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Abstract—This paper examines the average age minimization
problem where only a fraction of the network users can transmit
simultaneously over unreliable channels. Finding the optimal
scheduling scheme, in this case, is known to be challenging.
Accordingly, the Whittle’s index policy was proposed in the
literature as a low-complexity heuristic to the problem. Although
simple to implement, characterizing this policy’s performance is
recognized to be a notoriously tricky task. In the sequel, we
provide a new mathematical approach to establish its optimality
in the many-users regime for specific network settings. Contrary
to previous works in the literature that use restrictive mathemat-
ical assumptions, which can be challenging to verify, our novel
approach is based on intricate techniques and it is free of any
strong mathematical assumptions. These findings showcase that
the Whittle’s index policy has analytically provable asymptotic
optimality for the AoI minimization problem. Finally, we lay out
numerical results that corroborate our theoretical findings and
demonstrate the policy’s notable performance in the many-users
regime.

I. INTRODUCTION

Technological advances in wireless communications and the
cheap cost of hardware have led to the emergence of real-time
monitoring services. In these systems, an entity is interested in
knowing the status of one or multiple processes observed by
a remote source. Accordingly, the source sends packets to the
monitor to provide information about the process/processes of
interest. The main goal in these applications is to keep the
monitor up to date. In fact, in such applications, information
has the highest value when it is fresh since the outcome of the
monitor’s tasks is better when it is based on new rather than
outdated data. To quantify this notion of freshness, the Age of
Information (AoI) was introduced in [1]. Ever since, the AoI
has become a hot research topic, and a considerable number
of research works have been published on the subject [2]–[9].

Among the most fundamental issues that the research com-
munity aimed to address is age-based resource allocation. In
most real-time applications, numerous sources share the same
transmission channel where the available resources are scarce.
The scarcity can be a consequence of battery considerations
for the devices involved or physical interference that may
limit the number of simultaneous transmissions. Consequently,
a smart resource allocation scheme has to be adopted to
minimize the AoI and attain the desired timeliness objective.
In [10], the authors proposed both age-optimal and near age-
optimal scheduling policies for the single and multi-server
cases, respectively. In particular, they have shown that a greedy
policy is age-optimal under certain assumptions in the single

exponential server case. In [11], the authors examined a single-
source scenario where the source’s update rate cannot exceed a
predefined limit due to battery considerations. In this case, they
were able to propose an age-optimal scheduling policy when
the channel exhibit possible decoding errors. Age-optimal
policies were also proposed in various network settings such as
distributed scheduling and random access environments [12]–
[14].

Among the scheduling problems investigated in the litera-
ture, we cite the following: consider N users communicating
with a central entity over unreliable channels where, at most,
M < N users can transmit simultaneously. What is the age-
optimal strategy in this case? The wide range of applications
that this problem encompasses let it emerge as a fundamental
one that needs to be investigated. Unfortunately, this prob-
lem belongs to the family of Restless Multi-Armed Bandit
(RMAB) problems, which are generally difficult to solve
optimally. To address this difficulty, the authors in [15] have
examined this problem and proved that a greedy algorithm is
optimal when users have identical channel statistics. For the
asymmetric case, the authors proposed a sub-optimal policy,
known as the Whittle’s index policy. The Whittle’s index pol-
icy has been embraced by many works in various frameworks
[16]–[25] as it is recognized for its low complexity and its
notable performance. For example, in [17], the Whittle’s index
policy was adopted to minimize the average delay of queues.
In another line of work, the authors in [22] employed a Whit-
tle’s index-based policy to maximize the average throughput
over Markovian channels. Although it is simple to implement,
the main challenge that arises when adopting this policy is
characterizing its performance since its analysis is known to
be notoriously difficult. To attend to this difficulty, the authors
in [24] provided a sufficient condition, dubbed as Weber’s con-
dition, for the Whittle’s index policy’s asymptotic optimality in
the many-users regime. However, this condition requires ruling
out the existence of both closed orbits and chaotic behavior
of a high-dimensional non-linear differential equation, which
is extremely difficult to verify even numerically. To further
facilitate the analysis of the policy, the works in [17], [22] have
provided an approach based on a fluid limit model for the delay
minimization and throughput maximization frameworks. By
leveraging this model, they proved the asymptotic optimality
of the Whittle’s index policy in these frameworks under a
recurrence assumption that is easier than Weber’s condition
but still requires simulations to be verified. Following the
same footsteps, the present authors adopted the fluid limit
model and provided proof of the asymptotic optimality of the
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Whittle’s index policy in the AoI framework under similar
assumptions [21] that can be verified numerically by simu-
lations. This raises the following important question: can we
prove the Whittle’s index policy’s asymptotic age-optimality
in specific network settings without recoursing to any strong
assumptions? Answering this question is extremely difficult
and has yet to be answered even for the standard delay and
throughput metrics. In this paper, we examine this question in
the AoI framework, and we provide rigorous theoretical results
that showcase the validity of the Whittle’s index asymptotic
optimality in certain network settings without imposing any
strong mathematical assumptions. Note that the importance of
the asymptotic many-users regime stems from the astronomical
growth in the number of interconnected devices. For example,
machine-type communications and the IoT in 5G networks
require supporting tens of thousands of connected devices in
a single cell. To that end, we summarize in the following the
structure of the paper along with its key contributions:

• We start by formulating the problem of minimizing the
average age of a network where M out of N users can
communicate simultaneously with the central entity. As
previously explained, this problem belongs to the class
of RMAB problems, which are known to be notoriously
difficult to solve. Accordingly, the Whittle’s index policy
has been proposed in previous works as a low-complexity
solution, which is the main focus of our work. To
establish the Whittle’s index policy, the following steps
have to be taken:

1) Provide a relaxed version of the original problem
and tackle it through a Lagrangian approach.

2) Prove the indexability property of the relaxed prob-
lem and derive the Whittle’s index expressions.

These steps have been carried out in previous works by
the authors in [15], and their main results are reported in
our paper for completeness.

• Next, we present a fluid limit model that approximates
the Whittle’s index policy behavior. In the many-users
regime, we prove that the fluid limit can be made arbi-
trarily close to the actual network’s evolution. Therefore,
we mainly focus on the evolution of the fluid limit
vector in our optimality analysis. The method previously
carried out in the literature to establish the Whittle’s
index policy’s asymptotic optimality follows a spectral
analysis approach [22]. However, this approach is highly
contingent on the initial state of the system. Accordingly,
to extend their results to any random initial state, the
authors imposed a restrictive assumption, which can only
be verified numerically. In our paper, we take a different
approach to analyze the fluid model. Specifically, we pro-
pose a novel method based on intricate techniques (e.g.,
Cauchy criterion) to prove the fluid model’s convergence
to a fixed point. We stress that this step’s technical details
are intricate and constitute our paper’s main technical
contribution. Note that, even for the standard delay and
throughput metrics, such proof was not provided in the
literature, which further highlights our approach’s nov-
elty. Afterwards, we establish the global optimality of

Whittle’s index policy leveraging the fact that the afore-
mentioned fixed point is nothing but the optimal system’s
operating point in the many-users regime. Finally, we
provide numerical results that corroborate the theoretical
results and highlight the Whittle’s index policy’s notable
performance in the many-users regime.

The rest of the paper is organized as follows: Section II is
devoted to the system model and the problem formulation.
Section III is dedicated to the establishment of the Whittle’s
index policy. In Section IV-B, we provide our main results
where we prove the asymptotic optimality of the Whittle’s
index policy. Numerical results that corroborate our theoretical
findings are given in Section V while Section VI concludes
the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model
We consider a time-slotted system with one base station,

M uncorrelated channels, and N users (N > M ). Time
is considered to be normalized to the slot duration (i.e,
t = 1, 2, . . .). We suppose that any of the M channels can
be allocated to at most one user. Hence, at most M users will
be able to transmit in each time slot t. If a user is scheduled at
time t, it generates a fresh new packet and sends it to the base
station. This packet is successfully decoded by the base station
at time t+1 with a certain success probability. We consider that
if a decoding error takes place, the packet is discarded (i.e.,
users are not equipped with buffers). In practice, users may
share similar channel conditions. Accordingly, we suppose that
the users can be partitioned into K = 2 different classes
such that users within the same class share the same decoding
success probability. In other words, each user i belonging to
class k ∈ {1, 2} has a decoding success probability pk, which
is assumed to be known by the scheduler. We let γk be the
proportion of users belonging to class k. To that end, the
following always holds: γ1 + γ2 = 1.

A scheduling policy π is defined as a sequence of actions
π = (aπ(0),aπ(1), . . .) where
aπ(t) = (a1,π

1 (t), a1,π
2 (t), . . . , a1,π

γ1N
(t), a2,π

1 (t), a2,π
2 (t), . . . , a2,π

γ2N
(t))

is a binary vector such that ak,πi (t) = 1 if user i of class
k is scheduled at time t. We also let the binary random
variable cki (t) denote the channel state of user i of class k
such that cki (t) = 1 if no decoding error takes place. As
per our system model, we always have Pr(cki (t) = 1) = pk
and Pr(cki (t) = 0) = 1 − pk for any user i of class k. We
let Bk,πi (t) denote the time-stamp of the freshest packet
delivered by user i of class k to the base station at time t
under the scheduling policy π. The age of information, or
simply the age, of user i of class k is defined as [1]:

ski (t) = t−Bki (t) (1)

By taking into account the variables defined, the age of this
user under policy π evolves as follows:

sk,πi (t+ 1) =


1 if ak,πi (t) = 1, cki (t) = 1

sk,πi (t) + 1 if ak,πi (t) = 1, cki (t) = 0

sk,πi (t) + 1 if ak,πi (t) = 0,
(2)
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We let sπ(t) denote the vector of all users’ age sπ(t) =
(s1,π

1 (t), · · · , s1,π
γ1N

(t), s2,π
1 (t), · · · , s2,π

γ2N
(t)) under policy π.

With all these notations in mind, we can formulate the
optimization problem that we focus on in our paper.

B. Problem Formulation
In this paper, we are interested in minimizing the total

expected average age of information of the network under
the constraint on the number of users scheduled at each
time slot t. The latter must be less than the total number of
channels αN where α is equal to M

N . We let Π denote the
set of all causal scheduling policies in which the scheduling
decisions are made based on the history and current states
of the system. To that end, and given an initial system
state s(0) = (s1

1(0), · · · , s1
γ1N

(0), s2
1(0), · · · , s2

γ2N
(0)), our

problem can be formulated as follows:

min
π∈Π

lim sup
T→∞

1

T
Eπ
[
T−1∑
t=0

2∑
k=1

γkN∑
i=1

sk,πi (t) | s(0)

]

s.t.
2∑
k=1

γkN∑
i=1

ak,πi (t) ≤ αN, t = 0, 1, 2, . . . (3)

This problems belongs to the family of RMAB problems,
which are generally difficult to solve optimally (see Papadim-
itriou et al. [26]). For this reason, one should aim to develop a
well-performing sub-optimal policy. As it has been mentioned,
the low-complexity scheduling policy that we are interested in
throughout this paper is the Whittle’s index policy. To establish
this policy and derive the Whittle’s indices expressions, one
has to follow the steps below:

1) Provide a relaxed version of the original problem and
tackle it through a Lagrangian approach.

2) Prove the indexability property of the problem and
derive the Whittle’s index expressions.

As previously mentioned, these steps have been carried out
in previous works by the authors in [15]. For completeness,
and as we will use these steps later in our optimality analysis,
we report them along with the main results of [15] in the
following section.

III. RELAXED PROBLEM AND WHITTLE’S INDEX POLICY

A. Relaxed Problem
The first step toward establishing the Whittle’s index policy

consists of relaxing the constraint on the number of scheduled
users of the problem in (3). Specifically, instead of having the
constraint satisfied at each time slot, we consider that it has
to be satisfied on average. Therefore, the relaxed problem can
be formulated as follows:

min
π∈Π

lim sup
T→∞

1

T
Eπ
[
T−1∑
t=0

2∑
k=1

γkN∑
i=1

sk,πi (t) | s(0)

]

s.t. lim sup
T→∞

1

T
Eπ
[
T−1∑
t=0

2∑
k=1

γkN∑
i=1

ak,πi (t)

]
≤ αN (4)

To study this problem, one has to introduce a Lagrangian
approach to transform the problem into an unconstrained one
as will be detailed in the sequel.

B. Dual Problem

To circumvent the difficulty of studying the constrained
problem in (4), a Lagrangian approach has to be adopted. In
particular, let us denote by λ ≥ 0 the Lagrangian parameter.
For a fixed λ, the Lagrangian function of the relaxed problem
is:

F (λ, π) = lim sup
T→∞

1

T
Eπ
[
T−1∑
t=0

2∑
k=1

γkN∑
i=1

sk,πi (t) + λ(ak,πi (t)− α) | s(0)

]
(5)

Based on the dual approach, the next step consists of finding
the policy π that minimizes F (λ, π). Note that the term
1
T

∑T−1
t=0

∑2
k=1

∑γkN
i=1 λα, which is equal to Nλα, doesn’t

depend on π. Therefore, the policy that minimizes the above
function F (λ, π) also minimizes the following function:

f(λ, π) = lim sup
T→∞

1

T
Eπ
[
T−1∑
t=0

2∑
k=1

γkN∑
i=1

sk,πi (t) + λak,πi (t) | s(0)

]
(6)

Then, we can formulate the dual problem as follows:

min
π∈Π

f(λ, π) (7)

C. Structural Results

To solve the problem in (7), it can be shown that this
N -dimensional problem can be decomposed into N one-
dimensional problems that can be solved independently [15].
Therefore, we can drop the i and k indices from (6) and simply
investigate the following one-dimensional problem:

min
π∈Π

lim sup
T→∞

1

T
Eπ
[
T−1∑
t=0

sπ(t) + λaπ(t) | s(0)

]
(8)

It turns out that the above one dimensional problem can be cast
into an infinite horizon average cost Markov Decision Process
(MDP) that is defined as follows:
• States: The state of the MDP at time t is the age of the

user s(t) that can take any integer value strictly higher
than 0. Therefore, the considered state space is countable
and infinite.

• Actions: The action at time t, denoted by a(t), indicates if
a transmission is attempted (value 1) or the user remains
idle (value 0).

• Transitions probabilities: The transitions probabilities
between the different states have been previously detailed
in Section II.

• Cost: The cost function at time t is designated by
C(s(t), a(t)) = s(t) + λa(t).

To solve this MDP, the authors in [15] have leveraged the
Bellman equation and studied the characteristics of the value
function involved. Based on the particularity of the value
function, the following result was found:

Proposition 1. The optimal policy that solves problem (8) is
of a threshold nature.

Proof. See [15, Proposition 14].
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The above results tell us that there exists an integer lk ∈ N∗
such that by only letting users of class k with an age larger or
equal to lk to transmit, we attain the optimal operating point
of (8). These results are pivotal to proceed with establishing
the Whittle’s index policy.

D. Indexability and Whittle’s Index Expressions

To proceed toward our goal, one has to analyze the behavior
of the MDP when a threshold policy is adopted. To that end,
we note that for any fixed threshold n, the MDP can be
modeled through a Discrete Time Markov Chain (DTMC)
where:
• The state is the age s(t).
• For any state s(t) < n, the user is idle. On the other

hand, when s(t) ≥ n, the user is scheduled.
The DTMC is reported in Fig. 1. To be able to prove the

Figure 1: The states transition when a threshold policy is
adopted

indexability property and find the Whittle’s index expression,
one has to find the average objective function in (8) when
a threshold policy is adopted. To that end, we provide the
following propositions.

Proposition 2. For a fixed threshold n, the stationary distri-
bution un of the DMTC when the decoding success probability
is equal to p is:

un(i) =

{ p
np+1−p if 1 ≤ i ≤ n
(1− p)i−n p

np+1−p if i ≥ n (9)

Proof. The results can be easily obtained by solving the full
balance equations.

The next step consists of calculating the average objective
function in (8) when a threshold policy is employed.

Proposition 3. For a fixed threshold n, the average cost of
the threshold policy of the problem (8) is:

C(n, λ) =
[(n− 1)2 + (n− 1)]p2 + 2p(n− 1) + 2

2p((n− 1)p+ 1)

+
λ

np+ 1− p
(10)

Proof. The results can be concluded by leveraging the sta-
tionary distribution expressions and the fact that C(n, λ) =∑+∞
i=1 iu

n(i) + λ
∑+∞
i=n u

n(i).

Using the stationary distribution, and the average cost,
one can then prove the indexability property of the problem,
which ensures the existence of the Whittle’s indices. Before
providing these results, we first lay out the definition of the
aforementioned property.

Definition 1 (Indexability). For a fixed λ, consider the vector
l(W ) = (l1(λ), l2(λ)) where lk(λ) is the optimal threshold
for the problem in (8) for each user of class k. We define
Dk(λ) = {s ∈ N∗ : s < lk(λ)} as the set of states for which
the optimal action is to not schedule the users belonging to
class k. The one-dimensional problem associated with these
users is said to be indexable if Dk(λ) is increasing in λ. More
specifically, the following should hold:

λ′ ≤ λ⇒ Dk(λ′) ⊆ Dk(λ) (11)

The indexability property for the problem in (8) was es-
tablished by the authors in [15]. With the Whittle’s indices
ensured to exist, one can then leverage the stationary distribu-
tion and the average cost reported in Proposition 2 and 3 to
derive the Whittle’s index expressions as previously done in
[15] and [21].

Proposition 4. For any given class k, the Whittle’s index
expression of state i is:

W k(i) =
(i− 1)pki

2
+ i (12)

Proof. See [15, pp. 10].

With the Whittle’s index expression derived, we can now
establish the Whittle’s index scheduling policy. This can be
summarized in the following algorithm description.

Algorithm 1 Whittle’s index scheduling policy

1: At each time slot t, calculate the Whittle’s index of all
users in the network using (4).

2: Schedule the M users having the highest Whittle’s index
values at time t, with ties broken arbitrarily.

Although the above scheduling policy is easy to implement,
it remains sub-optimal. Accordingly, characterizing its perfor-
mance compared to the optimal policy is important. Equipped
with the above results and notations, we can now tackle the
main issue that we aim to address in our paper: the asymptotic
optimality of this policy.

IV. ASYMPTOTIC OPTIMALITY OF THE WHITTLE’S INDEX
POLICY

A. Optimal Solution of the Relaxed Problem

To be able to prove the asymptotic optimality of the
Whittle’s index policy, one has to compare its performance
to the optimal policy that solves (3). However, as previously
explained, the optimal policy of (3) is not known. To circum-
vent this, and to have a benchmark performance to compare
to, we note that the following always holds:

CRP,N

N
≤ COP,N

N
≤ CWIP,N

N
(13)

where CWIP,N

N is the average age per-user under the Whittle’s
index policy, C

OP,N

N is the optimal expected average age per-
user of the original problem (3), and CRP,N

N is the optimal
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average age per-user of the relaxed problem (4). Thus, in order
to show the asymptotic optimality, it is sufficient to prove
that for a large number of users N , CWIP,N

N converges to
CRP,N

N . To that end, the next task is to find an expression of
CRP = CRP,N

N . For this purpose, we provide the following
proposition.

