� · m� + Λ)ω dV +
∫∫∫

V

δΛ(ϕ − J ) dV

+
∫∫

∂V

[

(N · P� − N · ΛJF−T) · v + N · μ�ω
]

dA, (102)

Here, the identity δ J = JF−T : ∇�v has been used. Now using (102) from (97), one gets (100) and the
modified equilibrium conditions

∇� · P� − ∇�Λ + ρ� f = 0, (103)

∇� · μ� − Λ + ρ�c = 0, (104)

N · P� = t + N · ΛJF−T, (105)

N · μ� = τ. (106)

Using (104), Λ can be excluded from (103) and (105). As a result, one gets

Λ = ∇� · μ� + ρ�c

and (103) transforms as follows

∇� · P� − ∇�(∇� · μ� + ρ�c) + ρ� f = 0, (107)

whereas (105) takes the form

N · P� = t + (∇� · μ� + ρ�c)JN · F−T. (108)

Introducing the new mass force vector˜f by the relation

˜f = f + ∇�c (109)

one can see that (107) takes, up to notations, the same form as (65)

∇� · T� + ρ�
˜f = 0, (110)

where T� = P� − (∇� · μ�)1.
As a result, one can conclude that the relation between the Cowin–Nunziato poroelasticity and the dilata-

tional strain gradient elasticity is the same as the correspondence between the model of micromorphic medium
and the strain gradient elasticity. For application of the Lagrange multipliers technique in the case of higher-
order and generalized models of continuum, one is referred to [11,28].
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6 Dynamics

Using the least action principle (Hamilton–Ostrogradsky principle) [8,43,44], one can extend the boundary-
value problems to dynamics. To this end the kinetic energy density is introduced as follows:

K = 1

2
ρ� ẋ · ẋ + 1

2
ρ�ς J̇ 2, (111)

where the overdot stands for the derivative with respect to t and ς is the microinertia scalar. Within the Cowin–
Nunziatomodel ς is called the equilibrated inertia [23,94]. In general, ς may depend on the body deformations.
Following motivations [23,94], it is assumed that ς depends on volumetric strains, i.e. ς = ς(J ).

The least action functional H takes the form

H =
t2

∫

t1

(K − E) dt, K =
∫∫∫

V

K dV, (112)

where t1 and t2 are two time instants. Considering the variational equation

δH +
t2

∫

t1

δA dt = 0, (113)

for kinematically admissible variations v = δx with constraints

v
∣

∣

t=t1
= 0, v

∣

∣

t=t2
= 0,

the governing equations within the dilatational strain gradient elasticity in dynamics are derived.
Since the first variation of E has been already derived, one has to concentrate on δK. Using the identities

δ J = J∇ · v = JF−T : ∇�v, (114)

J̇ = J∇ · ẋ = JF−T : ∇� ẋ, (115)

and integrating by part one gets

δ

t2
∫

t1

K dt =
t2

∫

t1

∫∫∫

V

ρ�

(

ẋ · v̇ + 1

2
J̇ 2δς + ς J̇δ J̇

)

dV dt

=
t2

∫

t1

∫∫∫

V

ρ�

[

−ẍ · v + 1

2
J̇ 2ς ′δ J − (ς J̇ )·δ J

]

dV dt

=
t2

∫

t1

∫∫∫

V

{

−ρ� ẍ + ∇� ·
[

ρ� J

[

(ς J̇ )· − 1

2
ς ′ J̇ 2

]

F−T
]}

· v dV dt

−
t2

∫

t1

∫∫

∂V

N ·
[

ρ� J

[

(ς J̇ )· − 1

2
ς ′ J̇ 2

]

F−T
]

· v dA dt. (116)

In (116) ς ′ = dς/dJ .
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Within the Eulerian description this formula takes the form

δ

t2
∫

t1

K dt =
t2

∫

t1

∫∫∫

v

ρ

{

−ẍ · v +
[

1

2
J̇ 2ς ′ − (ς J̇ )·

]