Proposition 5. The optimal solution of the relaxed problem is
of type threshold for each class. More precisely, it is a linear
combination between two threshold vectors (l11, l

1
2) and (l21, l

2
2)

such that:
• There exists a unique real value W ∗ ∈ R, a class m and

state p such that W ∗ = Wm(p).
• The expressions of l1k and l2k are as follows:

l1k = argmax
i∈N∗

{W k(i) : W k(i) ≤W ∗}+ 1 ∀k ∈ {1, 2}

l2k = argmax
i∈N∗

{W k(i) : W k(i) < W ∗}+ 1 ∀k ∈ {1, 2}
(14)

• There exists a unique 0 < θ ≤ 1 that
satisfies θ

∑2
k=1 γk

∑+∞
i=l1k

u
l1k
k (i) + (1 −

θ)
∑2
k=1 γk

∑+∞
i=l2k

u
l2k
k (i) = α, where unk is the

stationary distribution of the age given a threshold n for
class k.

Proof. See [21, Proposition 5].

Thanks to this proposition, we can conclude that the op-
timal per-user cost of the relaxed problem has the following
expression:

CRP =

2∑
k=1

γk

+∞∑
i=1

[θu
l1k
k (i) + (1− θ)ul

2
k

k (i)]i (15)

By leveraging these results, we can proceed with characteriz-
ing the performance of the Whittle’s index policy.

B. Global Optimality of the Whittle’s index policy

This section constitutes the main contribution of the paper
where we show the asymptotic optimality of the Whittle’s
index policy. The idea is to show that the performance of
this policy converges to CRP when N is large and the ratio
α = M

N is kept constant.
We let Zk,Ni (t) denote the proportion of users belonging

to class k in state i at time t. In other words, it
denotes the ratio of the number of users in class k
having an age equal to i to the total number of users
N . We have that ZN (t) = (Z1,N (t), Z2,N (t)) with
Zk,N (t) = (Zk,N1 (t), ......, Zk,N

mk(t)
(t)), where mk(t) is the

highest state at time t in class k and
∑mk(t)
i=0 Zk,Ni (t) = γk

for each class k. We also denote by z∗ the proportion
corresponding to the optimal policy of the relaxed problem.
Thus, the elements of the vector z∗ are exactly the set
{γk(θu

l1k
k (i)+(1−θ)ul

2
k

k (i))} 1≤k≤2
1≤i

where i and k refer to the
user i and class k respectively. This can be easily concluded
from the results previously laid out in eq. (15).

Before tackling our novel approach, we give in the following
two common methods used in the literature to study the
convergence of Whittle’s index policy while emphasizing
their shortcomings:

1) Method based on fluid approximation technique used in
[21], [22], [19] for the local asymptotic optimality of
Whittle’s index policy. This method consists basically
of:
• Showing that the approximated vector of ZN (t)

denoted by z(t) converges to z∗ starting from any
initial fluid approximation vector z(0).

• Establishing that ZN (t) converges in probability to
z∗ when N scales.

• Proving that CWIN,N

N converges to CRP when N
scales.

The difficulty encountered by adopting this aforemen-
tioned method, is to find a simple equation satisfied by
z(t) in order to demonstrate the first point which is the
convergence of z(t) to z∗. To circumvent this problem,
the authors in [21] assume the following:
Assumption 1. Local optimality:
The initial state z(0) is within a very tight neighborhood
of z∗.
Leveraging this assumption, the authors in [21] proved
the convergence of z(t) by establishing the linear equa-
tion z(t+ 1) = Qz(t) + c (which can be obtained only
under the aforementioned assumption) and by showing
that the spectral value of Q is strictly less than 1

2) Method based on the stationary distribution of ZN (t)
for asymptotic global optimality. This method consists
of:
• Establishing the existence of the stationary distribu-

tion of ZN (t) denoted by ZN (∞) for fixed N .
• Showing that ZN (∞) converges in probability to

any neighborhood of z∗ when N scales under the
following assumption:
Assumption 2. Recurrence assumption:
The expected time to enter a neighborhood of z∗

from any initial state x does not depend on the
number of users N . In other words, for all N the
time when ZN (t) ∈ Ωε(z

∗) denoted by ΓNx (ε) is
bounded by a constant Tbε .

• Proving that CWIN,N

N converges to CRP when N
scales.

This latter assumption simplifies the analysis signifi-
cantly, as one can see in [21]. Accordingly, proving
the asymptotic global optimality is based essentially
on this assumption which is a very strong assumption
that, not only may not be satisfied in all scenarios,
but that can only be verified numerically by simulat-
ing the system. Proving that this assumption holds is
not at all a simple task. One should note that this
aforementioned assumption was also considered in [22]
and [17] to establish the global optimality of WIP
but for totally different resource allocation problems.
Therefore, proving the global asymptotic optimality of
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WIP without the aforementioned assumption is one of
the main challenging tasks that need to be tackled, not
only for age-oriented scheduling problems but for many
other resource allocation problems. In this paper, we
removed the aforementioned assumption and established
the asymptotic global optimality without requiring any
strong assumption. We apply for that the fluid ap-
proximation used in [21] to prove local optimality as
presented before. However, the approach here is different
from the fluid approximation in [21] as follows. In [21],
it is assumed that the initial state z(0) is within a
tight neighborhood of z∗ , which allows to obtain a
linear equation between z(t + 1) and z(t) (obtaining
the linear equation is conditioned on this assumption
of the initial state of z(0) as has been considered in
[1]). In fact, the general relation between z(t + 1)
and z(t) regardless of the initial state is a nonlinear
equation z(t+ 1) = Q(z(t))z(t) + c(t) . Besides that,
since the AoI evolves in an infinite state space, the
matrix Q(z(t)) is not square. Therefore, the spectral
value of Q(z(t)) is not defined. This explains why the
fluid approximation approach in [21] cannot be used to
prove the asymptotic global optimality of WIP. To that
extent, the main technical challenge to prove the global
optimality of WIP is to find a simple relation between
the elements of the vector z(t + 1) and those of the
vector z(t). In this paper, instead of having a complete
relation between z(t + 1) and z(t), we show that it
is sufficient to have a partial relation between z(t+ 1)
and z(t) to establish the global asymptotic optimality of
WIP. Specifically, the basis of our new method in this
paper is as follows:
• Defining α1(t) and α2(t) as users’ proportions that

refer to the scheduled users’ proportion at time t in
class 1 and 2 respectively (α1(t) + α2(t) = α)

• Expressing each proportion zki (t) in function of one
term of {αk(t′)}t′≤t

• Proving that αk(t) converges for k = 1, 2 and
conclude that z(t) also converges.

The hardest task among the three steps above is the last
one since we do not dispose of an explicit expression
of αk(t) in function of t. That is why we proceed with
non trivial and intricate mathematical analyses depicted
in Propositions 11,12,13 and Theorem 1 to describe the
evolution of αk(t) and its convergence when t grows.
In more detail, the main steps of our new approach are:

• Since the relation between z(t+1) and z(t) is not linear,
our approach to establish the convergence of z(t) in-
volves two terms: α1(t) and α2(t). As mentioned above,
these two proportions are nothing but the scheduled
proportion at time t of class 1 and 2, respectively. Note
that we always have α1(t)+α2(t) = α. Based on Lemma
1, we show that for a large enough time t, there exists
Tt such that we can find a partial relation between each
element of the vector z(t+Tt) and terms of the sequence
{αk(t′)} k=1,2

t′≤t+Tt
. More precisely, we prove that for Tt, we

can express each proportion that is not scheduled at time

t + Tt in function of one term of {αk(t′)} k=1,2
t′≤t+Tt

. This
allows us to obtain 1−α as a linear combination between
the terms of {αk(t′)} k=1,2

t′≤t+Tt
at time t+ Tt.

• Subsequently, we introduce in Definition 4, Tmax that
satisfies these two following properties proven in Propo-
sitions 7 and 8 using Lemma 2: the Whittle’s index
alternates (the definition of index alternation will be given
later on in this section) between the two classes from
state 1 to Tmax under a given assumption on α; the
instantaneous thresholds l1(.) and l2(.) are bounded by
Tmax at time t+ Tt.

• Based on that, we derive the relation between the in-
stantaneous thresholds at time t + Tt in Proposition
9. Taking as initial time t + Tt = T0, we show by
induction in Proposition 10 that, for all T ≥ T0, the
instantaneous thresholds are less than Tmax and that all
none scheduled proportions can be expressed in function
of terms of the sequence {αk(t′)} k=1,2

t′≤T
. Next, we define

for each class k a vector Ak(T ) composed by αk(T ) (the
scheduled proportion at time T ) plus the finite subset of
the sequence {αk(t′)}t′≤T such that for all proportion
of users in class k at a given state at time T that is not
scheduled can be expressed by one element belonging to
this subset. After that, we provide the relation between
the elements of the vectors Ak(T ) and Ak(T + 1) in
Propositions 11 and 12

• As was mentioned in the introduction, our proof is based
on Cauchy criterion which states that in the real number
space R, a given sequence h(T ) is convergent if and only
if its terms become closer together as T increases. To that
extent, we show that the elements of the vector Ak(·)
which are nothing but the terms of the sequence αk(·)
are getting closer when T increases. For that purpose, we
prove that the highest and the smallest element of Ak(T )
converge to the same limit when T grows. To that end,
we start by establishing the convergence of the highest
and the smallest element of Ak(T ) in Theorem 1. Then,
we demonstrate by contradiction that the highest and the
smallest element of Ak(T ) must converge to the same
limit in Proposition 13. This last result implies that αk(t)
converges when t scales. In light of that fact, we prove
that z(t) converges to z∗ in Proposition 14. Finally, using
Kurth theorem, we show in Proposition 15 that ZN (t)
converges to z∗ in probability, and finally we establish
in Proposition 16 the convergence of CWIP,N

N to CRP .
With the steps of our approach clarified, we can proceed

with introducing the fluid limit approximation. The fluid
limit technique consists of analyzing the evolution of the
expectation of ZN (t) under the Whittle’s index policy. For
that, we define the vector z(t) as follows:

z(t+1)−z(t)|z(t)=z = E
[
ZN (t+ 1)−ZN (t)|ZN (t) = z

]
(16)

This above equation reveals to us that we have a sequence
z(t) defined by recurrence for a fixed initial state z(0) that we
should study its behavior when t is very large. Hence, we end
up with a function z(t) that depends on two variables, t and
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the initial value z(0). To that extent, our aim is to prove that
z(t) converges to z∗ regardless of the initial state z(0). We
let z(t) = (z1(t), z2(t)) with zk(t) = (zk1 (t), ......, zkmk(t)(t))

where zki (t) is the expected proportion of users at state i in
class k at time t with respect to the equation (16). Accordingly
we have that

∑mk(t)
i=0 zki (t) = γk for each class k.

We can also formulate the fluid limit in Equation (16) as
follows:

z(t+ 1) = E
[
ZN (t+ 1)

∣∣∣ZN (t) = z(t)
]

(17)

One can notice that z∗ is a particular vector with respect to
the equation (17).

Proposition 6. z∗ is the unique fixed point of the fluid
approximation equation, or equivalently the unique solution
of the following equation:

z = E
[
ZN (t+ 1)

∣∣∣ZN (t) = z
]

In other words, z(t) = z(t+ 1), if and only if z(t) = z∗.

Proof. The proof follows the same methodology as in [22,
Lemma 9]

According to this proposition, it is sufficient to show that
z(t) converges starting from any initial state z(0), as the
only eventual finite limit of z(t) when t tends to +∞ is the
fixed point of the equation (16), z∗.

Remark 1. We highly emphasize that the proportion αk(t)
and 1 − α refer to the scheduled users’ proportion at time t
in class k and the non scheduled users’ proportion either for
class 1 or 2 respectively. Meanwhile, for any other proportion
A, it refers only to the number of users in this proportion over
the total users’ number of the system whatever the different
states of users that contains. Having said that, A = B means
that they are equal in terms of proportion, while they can
contain users in different states.

In the following, we prove that the fluid approximation
vector of ZN (t), z(t) under Whittle Index Policy converges
starting from any initial state. We prove this result for 2
different classes of users where p1 and p2 are the successful
transmission probabilities of the class 1 and 2 respectively
(p1 > p2), given a sufficient condition on α. Throughout this
section, we denote by w1(n) and w2(n), the Whittle’s index,
whose expression is given in Proposition 4, of state n in
class 1 and class 2 respectively. We need to prove that zki (t)
converges for each state i in class k.

Now, focusing on the Whittle index policy, we can see it
as an instantaneous threshold policy for each class, where the
thresholds vary over time t. Moreover, under the Whittle index
policy, the proportion of users that are scheduled at each time
slot t is fixed and equals to α since the number of scheduled
users at each time slot t is αN . This proportion α contains
the users with the highest Whittle index values. In that respect,
we define α1(t) and α2(t) the proportion of users in class 1
and class 2 respectively at time t with the highest Whittle

index values such that α1(t) + α2(t) = α. The remaining
proportion of users which are not scheduled at each time slot
t, which is equal to 1−α, contains the users with the smallest
Whittle index values. Now, regarding this proportion, we give
its decomposition into proportions of users at different states
in different classes. Denoting by l1(t) and l2(t) at time t the
instantaneous threshold integers under Whittle index policy,
then there exists two real values between 0 and 1, β(t) and
γ(t), with γ(t) = 1 and 0 < β(t) ≤ 1, or 0 < γ(t) ≤ 1 and
β(t) = 1, such that:
l1(t)−1∑
i=1

z1
i (t)+

l2(t)−1∑
i=1

z2
i (t)+β(t)z1

l1(t)(t)+γ(t)z2
l2(t)(t) = 1−α

(18)
and {z1

i (t)}1≤i≤l1(t) ∪ {z2
i (t)}1≤i≤l2(t) is exactly the set

{zki (t) : wk(i) ≤ max(w1(l1(t)), w2(l2(t)))}.
In [21], as mentioned before, in order to prove the con-

vergence of z(t), it is assumed that z(0) is within a precise
neighborhood of z∗ and that the number of states is finite.
These assumptions allow to find an easy linear relation be-
tween z(t) and z(t + 1) (z(t + 1) = Qz(t) + c see [21,
Section IV-C]), and then to deduce the convergence of z by
establishing that the spectral value of Q is strictly less than
one. In our case, as we aim to prove the convergence of z
from any initial state, the relation between z(t+ 1) and z(t)
is as follows

z(t+ 1) = Q(z(t))z(t) + c(t) (19)

This equation is not linear which makes studying the evolution
of z(·) a hard task. Moreover, as the number of state is
infinite, then the dimensions of z(t) varies per time. Therefore,
the matrix Q(z(t)) is not square. Hence we can not apply
the same method as in [21] since the spectral values are
not defined for a non square matrix. For these reasons, we
proceed differently than [21]. Our method consists in fact
in expressing each proportion zki (t) that belongs to a non
scheduled users’ proportion at time t in function of a term
of αk(·) at a given time less than t. By this way, we will
obtain a part of the vector z(t) in function of {αk(t′)} t′≤t,

k∈{1,2}
,

and the sum of the other part is equal to α. Then, we show
that αk(·) converges for k = 1, 2. We will see later that it is
sufficient to show that αk(·) converges in order to conclude for
the convergence of z(·). To find the partial relation between
z(t) and {αk(t′)} t′≤t

k∈{1,2}
, we will be in need of Equation

(2) that illustrates the evolution of AoI. In fact, according
to this equation, if user i in class k is scheduled at time t
(aki (t) = 1), the AoI will move to state 1 with probability pk
(the channel state is cki (t) = 1). Otherwise, the value of AoI
will be incremented by one with probability 1−pk (the channel
state is cki (t) = 0). When user i is not scheduled, according
to Equation (2), the value of AoI will be incremented by one
with probability one. This implies that, considering our system
model that contains many users, if the whole proportion zki (t)
that represents the users in class k at state i is scheduled, on
average pkz

k
i from the proportion zki will move to state 1.

Similarly, if zki is not scheduled, the state of all users in this
proportion will be incremented by one. To that extent, we give
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the following lemma that illustrates the evolution of z(·) under
the Whittle Index Policy.

Lemma 1. Knowing zk(t), αk(t) and lk(t), we have that:
For i = 1:
zk1 (t+ 1) = pkαk(t).
For 1 ≤ i < lk(t):
zki+1(t+ 1) = zki (t).

Proof. See Appendix A.

According to Lemma 1, after scheduling under the Whittle’s
Index Policy, we get at time t+ 1, a proportion of p1α1(t) of
users at state 1 in class 1 and p2α2(t) of users at state 1 in
class 2 respectively (i.e. z1

1(t+ 1) = p1α1(t) and z2
1(t+ 1) =

p2α2(t)).
According to the same lemma, at time t+ 2, a proportion of
p1α1(t) and p2α2(t) of users will go to state 2 in class 1 and
class 2 respectively and p1α1(t + 1), p2α2(t + 1) of users
will move to state 1 in class 1 and class 2 respectively (i.e.
z1

1(t+2) = p1α1(t+1), z2
1(t+2) = p2α2(t+1), z1

2(t+2) =
p1α1(t) and z2

2(t+ 2) = p2α2(t)).
At time t+3, a proportion of p1α1(t) and p2α2(t) of users will
go to state 3 in class 1 and class 2 respectively, p1α1(t+ 1),
p2α2(t+ 1) of users will move to state 2 in class 1 and class
2 respectively, p1α1(t+2) and p2α2(t+2) of users will move
to state 1 in class 1 and class 2 respectively, (i.e. z1

1(t+ 3) =
p1α1(t+2), z2

1(t+3) = p2α2(t+2), z1
2(t+3) = p1α1(t+1)

and z2
2(t+3) = p2α2(t+1), z1

3(t+3) = p1α1(t), z2
3(t+3) =

p2α2(t))
Thereby, at time t + t0 where the instantaneous threshold

lk(t+ t0) ≥ t0, we get a set of proportions
{p1α1(t), p2α2(t), · · · , p1α1(t + t0 − 1), p2α2(t + t0 − 1)}
that belong to the proportion 1 − α of users with the lowest
Whittle index values, such that z1

1(t+ t0) = p1α1(t+ t0− 1),
z2

1(t+ t0) = p2α2(t+ t0− 1), · · · , z1
t0(t+ t0) = p1α1(t) and

z2
t0(t + t0) = p2α2(t). Hence, we obtain a zki (t + 1) which

is well expressed in function of terms of αk(·) (k = 1, 2) for
i ∈ [1, t0], k = 1, 2.

Remark 2. Considering Whittle index policy framework, the
order of the different users’ proportions with respect to their
Whittle index values must be taking into account throughout
this analysis. In fact, as we have already mentioned, we need
to give the expression of the non scheduled users’ proportions
in function of the terms of αk(·) for k = 1, 2, which can
not be done only if we consider the order of the Whittle index
values. To that extent, since the set of the non scheduled users’
proportions, according to the Whittle’s index policy, is exactly
the set of users’ proportions with the lowest Whittle index
values among all the different users’ proportions of the system,
then the form at time t of this specific set will be {zki (t) :
wk(i) ≤ wm(n)} for a given m and n that vary with t.

Based on this remark above, we need to find at time t+ t0,
a set of the form {zki (t + t0) : wk(i) ≤ wm(n)} for a given
class m and state n, such that all the elements of this set are
well expressed in function of αk(·). We show in the sequel
that the highest Whittle index of this set could be w2(t0).

Indeed, given that the Whittle index function is increasing
with n where n refers to a given age of information state,
then for any state in class 2 with Whittle index less than
w2(t0), belongs to [1, t0]. Moreover, considering the state q
in class 1 such that w1(q) ≤ w2(t0) ≤ w1(t0) (p1 > p2),
then w1(q) ≤ w1(t0), which means that q ∈ [1, t0]. Hence,
for any element in {zki (t + t0) : wk(i) ≤ w2(t0)}, can
be expressed in function of terms of αk(·) (k = 1, 2).
Accordingly, {zki (t + t0) : wk(i) ≤ w2(t0)} equals to
the set {p2α2(t), · · · , p2α2(t + t0 − 1), p1α1(t + t0 − l(t +
t0)), · · · , p1α1(t + t0 − 1)}, where l(t + t0) is the greatest
state q in class 1 such that w1(q) ≤ w2(t0). We note that
l(t+t0) ≤ t0 because w2(l(t+t0)) ≤ w1(l(t+t0)) ≤ w2(t0).
Therefore, in that regards, for a fixed t, we associate for each t0
the corresponding sum

∑l(t+t0)
j=1 z1

j (t+t0)+
∑t0
j=1 z

2
j (t+t0) =∑l(t+t0)

j=1 p1α1(t + t0 − j) +
∑t0
j=1 p2α2(t + t0 − j). To that

extent, we define in the following the time t0 when this
aforementioned sum exceeds 1− α.

Definition 2. Starting at time t, we define Tt such that t+Tt
is the first time that verifies:

l(t+Tt)∑
j=1

p1α1(t+Tt− j) +

Tt∑
i=1

p2α2(t+Tt− j) ≥ 1−α (20)

In other words, the first time when
∑l(t+t0)
j=1 p1α1(t+t0−j)+∑t0

i=1 p2α2(t+ t0 − j) exceeds 1− α is t+ t0 = t+ Tt.

Then, at time t+Tt, there exists l′1(t+Tt) ≤ l(t+Tt), l′2(t+
Tt) ≤ Tt, such that the set {z1

i (t+Tt)}1≤i≤l′1(t+Tt)∪{z2
i (t+

Tt)}1≤i≤l′2(t+Tt) is exactly the set {zki (t + Tt) : wk(i) ≤
max(w1(l′1(t+ Tt), w2(l′2(t+ Tt))}1, and γ(t+ Tt) = 1 and
0 < β(t + Tt) ≤ 1, or 0 < γ(t + Tt) ≤ 1 and β(t + Tt) = 1
such that:

l′1(t+Tt)−1∑
j=1

p1α1(t+ Tt − j) +

l′2(t+Tt)−1∑
j=1

p2α2(t+ Tt − j)

+ β(t+ Tt)p1α1(t+ Tt − l′1(t+ Tt))

+ γ(t+ Tt)p2α2(t+ Tt − l′2(t+ Tt))

= 1− α, (21)

with l′1(t+Tt) and l′2(t+Tt) being the instantaneous thresholds
in class 1 and 2 respectively at time t + Tt. α1(t + Tt) and
α2(t+Tt) are the users’ proportions with the highest Whittle
index values, and their sum is equal to α. Without loss of
generality, we let l′k(t+ Tt) = lk(t+ Tt).

As we can see, at time t + Tt, all the expressions of the
users’ proportions that belong to the 1 − α of users with the
smallest Whittle index values, are in function of α1(t) or α2(t)
at various time. In fact, at time t+Tt, we end up with z1

1(t+
Tt) = p1α1(t+ Tt − 1), z2

1(t+ Tt) = p2α2(t+ Tt − 1), · · · ,
z1
l1(t+Tt)

(t+Tt) = p1α1(t+Tt− l1(t+Tt)) and z2
l2(t+Tt)

(t+
Tt) = p2α2(t+Tt− l2(t+Tt)), and the rest of the proportions
belongs to α1(t+ Tt) for class 1 and α2(t+ Tt) for class 2.

1According to Remark 2, the form of this set means that it contains the
users’ proportions with the lowest Whittle index values among all users’
proportions of the system
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For this reason, we work only with α1(·) and α2(·) in order
to prove the convergence.

As we have mentioned earlier, the proof of the optimality
is valid under the alternation condition that we define as
follows:

Definition 3. We say that the order of the Whittle index strictly
alternates between the two classes in [1, n] or from state 1 to
n, if we have w2(1) < w1(1) < w2(2) < w1(2) < w2(3) <
w1(3) < · · · < w2(n) < w1(n).

The proof of αk(·) convergence is feasible when the alter-
nation condition is satisfied from 1 to lk(t + Tt) + 1 for all
t. We note that this condition will be relevant in the proof
of Proposition 12. To that end, we start by introducing the
assumption on α. Then, we demonstrate effectively that under
this assumption the condition of alternation is satisfied from
1 to lk(t+ Tt) + 1.

Assumption 3. Denoting 1
p1−p2 (p1+p2

2 +√
2(p1 − p2) + (p1+p2)2

4 ) by D. Then, the users’ proportion
scheduled at each time α satisfies:

α >
1

1 + (D − 2)p2
(22)

If we are able to find an upper bound of lk(t+ Tt) that we
denote by lmax, then it is sufficient to prove that the hypothesis
of the Whittle index alternation is satisfied from 1 to lmax + 1
in order to prove our desired result. To that end, we start first
by defining certain constant Tmax. Then under Assumption 3,
we show that the order of Whittle index alternates between
the two classes in the set [1, Tmax +1] and establish that Tmax

is effectively an upper bound of lk(t+ Tt), i.e. Tmax = lmax.
First of all, we give a lemma which will be useful to prove

the propositions 8, 9 and 10.

Lemma 2. There exists a time tf such that for all t ≥ tf ,
α1(t) > 0.

Proof. See appendix B.

In this following definition, we define Tmax, and we check
later that it coincides with the upper bound of lk(t + Tt) for
k = 1, 2.

Definition 4. We define the integer Tmax as: Tmax = [ 1−α
p2α

+
1], where [x] refers to the integer part of x.

Proposition 7. Under Assumption 3, the order of the Whittle
index alternates between the two classes from state 1 to state
Tmax + 1.

Proof. See appendix C.

Now we prove that the instantaneous thresholds of the two
classes can not exceed Tmax.

Proposition 8. Denoting by lmax the highest instantaneous
threshold in the sense that ∀t ≥ tf ,max(l1(t + Tt), l2(t +
Tt)) ≤ lmax, then Tmax = lmax.

Proof. See appendix D

According to the last proposition, Tmax is truly the upper
bound of lk(t+Tt) for all t and k = 1, 2. As a consequence, the
order of the Whittle index alternates between the two classes
in the set [1, lk(t+Tt) + 1]. The next goal is to find a relation
between l1(t+Tt) and l2(t+Tt). To do so, we recall that we
have at time t:
l1(t)−1∑
i=1

z1
i (t)+

l2(t)−1∑
i=1

z2
i (t)+β(t)z1

l1(t)(t)+γ(t)z2
l2(t)(t) = 1−α

(23)
with l1(t) and l2(t) being the thresholds in class 1 and 2
respectively at time t, and β(t) = 1 and 0 < γ(t) ≤ 1, or
γ(t) = 1 and 0 < β(t) ≤ 1. Thereby, the first step consists
of establishing the relationship between l1(t) and l2(t) when
max(l1(t), l2(t)) ≤ Tmax depending on two different cases
that we will explain thereafter in order to give a generalized
expression of the aforementioned equation (23).

Remark 3. It is worth mentioning that, as we have defined
lmax in Proposition 8, it refers to the highest value that can
be attained by the thresholds of the class 1 or 2 at time t+Tt
for t > tf where tf is a given in Lemma 2. Whereas, at any
time t > tf , max(l1(t), l2(t)) ≤ lmax might not be true since
we don’t have necessary a given t′ such that t′ + Tt′ = t for
any t′ > tf .

Proposition 9. At any time t > tf , if max(l1(t), l2(t)) ≤
Tmax = lmax, then there exists l(t) ≤ lmax and, β(t) = 0 and
0 < γ(t) ≤ 1, or 0 < β(t) ≤ 1 and γ(t) = 1 such that:

l(t)−1∑
i=1

z1
i (t) +

l(t)−1∑
i=1

z2
i (t) + β(t)z1

l(t)(t) + γ(t)z2
l(t)(t) = 1−α

(24)

Proof. See appendix F.

Starting at time t ≥ tf , we have that at time t + Tt, the
thresholds l1(t+Tt) and l2(t+Tt) are less than lmax. Hence,
according to Proposition (9), there exists l(t+ Tt) such that:

l(t+Tt)−1∑
j=1

p1α1(t+ Tt − j) +

l(t+Tt)−1∑
j=1

p2α2(t+ Tt − j)

+ β(t+ Tt)p1α1(t+ Tt − l(t+ Tt))

+ γ(t+ Tt)p2α2(t+ Tt − l(t+ Tt))

= 1− α (25)

where β(t+Tt) = 0 and 0 ≤ γ(t+Tt) < 1, or 0 ≤ β(t+Tt) <
1 and γ(t+ Tt) = 1.
Denoting t+ Tt by T0, we obtain:

l(T0)−1∑
j=1

p1α1(T0 − j) +

l(T0)−1∑
j=1

p2α2(T0 − j)

+ β(T0)p1α1(T0 − l(T0)) + γ(T0)p2α2(T0 − l(T0))

= 1− α (26)

where β(T0) = 0 and 0 < γ(T0) ≤ 1, or 0 < β(T0) ≤ 1 and
γ(T0) = 1.
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Now, we prove by induction that if this latter expression
is valid for all T ≥ T0, and that l(T ), the instantaneous
threshold at time T , is less than lmax.

Proposition 10. For all T ≥ T0, there exists l(T ) ≤ lmax,
β(T ) and γ(T ), such that:

l(T )−1∑
j=1

p1α1(T − j) +

l(T )−1∑
j=1

p2α2(T − j)

+ β(T )p1α1(T − l(T )) + γ(T )p2α2(T − l(T ))

= 1− α (27)

where β(T ) = 0 and 0 < γ(T ) ≤ 1, or 0 < β(T ) ≤ 1 and
γ(T ) = 1.

Proof. See appendix G.

According to the latter proposition, we can now define at
each time T ≥ T0, for each class k, the vector Ak(T ) =
(αk(T ), αk(T −1), · · · , αk(T − l(T ))), such that, there exists
β(T ) and γ(T ):
l(T )−1∑
j=1

p1α1(T − j) +

l(T )−1∑
j=1

p2α2(T − j)

+ β(T )p1α1(T − l(T )) + γ(T )p2α2(T − l(T )) = 1− α
(28)

where β(T ) = 0 and 0 < γ(T ) ≤ 1, or 0 < β(T ) ≤ 1
and γ(T ) = 1. We note that as we have explained previ-
ously, the relation between Ak(T ) and zk(T ) is: pkαk(T −
1) = zk1 (T ), pkαk(T − 2) = zk2 (T ), · · · , pkαk(T − l(T )) =
zkl(T )(T ).

Remark 4. We emphasize that in the following analysis, T is
always considered greater than T0.

We prove in the sequel that maxAk(T ) is decreasing and
minAk(T ) is increasing (with the max and min referring
to the element of the vector with the greatest value, and
the smallest value respectively). After that, we conclude the
convergence of maxAk(T ) and minAk(T ) when T tends to
+∞. Then, we prove that they must converge to the same real
number. In order to prove that maxAk(T ) is decreasing and
minAk(T ) is increasing, we first demonstrate this following
proposition.

Proposition 11. All the elements of the vector Ak(T + 1)
belong to the elements of the vector Ak(T ) except αk(T +1).

Proof. See appendix H

With the intention of proving the monotony of maxA1(T )
and minA1(T ), we still need to prove that the value of
α1(T + 1) must be less than maxA1(T ) and greater than
minAk(T ). For that, we introduce the following proposition.
Before doing that, we note that, as α1(t) +α2(t) = α at each
time slot t, then it is sufficient for us to prove that α1(·) is
converging. To that extent, we study only the vector function
A1(T ) in order to prove the convergence.

Proposition 12. Under assumption 3, for a given vector
A1(T ) = (α1(T ), α1(T − 1), · · · , α1(T − l(T )))(T ≥ T0),
we have four possible cases of inequalities:

α1(T ) ≤ α1(T + 1) ≤ α1(T − l(T ))

α1(T − l(T )) ≤ α1(T + 1) ≤ α1(T )

α1(T − l(T ) + 1) ≤ α1(T + 1) ≤ α1(T )

α1(T ) ≤ α1(T + 1) ≤ α1(T − l(T ) + 1)

Moreover: If α1(T ) ≤ α1(T + 1) ≤ α1(T − l(T )), then:

α1(T + 1)− α1(T ) ≤ p1(α1(T − l(T ))− α1(T ))

If α1(T − l(T )) ≤ α1(T + 1) ≤ α1(T ), then:

α1(T )− α1(T + 1) ≤ p1(α1(T )− α1(T − l(T )))

If α1(T − l(T ) + 1) ≤ α1(T + 1) ≤ α1(T ), then:

α1(T )− α1(T + 1) ≤ p1(α1(T )− α1(T − l(T ) + 1))

If α1(T ) ≤ α1(T + 1) ≤ α1(T − l(T ) + 1), then:

α1(T + 1)− α1(T ) ≤ p1(α1(T − l(T ) + 1)− α1(T ))

Proof. See appendix I.

Theorem 1. minA1(T ) and maxA1(T ) converge and we
denote their limits respectively by l1 and l2.

Proof. According to Proposition 11, the elements of the vector
A1(T +1) except the first element which is α1(T +1) belong
to the elements of the vector A1(T ). Hence, the values of these
elements (except the first element of A1(T + 1)) is less than
maxA1(T ) and greater than minA1(T ). According to the
first result of Proposition 12, we deduce that α1(T + 1) is be-
tween two values of two elements of the vector A1(T ). Hence,
combining the results of Proposition 11 and 12, maxA1(T +
1) ≤ maxA1(T ) and minA1(T + 1) ≥ minA1(T ). Then
maxA1(T ) is decreasing with T and minA1(T ) is increasing
with T . Given that for all T , 0 ≤ α1(T ) ≤ α, then maxA1(T )
and minA1(T ) are bounded by 0 and α. Therefore, we
can conclude that minA1(T ) and maxA1(T ) converge and
we denote their limits by l1 and l2 respectively. Moreover
maxA1(T ) is lower bounded by l2 and minA1(T ) is upper
bounded by l1.

However, in order to have α1(T ) converges to a unique
point, we need to establish that maxA1(T ) and minA1(T )
converge to the same limit. In other words, we need to
prove that l1 = l2. For that, we will use the second result of
Proposition 12. To that extent, we proceed by contradiction,
i.e. we suppose that l1 6= l2. More specifically, given that
l1 ≤ l2 by definition, the two possible cases satisfied by l1
and l2 are: l1 < l2 or l1 = l2, then to show that l1 = l2, it is
sufficient to find a contradiction considering l1 < l2.
In fact, we prove that if l1 < l2, there exists Td such that
all the elements of A1(Td) are strictly less than l2, that
contradicts with the fact that maxA1(T ) is lower bounded
by l2.
As maxA1(T ) converges to l2, then for a given ε > 0, there
exists a given time slot that we denote by Tε ≥ T0 such that
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for all T ≥ Tε, maxA1(T ) < l2 + ε. Our proof consists
of showing that for a small enough ε, there exists T ≥ Tε,
maxA1(T ) is strictly less than l2. We need first to determine
an upper bound on the number of the elements of the vector
A1(T ) whatever T . In fact, as we have demonstrated that at
each time T , the instantaneous threshold l(T ) is less than
lmax. Then the number of the elements of A1(T ) will not
exceed lmax + 1. In the following proof, we denote lmax by
L.

Proposition 13. If l1 < l2, for ε ≤ (l2 − l1) (1−p1)L

1−(1−p1)L
, there

exist Td ≥ Tε such that all the elements of A1(Td) are strictly
less than l2.

Proof. See appendix J.

Providing that l2 is a lower bound of maxA1(T ) which
contradicts with the result of the above proposition. Hence,
the supposition of l1 6= l2 is not valid.
Therefore, l1 = l2. Consequently, maxA1(T ) and minA1(T )
converge to the same limit denoted α∗1. Given that
minA1(T ) ≤ α1(T ) ≤ maxA1(T ) for all T , then α1(T ) also
converges to α∗1. Similarly, α2(T ) converges to α−α∗1 = α∗2.
In the following proposition, we prove that z(t) converges.

Proposition 14. If αk(t) converges to α∗k, then for each state
i and class k, zki (t) converges to zk,∗i .

Proof. See appendix K.

However, we still have to establish that the stochastic vector
ZN (t) converges to z∗ in probability when N scales. For
that, we introduce the following proposition inspired from the
discrete-time version of Kurtz Theorem in [27]. Before that,
knowing that the norms on the infinite dimension vector space
are not equivalents, we work only with a specific norm which
will be useful to show the optimality of the Whittle index’s
policy. Accordingly, we define || · || as follows:

||v|| =
+∞∑
i=1

|v1
i |i+

+∞∑
i=1

|v2
i |i (29)

where vki is the i-th component in the class k of the vector
v. The reason behind chosen such a norm will be revealed in
the proof of Proposition 16.

Proposition 15. For any µ > 0 and finite time horizon T ,
there exists positive constant C such that

Px( sup
0≤t<T

||ZN (t)− z(t)|| ≥ µ) ≤ C

N

where Px denotes the probability conditioned on the initial
state ZN (0) = z(0) = x. Furthermore, C is independent of
N .

Proof. See appendix L.

One should note that a nearly similar proposition has been
provided in [24] but for continuous time model. Specifically,
the authors of [24] state that on average ZN (t) does not
much differ from a z∗(t) when N scales. No proof of the
claim was provided in [24]. In this paper, we consider a

time-slotted system and, as one can notice in the proposition
above, we state that ZN (t) converges to z∗(t) when N scales
and when t is upper bounded by a fixed constant T and we
further give a detailed proof of our statement. According to
this Proposition, the system state ZN (t) behaves very close to
the fluid approximation model z(t) when the number of users
N is large and starting from any initial state. To that extent,
in order to establish the optimality of Whittle’s index policy,
we give first this following lemma which is a consequence of
the Proposition 15.

Lemma 3. For any µ > 0, there exists a time T0 such that
for each T > T0, there exists a positive constant s with,

Px( sup
T0≤t<T

||ZN (t)− z∗|| ≥ µ) ≤ s

N

Proof. See appendix M

We remind that starting from an initial state x, our ob-
jective is to compare the total expected average age per
user under the Whittle index policy which can be expressed
as 1

T E
wi
[∑T−1

t=0

∑2
k=1

∑+∞
i=1 Z

k,N
i (t)i | ZN (0) = x

]
where

ZN (t) evolves under the Whittle index policy, with the
optimal age of the relaxed problem per user whose expression
in function of z∗ is, CRP = CRP,N

N =
∑2

1

∑+∞
i=1 z

k,∗
i i, when

the number of users N as well as the time duration T grow.
According to Lemma 3, we are ready now to establish the

asymptotic optimality of the Whittle index policy.