J∇ · v
}

dv dt

=
t2

∫

t1

∫∫∫

v

{

−ρẍ + ∇
[

ρ J

[

−1

2
J̇ 2ς ′ + (ς J̇ )·

]]}

· v dv dt

+
t2

∫

t1

∫∫

∂v

ρ J

[

1

2
J̇ 2ς ′ − (ς J̇ )·

]

n · v da dt. (117)

As a result, from (113) and (116) or (117) one gets the equation ofmotion and dynamic boundary conditions
in both Lagrangian and Eulerian descriptions:

X ∈ V : ∇� · T� + ρ� f = ρ� ẍ − ∇� ·
[

ρ� J

[

(ς J̇ )· − 1

2
ς ′ J̇ 2

]

F−T
]

, (118)

X ∈ A f : N · P� − (∇� · m�)JN · F−T

− ∇S · [

(N · m�)JF−T] − 2H(N · m�)JN · F−T

= t − N ·
[

ρ� J

[

(ς J̇ )· − 1

2
ς ′ J̇ 2

]

F−T
]

, (119)

or

x ∈ v : ∇ · T + ρf = ρẍ − ∇
[

ρ J

[

(ς J̇ )· − 1

2
ς ′ J̇ 2

]]

,

x ∈ a f : n · P − ∇s · [J (n · m)] − 2h J (n · m)n (120)

= dA

da
t − ρ J

[

(ς J̇ )· − 1

2
ς ′ J̇ 2

]

n. (121)

Unlike classic elasticity here the boundary conditions (119) and (121) for stresses contain inertia terms.
Note that other boundary conditions for m� and m did not change.

In the case of small deformations the equation of motion for a homogeneous isotropic solid takes the form

μ∇ · ∇u + (μ + λ)∇∇ · u − α∇∇ · ∇(∇ · u) + ρf = ρü − ρς∇ · ∇ü, (122)

where ς > 0, i.e. it is assumed to be a positive constant.

7 Two simple solved problems in linear dilatational strain elasticity

7.1 Dilatational waves

Let us consider a wave propagation in an elastic space. Within the dilatational strain gradient elasticity, the
higher-order terms in the strain energy density have influence on dilatational waves (P-waves), whereas shear
waves (S-waves) are the same as in classical linear elasticity [3]. Introducing a dilatational potential Φ as
follows u = ∇Φ, (122) is transformed into a scalar equation

(2μ + λ)ΔΦ − αΔ2Φ = ρΦ̈ − ρςΔΦ̈. (123)

Here, Δ = ∇ · ∇ and it is assumed that f = 0. Looking for a solution in the form

Φ = Φ0 exp(ik · X − iωt),
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Fig. 3 Dispersion curves, i.e. c versus k. Here, dashed horizontal line shows the classic non-dispersive case c/cp = 1, dispersion
curves 1 and 2 relate to values �d/�s = 2 and �d/�s = 0.5, respectively. The dotted horizontal lines correspond to the asymptotes
as k → ∞

where k is the wave vector, ω is the frequency, i = √−1, and Φ0 is a constant wave amplitude, one arrives at
the dispersion relation, i.e. to an equations which relates ω and k,

(2μ + λ)k2 + αk4 = ρω2(1 + ςk2), (124)

where k2 = k · k. Introducing the phase velocity c = ω/k, one gets the dispersion relation in the form

c2

c2p
= 1 + α

2μ+λ
k2

1 + ςk2
, (125)

where cp = √
(2μ + λ)/ρ is the speed of longitudinal waves in an elastic space [3]. Eq. (125) contains two

length-scale parameters, that are the static characteristic length �s and the dynamic characteristic length �d
defined as

�s =
√

α

2μ + λ
, �d = √

ς.

With these notations the dispersion relation takes the form

c

cp
=

√

1 + �2s k
2

1 + �2dk
2

. (126)

Obviously, if �s �= �d a dilatational wave is a dispersive wave. For long waves, i.e. as k → 0, c ≈ cp.
For short waves (k → ∞), one has the asymptotic value c = cp�d/�s . For other gradient-type models, such
dispersion relation was analysed in [7] in more detail and for the couple stress theory in [90].

Characteristic dispersion curves are shown in Fig. 3. Here, the dashed horizontal line corresponds to the
classic relation c = cp, the dotted horizontal lines show the asymptotes c = cp�d/�s . In addition dimensionless
variables c̄ = c/cp and k̄ = �sk have been introduced. The group velocity cg = dω/dk is shown in Fig. 4.
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Fig. 4 Group velocity cg versus k. Material parameters are chosen as in Fig. 3

7.2 Axial deformations of an elastic tube

As an example, let us consider the plane axial deformation of an elastic tube. Let a and b be the inner and
outer radii of an elastic cylinder in a reference placement, respectively, see Fig. 5. Hydrostatic pressures and
constant double forces are assumed on the boundaries. In the following, we use the polar coordinates in both
reference and current placements. So an axial deformation has the following form [74,130]

r = r(R), φ = Φ, z = Z , (127)

where r(R) is an unknown function. The deformation gradient is given by

F = r ′(R)eR ⊗ er + r(R)

R
eΦ ⊗ eφ + eZ ⊗ ez, (128)

where eR , eΦ , eZ and er , eφ , ez are unit base vector related to Lagrangian and Eulerian polar coordinates,
respectively, and the prime stands for the derivative with respect to R. So one has also

U = r ′(R)eR ⊗ eR + r(R)

R
eΦ ⊗ eΦ + eZ ⊗ eZ , (129)

J ≡ det F = r ′(R)
r(R)

R
, k =

[

r ′(R)
r(R)

R

]′
eR . (130)

In the following attention is restricted to infinitesimal deformations. So one has

r(R) = R + u(R), ε = u′eR ⊗ eR + u

R
eΦ ⊗ eΦ, ε = u′ + u

R
, k = ε′eR,

where u = u(R) is a displacement.
For the axial deformations, the equilibrium equations transform into the following scalar equation:

(2μ + λ)ε′ − α

(

ε′′ + ε′

R

)′
= 0. (131)
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Fig. 5 Cross section of an elastic tube in a reference placement

With α = 0 it has simple solution given by

u = u0(R) ≡ C1R + C2

R
, (132)

where C1 and C2 are integration constants, see [75]. For α �= 0 the solution of (131) is more complex. First
one gets the solution for ε′ as follows

ε′ = C3 I1(γ R) + C4K1(γ R),

where I1 and K1 are the modified Bessel functions of the first and second kinds, respectively, γ =√
(2μ + λ)/α, and C3 and C4 are other integration constants. Note that ξ = γ −1 plays a role of a length-scale

parameter which characterizes the influence of gradient of dilatation. Then, integrating this equation using the
properties of Bessel functions one gets u(R)

u(R) = C1R + C2

R
+ 1

γ 2C3 I1(γ R) + 1

γ 2C4K1(γ R). (133)

For the sake of simplicity, it is assumed that the internal boundary (R = a) is free, whereas at R = b, one
has the action of both hydrostatic pressure p and double force g. As a result, for axial deformations, one gets
the following boundary conditions

R = a : αε′ = 0, (134)

2μu′ + λε = 0, (135)

R = b : αε′ = g, (136)

2μu′ + λε = −p + 1

b
g. (137)

Boundary conditions (134)–(137) constitute a system of linear algebraic equations for the integration constants
which depend linearly on p and g. Obviously, if g = 0 from (134) and (136) one has C3 = C4 = 0 and u
has the classical form (132). On the other hand, if p = 0 one has a nonzero surface traction related to g, see
(137). In the next figures, the normalized distributions of stresses, double stresses and total stresses for various
of thickness and the material length-scale parameter ξ are presented. These stresses are given by

PRR = 2μu′ + λε, mR = αε′,

TRR = PRR − α

(

ε′′ + ε′

R

)

.