Proposition 16. Starting from a given initial state ZN (0) =
z(0) = x, then:

lim
T→+∞

lim
N→∞

1

T
Ewi

[
T−1∑
t=0

2∑
k=1

+∞∑
i=1

Zk,Ni (t)i | ZN (0) = x

]

=

2∑
k=1

+∞∑
i=1

zk,∗i i (30)

Proof. See appendix N.

V. NUMERICAL RESULTS

A. Verification of assumption 3

In this section, we compute the value of the lower bound
on α given in Assumption 3. We denote this lowerbound by
Bα. For a wide range of parameters p1 and p2, we provide
an exhaustive table that represents the lower bound on α
in function of p1 and p2. As can be seen, the lowerbound
decreases when p1 and p2 are close one to the other. Moreover,
it grows even smaller when p1 and p2 have relatively high
values. According to table I, we can notice that in most cases
of (p1, p2), the lower bound of α doesn’t exceed 0.5. This
implies that the interval of α where the assumption 3 is
satisfied, is enough wide for different values of p1 and p2.

B. Implementation of the Whittle’s index policy

In this section, we evaluate the Whittle’s index policy’s
performance by comparing the per-user average age of the
Whittle’s index policy to the optimal per-user average age of
the relaxed problem Crp. To that extent, we let the number of
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p2 p1 Bα
0.1 0.2 0.7034
0.2 0.4 0.6250
0.3 0.5 0.4711
0.4 0.6 0.3556
0.4 0.8 0.5328
0.5 0.8 0.3612
0.5 1 0.5
0.6 0.9 0.2893
0.7 0.9 0.1675
0.8 0.9 0.1351

Table I: Evaluation of Bα for a wide range of
channel statics

Figure 5: Average age per-user under the Whittle’s index policy

users in class 1 and class 2 be equal to N
2 . The probability of

successful transmission of class 1 and class 2 are set to 0.8
and 0.5, respectively. At each time slot t, at most, M = N

2 of
users can be scheduled per each time slot, i.e., α = M

N = 1
2 . As

seen in Figure 5, the gap between the two policies tightens as
the number of users N grows. Indeed, these numerical results
corroborate our theoretical analysis and show that the Whittle’s
index policy is effectively globally asymptotically optimal.

VI. CONCLUSION

In this paper, we have examined the average age mini-
mization problem where only a fraction of the network users
can transmit simultaneously over unreliable channels. We
presented and derived a novel method based Cauchy criterion
to prove the optimality of the Whittle’s index policy in the
many-users regime. Contrary to the state of the art methods,
in which strong assumptions that cannot be verified easily are
used, our approach does not require imposing any restrictive
mathematical assumptions. We also provided numerical results
that corroborate our theoretical findings and highlight the
performance of the Whittle’s index policy. Moving forward,
the next research direction is to extend our proof to various
other scheduling problems under different system models and
objective functions.

REFERENCES

[1] S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should
one update?” in 2012 Proceedings IEEE INFOCOM, March 2012, pp.
2731–2735.

[2] B. Buyukates and S. Ulukus, “Timely distributed computation with
stragglers. october 2019,” Available on.

[3] S. Farazi, A. G. Klein, J. A. McNeill, and D. R. Brown, “On the age of
information in multi-source multi-hop wireless status update networks,”
in 2018 IEEE 19th International Workshop on Signal Processing Ad-
vances in Wireless Communications (SPAWC). IEEE, 2018, pp. 1–5.

[4] A. Maatouk, M. Assaad, and A. Ephremides, “The age of updates in
a simple relay network,” in 2018 IEEE Information Theory Workshop
(ITW). IEEE, 2018, pp. 1–5.

[5] P. Zou, O. Ozel, and S. Subramaniam, “Waiting before serving: A
companion to packet management in status update systems,” IEEE
Transactions on Information Theory, 2019.

[6] Y. Sun, E. Uysal-Biyikoglu, R. D. Yates, C. E. Koksal, and N. B. Shroff,
“Update or wait: How to keep your data fresh,” IEEE Transactions on
Information Theory, vol. 63, no. 11, pp. 7492–7508, 2017.

[7] R. Talak, S. Karaman, and E. Modiano, “Minimizing age-of-information
in multi-hop wireless networks,” in 2017 55th Annual Allerton Confer-
ence on Communication, Control, and Computing (Allerton). IEEE,
2017, pp. 486–493.

[8] A. M. Bedewy, Y. Sun, and N. B. Shroff, “Age-optimal information
updates in multihop networks,” in 2017 IEEE International Symposium
on Information Theory (ISIT). IEEE, 2017, pp. 576–580.

[9] A. Kosta, N. Pappas, A. Ephremides, and V. Angelakis, “Age of infor-
mation performance of multiaccess strategies with packet management,”
Journal of Communications and Networks, vol. 21, no. 3, pp. 244–255,
2019.

[10] Y. Sun, E. Uysal-Biyikoglu, and S. Kompella, “Age-optimal updates of
multiple information flows,” in IEEE INFOCOM 2018-IEEE Confer-
ence on Computer Communications Workshops (INFOCOM WKSHPS).
IEEE, 2018, pp. 136–141.
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APPENDIX A
PROOF OF LEMMA 1

At time t + 1, applying Whittle index policy, on average
exactly a proportion of pkαk(t) of users will be at state one
since αk(t) refers to the proportion of users in class k that
are scheduled. Accordingly, zk1 (t + 1) = pkαk(t). While for
1 ≤ i < lk(t), the users’ proportion zki (t) is not scheduled.
Therefore at time t + 1, since prescribing idle action to a
given user implies that its state will be increased by 1, the
proportion zki (t) at state i in class k will be at state i + 1.
Thus, E

[
ZN,ki+1 (t+ 1)

∣∣∣ZN (t) = z(t)
]

= zki+1(t+ 1) = zki (t).

APPENDIX B
PROOF OF LEMMA 2

First of all, we provide an useful lemma.

Lemma 4. We have for all integer i and for k = 1, 2:

wk(i+ 1)− wk(i) = ipk + 1

Proof. The result can be obtained directly by replacing wk(i)
by its expression. �

In order to prove the present lemma, we proceed in two
steps:
• We prove first by contradiction that there exists a given

time tf such that α1(tf ) > 0.
• We prove that if α1(tf ) > 0, then α1(t) > 0 for all
t ≥ tf .

1) For the first point, we suppose that for all t, we
have that α1(t) = 0. Consequently, we get that
z1

1(t + Tt) = 0, · · · , z1
l1(t+Tt)

(t + Tt) = 0, and
α1(t + Tt) = 0. This means that, the proportion of
all users in class 1 is equal to 0. However, the users’
proportion of class 1 is γ1 6= 0. That is, there exists a
given time tf such α1(tf ) > 0.

2) Before addressing the second point, we recall that α1(t)
refers to the scheduled users’ proportion in the class
1. Thereby, α1(t) contains all users with the highest
Whittle index values among all users in class 1. To
that extent, at time tf , the Whittle index of α1(tf ) is
greater than the Whittle index of the users’ proportion
1 − α that we denote by C. We let Stf (C) be the set
of pair (state,class) at time tf in the users’ proportion
C. Denoting by q the smallest state of α1(tf ), n and
m a given state and class respectively such that zmn (t)
belongs to C at time tf , then wm(n) ≤ w1(q). Under
the Whittle index policy, at time tf + 1, the states
of a users’ proportion that equals to (1 − p1)α1(tf )
among the users’ proportion α1(tf ), will be increased
by one in comparison with the time slot tf , as well
as the users’ proportion C. Accordingly, the small-
est state of the proportion (1 − p1)α1(tf ), is q + 1.
Stf+1(C) is shifted of one with respect to Stf (C),
i.e., (n,m) ∈ Stf (C) ⇔ (n + 1,m) ∈ Stf+1(C). We
compare w1(q+ 1) with the Whittle index of n in class
m such that (n,m) ∈ Stf+1(C). In that direction, we
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let (n,m) ∈ Stf+1(C), and we distinguish between two
cases:
• m = 1: Leveraging the fact that (n − 1,m) ∈

Stf (C), then w1(q) ≥ w1(n−1). That implies that
n−1 ≤ q since wk(.) is increasing. Hence n ≤ q+1.
As consequence, w1(n) ≤ w1(q + 1)

• m = 2: Again we distinguish between two case:

– If n− 1 ≤ q, then w2(n) < w1(n) ≤ w1(q + 1).
Therefore, we obtain our desired result for the
first case.

– If n− 1 > q:
We have that:

w1(q + 1)− w2(n) =(w1(q + 1)− w1(q))

− (w2(n)− w2(n− 1))

+ w1(q)− w2(n− 1)
(31)

Applying Lemma 4, we obtain: (w1(q + 1) −
w1(q))−(w2(n)−w2(n−1)) = qp1−(n−1)p2.
Given that w2(n− 1) ≤ w1(q), therefore replac-
ing by their expressions we get:

(n− 2)(n− 1)p2/2 + n− 1 ≤ (q − 1)qp1/2 + q

As n− 1 > q, then:

(n− 2)(n− 1)p2/2 ≤ (q − 1)qp1/2

Hence:
(n− 1)p2 ≤ qp1

Therefore, (w1(q+1)−w1(q))−(w2(n)−w2(n−
1)) ≥ 0. Hence, knowing that w1(q) − w2(n −
1) ≥ 0, we end up with our desired result for this
case, i.e. w1(q + 1)− w2(n) ≥ 0.

Thus, we have proved that at time tf + 1, all the users’
proportions in C whose sum is equal to 1 − α have a
Whittle index less than that of (1−p1)α1(tf ) defined in
the beginning of this proof. That means that there exists
at least a users’ proportion that equals to 1 − α with
Whittle index values less than those of the states of the
users’ proportion (1−p1)α1(tf ). Then surely, the users’
proportion (1−p1)α1(tf ) that is different from 0 belongs
to the users’ proportion α with the highest Whittle index
values. This implies that surely at time tf +1, there will
be at least one queue in class 1 belonging to α with
the highest Whittle index values. Therefore, we have
that α1(tf + 1) > 0. This result can be generalized for
all t ≥ tf . In other words, we have for all t ≥ tf ,
α1(t) > 0.

APPENDIX C
PROOF OF PROPOSITION 7

We have that w1(n) = (n−1)p1n
2 + n, and w2(n) =

(n−1)p2n
2 + n. We start first by finding the set of states for

which the Whittle index alternate between the two classes. As
we can see from the expression of the Whittle index, for a

given state n, w2(n) < w1(n) as p2 < p1. In order to have
the condition of alternation strictly satisfied for any given state
n, we must have w1(n) < w2(n+1). Hence, denoting by f(n)
the difference w2(n+ 1)−w1(n), we study the sign of f(n)
to see for which n f is strictly positive.

Lemma 5. For all n ∈ [1, D[, f(n) > 0

Proof. We have that:

f(n) =
n2

2
(p2 − p1) +

n

2
(p1 + p2) + 1 (32)

Hence:
f ′(n) = n(p2 − p1) +

p1 + p2

2
(33)

The derivative is equal to zero for n = p1+p2
2(p1−p2) , which is

greater strictly than 0. This means that f is strictly increasing
in [0, p1+p2

2(p1−p2) ] since f ′(n) > 0 in [0, p1+p2
2(p1−p2) [. Providing that

f(0) = 1, then surely f is strictly positive in [0, p1+p2
2(p1−p2) ].

This means that, the unique positive solution for f(n) = 0
must be in the interval [ p1+p2

2(p1−p2) ,+∞[, as lim
n→+∞

f(n) = −∞.

Indeed, the unique solution n0 of f(n) = 0 in [ p1+p2
2(p1−p2) ,+∞[

is the biggest root of the polynomial (32) which is exactly
the value D introduced in Assumption 3. As the function f
is decreasing in [ p1+p2

2(p1−p2) ,+∞[, then f is strictly positive in
[0, D[. Therefore, f(n) > 0 for n ∈ [1, D[, which concludes
the proof. �

According to Lemma 5, the order of the Whittle index
strictly alternates between the two states when n ∈ [1, D[.
Therefore, we need to prove that Tmax + 1 is upper bounded
by D in order to prove that the alternation condition is satisfied
from state 1 to Tmax + 1.
Indeed, as we have Tmax ≤ 1−α

p2α
+ 1, we just need to prove

that 1−α
p2α

+ 2 is strictly less than D.
Under Assumption (3), we have that:

α >
1

1 + (D − 2)p2
(34)

α(1 + p2(D − 2)) > 1 (35)
αp2(D − 2) > 1− α (36)

D − 2 >
1− α
p2α

(37)

D >
1− α
p2α

+ 2 (38)

Hence, from state 1 to Tmax + 1, the order of the Whittle
index strictly alternates between the two classes. Accordingly,
the proof is concluded.

APPENDIX D
PROOF OF PROPOSITION 8

We present first a lemma which will be helpful in proving
this proposition as well as the next ones.

Lemma 6. For any state q, at any time t, we have that:

w1(q) ≤ w2(l2(t))⇒ w1(q) ≤ w1(l1(t))

and
w2(q) ≤ w1(l1(t))⇒ w2(q) ≤ w2(l2(t))
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Proof. See appendix E �

We consider t ≥ tf . After time Tt, we have that:

l(t+Tt)∑
j=1

p1α1(t+Tt− j) +

Tt∑
j=1

p2α2(t+Tt− j) ≥ 1−α (39)

Then, as it has been showcased, at time t + Tt, there exists
l1(t + Tt) ≤ l(t + Tt), l2(t + Tt) ≤ Tt, γ(t + Tt) = 1 and
0 < β(t + Tt) ≤ 1; or 0 < γ(t + Tt) ≤ 1 and β(t + Tt) = 1
such that:

l1(t+Tt)−1∑
j=1

p1α1(t+ Tt − j) +

l2(t+Tt)−1∑
j=1

p2α2(t+ Tt − j)

+ β(t+ Tt)p1α1(t+ Tt − l1(t+ Tt))

+ γ(t+ Tt)p2α2(t+ Tt − l2(t+ Tt))

= 1− α (40)

with l1(t+Tt) and l2(t+Tt) being the instantaneous thresholds
in class 1 and 2 respectively at time t+ Tt.
Now, we prove by contradiction that max(l1(t + Tt), l2(t +
Tt)) ≤ Tmax.
We prove first that l2(t+ Tt) is greater than l1(t+ Tt).
As we have that w2(l1(t + Tt)) < w1(l1(t + Tt)), then
according to lemma 6, w2(l1(t+ Tt)) ≤ w2(l2(t+ Tt)). This
implies that l2(t+ Tt) is greater than l1(t+ Tt).
Reasoning by contradiction, we suppose that l2(t+Tt) > Tmax

(l2(t + Tt) = max(l1(t + Tt), l2(t + Tt)) > Tmax). Based
on this, we have that w1(Tmax) < w2(l2(t + Tt)) because
w1(Tmax) < w2(Tmax + 1) ≤ w2(l2(t + Tt)) since the order
of the Whittle index alternates between the two classes as it has
been proved in Proposition 8. To that extent, we distinguish
between two cases:
1) First case: If β(t+ Tt) = 1:
We have that w1(Tmax) < w2(l2(t+ Tt)). Then, according to
Lemma 6, we have that w1(Tmax) ≤ w1(l1(t + Tt)). Hence,
we can conclude that Tmax ≤ l1(t+Tt) as w1 is an increasing
function with the age of information.
Moreover, since we have that p1α1(t + Tt − j) + p2α2(t +
Tt − j) > p2α (the strict inequality is due to the fact that
α1(t) > 0 as t ≥ tf according to Lemma 2), then we obtain:

l1(t+Tt)−1∑
j=1

p1α1(t+ Tt − j) +

l2(t+Tt)−1∑
j=1

p2α2(t+ Tt − j)

+ β(t+ Tt)p1α1(t+ Tt − l1(t+ Tt))

+ γ(t+ Tt)p2α2(t+ Tt − l2(t+ Tt))

=1− α

=

l1(t+Tt)∑
j=1

p1α1(t+ Tt − j) +

l2(t+Tt)−1∑
j=1

p2α2(t+ Tt − j)

+ γ(t+ Tt)p2α2(t+ Tt − l2(t+ Tt))

≥
Tmax∑
j=1

p1α1(t+ Tt − j) +

Tmax∑
j=1

p2α2(t+ Tt − j)

>Tmaxp2α ≥ 1− α (41)

The last inequality comes from the fact that Tmax ≥ 1−α
p2α

.
This implies that:

1− α > 1− α (42)

This gives us an illogical statement. Consequently, in this case,
the assumption l2(t+ Tt) > Tmax is not true.
2) Second case: If β(t+ Tt) < 1:
As we have that β(t+Tt) < 1, then γ(t+Tt) should be equal
to 1. Therefore, all users at state l2(t+Tt) in class 2 are in the
users’ proportion 1−α with the smallest Whittle index values.
However, there exists users in state l1(t+Tt) in class 1 in the
users’ proportion α that has the highest Whittle index values.
That is, we have w1(l1(t + Tt)) ≥ w2(l2(t + Tt)). As it has
been established before tackling the first case, w1(Tmax) <
w2(l2(t+ Tt)), then w1(Tmax) < w1(l1(t+ Tt)). This means
that l1(t+ Tt) > Tmax. Therefore, we have that:

l1(t+Tt)−1∑
j=1

p1α1(t+ Tt − j) +

l2(t+Tt)−1∑
j=1

p2α2(t+ Tt − j)

+ β(t+ Tt)p1α1(t+ Tt − l1(t+ Tt))

+ γ(t+ Tt)p2α2(t+ Tt − l2(t+ Tt))

=1− α

≥
Tmax∑
j=1

p1α1(t+ Tt − j) +

Tmax∑
j=1

p2α2(t+ Tt − j)

>Tmaxp2α ≥ 1− α (43)

This implies that:
1− α > 1− α (44)

Consequently, in this case, the assumption l2(t+ Tt) > Tmax

is not true.
Hence, in both cases, l2(t + Tt) must be less than Tmax, i.e.
max(l1(t+ Tt), l2(t+ Tt)) ≤ Tmax for all t.
Thus, we end up with Tmax = lmax, which concludes our
proof.

APPENDIX E
PROOF OF LEMMA 6

We prove only the first statement as the proof steps for both
cases are exactly the same. By definition of l1(t) and l2(t),
we have that {z1

i (t)}1≤i≤l1(t) ∪ {z2
i (t)}1≤i≤l2(t) is exactly

the set {zki (t) : wk(i) ≤ max(w1(l1(t), w2(l1(t))}. Hence,
if a given q verifies w1(q) ≤ w2(l2(t)), then w1(q) ≤
max(w1(l1(t), w2(l2(t)), that implies that z1

q (t) ∈ {zki (t) :
wk(i) ≤ max(w1(l1(t), w2(l2(t))} = {z1

i (t)}1≤i≤l1(t) ∪
{z2
i (t)}1≤i≤l2(t). Knowing that the highest users’ proportion’s

state of the aforementioned set in class 1 is l1(t), then
q ≤ l1(t). Therefore as w1(.) is increasing, w1(q) ≤ w1(l1(t)).