In the following dimensionless variables R = R/b, P = PRr/μ, T = TRr/μ, m̄ = mR/(bα), p̄ = p/μ,
ḡ = bg/μ have been used. In addition, it was assumed a value λ = 1.5μ that corresponds to Poisson’s ratio
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(a) (b)

Fig. 6 Stresses versus R = R/b. Curves 1, 2, and 3, relate to the following values of ξ̄ = 0.1, ξ̄ = 0.01, ξ̄ = 0.001, respectively.
Here, ξ̄ = ξ/b, a a/b = 0.5, b a/b = 0.9

(a) (b)
Fig. 7 Stresses versus R = R/b for self equilibrated surface traction. Curves 1, 2, and 3, relate to the following values of ξ̄ = 0.1,
ξ̄ = 0.01, ξ̄ = 0.001, respectively. Here, ξ̄ = ξ/b, a a/b = 0.5, b a/b = 0.9

0.3. In Fig. 6, the normalized stress P versus R = R/b is given for a/b = 0.5 (a), a/b = 0.9 (b), p̄ = 0.02,
ḡ = 0.01. Curves 1, 2, 3 relate to ξ̄ = 0.1, ξ̄ = 0.01, ξ̄ = 0.001, respectively.

The stress distributions for the particular case −p + 1
b g = 0, ḡ = 0.01, are given in Fig. 7. Here, one has

PRR = 0 at R = a, b, but since g �= 0 one gets nonzero distribution of stresses.
In Fig. 8, the normalized double stress m̄ = m/(αb) is presented as a function of R for various values of

a/b and various values of ξ . Clearly, the presented solutions have the form of a boundary-layer-type solution,
i.e. localized near the boundary R = b. This behaviour is more pronounced for thick cylinders, see, e.g. Fig. 8a,
b.

Finally, in Fig. 9, the normalized total stress T as a function of R is presented. Other parameters are the
same as in Figs. 6 and 7.

For thick-walled cylinders, one can observe strong localization phenomena in stresses, double stresses
and total stresses, see Fig. 10, where a/b = 0.01. Here, boundary-layer-type solutions for stresses and total
stresses in the vicinity of the free surface R = a are observed, whereas double force is localized near R = b.
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(a) (b)

(c) (d)

Fig. 8 Double force versus R = R/b. Curves 1, 2, and 3, relate to the following values of ξ̄ = 0.1, ξ̄ = 0.01, ξ̄ = 0.001,
respectively. Here ξ̄ = ξ/b. In addition, the cases a–d correspond to a/b = 0.1, 0.5, 0.9, 0.99, respectively

8 Conclusions and research perspectives

In this paper, it is proposed to call “nonlinear dilatational strain gradient elasticity” the theory concerning
second gradient continua where the deformation energy depends on:

(i) the gradient of placement (via its objective part) and
(ii) the gradient of the determinant of the gradient of placement (which is obviously objective).

The class of deformation energies considered here is singular, in the sense given by the hypotheses demanded
by the theorems presented in [67,81,97,98]. It is therefore clear that the study of mathematical well-posedness
of the equilibrium and dynamical problems for dilatational strain gradient elasticity require the adaptation
and/or the generalization of the standard arguments used in the theory of elasticity, in a similar way to what
has been done, for the linear case, in [45,48]. In these last papers, the considered problem was linear, while
here one deals with a nonlinear one. Therefore, sophisticated arguments involving lower-semicontinuity seem
necessary, and will be the object of future investigations. Instead in the present paper, in order to give a strong
mechanical motivation to the needed mathematical efforts demanded by the novel energies considered, an
approach having the same style as the one usually used in mechanical literature has been adopted, based on
the techniques originally employed by Lagrange himself. Without any formal specification of the functional
space where the introduced energy functional are introduced, their first variation have been formally calculated.
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(a) (b)

(c) (d)

Fig. 9 Total stress versus R. Curves 1, 2, and 3, relate to the following values of ξ̄ = 0.1, ξ̄ = 0.01, ξ̄ = 0.001, respectively. For
a, b the parameters are assumed as in Fig. 6 whereas for c and d as in Fig. 7, respectively

The used heuristic procedure will lead to a formal expression of the work functional for externally applied
loads: it is proven that together with standard volume forces and surface contact forces, dilatational strain
gradient continua can support, on edges already present in the reference configuration, externally applied edge
forces. Moreover, see [63], one can apply on contact surfaces also external double forces, that it interactions
that expend work on normal (to the contact surface) derivative of virtual displacement. Rather interestingly it
has been presented a reasoning which indicates that one can apply, on the regular parts of the boundary (i.e
on the boundary faces) of the considered dilatational strain gradient continua, external forces concentrated
on curves that are not already edges, in the reference configuration. These linear forces may, in the actual
configuration, give rise to new edges, edges that did not already exist in the reference configuration. One has to
remark that nonlinear dilatational strain gradient elasticity is a very interesting particular case of the complete
Toupin–Mindlin nonlinear strain gradient elasticity.