APPENDIX F
PROOF OF PROPOSITION 9

We have that:
l1(t)−1∑
i=1

z1
i (t)+

l2(t)−1∑
i=1

z2
i (t)+β(t)z1

l1(t)(t)+γ(t)z2
l2(t)(t) = 1−α

(45)
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with l1(t) and l2(t) being the thresholds in class 1 and 2
respectively at time t, and β(t) = 1 and 0 < γ(t) ≤ 1, or
γ(t) = 1 and 0 < β(t) ≤ 1.
Our aim in this proof is to show that there is a link between
l1(t) and l2(t) when they are less than Tmax. By doing so, we
find a general form of the aforementioned equation. To that
end, we prove first that l1(t) is less than l2(t).
Indeed, as we have w2(l1(t)) < w1(l1(t)), then according
to lemma 6, w2(l1(t)) ≤ w2(l2(t)). Consequently, we can
conclude that l1(t) ≤ l2(t).
Secondly, we prove that l2(t) ≤ l1(t) + 1. As the order of
the Whittle indices alternates between the two classes from
state 1 to state Tmax + 1, w1(l2(t) − 1) < w2(l2(t)). Hence,
according to lemma 6, we have that w1(l2(t)−1) ≤ w1(l1(t)).
Consequently, l2(t)− 1 ≤ l1(t).
Given that l1(t) ≤ l2(t) ≤ l1(t) + 1, then l1(t) can be either
l2(t) or l2(t)− 1.
The second step consists of deriving the value of β(t) or γ(t)
depending on the value of l1(t) and l2(t).

• If l1(t) = l2(t):
We prove that γ(t) = 1 if z2

l2(t) > 0. Indeed, if γ(t) 6= 1

and z2
l2(t) > 0, thus there is at least a non empty set

of users in class 2 at state l2(t) that belongs to the
users’ proportion α with the highest Whittle index values.
However there exists always a non empty set of users in
class 1 at state l1(t) that belong to 1−α users’ proportion
with the least Whittle index values, since β(t) > 0.
Then, we have that w2(l2(t)) ≥ w1(l1(t)). However,
we know that w2(l2(t)) = w2(l1(t)) < w1(l1(t)). This
later inequality contradicts with what precedes. Thus, the
statement that γ(t) 6= 1 is not true, i.e. γ(t) = 1.
In this case we denote l(t) = l1(t) = l2(t).
We end up:

l(t)−1∑
j=1

z1
i (t) +

l(t)−1∑
i=1

z2
i (t) +β(t)z1

l(t)(t) + z2
l(t)(t) = 1−α

(46)
If z2

l2(t) = 0, the last equation still valid since z2
l2(t) = 0

whatever the value of γ(t), namely when γ(t) = 1.
• If l1(t) + 1 = l2(t):

We prove that β(t) = 1 if z1
l1(t) > 0. Indeed, if

β(t) 6= 1 and z1
l1(t) > 0, there is at least a set of

users in class 1 in state l1(t) that belongs to the users’
proportion α with the highest Whittle index values.
However there is always a set of users in class 2 at
state l2(t) that belong to 1 − α users’ proportion with
the least Whittle index values, since γ(t) > 0. Then, we
have that w1(l1(t)) ≥ w2(l2(t)). However, we know that
w2(l2(t)) = w2(l1(t) + 1) > w1(l1(t)) since the order
of Whittle index alternates between the two classes from
state 1 to Tmax + 1 according to Proposition 8. Thus,
w2(l1(t) + 1) > w1(l1(t)) ≥ w2(l1(t) + 1), which gives
us an obvious contradiction. Therefore, we can assert that
β(t) = 1.
In this case, we consider that l(t) = l1(t)+1 = l2(t) and

we get:

l(t)−1∑
i=1

z1
i (t) +

l(t)−1∑
i=1

z2
i (t) + γ(t)z2

l(t)(t) = 1− α (47)

Similarly to the first case, if z1
l1(t) = 0, the last equation still

valid since z1
l1(t) = 0 whatever the value of β(t), namely when

β(t) = 1. Subsequently, combining the two cases, there exists
l(t) such that:

l(t)−1∑
i=1

z1
i (t) +

l(t)−1∑
i=1

z2
i (t) + β(t)z1

l(t)(t) + γ(t)z2
l(t)(t) = 1−α

(48)
where β(t) = 0 and 0 < γ(t) ≤ 1, or 0 < β(t) ≤ 1 and
γ(t) = 1.

APPENDIX G
PROOF OF PROPOSITION 10

We prove the Proposition by induction:
• For T = T0, we have already proved our claim.
• We suppose that the statement is valid for a given T , i.e.

there exists l(T ), β(T ) and γ(T ) such that:

l(T )−1∑
j=1

p1α1(T − j) +

l(T )−1∑
j=1

p2α2(T − j)

+ β(T )p1α1(T − l(T )) + γ(T )p2α2(T − l(T )) = 1− α
(49)

where β(T ) = 0 and 0 < γ(T ) ≤ 1, or 0 < β(T ) ≤ 1
and γ(T ) = 1. Then, at the next time slot, among the
users’ proportion scheduled, α, exactly p1α1(T ) and
p2α2(T ) will go to state one for each class, while for the
rest, their states will be incremented by one. Likewise,
for the other users for which the action taken is passive,
their states will be incremented by one. As consequence,
the decreasing order according to the Whittle index
value for these proportions of users at the next slot is
β(T )p1α1(T − l(T )), γ(T )p2α2(T − l(T )), p1α1(T −
l(T ) + 1), p2α2(T − l(T ) + 1), p1α1(T − l(T ) +
2), p2α2(T − l(T ) + 2), p1α1(T − l(T ) + 3), p2α2(T −
l(T )+3), · · · , p1α1(T ), p2α2(T ) (As we have mentioned
before, the order of the Whittle indices alternates between
the two classes because l(T ) + 1 ≤ lmax + 1). Moreover,
the states of the users’ proportion (1 − p1)α1(t) and
(1 − p2)α2(t); which are scheduled but they don’t
transit to the state 1 with respect to their classes; will
be increased by one. Leveraging the above results, we
provide the decreasing order of all users’ proportions
according to the Whittle index value depending on two
cases of β(t).
If β(T ) = 0, then the smallest state’s value among the
users’ proportions (1 − p1)α1(t) and (1 − p2)α2(t) at
time T + 1 is l(T ) + 1. Hence, their Whittle index values
will be higher than w2(l(T ) + 1), and consequently,
they will be higher than those of users’ proportion of
γ(T )p2α2(T − l(T )) at state l(T ) + 1 in class 2.
If β(T ) 6= 1, the smallest state value among the users’
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proportions (1 − p1)α1(t) and (1 − p2)α2(t) at time
T + 1 is respectively l(T ) + 1 and l(T ) + 2. Then, their
Whittle index values will be higher than w1(l(T ) + 1)
(w1(l(T )+1) < w2(l(T )+2) as the alternation condition
is satisfied from 1 until lmax + 1). Consequently, their
Whittle index values will be higher than the Whittle
index of users’ proportion β(T )p1α1(T − l(T )) at state
l(T ) + 1 in class 1.
Thus, the decreasing order of all users’ proportions
according to the Whittle index value whatever the
value of β(T ) at T + 1 is: (1 − p1)α1(t), (1 −
p2)α2(t), β(T )p1α1(T − l(T )), γ(T )p2α2(T −
l(T )), p1α1(T − l(T )+1), p2α2(T − l(T )+1), p1α1(T −
l(T ) + 2), p2α2(T − l(T ) + 2), p1α1(T − l(T ) +
3), p2α2(T − l(T ) + 3), · · · , p1α1(T ), p2α2(T ).
As we have that (1 − p1)α1(t) + (1 − p2)α2(t) ≤ α,
then surely the thresholds at time T + 1 in class
1 and in class 2 are less than the state of the users’
proportion β(T )p1α1(T−l(T )) and γ(T )p2α2(T−l(T ))
respectively. Therefore, there exists l1(T + 1), l2(T + 1),
β(T + 1) and γ(T + 1) such that 0 < β(T + 1) ≤ 1 and
γ(T + 1) = 1, or β(T + 1) = 1 and 0 < γ(T + 1) ≤ 1:

l1(T+1)−1∑
j=1

p1α1(T + 1− j) +

l2(T+1)−1∑
j=1

p2α2(T + 1− j)

+ β(T + 1)p1α1(T + 1− l1(T + 1))

+ γ(T )p2α2(T + 1− l2(T + 1))

= 1− α (50)

Now we prove by contradiction that max(l1(T +
1), l2(T + 1)) ≤ Tmax.
We prove first that l2(T + 1) is greater than l1(T + 1).
As w2(l1(T + 1)) < w1(l1(T + 1)), that means accord-
ing to lemma 6, l2(T + 1) is greater than l1(T + 1)
(w2(l1(T + 1)) < w2(l2(T + 1))).
Reasoning by contradiction, if l2(T + 1) > Tmax, then
we distinguish between two cases:

– First case: If β(T + 1) = 1:
we have that w1(Tmax) < w2(l2(T + 1))
(w1(Tmax) < w2(Tmax + 1) as the alternation
condition is satisfied in [1, Tmax +1]), i.e., according
to lemma 6, we have that lmax ≤ l1(T + 1). Hence,
according to lemma 2, we have that:

l1(T+1)−1∑
j=1

p1α1(T + 1− j)

+

l2(T+1)−1∑
j=1

p2α2(T + 1− j)

+ β(T + 1)p1α1(T + 1− l1(T + 1))

+ γ(T + 1)p2α2(T + 1− l2(T + 1)) = 1− α

≥
Tmax∑
j=1

p1α1(T + 1− j) +

Tmax∑
j=1

p2α2(T + 1− j)

> Tmaxp2α ≥ 1− α (51)

Therefore we end up with:

1− α > 1− α (52)

Hence, the assumption that l2(T + 1) > Tmax
leads us to an illogical statement. Consequently, the
hypothesis of l2(T + 1) > lmax is not valid for the
first case.

– Second case: If β(T + 1) < 1:
Then we have that γ(T+1) = 1. Therefore, all users
at state l2(T+1) in class 2 are in the proportion 1−α
with the smallest Whittle index values. However,
there are users in state l1(T + 1) in class 1 of the
α proportion with the highest Whittle index values.
In other words, w1(l1(T + 1)) ≥ w2(l2(T + 1)) >
w1(Tmax). This means that l1(T + 1) > Tmax.
Therefore, according to lemma 2:

l1(T+1)−1∑
j=1

p1α1(T + 1− j)

+

l2(T+1)−1∑
j=1

p2α2(T + 1− j)

+ β(T + 1)p1α1(T + 1− l1(T + 1))

+ γ(T + 1)p2α2(T + 1− l2(T + 1)) = 1− α

≥
Tmax∑
j=1

p1α1(T + 1− j) +

Tmax∑
j=1

p2α2(T + 1− j)

> Tmaxp2α ≥ 1− α > 1− α (53)

Therefore, the hypothesis of l2(T + 1) > Tmax is
not valid for the second case.

Consequently, we have that l2(T + 1) ≤ Tmax, i.e.
max(l1(T + 1), l2(T + 1)) ≤ Tmax. Then, according to
Proposition 9, there exists l(T + 1), and γ(T + 1) and
β(T + 1) such that:

l(T+1)−1∑
j=1

p1α1(T + 1− j) +

l(T+1)−1∑
j=1

p2α2(T + 1− j)

+ β(T + 1)p1α1(T + 1− l(T + 1))

+ γ(T + 1)p2α2(T + 1− l(T + 1)) = 1− α (54)

where β(T + 1) = 0 and 0 < γ(T + 1) ≤ 1, or 0 <
β(T + 1) ≤ 1 and γ(T + 1) = 1.

To conclude, we have proved by induction, that for all T ≥ T0,
there exists l(T ), β(T ) and γ(T ), such that:

l(T )−1∑
j=1

p1α1(T − j) +

l(T )−1∑
j=1

p2α2(T − j) + β(T )p1α1(T − l(T ))

+ γ(T )p2α2(T − l(T )) = 1− α (55)

where β(T ) = 0 and 0 < γ(T ) ≤ 1, or 0 < β(T ) ≤ 1 and
γ(T ) = 1, which concludes our proof.
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APPENDIX H
PROOF OF PROPOSITION 11

We proceed by the same method used to prove the Propo-
sition 10.
We consider at time T :
l(T )−1∑
j=1

p1α1(T − j) +

l(T )−1∑
j=1

p2α2(T − j) + β(T )p1α1(T − l(T ))

+ γ(T )p2α2(T − l(T )) = 1− α, (56)

where β(T ) = 0 and 0 ≤ γ(T ) < 1, or 0 ≤ β(T ) < 1 and
γ(T ) = 1. Among the users’ proportion scheduled α, exactly
p1α1(T ) and p2α2(T ) will go to state one for each classes,
and (1 − p1)α1(T ) and (1 − p2)α2(T ) will go to the next
state.
For the other users for which the action taken is passive,
their states will be increased by one, then the decreasing
order according to the Whittle index value at the next time
slot is β(T )p1α1(T − l(T )), γ(T )p2α2(T − l(T )), p1α1(T −
l(T ) + 1), p2α2(T − l(T ) + 1), p1α1(T − l(T ) + 2), p2α2(T −
l(T ) + 2) · · · p1α1(T ), p2α2(T ) (As we said before that the
order based on the value of the Whittle indices, alternate
between the two classes from state 1 to l(T ) ≤ lmax + 1).
Moreover, the users’ proportion scheduled (1 − p1)α1(T )
and (1 − p2)α2(T ) will be at states that have Whittle
index values higher than those of β(T )p1α1(T − l(T )) and
γ(T )p2α2(T − l(T )) (as we have explained in the proof of
Proposition 10).
Hence, the global decreasing order according to the Whittle
index value is (1− p1)α1(T ), (1− p1)α2(T ), β(T )p1α1(T −
l(T )), γ(T )p2α2(T − l(T )), p1α1(T − l(T ) + 1), p2α2(T −
l(T ) + 1), p1α1(T − l(T ) + 2), p2α2(T − l(T ) +
2) · · · p1α1(T ), p2α2(T ).
Providing that (1 − p1)α1(t) + (1 − p2)α2(t) ≤ α, then at
time T + 1:
l(T )−1∑
j=1

p1α1(T − j) +

l(T )−1∑
j=1

p2α2(T − j) + β(T )p1α1(T − l(T ))

+ γ(T )p2α2(T − l(T )) + p1α1(T ) + p2α2(T ) ≥ 1− α
(57)

Then, there exists β = 0 and 0 < γ ≤ 1, or 0 < β ≤ 1
and γ = 1, and sub-set {α1(T ), α2(T ), α1(T − 1), α2(T −
1) · · ·α1(T − m), α2(T − m)} ⊂ {α1(T − l(T )), α2(T −
l(T )), α1(T − l(T ) + 1), α2(T − l(T ) + 1), α1(T − l(T ) +
2), α2(T − l(T ) + 2) · · ·α1(T ), α2(T )}, such that:

(m+1)−1∑
j=1

p1α1(T + 1− j) +

(m+1)−1∑
j=1

p2α2(T + 1− j)

+ βp1α1(T + 1− (m+ 1)) + γp2α2(T + 1− (m+ 1)) = 1− α
(58)

Indeed, m + 1 is effectively l(T + 1), β = β(T + 1),
γ = γ(T + 1), and the elements of the set {α1(T ), α1(T −
1), · · ·α1(T −m)}∪{α1(T +1)} and the set {α2(T ), α2(T −
1), · · · , α2(T −m)} ∪ {α2(T + 1)} are exactly the elements
of the vectors A1(T + 1) and A2(T + 1) respectively. Given
that {α1(T ), α1(T − 1), · · ·α1(T −m)} and {α2(T ), α2(T −

1), · · · , α2(T −m)} are included in the set of elements of the
vector A1(T ) and A2(T ) respectively, then for k = 1, 2, all
the elements of the vector Ak(T +1) except αk(T +1) belong
to the elements of vector Ak(T ).

APPENDIX I
PROOF OF PROPOSITION 12

According to Proposition 10, the elements of the vectors
A1(T ) and A2(T ) satisfy:

l(T )−1∑
j=1

p1α1(T − j) +

l(T )−1∑
j=1

p2α2(T − j) + β(T )p1α1(T − l(T ))

+ γ(T )p2α2(T − l(T )) = 1− α, (59)

where 0 < β(T ) ≤ 1 and γ(T ) = 1, or β(T ) = 0 and
0 < γ(T ) ≤ 1. We distinguish between two cases depending
on the values of β and γ (we drop the index T on β(T ) and
γ(T ) to ease the notation):

• First case: 0 < β ≤ 1, and γ = 1:
Hence:
l(T )−1∑
j=1

p1α1(T − j) +

l(T )−1∑
j=1

p2α2(T − j)

+ β(T )p1α1(T − l(T )) + p2α2(T − l(T )) = 1− α
(60)

Our aim is to derive the expression of αk(T+1) for class
1 and class 2. Among the users’ proportion scheduled α,
exactly p1α1(T ) and p2α2(T ) will go to state one for
each class, and the rest will go to the next state. Hence:

α1(T + 1) = (1− p1)α1(T ) +B1(T ) (61)

α2(T + 1) = (1− p2)α2(T ) +B2(T ) (62)

such that B1(T ) +B2(T ) = p1α1(T ) + p2α2(T ).
At time T + 1, the decreasing order according to
the Whittle index value is (1 − p1)α1(T ), (1 −
p2)α2(T ), βp1α1(T − l(T )), p2α2(T − l(T )), p1α1(T −
l(T ) + 1), p2α2(T − l(T ) + 1), p1α1(T − l(T ) +
2), p2α2(T − l(T ) + 2), · · · , p1α1(T ), p2α2(T ).
In order to get B1(T ) and B2(T ), we sum the users’
proportions at different states starting from the users’
proportion βp1α1(T − l(T )) following the decreasing
order of the Whittle index until we get the sum that equals
to p1α1(T ) + p2α2(T ). We distinguish between six sub-
cases and for each sub-case, we prove that αk(T + 1) is
surely between two elements of the vector Ak(T ). In fact,
if we prove it just for one class, the result will be true
for the other one, since α1(T ) + α2(T ) = α for all T .
In the following, we derive the expression of αk(T + 1)
for k = 1, 2, in function of the elements of the vector
A1(T ) and A2(T ) and we show that α1(T + 1) is surely
between two elements of the vector A1(T ).
1) If p1α1(T ) + p2α2(T ) ≤ p1βα1(T − l(T )):
In this case p1α1(T ) + p2α2(T ) is less than p1βα1(T −
l(T )). Therefore, we will take a proportion of users from
p1βα1(T − l(T )) that equals to p1α1(T ) + p2α2(T )
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denoted by C. This users’ proportion exactly equals to
B1(T ) + B2(T ) that we add to (1 − p1)α1(T ) and
(1 − p2)α2(T ). Thus, B1(T ) + B2(T ) = C. How-
ever, since all the users of the proportion C belong to
p1βα1(T − l(T )), then C contains only the users of the
class 1. Consequently, B1(T ) = C and B2(T ) = 0.
Hence:

α2(T + 1) = (1− p2)α2(T ) (63)

As α1(T + 1) + α(T + 1) = α, then:

α1(T + 1) = α− α2(T + 1) (64)

Now we find the upper bound of α2(T )− α2(T + 1):

α2(T )− α2(T + 1) =p2α2(T ) (65)
≤βα1(T − l(T ))p1 − α1(T )p1

(66)
≤p1(α1(T − l(T ))− α1(T )) (67)
=p1(α2(T )− α2(T − l(T ))) (68)

The first inequality comes from the fact that
p1α1(T ) + p2α2(T ) ≤ p1βα1(T − l(T )) and the
second one comes from the fact that β ≤ 1.
Given that α2(i)−α2(j) = α1(j)−α1(i) for all integers
i and j, thus:

α1(T + 1)− α1(T ) ≤ p1(α1(T − l(T ))− α1(T )) (69)

Moreover, we have that α1(T + 1)−α1(T ) ≥ 0 because
α2(T + 1)−α2(T ) ≤ 0. Therefore, α1(T ) ≤ α1(T + 1).
On the other hands, as p1(α1(T − l(T )) − α1(T )) ≥
α1(T + 1) − α1(T ) ≥ 0 then α1(T − l(T )) − α1(T ) ≥
α1(T + 1) − α1(T ). This means that α1(T − l(T )) ≥
α1(T + 1). Consequently, we end up with:

α1(T ) ≤ α1(T + 1) ≤ α1(T − l(T )) (70)

2) If βα1(T−l(T ))p1 ≤ p1α1(T )+p2α2(T ) ≤ βα1(T−
l(T ))p1 + α2(T − l(T ))p2:
Hence:

α1(T + 1) =(1− p1)α1(T ) + βp1α1(T − l(T )) (71)
α2(T + 1) =α− α1(T + 1) (72)

Then:

α1(T + 1)− α1(T ) =βp1α1(T − l(T )− p1α1(T )
(73)

≤p1(α1(T − l(T )− α1(T )) (74)

On the other hand, we have according to the right
inequality of sub-case’s assumption:

α1(T + 1)− α1(T ) =βp1α1(T − l(T )− p1α1(T )
(75)

≥p2α2(T )− p2α2(T − l(T ))
(76)

=p2(α1(T − l(T ))− α1(T )) (77)

Hence :

p2(α1(T − l(T ))− α1(T )) ≤ α1(T + 1)− α1(T )

≤ p1(α1(T − l(T ))− α1(T ))
(78)

Knowing that p2 < p1, the later inequalities imply that
α1(T − l(T ))− α1(T ) ≥ 0.
As a result we have that:

α1(T ) ≤ α1(T + 1) ≤ α1(T − l(T )) (79)

And

α1(T + 1)− α1(T ) ≤ p1(α1(T − l(T ))− α1(T )) (80)

3) If βα1(T − l(T ))p1 + α2(T − l(T ))p2 ≤ p1α1(T ) +
p2α2(T ) ≤ βα1(T − l(T ))p1 + α2(T − l(T ))p2 +
p1α1(T − l(T ) + 1):
Hence:

α2(T + 1) =(1− p2)α2(T ) + p2α2(T − l(T )) (81)
α1(T + 1) =α− α2(T + 1) (82)

Therefore:

α2(T + 1)− α2(T ) = p2(α2(T − l(T ))− α2(T )) (83)

And:

α1(T )− α1(T + 1) = p2(α1(T )− α1(T − l(T ))) (84)

This means that if α1(T ) ≤ α1(T + 1):

α1(T ) ≤ α1(T + 1) ≤ α1(T − l(T )) (85)

And

α1(T + 1)− α1(T ) ≤ p1(α1(T − l(T ))− α1(T )) (86)

If α1(T + 1) ≤ α1(T ):

α1(T − l(T )) ≤ α1(T + 1) ≤ α1(T ) (87)

And

α1(T )− α1(T + 1) ≤ p1(α1(T )− α1(T − l(T ))) (88)

4) If βα1(T−l(T ))p1+α2(T−l(T ))p2+p1α1(T−l(T )+
1) ≤ p1α1(T ) + p2α2(T ) ≤ βα1(T − l(T ))p1 +α2(T −
l(T ))p2 + p1α1(T − l(T ) + 1) + p2α2(T − l(T ) + 1) :
Hence:

α1(T + 1) =(1− p1)α1(T ) + p1βα1(T − l(T ))

+ p1α1(T − l(T ) + 1) (89)
α2(T + 1) =α− α1(T + 1) (90)

Therefore:

α1(T + 1)− α1(T ) =− p1α1(T ) + p1βα1(T − l(T ))

+ p1α1(T − l(T ) + 1) (91)
(92)
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According to the left inequality of the assumption of this
case, we have that:

α1(T + 1)− α1(T ) ≤p2α2(T )− p2α2(T − l(T ))
(93)

=p2(α1(T − l(T ))− α1(T )) (94)

On the other hand, we have that:

α1(T + 1)− α1(T ) =− p1α1(T ) + p1βα1(T − l(T ))

+ p1α1(T − l(T ) + 1) (95)
≥p1(α1(T − l(T ) + 1) + α1(T )

(96)
(97)

Hence:

p1(α1(T − l(T ) + 1)− α1(T )) ≤ α1(T + 1)− α1(T )

≤ p2(α1(T − l(T ))− α1(T ))
(98)

Thus:
If α1(T ) ≤ α1(T + 1):

α1(T ) ≤ α1(T + 1) ≤ α1(T − l(T )) (99)

And

α1(T + 1)− α1(T ) ≤p2(α1(T − l(T ))− α1(T ))
(100)

≤p1(α1(T − l(T ))− α1(T ))
(101)

If α1(T + 1) ≤ α1(T ):

α1(T − l(T ) + 1) ≤ α1(T + 1) ≤ α1(T ) (102)

And

α1(T )− α1(T + 1) ≤p1(α1(T )− α1(T − l(T ) + 1))
(103)

5) If there exists m ≥ 1 such that:
βα1(T − l(T ))p1 + α2(T − l(T ))p2 + p1α1(T − l(T ) +
1) + · · ·+ p1α1(T − l(T ) +m) + p2α2(T − l(T ) +m) ≤
p1α1(T ) + p2α2(T ) ≤ βα1(T − l(T ))p1 + α2(T −
l(T ))p2 + p1α1(T − l(T ) + 1) + · · ·+ p1α1(T − l(T ) +
m) + p2α2(T − l(T ) +m) + p1α1(T − l(T ) +m+ 1) :
This means that:

α2(T + 1) =(1− p2)α2(T ) + p2α2(T − l(T )) + · · ·
+ p2α2(T − l(T ) +m) (104)

α1(T + 1) =α− α2(T + 1) (105)

We have that:

α2(T + 1)− α2(T ) =− p2α2(T ) + p2α2(T − l(T ))

+ p2α1(T − l(T ) + 1) + · · ·
+ p2α2(T − l(T ) +m)

≥p2(α2(T − l(T ) + 1)− α2(T ))
(106)

On the other hand:

α2(T + 1)− α2(T ) =− p2α2(T ) + p2α2(T − l(T ))

+ p2α2(T − l(T ) + 1) + · · ·
+ p2α2(T − l(T ) +m)

≤p1α1(T )− βp1α1(T − l(T ))

−
m∑
i=1

p1α1(T − l(T ) + i)

≤p1(α1(T )− α1(T − l(T ) + 1))

=p1(α2(T − l(T ) + 1)− α2(T ))
(107)

Thus:

p2(α1(T )− α1(T − l(T ) + 1) ≤ α1(T )− α1(T + 1)

≤ p1(α1(T )− α1(T − l(T ) + 1))
(108)

Therefore:

α1(T − l(T ) + 1) ≤ α1(T + 1) ≤ α1(T ) (109)

And:

α1(T )− α1(T + 1) ≤ p1(α1(T )− α1(T − l(T ) + 1))
(110)

6) If there exists m ≥ 1 such that:
βα1(T − l(T ))p1 + α2(T − l(T ))p2 + p1α1(T − l(T ) +
1) + p2α2(T − l(T ) + 1) + · · ·+ p1α1(T − l(T ) +m) +
p2α2(T − l(T ) + m) + p1α1(T − l(T ) + m + 1) ≤
p1α1(T ) + p2α2(T ) ≤ βα1(T − l(T ))p1 + α2(T −
l(T ))p2 + p1α1(T − l(T ) + 1) + · · ·+ p1α1(T − l(T ) +
m) + p2α2(T − l(T ) +m) + p1α1(T − l(T ) +m+ 1) +
p2α2(T − l(T ) +m+ 1) :
Hence:

α1(T + 1) =(1− p1)α1(T ) + p1βα1(T − l(T )) + · · ·
+ p1α1(T − l(T ) +m+ 1) (111)

α2(T + 1) =α− α1(T + 1) (112)

We have that:

α1(T + 1)− α1(T ) =− p1α1(T ) + p1βα1(T − l(T ))

+ p1α1(T − l(T ) + 1) + · · ·
+ p1α1(T − l(T ) +m+ 1)

≥p1(α1(T − l(T ) + 1)− α1(T ))
(113)

On the other hand:

α1(T + 1)− α1(T ) =− p1α1(T ) + p1βα1(T − l(T ))

+ p1α1(T − l(T ) + 1) + · · ·
+ p1α1(T − l(T ) +m+ 1)

≤p2α2(T )−
m∑
i=0

p2α2(T − l(T ) + i)

≤p2(α2(T )− α2(T − l(T ) + 1))

=p2(α1(T − l(T ) + 1)− α1(T ))
(114)
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Thus:

p1(α1(T − l(T ) + 1)− α1(T )) ≤ α1(T + 1)− α1(T )

≤ p2(α1(T − l(T ) + 1)− α1(T ))
(115)

Therefore:

α1(T − l(T ) + 1) ≤ α1(T + 1) ≤ α1(T ) (116)

And:

α1(T )− α1(T + 1) ≤ p1(α1(T )− α1(T − l(T ) + 1))
(117)

• Second case: β = 0 and 0 < γ ≤ 1:
Hence, we have that:

l(T )−1∑
j=1

p1α1(T − j)+
l(T )−1∑
j=1

p2α2(T − j) + γp2α2(T − l(T ))

= 1− α (118)

Then, at time T + 1, the decreasing order
according to the Whittle index value is
(1−p1)α1(T ), (1−p2)α2(T ), γp2α2(T−l(T )), p1α1(T−
l(T ) + 1), p2α2(T − l(T ) + 1), p1α1(T − l(T ) +
2), p2α2(T − l(T ) + 2), · · · , p1α1(T ), p2α2(T ). In
order to obtain B1(T ) and B2(T ), we sum the users’
proportions at different states starting from the users’
proportion γp2α2(T − l(T )) following the decreasing
order of the Whittle index until we get the sum that
equals to p1α1(T ) + p2α2(T ). For this case, we
distinguish between five sub-cases, and for each sub-
case, we prove that α1(T + 1) is surely between two
elements of the vector A1(T ).

1) If p1α1(T ) + p2α2(T ) ≤ γα2(T − l(T ))p2:
Hence:

α1(T + 1) = (1− p1)α1(T ) (119)

α2(T + 1) = α− α1(T + 1) (120)

We have that:

α1(T )− α1(T + 1) =p1α1(T ) (121)
≤γα2(T − l(T ))p2 − α2(T )p2

(122)
≤p2(α2(T − l(T ))− α2(T ))

(123)
=p2(α1(T )− α1(T − l(T )))

(124)

Thus:

α1(T )− α1(T + 1) ≤ p1(α1(T )− α1(T − l(T )) (125)

And:

α1(T − l(T )) ≤ α1(T + 1) ≤ α1(T ) (126)

2) If γα2(T−l(T ))p2 ≤ p1α1(T )+p2α2(T ) ≤ γα2(T−
l(T ))p2 + α1(T − l(T ) + 1)p1

Consequently:

α2(T + 1) =(1− p2)α2(T ) + γp2α2(T − l(T )) (127)
α1(T + 1) =α− α2(T + 1) (128)

Hence:

α2(T + 1)− α2(T ) =− p2α2(T ) + γp2α2(T − l(T ))
(129)

≤p2(α2(T − l(T ))− α2(T ))
(130)
(131)

On the other hand, according to the right inequality of
the assumption of this case, we have that:

α2(T + 1)− α2(T ) =− p2α2(T ) + γp2α2(T − l(T ))
(132)

≥p1(α1(T )− α1(T − l(T ) + 1))
(133)

=p1(α2(T − l(T ) + 1)− α2(T ))
(134)

That means:

p1(α2(T − l(T ) + 1)− α2(T )) ≤ α2(T + 1)− α2(T )

≤ p2(α2(T − l(T ))− α2(T ))
(135)

i.e.

p1(α1(T )− α1(T − l(T ) + 1)) ≤ α1(T )− α1(T + 1)

≤ p2(α1(T )− α1(T − l(T )))
(136)

Therefore:
If α1(T ) ≤ α1(T + 1):

α1(T ) ≤ α1(T + 1) ≤ α1(T − l(T ) + 1) (137)

And:

α1(T + 1)− α1(T ) ≤ p1(α1(T − l(T ) + 1)− α1(T ))
(138)

If α1(T + 1) ≤ α1(T ):

α1(T − l(T )) ≤ α1(T + 1) ≤ α1(T ) (139)

And:

α1(T )−α1(T + 1) ≤ p1(α1(T )−α1(T − l(T ))) (140)

3) If γα2(T−l(T ))p2+α1(T−l(T )+1)p1 ≤ p1α1(T )+
p2α2(T ) ≤ γα2(T − l(T ))p2 + α1(T − l(T ) + 1)p1 +
p2α2(T − l(T ) + 1).
Hence:

α1(T + 1) =(1− p1)α1(T ) + p1α1(T − l(T ) + 1)
(141)

α2(T + 1) =α− α1(T + 1) (142)
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We have that:

α1(T+1)−α1(T ) = p1(α1(T−l(T )+1)−α1(T ) (143)

If α1(T ) ≤ α1(T + 1):

α1(T ) ≤ α1(T + 1) ≤ α1(T − l(T ) + 1) (144)

And:

α1(T + 1)− α1(T ) ≤ p1(α1(T − l(T ) + 1)− α1(T ))
(145)

If α1(T + 1) ≤ α1(T ):

α1(T − l(T ) + 1) ≤ α1(T + 1) ≤ α1(T ) (146)

And:

α1(T )− α1(T + 1) ≤ p1(α1(T )− α1(T − l(T ) + 1))
(147)

4) If there exists m ≥ 1 such that:
γα2(T − l(T ))p2 + · · ·+α1(T − l(T )+m)p1 +p2α2(T −
l(T ) +m) ≤ p1α1(T ) + p2α2(T ) ≤ γα2(T − l(T ))p2 +
· · · + α1(T − l(T ) + m)p1 + p2α2(T − l(T ) + m) +
p1α1(T − l(T ) +m+ 1):
Hence:

α2(T + 1) =(1− p2)α2(T ) + p2γα2(T − l(T )) + · · ·
+ p2α2(T − l(T ) +m) (148)

α1(T + 1) =α− α2(T + 1) (149)

α2(T + 1)− α2(T ) =− p2α2(T ) + p2γα2(T − l(T ))

+ p2α2(T − l(T ) + 1) + · · ·
+ p2α2(T − l(T ) +m)

≥p2(α2(T − l(T ) + 1)− α2(T ))
(150)

On the other hand:

α2(T + 1)− α2(T ) =− p2α2(T ) + p2γα2(T − l(T ))

+ p2α2(T − l(T ) + 1) + · · ·
+ p2α2(T − l(T ) +m)

≤p1α1(T )−
m∑
i=1

p1α1(T − l(T ) + i)

≤p1(α1(T )− α1(T − l(T ) + 1))

=p1(α2(T − l(T ) + 1)− α2(T ))
(151)

Thus:

p2(α1(T )− α1(T − l(T ) + 1)) ≤ α1(T )− α1(T + 1)

≤ p1(α1(T )− α1(T − l(T ) + 1)) (152)

Therefore:

α1(T − l(T ) + 1) ≤ α1(T + 1) ≤ α1(T ) (153)

And:

α1(T )− α1(T + 1) ≤ p1(α1(T )− α1(T − l(T ) + 1))
(154)

5) If there exists m ≥ 1 such that:
γα2(T − l(T ))p2 + · · ·+α1(T − l(T )+m)p1 +p2α2(T −
l(T ) + m) + p1α1(T − l(T ) + m + 1) ≤ p1α1(T ) +
p2α2(T ) ≤ γα2(T − l(T ))p2 + · · · + α1(T − l(T ) +
m)p1 + p2α2(T − l(T ) + m) + p1α1(T − l(T ) + m +
1) + p2α2(T − l(T ) +m+ 1):
That implies that:

α1(T + 1) =(1− p1)α1(T ) + · · ·+ p1α1(T − l(T ) +m)

+ p1α1(T − l(T ) +m+ 1) (155)
α2(T + 1) =α− α1(T + 1) (156)

α1(T + 1)− α1(T ) =− p1α1(T ) + p1α1(T − l(T ) + 1)

+ · · ·+ p1α1(T − l(T ) +m+ 1)

≥p1(α1(T − l(T ) + 1)− α1(T ))
(157)

On the other hand:

α1(T + 1)− α1(T ) =− p1α1(T ) + p1α1(T − l(T ) + 1)

+ · · ·+ p1α1(T − l(T ) +m+ 1)

≤p2α2(T )− γp2α2(T − l(T ))

−
m∑
i=1

p2α2(T − l(T ) + i)

≤p2(α2(T )− α2(T − l(T ) + 1))

=p2(α1(T − l(T ) + 1)− α1(T ))
(158)

Thus:

p1(α1(T − l(T ) + 1)− α1(T )) ≤ α1(T + 1)− α1(T )

≤ p2(α1(T − l(T ) + 1)− α1(T ))
(159)

Therefore:

α1(T − l(T ) + 1) ≤ α1(T + 1) ≤ α1(T ) (160)

And:

α1(T )− α1(T + 1) ≤ p1(α1(T )− α1(T − l(T ) + 1))
(161)

In conclusion, all these six sub-cases when γ = 1 and
0 < β ≤ 1, plus the five sub-cases when β = 0 and
0 < γ ≤ 1, can be summarized in four cases:

1) α1(T ) ≤ α1(T + 1) ≤ α1(T − l(T )), and
α1(T + 1)− α1(T ) ≤ p1(α1(T − l(T ))− α1(T )).

2) α1(T − l(T )) ≤ α1(T + 1) ≤ α1(T ), and
α1(T )− α1(T + 1) ≤ p1(α1(T )− α1(T − l(T ))).

3) α1(T − l(T ) + 1) ≤ α1(T + 1) ≤ α1(T ), and
α1(T )− α1(T + 1) ≤ p1(α1(T )− α1(T − l(T ) + 1)).

4) α1(T ) ≤ α1(T + 1) ≤ α1(T − l(T ) + 1), and
α1(T + 1)− α1(T ) ≤ p1(α1(T − l(T ) + 1)− α1(T )).

Thus, the proof is concluded.
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APPENDIX J
PROOF OF PROPOSITION 13

In all the proof, we consider that ε ≤ (l2 − l1) (1−p1)L

1−(1−p1)L
.

Before tackling the proof, we give a brief insight about the
procedure adopted to establish the desired result: We start
by finding a given time denoted T2 ≥ Tε where α1(T2) is
less than l1. Then, we show that α1(T2), · · · , α1(T2 +L) are
strictly less than l2. To that end, we start first by defining a
relevant sequence un in function of ε, l1, l2 and p1 when
n ∈ [0, L]. After that, we prove that un is increasing with
n and strictly less than l2. Next, we establish that un is an
upper bound of α1(·) in [T2, T2 + L]. More precisely, we
show that α1(T2 + n) ≤ un for n ∈ [0, L]. For that purpose,
we proceed with two following steps: The first one consists
of deriving an inequality verified by two consecutive terms of
the sequence α1(·), namely α1(T ) and α1(T + 1) using the
Proposition 12 given that T ≥ Tε. As for the second step, we
use essentially the aforementioned result to demonstrate by
induction that un is indeed an upper bound of α1(T2 + n).
Finally, based on these results, we show that there exists Td
such that maxA1(Td) < l2.