Indeed, in the class of the continua considered here the only second gradient dependence of deformation
energy involves the gradient of the volume change from the reference to the actual configuration: in other
words, it has been considered those phenomena where the inhomogeneity of the dilation state produces an
extra contribution to deformation energy, while the other eventual parts of second gradient of placement
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(a) (b)

(c)

Fig. 10 Distribution of the stress (a), total stress (b) and double force (c) versus R for a/b = 0.01 and p̄ = 2ḡ = 0.02. Curves
1, 2, and 3, relate to the following values of ξ̄ = 0.1, ξ̄ = 0.01, ξ̄ = 0.001, respectively

are “energy indifferent”. One has to remark that dilatational second gradient continua must be related to
other models introduced in generalized continuum theory. In particular, it is immediate to regard them as the
continua obtained by considering the models introduced in the so-called poroelasticity (see, in this context,
e.g. [112]). In poroelasticity, a scalar (one-dimensional) porosity field is introduced to describe the pore-
volume changes, which are distinct from the overall-continuum-volume changes. When a constraint linking
the porosity kinematical descriptor to the determinant of placement gradient is introduced, then poroelasticity
reduces to the presently discussed theory. A rigorous study of this relationship must consider the introduction
of Lagrange multipliers and should parallel the considerations presented in [11].

On the other hand, the set of nonlinear dilatational strain gradient continua not only includes capillary
fluids that have been extensively studied already, and that, in practice, are the only second gradient continua
being considered in the literature, but also encompass a rather wide class of solids, whose second gradient
behaviour is, in the sense specified before, singular. One could say that these dilatational strain gradient solids
are a kind of “solidified” second gradient Korteweg or Cahn–Hilliard fluids. By exploiting the techniques
developed by Lagrange and Piola, it has been managed to derive the expressions for virtual work equality
(including, eventually, inertial contributions) in both Lagrangian and Eulerian description and to obtain the
formulas for Piola’s transport for the considered class of continua. Some relevant conditions characterizing
the set of double forces and edge forces applicable to dilatational strain gradient are derived: in particular,
it has been proven that contact edge forces cannot have, in Eulerian description, any component in the edge
tangent direction. In order to check the logical consistency and the predictive capacity of considered continuum
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models, the linearized equations governing two important paradigmatic problems (involving wave propagation
and deformation of an elastic tube under external pressure and double force) have been considered; the results
were obtained should be regarded as very promising. This for two reasons: first for their intrinsic value, but also
because they will represent a valid checking of future numerical codes to be developed for studying nonlinear
problems, of interest, for instance, in the theory of metamaterials.
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Appendix: Lagrange variational principle for the nonlinear strain gradient elasticity considering edges

Within the Toupin–Mindlin strain gradient elasticity the Lagrange variational principle has the form

δETM − δATM = 0, (138)

where ETM is the functional of total energy

ETM =
∫∫∫

V

U dV,

and δATM is the work of external actions given by

δATM =
∫∫∫

V

ρ� f · δx dV +
∫∫

A f

[

t · δx + c · ∂δx
∂N

]

dA

+
∑

m

∫

Lm

tm · δx dS +
∫

L

q · δx dS. (139)

On a part A f of the boundary A = ∂V the external actions are prescribed. Here, ρ� is the referential mass
density, f is a vector of mass forces, t is a vector of the surface traction, c is a vector of surface external double
forces, δx is the variation of x, ∂/∂N is the normal derivative, tm and q are vectors of line forces given along
Lm and L , respectively.
Note that δATM does not constitute the first variation of any functional, in general. Such functional exists only
for conservative loadings.
Introducing the Piola–Kirchhoff stress P� and hyperstress M� one gets the first variation of ETM in the form

δETM =
∫∫∫

V

(P� : ∇�v + M�

... ∇�∇�v) dV, (140)

where v = δx. Then, integrating by parts and under standard assumptions of the calculus of variations from
(138) we derive Eqs. (8), (11), (12), and (14), (15), see [8,43,44] for more details.

http://creativecommons.org/licenses/by/4.0/


V. A. Eremeyev et al.

The same technique can be applied for deriving Eulerian form of the respective boundary-value problems. To
this end, (140) is transformed into the Eulerian form changing coordinates X → x and using the identities
dv = JdV and F · ∇ = ∇�

δETM =
∫∫∫

v

(P : ∇v + M
... ∇∇v) dv, (141)

where

P = J−1FT · P�, M = J−1FT ∗ M� · F−1,

are the Cauchy stress and hyperstress tensors, respectively, and ∗ stands for the Rayleigh product.
Applying the integration by parts one gets

∫∫∫

v

P : ∇v dv =
∫∫

∂v

n · P · v da −
∫∫∫

v

(∇ · P) · v dv. (142)

In a similar way, one has
∫∫∫

v

M
...∇∇v dv =

∫∫

∂v

n · M : ∇v da −
∫∫∫

v

(∇ · M) : ∇v dv

=
∫∫∫

v

∇ · (∇ · M) · v dv

−
∫∫

∂v

n · (∇ · M) · v da +
∫∫

∂v

n · M : ∇v da. (143)

With the surface divergence theorem the last surface integral in (143) can be transformed as follows:
∫∫

∂v

n · M : ∇v da =
∫∫

∂v

[

n · M : ∇sv + n · M :
(

n ⊗ ∂v
∂n

)]

da

=
∑

m

∫

�m

[[η · (n · M)]]m · v ds +
∫

�

[[η · (n · M)]]� · v ds

−
∫∫

∂v

[∇s · (n · M) · v + 2h(n ⊗ n) : M · v] da

+
∫∫

∂v

(n ⊗ n) : M · ∂v
∂n

da.

Here, ∂
∂n denotes the normal derivative whereas [[(. . .)]] means a jump of discontinuity across edges �m and

the contours � in the current placement.
As a result, Eq. (143) takes the following form

∫∫∫

v

M
...∇∇v dv =

∫∫∫

v

∇ · (∇ · M) · v dv

+
∑

m

∫

�m

[[η · (n · M)]]m · v ds +
∫

�

[[η · (n · M)]]� · v ds

+
∫∫

∂v

(n ⊗ n) : M · ∂v
∂n

da

−
∫∫

∂v

[n · (∇ · M) + ∇s · (n · M) + 2h(n ⊗ n) : M] · v da.
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Finally, one gets

δETM =
∫∫∫

v

[−∇ · P + ∇ · (∇ · M)] · v dv

+
∑

m

∫

�m

[[η · (n · M)]]m · v ds +
∫

�

[[η · (n · M)]]� · v ds

+
∫∫

∂v

(n ⊗ n) : M · ∂v
∂n

da

−
∫∫

∂v

[−n · P + n · (∇ · M) + ∇s · (n · M) + 2h(n ⊗ n) : M] · v da. (144)

The Eulerian form of δATM is given by

δATM =
∫∫∫

v

ρf · v dv +
∫∫

a f

[(

dA

da

)

t · v + J−1c · ∂v
∂n

]

da

+
∑

m

∫

�m

(

dS

ds

)

tm · v ds +
∫

�

(

dS

ds

)

q · v ds. (145)

In (145) one has used the identities

n da = N · JF−T dA,
∂

∂N
= N · ∇�,

∂

∂nN
= n · ∇,

∂v
∂N

dA = J−1 ∂v
∂n

da,

and

da

dA
= J

√
N · F−T · F−1 · N,

ds

dS
=

√

τ · FT · F · τ , τ = N × ν.

As a result, from (138), the Eulerian boundary-value problem given by (24)–(28) is obtained.
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