To find a time T2 ≥ Tε such that α1(T2) is less than l1,
we use the fact that minA1(t) ≤ l1 for all t. At time Tε +L,
we have the vector A1(Tε + L) = (α1(Tε + L), α1(Tε + L−
1), · · · , α1(Tε +L− l(Tε +L))). Providing that minA1(Tε +
L) ≤ l1, then there exists an element from the vector A1(Tε+
L) less than l1 denoted by α1(T2). According to 10, we have
for all T ≥ T0, l(T ) ≤ lmax = L, then l(Tε + L) ≤ L. That
is, T2 is greater than Tε since T2 ≥ Tε + L − l(Tε + L) ≥
Tε. Therefore, we find an element of the sequence α1(·) at
time T2 ≥ Tε such that α1(T2) ≤ l1. To that extent, we are
interested in proving that α1(T2), · · · , α1(T2 +L) are strictly
less than l2.
To do so, we define a sequence un which will constitute an
upper bound of the function α1(T ).

Definition 5. We define a sequence un by induction:{
u0 = l1 ifn = 0
un+1 = p1(l2 + ε) + (1− p1)un ifn > 0

(162)

Next, we prove that the L first terms of this sequence are
strictly less than l2. We detail this in the following.

Lemma 7. For n ∈ [0, L], un < l2

Proof. In fact, the sequence un satisfies for all n:

un = λ(1− p1)n + (l2 + ε) (163)

where λ = −(ε+ l2 − l1).
un is clearly increasing with n, then for all n ∈ [0, L]:

un ≤ uL = λ(1− p1)L + (l2 + ε)

= ε(1− (1− p1)L) + l2 − (l2 − l1)(1− p1)L

(164)

We have that:

ε < (l2 − l1)(
(1− p1)L

1− (1− p)L
) (165)

Given that 1− (1− p1)L ≥ 0, then:

(1− (1− p1)L)ε < (l2 − l1)(1− p1)L (166)

(1− (1− p1)L)ε+ l2 − (l2 − l1)(1− p1)L < l2 (167)

Therefore, uL < l2.
�

Based on the lemma above, we prove that for any element
of the set {α1(T2), · · · , α1(T2 + L)} must be less than uL.
For that, we introduce a useful Lemma:

Lemma 8. If for T ∈ [T2, T2 + L− 1], we have that:

α1(T ) ≤ α1(T + 1) (168)

Then, we have that:

α1(T + 1) ≤ p1(l2 + ε) + (1− p1)α1(T ) (169)

Proof. Before starting the proof, we recall that, according to
the first result of Proposition 12, the four possible inequalities
satisfied by α1(T ), α1(T+1), α1(T−l(T )), α1(T−l(T )+1)
are:

α1(T ) ≤ α1(T + 1) ≤ α1(T − l(T )) (170)

α1(T − l(T )) ≤ α1(T + 1) ≤ α1(T ) (171)

α1(T − l(T ) + 1) ≤ α1(T + 1) ≤ α1(T ) (172)

α1(T ) ≤ α1(T + 1) ≤ α1(T − l(T ) + 1) (173)

Therefore, the two cases for which α1(T ) ≤ α1(T + 1) are:
• α1(T ) ≤ α1(T + 1) ≤ α1(T − l(T )).

• α1(T ) ≤ α1(T + 1) ≤ α1(T − l(T ) + 1).

Hence, according to the results of Proposition 12, the inequal-
ities satisfied by α1(T + 1)− α1(T ) are:
If α1(T ) ≤ α1(T + 1) ≤ α1(T − l(T )), then:

α1(T + 1)− α1(T ) ≤ p1(α1(T − l(T ))− α1(T )) (174)

If α1(T ) ≤ α1(T + 1) ≤ α1(T − l(T ) + 1), then:

α1(T + 1)−α1(T ) ≤ p1(α1(T − l(T ) + 1)−α1(T )) (175)

Since, by assumption of the Lemma, T ≥ T2 ≥ Tε, then
maxA1(T ) ≤ l2 + ε. As a consequence, α1(T − l(T ) + 1)
and α1(T − l(T )) which are elements of the vector A1(T ),
are less than l2 + ε.
Hence, for T ∈ [T2, T2 + L− 1]:

α1(T + 1)− α1(T ) ≤ p1(l2 + ε− α1(T )) (176)

Therefore:

α1(T + 1) ≤ p1(l2 + ε) + (1− p1)α1(T ) (177)

�

Now we should prove that for all possible sequences of α1

in [T2, T2 +L], their values can not exceed λ(1−p1)L+(l2 +
ε2) = uL.

Lemma 9. For all sequences of α1 when T ∈ [T2, T2 + L],
α1(T ) ≤ uT−T2
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Proof. We prove this result by induction.
For T = T2, we have that:

α1(T2) ≤ l1 = u0 (178)

We suppose that at time T , α1(T ) ≤ uT−T2 , then at time
T + 1:
If α1(T + 1) ≤ α1(T ):
Then as uT−T2

is increasing in T :

α1(T + 1) ≤ uT−T2
≤ uT−T2+1 (179)

If α1(T + 1) ≥ α1(T ):
Then, according to Lemma 8:

α1(T + 1) ≤ p1(l2 + ε) + (1− p1)α1(T ) (180)
≤ p1(l2 + ε) + (1− p1)uT−T2

(181)
= uT−T2+1 (182)

Therefore, α1(T + 1) ≤ uT−T2+1.
Hence, we have proved by induction that for all T ∈ [T2, T2 +
L], α1(T ) ≤ uT−T2

�

As uT−T2 is less than uL for T ∈ [T2, T2 +L], then accord-
ing to Lemma 9, the elements α1(T2 + 1), · · · , α1(T2 + L)
are less than uL < l2.
Thus, we have found T2 ≥ Tε such that α1(T2), α1(T2 +
1), · · · , α1(T2 + lmax) are strictly less than l2. We denote
T2 + lmax by Td and we verify that maxA1(Td) < l2.
Indeed, we now that Td − l(Td) ≥ Td − lmax = T2, then
the elements of the vector A1(Td) are included in the set of
elements {α1(T2), α1(T2 + 1), · · · , α1(T2 + lmax)}. That is
maxA1(Td) < l2.
Hence, we have found Td ≥ Tε, such that maxA1(Td) < l2.

APPENDIX K
PROOF OF PROPOSITION 14

In this proof, we show that for each state i in class k, zki (t)
converges. To that end, we start first by specifying the eventual
limit of zki (t) for each i. To do so, we decompose 1 − α as
follows:

l(p1α
∗
1 + p2α

∗
2) + γp2α

∗
2 + βp1α

∗
1 = 1− α (183)

where l is the biggest integer such that: l(p1α
∗
1 + p2α

∗
2) <

1 − α, and 0 < γ ≤ 1 and β = 0; or γ = 1 and 0 < β ≤ 1.
Then, we proceed with these following steps:
• We prove by induction that for all states 1 ≤ i ≤ l + 1,
zki (t) converges to pkα∗k.

• Based on the theoretical findings of the first step, we
prove that z1

l+2(t) converges to (β+(1−p1)(1−β))p1α
∗
1

and z2
l+2(t) converges to (γ + (1− p2)(1− γ))p2α

∗
2.

• Finally, we show that for all states i > l + 2, z1
i (t)

converges to (1−p1)i−l−2(β+(1−p1)(1−β))p1α
∗
1 and

z2
i (t) converges to (1−p2)i−l−2(γ+(1−p2)(1−γ))p2α

∗
2

1) For all states 1 ≤ i ≤ l + 1, zki (t)→ pkα
∗
k:

We prove this result by induction
• For i = 1, we have that zk1 (t) = pkαk(t − 1).

Therefore, zk1 (t) converge to pkα
∗
k as αk(t)

converges to α∗k.

• We consider that for a certain j ≤ l, for each 1 ≤
i ≤ j, zki (t) converges to pkα

∗
k and we show that

zkj+1(t) converges also to pkα∗k.
Given that j ≤ l:

j(p1α
∗
1 + p2α

∗
2) < 1− α

We consider 0 < ε ≤ 1 − α − j(p1α
∗
1 + p2α

∗
2).

Providing that zki (t) converges to pkα∗k for all 1 ≤
i ≤ j, that means there exists tj such that for t ≥ tj ,
for 1 ≤ i ≤ j:

|zki (t)− pkα∗k| <
ε

2j

Hence:
j∑
i=1

|z1
i (t)− p1α

∗
1|+

j∑
i=1

|z2
i (t)− p2α

∗
2| < ε

That is,

j∑
i=1

z1
i (t) +

j∑
i=1

z2
i (t) < ε+ j(p1α

∗
1 + p2α

∗
2)

As consequence, for all t ≥ tj , we have that:

j∑
i=1

z1
i (t) +

j∑
i=1

z2
i (t) < 1− α

Thus, for all t ≥ tj , the action prescribed to the
users’ proportion zkj (t) is the passive action 2. Then,
for all t ≥ tj :

zkj+1(t+ 1) = zkj (t)

Therefore, zkj+1(t) converges to pkα∗k.
Consequently, we prove by induction that for all 1 ≤
i ≤ l + 1, zki (t) converges to pkα∗k.

2) z1
l+2(t) → (β + (1 − p1)(1 − β))p1α

∗
1 and z2

l+2(t) →
(γ + (1− p2)(1− γ))p2α

∗
2.

To avoid redundancy , we will be limited to the first case
when 0 < γ ≤ 1 and β = 0, since the proof’s steps for
both cases are exactly the same. We have that:

l(p1α
∗
1 + p2α

∗
2) + γp2α

∗
2 = 1− α

As
∑l
i=1 z

1
i (t) +

∑l
i=1 z

2
i (t) converges to l(p1α

∗
1 +

p2α
∗
2) which is strictly less than 1−α, then there exists

tl such that for all t ≥ tl, we have that:

l∑
i=1

z1
i (t) +

l∑
i=1

z2
i (t) < 1− α

2Knowing that the order of the proportions of the users according to the
Whittle’s index value alternates between the two classes in the set [1, lmax+1]
as was established in Proposition 7, then for all integer b ∈ [1, lmax], the set
{zki : k = 1, 2; 1 ≤ i ≤ b} is the set of users with the lowest Whittle’s index
value. Therefore,

∑b
i=1 z

1
i (t)+

∑b
i=1 z

2
i (t) < 1−α implies that the actions

prescribed to the users belonging to the set {zki : k = 1, 2; 1 ≤ i ≤ b} is the
passive action. By definition of l, l < 1−α

p2α
, then, l ≤ lmax (see Definition

4). Hence, the above reasoning can be applied as well when b = l.
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As
∑l+1
i=1 z

1
i (t)+

∑l+1
i=1 z

2
i (t) converges to (l+1)(p1α

∗
1+

p2α
∗
2) which is strictly greater than 1 − α, then there

exists tl+1 such that for all t ≥ tl+1, we have that:
l+1∑
i=1

z1
i (t) +

l+1∑
i=1

z2
i (t) > 1− α

For t ≥ max{tl, tl+1}, we have that:

l∑
i=1

z1
i (t) +

l∑
i=1

z2
i (t) < 1− α <

l+1∑
i=1

z1
i (t) +

l+1∑
i=1

z2
i (t)

Denoting γ(t) and β(t) the users’ proportion of z2
l+1(t)

and z1
l+1(t) respectively which are not scheduled, there-

fore, the relation that links z1
l+2(t+ 1) and z2

l+2(t+ 1)
to z1

l+1(t) and z1
l+1(t) when t ≥ max{tl, tl+1}:

z1
l+2(t+ 1) = β(t)z1

l+1(t) + (1− p1)(1− β(t))z1
l+1(t)

z2
l+2(t+ 1) = γ(t)z2

l+1(t) + (1− p2)(1− γ(t))z2
l+1(t)

with 0 < γ(t) ≤ 1 and β(t) = 0; or γ(t) = 1 and
0 < β(t) ≤ 1. To that extent, we show that β(t) tends
to β = 0 and γ(t) tends to γ. For that purpose, we give
the following equation which is always satisfied when
t ≥ max{tl, tl+1}:
l∑
i=1

z1
i (t)+

l∑
i=1

z2
i (t)+γ(t)z2

l+1(t)+β(t)z1
l+1(t) = 1−α

(184)
Tending t to +∞ in the equation 184, we obtain:

lim
t→+∞

[γ(t)z2
l+1(t) + β(t)z1

l+1(t)] = γp2α
∗
2

We consider the set {t : β(t) 6= 0}. If this set is infinite,
then there exists a strictly increasing function n(.) from
N to {t ∈ Nβ(t) 6= 0}, such that β(n(t)) is a sub-
sequence of β(t). As β(n(t)) 6= 0, then γ(n(t)) = 1.
Therefore, we get:

lim
t→+∞

[z2
l+1(n(t)) + β(n(t))z1

l+1(n(t))] = γp2α
∗
2

Since z2
l+1(n(t)) converges to p2α

∗
2, then:

lim
t→+∞

[β(n(t))z1
l+1(n(t))] = (γ − 1)p2α

∗
2

(γ − 1)p2α
∗
2 is less than 0, and β(n(t))z1

l+1(n(t)) is
greater than 0 for all t. Thus:

lim
t→+∞

[β(n(t))z1
l+1(n(t))] = (γ − 1)p2α

∗
2 = 0

This implies that γ = 1 = γ(n(t)), and lim
t→+∞

β(n(t)) =

0 because z1
l+1(n(t)) converges to p1α

∗
1 6= 0. Hence

lim
t→+∞

β(t) = 0 = β, i.e. lim
t→+∞

γ(t) = γ = 1.

If {t : β(t) 6= 0} is finite, then there exists te such that
for all t ≥ te, β(t) = 0. Therefore, for all t ≥ te, we
have that:

lim
t→+∞

[γ(t)z2
l+1(t)] = γp2α

∗
2

That means lim
t→+∞

β(t) = 0, and lim
t→+∞

γ(t) = γ. Hence,

in both cases, β(t)→ β = 0 and γ(t)→ γ.

Consequently, combining the last result with the one de-
rived in the first step, we conclude that z1

l+2(t) converges
to (β + (1− p1)(1− β))p1α

∗
1 and z2

l+2(t) converges to
(γ+(1−p2)(1−γ))p2α

∗
2. Similar analysis can be applied

to come with the aforementioned result when γ(t) = 1
and 0 < β(t) ≤ 1.

3) For i > l+ 2, z1
i (t)→ (1− p1)i−l−2(β + (1− p1)(1−

β))p1α
∗
1 and z2

i (t) → (1 − p2)i−l−2(γ + (1 − p2)(1 −
γ))p2α

∗
2:

For t ≥ max{tl, tl+1}, we are sure that the action
prescribed to zki (t) for all i ≥ l+ 2 is the active action.
As consequence, zki+1(t+ 1) satisfies:

zki+1(t+ 1) = (1− pk)zki (t)

Therefore, as z1
l+2(t) converges to (β + (1 − p1)(1 −

β))p1α
∗
1 and z2

l+2(t) converges to (γ + (1 − p2)(1 −
γ))p2α

∗
2, one can easily establish by induction that z1

i (t)
converges to (1−p1)i−l−2(β+(1−p1)(1−β))p1α

∗
1 and

z2
i (t) converges to (1−p2)i−l−2(γ+(1−p2)(1−γ))p2α

∗
2

for all i > l + 2.

We conclude that for all states i and k = 1, 2, zki (t) converges.
On the other hands, according to Proposition 6, the only
possible limit of z(t) is z∗. As consequence, for each k and
i, zki (t) converges to zk,∗i .

APPENDIX L
PROOF OF PROPOSITION 15

For a given z, let m1(z) and m2(z) be the highest states
of the class 1 and the class 2 respectively and l1(z) and l2(z)
be the thresholds of class 1 and 2 respectively at time t when
ZN (t) = z. Given that, we introduce the following lemma.

Lemma 10. For any µ, there exists positive constant C(z)
such that:

P (||ZN (t+ 1)− z′|| ≥ µ|ZN (t) = z) ≤ C(z)

N
(185)

where C(z) is independent of N and z′ = Q(z)z =
E(ZN (t+ 1)|ZN (t) = z)

Proof. By definition of m1(z) and m2(z), we have that
z = (z1

1 , · · · , z1
m1(z), z

2
1 , · · · , z2

m2(z)). On can easily show
that m1(z′) = m1(z) + 1 and m2(z′) = m2(z) + 1 since
the users’ proportions at states m1(z) and m2(z) in class 1
and class 2 will become at states m1(z)+1 and m2(z)+1 at
the next time slot respectively. To prove this lemma, we use
the Chebychev inequality presented as follows:

P (|X − E(X)| > µ) ≤ V ar(X)

µ2
(186)

for any µ > 0 and random variable X .
As z′ = E(ZN (t+ 1)|ZN (t) = z), we can apply the Cheby-
chev inequality. However we need to find the distribution
of ZN (t + 1) knowing ZN (t) = z in order to derive the
expression of V ar(ZN (t+ 1)|ZN (t) = z). It is more simple
to study the parameters of one dimensional random variable
than multi-dimensional random variable. Hence, instead of
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investigating ZN (t + 1), we look into ZN,ki . In this regard,
we have that:

{ZN (t+ 1) : ||ZN (t+ 1)− z′|| ≥ µ}

⊂ ∪
k,i
{ZN (t+ 1) : ||ZN,ki (t+ 1)− z

′k
i ||i >

µ

m1(z′) +m2(z′)
}

(187)

Therefore:

P (||ZN (t+ 1)− z′|| ≥ µ|ZN (t) = z)

≤ P (∪
k,i
{||ZN,ki (t+ 1)− z

′k
i ||i >

µ

m1(z′) +m2(z′)
|ZN (t) = z})

≤
∑
k,i

P ({||ZN,ki (t+ 1)− z
′k
i ||i >

µ

m1(z′) +m2(z′)
|ZN (t) = z})

(188)

Now, we look for the distribution of ZN,ki (t + 1) knowing
ZN (t) = z.
For 2 ≤ i ≤ lk(z), as all the users at state i − 1 strictly less
than lk(z) will transit to the state i at the next time slot, then
we have ZN,ki (t+ 1) = zki−1 = z

′k
i . This implies that:

P ({||ZN,ki (t+1)−z
′k
i ||i >

µ

m1(z′) +m2(z′)
|ZN (t) = z}) = 0

(189)
For i = 1, defining α1(z) and α2(z) as the proportions of
the scheduled users in class 1 an class 2 respectively when
ZN (t) = z, then NZN,k1 (t + 1)|ZN (t) = z follows a bino-
mial distribution with parameters pk and αk(z)N . Therefore,
V ar(NZN,k1 (t+1)|ZN (t) = z) = pk(1−pk)αk(z)N , which
means that V ar(ZN,k1 (t + 1)|ZN (t) = z) = pk(1−pk)αk(z)

N .
As a results, according to Chebychev inequality, we have that:

P ({||ZN,k1 (t+ 1)− z
′k
1 || >

µ

m1(z′) +m2(z′)
|ZN (t) = z})

≤ pk(1− pk)αk(z)

Nµ2
(m1(z′) +m2(z′))2 (190)

For i ≥ lk(z) + 2, NZN,ki (t + 1)|ZN (t) = z follows a
binomial distribution with parameters 1 − pk and zki−1N .

Hence, V ar(ZN,ki (t+ 1)|ZN (t) = z) =
pk(1−pk)zki−1

N . Thus:

P ({||ZN,ki (t+ 1)− z
′k
i || >

µ

i(m1(z′) +m2(z′))
|ZN (t) = z})

≤
pk(1− pk)zki−1

Nµ2
(m1(z′) +m2(z′))2i2 (191)

Denoting βk(z) the users’ proportion of zklk(z) that will not be
transmitted, then for i = lk(z) + 1, NZN,ki (t+ 1)|(ZN (t) =
z) = βk(z)Nzki−1 + X , where X follows a binomial distri-
bution with parameters 1− pk and (1− βk(z))zki−1N , then:

P ({||ZN,ki (t+ 1)− z
′k
i || >

µ

i(m1(z′) +m2(z′))
|ZN (t) = z})

≤
pk(1− pk)(1− βk(z))zki−1

Nµ2
(m1(z′) +m2(z′))2i2

(192)

We end up with:

P (||ZN (t+ 1)− z′|| ≥ µ|ZN (t) = z)

≤ (m1(z′) +m2(z′))2.[
p1(1− p1)α1(z)

Nµ2
+
p2(1− p2)α2(z)

Nµ2

+
∑

i≥l1(z)+2

p1(1− p1)i2z1
i−1

Nµ2
+

∑
i≥l2(z)+2

p2(1− p2)i2z2
i−1

Nµ2

+
p1(1− p1)(l1(z) + 1)2(1− β1(z))z1

l1(z)

Nµ2

+
p1(1− p2)(l2(z) + 1)2(1− β2(z))z2

l2(z)

Nµ2
] (193)

Knowing that αk(z) ≤ 1,
∑
i≥lk(z) z

k
i ≤ 1, 1 − βk(z) ≤ 1,

and for all state i in the vector z′, i ≤ m1(z′) +m2(z′) then:

P (||ZN (t+ 1)− z′|| ≥ µ|ZN (t) = z)

≤ (m1(z′) +m2(z′))4

µ2N
[2p1(1− p1) + 2p2(1− p2)]

(194)

Hence, denoting by C(z), (m1(z′)+m2(z′))4

µ2 [2p1(1 − p1) +

2p2(1−p2)] = (m1(z)+1+m2(z)+1)4

µ2 [2p1(1−p1)+2p2(1−p2)],
we obtain as a result:

P (||ZN (t+ 1)− z′|| ≥ µ|ZN (t) = z) ≤ C(z)

N
(195)

�

Now, we give a lemma that bounds the probability
knowing the initial state z(0) = x. One can easily verifies
that m1(z(t)) = m1(x) + t and m2(z(t)) = m2(x) + t
by induction. Without loss of generality, we let
mk(z(t)) = mk(t) for k = 1, 2.

Lemma 11. For any µ, there exists positive constant C(t+1)
such that:

Px(||ZN (t+ 1)− z(t+ 1)|| ≥ µ) ≤ C(t+ 1)

N
(196)

where C(t+ 1) is independent of N .

Proof. We recall from Lemma 10 that for any µ > 0, there
exists a constant C(z) independent of N such that:

P (||ZN (t+ 1)−Q(z)z|| ≥ µ|ZN (t) = z) ≤ C(z)

N
(197)

Before proving the present lemma, we give an important
lemma that will helps us in the later analysis.

Lemma 12. For any proportion vector z(t), there exists σ > 0
such that if ||ZN (t)−z(t)|| ≤ σ, then Q(ZN (t)) = Q(z(t)).

Proof. One can deduce from the analysis done in [21, Sec-
tion IV-C] that there exists σ > 0 such that if ZN (t) ∈ Ωσ(z),
Q(ZN (t)) is constant and doesn’t depend on ZN (t). In our
case, given that mk(ZN (t)) = mk(z(t)), we can as well
affirm that there exists σ > 0 such that Q(ZN (t)) = Q(z(t)).
That concludes the proof. �
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Corollary 1. For any v > 0, there exists ρ such that ||ZN (t)−
z(t)|| ≤ ρ⇒ ||Q(ZN (t))ZN (t)−Q(z(t))z(t)|| ≤ v

Proof. According to the previous lemma, if ||ZN (t) −
z(t)|| ≤ σ, then Q(ZN (t)) = Q(z(t)). This implies that
||Q(ZN (t))ZN (t) − Q(z(t))z(t)|| = ||Q(z(t))ZN (t) −
Q(z(t))z(t)|| ≤ ||Q(z(t))||||ZN (t) − z(t)||. That is, choos-
ing ρ = min{ v

||Q(z(t))|| , σ}, we get ||Q(ZN (t))ZN (t) −
Q(z(t))z(t)|| ≤ v. �

With the above corollary being laid out, we prove the
statement by a mathematical induction.

For t = 1, applying Lemma 10, the following holds:

Prx(||ZN (1)− z(1)|| ≥ µ)

=P (||ZN (t+ 1)−Q(x)x|| ≥ µ|ZN (t) = x)

≤C(x)

N
=
C(1)

N
(198)

and the desired result holds for t = 1 by simply choosing
C(1) = (m1(x)+1+m2(x)+1)4

µ2 [2p1(1−p1)+2p2(1−p2)]. Let us
suppose that the statement holds for any t ≥ 1. We investigate
the property for t + 1. To that end, let us consider ν < µ.
Therefore, according to Corollary 1, there exists ρ such that:

||ZN (t)−z(t)|| ≤ ρ⇒ ||Q(ZN (t))ZN (t)−Q(z(t))z(t)|| ≤ v
(199)

Bearing that in mind, we have that:

Prx(||ZN (t+ 1)− z(t+ 1)|| ≥ µ)

=Prx(||ZN (t+ 1)− z(t+ 1)|| ≥ µ
∣∣∣||ZN (t)− z(t)|| ≥ ρ)

× Prx(||ZN (t)− z(t)|| ≥ ρ)

+Prx(||ZN (t+ 1)− z(t+ 1)|| ≥ µ
∣∣∣||ZN (t)− z(t)|| < ρ)

× Prx(||ZN (t)− z(t)|| < ρ)

≤(a)C
′(t)

N

+Prx(||ZN (t+ 1)− z(t+ 1)|| ≥ µ
∣∣∣||ZN (t)− z(t)|| < ρ)

(200)

where (a) follows from Prx(||ZN (t + 1) − z(t + 1)|| ≥
µ
∣∣∣||ZN (t) − z(t)|| ≥ ρ) ≤ 1 and C ′(t) being the constant

related to the statement holding for t and for ρ. Next, we

tackle the second term of the inequality in (200):

Prx(||ZN (t+ 1)− z(t+ 1)|| ≥ µ
∣∣∣||ZN (t)− z(t)|| < ρ)

=Prx(||ZN (t+ 1)−Q(ZN (t))ZN (t)

+Q(ZN (t))ZN (t)− z(t+ 1)|| ≥ µ
∣∣∣||ZN (t)− z(t)|| < ρ)

≤(a)Prx(||ZN (t+ 1)−Q(ZN (t))ZN (t)||

+ ||Q(ZN (t))ZN (t)−Q(z(t))z(t)|| ≥ µ
∣∣∣||ZN (t)− z(t)|| < ρ)

≤(b)Prx(||ZN (t+ 1)−Q(ZN (t))ZN (t)|| ≥ µ− ν∣∣∣||ZN (t)− z(t)|| < ρ)

=
∑

z∈Ωρ(z(t))
mk(z)≤mk(z(t))

k=1,2

[
Prx(ZN (t) = z

∣∣∣ZN (t) ∈ Ωρ(z(t)))

× Prx(||ZN (t+ 1)−Q(z)z|| ≥ µ− ν|ZN (t) = z)
]

+
∑

z∈Ωρ(z(t))
m1(z)>m1(z(t))

or
m2(z)>m2(z(t))

[
Prx(ZN (t) = z

∣∣∣ZN (t) ∈ Ωρ(z(t)))

× Prx(||ZN (t+ 1)−Q(z)z|| ≥ µ− ν|ZN (t) = z)
]

(201)

where (a) and (b) follows from the triangular inequality and
the relationship in (199). One can notice that at any time slot
t, mk(ZN (t)) ≤ mk(z(t)). In light of that fact, the second
term of the equation (201) is equal to 0. Bearing that in mind,
We have for z ∈ Ωρ(z(t)) such that mk(z) ≤ mk(z(t)):

Prx(||ZN (t+ 1)−Q(z)z|| ≥ µ− ν|ZN (t) = z) ≤ C1(z(t))

N
(202)

where C1(t) = (m1(z(t))+m2(z(t))+2)4

(µ−ν)2 [2p1(1− p1) + 2p2(1−
p2)] = (m1(t)+m2(t)+2)4

(µ−ν)2 [2p1(1 − p1) + 2p2(1 − p2)]. By
substituting the above results in (201), we get:

Prx(||ZN (t+1)−z(t+1)|| ≥ µ
∣∣∣||ZN (t)−z(t)|| < ρ) ≤ C1(t)

N
(203)

Combining this with (200), we can conclude that there exists
a constant C(t+ 1) such that:

Prx(||ZN (t+ 1)− z(t+ 1)|| ≥ µ) ≤ C(t+ 1)

N
(204)

which concludes our inductive proof. �

Knowing that:

Px( sup
0≤t<T

||ZN (t)−z(t)|| ≥ µ) ≤
T−1∑
t=0

Px(||ZN (t)−z(t)|| ≥ µ)

Therefore, from Lemma 11, there exists a constant C which
doesn’t depend on N such that:

Px( sup
0≤t<T

||ZN (t)− z(t)|| ≥ µ) ≤ C

N

Which concludes the proof.
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APPENDIX M
PROOF OF LEMMA 3

We show first of all that z(t) converges to z∗ with respect to
our considered norm, i.e. lim

t→+∞

∑+∞
i=1 |zki (t)− zk,∗i |i = 0 for

k = 1, 2. For that purpose, we use the limit inversion theorem
which states that:
• If the series

∑
i fi(t) is uniformly convergent on R+

• If for each integer i, fi(t) admits a finite limit ri when
t tends to +∞.

Therefore, lim
t→+∞

∑+∞
i=1 fi(t) =

∑+∞
i=1 lim

t→+∞
fi(t) =∑+∞

i=1 ri.
By letting fi(t) denotes |zki (t)− zk,∗i |i for a given k, proving
the result above is equivalent to establish that:

lim
t→+∞

+∞∑
i=1

|zki (t)− zk,∗i |i =

+∞∑
i=1

lim
t→+∞

|zki (t)− zk,∗i |i

To that extent, we check if the aforementioned conditions are
satisfied for this specific function fi(t) = |zki (t)− zk,∗i |i.
• Uniform convergence: According to Weierstrass criterion,∑

i fi(t) is uniformly convergent if for each i the function
fi(t) is bounded by a constant ci such that

∑
i ci is

convergent. Based on the proof of the Proposition 14,
one can deduce that for large enough t denoted by tl, the
following induction relation always holds for t ≥ tl and
i ≥ lmax + 1:

zki+1(t+ 1) = pkz
k
i (t)

That is, choosing t0 greater than tl, and denoting by i0 =
mk(t0) the highest state of the vector z(t0) which is
greater than lmax + 1, we have that for each i > i0:

zki (t) =

{
0 if t0 ≤ t < t0 + i− i0
pi−i0k zki0(t− (i− i0)) if t ≥ t0 + i− i0

(205)
Based on the above equation, for each i > i0, zki (t) is less
than pi−i0k for all t ≥ t0. To that extent, we investigate the
evolution of the series of interest only when t ≥ t0 (the
limit inversion theorem still applicable since +∞ > t0).
Moreover, we have that for all t ≥ t0:

∑
i

|zki (t)− zk,∗i |i =

i0∑
i=1

|zki (t)− zk,∗i |i+

+∞∑
i0+1

|zki (t)− zk,∗i |i

≤i20 +

+∞∑
i=i0+1

(pi−i0k i+ zk,∗i i) (206)

This last sum is known to be a finite sum since∑+∞
i=1 z

k,∗
i i is the optimal average age of the relaxed

problem for the class k which is finite, and
∑+∞
i=1 p

ii
is a finite sum for any 0 ≤ p < 1. Hence, the uniform
convergence can be accordingly concluded.

• Existence of the limit of fi(t) = |zki (t) − zk,∗i |i:
According to the result of Proposition 14, we have

lim
t→+∞

|zki (t) − zk,∗i |i = 0 which is finite. Therefore, the
second condition is satisfied.

Leveraging these findings, we can inverse the order between
the limit and the sum. Subsequently:

lim
t→+∞

+∞∑
i=1

|zki (t)− zk,∗i |i =

+∞∑
i=1

lim
t→+∞

|zki (t)− zk,∗i |i = 0

In other words, for k = 1, 2,
∑+∞
i=1 |zki (t)− zk,∗i |i tends to 0

when t grows. Consequently, z(t) converges to z∗ with respect
to our defined norm.
Therefore, for 0 < ν < µ, there exists T0 such that for any
t ≥ T0:

||z(t)− z∗|| ≤ ν (207)

By leveraging Proposition 15, we have:

Prx( sup
T0≤t<T

||ZN (t)− z∗|| ≥ µ)

≤ Prx( sup
T0≤t<T

||ZN (t)− z(t)||+ ||z(t)− z∗|| ≥ µ)

≤ Prx( sup
T0≤t<T

||ZN (t)− z(t)|| ≥ µ− ν)

≤ Prx( sup
0≤t<T

||ZN (t)− z(t)|| ≥ µ− ν) ≤ s

N
(208)

which concludes the proof.

APPENDIX N
PROOF OF PROPOSITION 16

We have that:∣∣ 1

T
Ewi

[
T−1∑
t=0

2∑
k=1

+∞∑
i=1

Zk,Ni (t)i
∣∣∣ZN (0) = x

]
−

2∑
k=1

+∞∑
i=1

zk,∗i i
∣∣

=
∣∣ 1

T
Ewi

[
T−1∑
t=0

2∑
k=1

+∞∑
i=1

(Zk,Ni (t)i− zk,∗i i)
∣∣∣ZN (0) = x

] ∣∣
≤
∣∣ 1

T

T0−1∑
t=0

2∑
k=1

+∞∑
i=1

Ewi
[
Zk,Ni (t)i− zk,∗i i

∣∣∣ZN (0) = x
] ∣∣

(209)

+
∣∣ 1

T

T−1∑
t=T0

2∑
k=1

+∞∑
i=1

Ewi
[
Zk,Ni (t)i− zk,∗i i

∣∣∣ZN (0) = x
] ∣∣
(210)

We start by bounding (209). We have that:

∣∣ 1

T

T0−1∑
t=0

2∑
k=1

+∞∑
i=1

Ewi
[
Zk,Ni (t)i− zk,∗i i

∣∣∣ZN (0) = x
] ∣∣

≤ 1

T

T0−1∑
t=0

2∑
k=1

+∞∑
i=1

Ewi
[∣∣Zk,Ni (t)i− zk,∗i i

∣∣∣∣∣ZN (0) = x
]

≤ 1

T

T0−1∑
t=0

2∑
k=1

+∞∑
i=1

Ewi
[
Zk,Ni (t)i

∣∣∣ZN (0) = x
]
] +

1

T

T0−1∑
t=0

2∑
k=1

+∞∑
i=1

zk,∗i i

=
1

T

T0−1∑
t=0

2∑
k=1

max{m1(t),m2(t)}∑
i=1

Ewi
[
Zk,Ni (t)i

∣∣∣ZN (0) = x
]

+
1

T

T0−1∑
t=0

CRP (211)
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As mk(.) is increasing with t, then denoting m(t) =
max{m1(t),m2(t)}, we get:

1

T

T0−1∑
t=0

2∑
k=1

max{m1(t),m2(t)}∑
i=1

Ewi
[
Zk,Ni (t)i

∣∣∣ZN (0) = x
]

+
1

T

T0−1∑
t=0

CRP ≤ (m(T0) + CRP )T0

T
(212)

We denote YN the event sup
T0≤t<T

||ZN (t) − z∗|| ≥ µ, and

we proceed to bound the second term (210).

∣∣ 1

T

T−1∑
t=T0

2∑
k=1

+∞∑
i=1

Ewi
[
Zk,Ni (t)i− zk,∗i i

∣∣∣ZN (0) = x
] ∣∣

= Px(YN )
∣∣ 1

T

T−1∑
t=T0

2∑
k=1

+∞∑
i=1

Ewi
[
Zk,Ni (t)i− zk,∗i i

∣∣∣YN ,ZN (0) = x
] ∣∣

+ (1− Px(YN ))
∣∣ 1

T

T−1∑
t=T0

2∑
k=1

+∞∑
i=1

Ewi
[
Zk,Ni (t)i− zk,∗i i

∣∣∣YN ,ZN (0) = x
] ∣∣

≤(a) (T − T0)(m(T ) + CRP )

T
Px(YN ) + (1− Px(YN ))µ

(213)

where (a) results from:

∣∣ 1

T

T−1∑
t=T0

2∑
k=1

+∞∑
i=1

Ewi
[
Zk,Ni (t)i− zk,∗i i

∣∣∣YN ,ZN (0) = x
] ∣∣

≤ sup
T0≤t<T

Ewi
[

2∑
k=1

+∞∑
i=1

|Zk,Ni (t)i− zk,∗i i|
∣∣∣YN ,ZN (0) = x

]

= Ewi
[

sup
T0≤t<T

||ZN (t)− z∗||
∣∣∣YN ,ZN (0) = x

]
< µ

(214)

According to Lemma 3, we have limN→∞ Px(YN ) = 0. Thus,
combining the result (212) and (213), we obtain:

lim
N→∞

∣∣ 1

T
Ewi

[
T−1∑
t=0

2∑
k=1

+∞∑
i=1

Zk,Ni (t)i
∣∣∣ZN (0) = x

]
−

2∑
1

+∞∑
i=1

zk,∗i i
∣∣

≤ T0(m(T0) + CRP )

T
+ µ (215)

This inequality is true for all µ > 0, then:

lim
N→∞

∣∣ 1

T
Ewi

[
T−1∑
t=0

2∑
k=1

+∞∑
i=1

Zk,Ni (t)i
∣∣∣ZN (0) = x

]
−

2∑
k=1

+∞∑
i=1

zk,∗i i
∣∣

≤ T0(m(T0) + CRP )

T
(216)

Finally we have:

lim
T→∞

lim
N→∞

∣∣ 1

T
Ewi

[
T−1∑
t=0

2∑
k=1

+∞∑
i=1

Zk,Ni (t)i
∣∣∣ZN (0) = x

]

−
2∑
k=1

+∞∑
i=1

zk,∗i i
∣∣ = 0 (217)

As consequence:

lim
T→+∞

lim
N→∞

1

T
Ewi

[
T−1∑
t=0

2∑
k=1

+∞∑
i=1

Zk,Ni (t)i
∣∣∣ZN (0) = x

]

=

2∑
k=1

+∞∑
i=1

zk,∗i i (218)


