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Abstract: In order to keep its leadership in French rail market and to improve work conditions of its systems engineers 

during automation projects, the SNCF (French acronym for National Society of French Railways) wants to 

develop solutions increasing the productivity. One of these improvements focuses on the current 

methodology used by systems engineers to verify and validate PLC programs of electrical installations. This 

task remains one of the most important during an automation project because it is supposed to ensure 

installations safety, but it must be optimized. Through an industrial thesis financed by SNCF, the aim of this 

research project is to improve this method and reduce time validation of programs by providing a tool which 

will help systems engineers to verify and validate quickly and automatically PLC programs during any 

automation project, not necessarily during factory tests but directly from their office.  

1 INTRODUCTION 

In automated systems, most of accidents that occur 

in industry have been discovered to be the result of 

Programming errors (Mokadem et al., 2010). 

Therefore, verification of PLC program before its 

implementation remains a very important task 

during an automation project. This verification must 

concern both functional and safety parts. The first 

one ensures that the PLC programs meet the 

functional specifications, and the second one 

consists in verifying if the controlled system can be 

or not exposed to dangerous states leading to human 

and equipment damage. Nowadays, some 

verification and validation techniques like tests and 

simulation are available. 

At SNCF, the system engineers apply currently 

these methods to validate the control command 

(programs and electrical cabinets’ wiring) of PSEEL 

(Power Supply Equipment of the Electric Lines) by 

using a recipe book which contains a set of scenarios 

or sequential instructions. According to their know-

how and experience during these last decades about 

their systems, they consider that a PSEEL’s control 

command is valid once it satisfies the whole test. 

The verification consists in executing manually each 

instruction contained in the recipe book during 

factory tests, and then comparing the obtained 

results with the expected ones. This verification is 

therefore not automatic, and requires too much time 

because of the length of tests (almost 100 pages of 

instructions). Moreover, although it was used to 

validate PLC programs for several decades, this 

method is not efficient to check formally safety part 

of PLC programs insofar as it verifies only if PLC 

programs meet the requirements specifications. 

Our first task in this work is to optimize this 

current methodology of verification by making it 

faster and automatic with the use of a model-

checker. Then we propose an exhaustive method 

which will be used to verify the safety part of PLC 

programs.  

After a presentation of general context in section 

2, we detail the principle of our methodology and 

illustrate it through an application in section 3. 

Exhaustiveness of recipe book is studied in section 
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4, and section 5 introduces a solution for automatic 

generation of models used for programs verification. 

We conclude finally this paper and propose some 

work prospects in section 6. 

2 GENERAL CONTEXT 

The PSEEL are the electrical supply points of the 

electrified lines, called catenaries. Their role is to 

transform, to supply, and to rectifier in the case of 

DC supply, the tension of the High-Voltage (HV) 

network into compatible tension with traction units 

(1500 V DC or 25kV AC). They are composed of 

sub-systems (sSys) like Transformer Group, Track 

feeder, and common, and each of these sub-systems 

is composed of elements of sub-Systems (ElSys) like 

switch, circuit breaker, and so on (Figure 1). These 

electrical systems are subject to strict standards of 

railway safety (EN 50126, 2012) (IEC 60870-4, 

2013).  

 

Figure 1: Decomposition of PSEEL. 

The PSEEL are distributed automated systems 

whose control command can be done either locally 

or remotely in a centralized control station named 

Central Sub-Stations (CSS). 

The recipe book represents for SNCF the main 

reference for validation of PSEEL’s control 

command systems since many years. It contains 

several scenarios that systems engineers execute on 

PSEEL and analyze its behavior in order to validate 

or not its control command. An example of a test 

scenario is presented in Table 1. 

 

 

 

 

 

 

 

 

 

Table 1: Example of one test scenario in recipe book. 

 

During an automation project, the recipe book 

and the PLC programs are automatically generated 

with software named Odil (Coupat, 2014). For this, 

the systems engineers enter all inputs data of the 

system (like single line diagram of PSEEL, 

equipment configuration, inputs/outputs ...) and 

then, Odil generates automatically programs and 

recipe book. After a proofreading of these latter, 

they verify online the correctness of whole control 

command (PLC program and electrical cabinets) 

during factory tests, by executing all the scenarios of 

the recipe book on system. Moreover during factory 

tests, they need to connect devices simulators to 

cabinets (like switches and circuit breakers) in order 

to make tests possible. One major difficulty they can 

encounter during tests is that in case of an 

unsatisfied instruction in factory, they must analyze 

the problem and determine its cause (programming 

error or wiring error of electrical cabinets). For 

example in the test scenario described in Table 1, 

when the circuit breaker does not open after 

overcurrent (instruction N°1), there are two possible 

explanations:  

o The information “Imax” is not received by 

the PLC (because the input is not wired for 

example); 

o The information is received but the SFC 

program of the circuit breaker does not 

evolve (bad program). 

Despite their experience, this diagnosis may 

remain long and complex in some cases. The main 

approach of our methodology consists in dividing 

the validation step into two parts: offline validation 

of PLC programs with model-checker Uppaal 

(Behrmann et al., 2002), and then online validation 

of electrical cabinets during factory tests with virtual 

commissioning. Thus, PLC programs can be 

validated earlier with Uppaal and before factory 

tests. Moreover, this validation step does not require 

physical devices simulators because they are now 

included in Uppaal models. From a model of 

PSEEL, PLC programs, and recipe book, Uppaal is 



 

 

     

 

able to check automatically during the simulation if 

the PLC programs satisfy the recipe book. For this, 

the model-checker executes all scenarios of recipe 

book on the system, and verifies if there exists at 

least one instruction in the recipe book whose effect 

on the PSEEL does not correspond to the expected 

one. Then, simulation results will help to diagnose 

easily the problem if it exists, or otherwise to 

validate the PLC programs. The validation of 

electrical cabinets will be done online and also 

automatically, with the use of virtual commissioning 

connected to electrical cabinets (not presented in this 

paper). The advantage of this methodology is as 

follows: not only the validation of programs will be 

faster and automatic, but it will also facilitate the 

validation of electrical cabinets. In fact, once we 

implement valid PLC programs in the system, any 

encountered problem during factory tests would 

necessarily result from wiring errors of electrical 

cabinets. Another objective in this work is to 

propose with model-checking an exhaustive method 

which verifies the safety part of PLC programs. 

System modeling is the first step of our approach. 

3 SYSTEM MODELING 

In this section, we present and illustrate our 

methodology through its application on a 

transformer group (PSEEL’s sub-system). System 

modeling requires careful structural analysis of 

PSEEL and PLC programs because the models must 

have the same behavior as real system. The 

transformer group is controlled by one PLC, and is 

basically composed of circuit breakers, switches, 

and transformer. Its program’s outputs correspond to 

the orders sent to devices, and inputs are the 

observed faults on operative part and the devices’ 

states (opened or closed). The programs are 

designed in STRATON (www.copalp.com) using 

some of the standardized languages (IEC 61131-3, 

2003) such as Ladder Diagram (LD), Sequential 

Function Chart (SFC) and Structured Text (ST). But 

in our Uppaal models, the whole program needs to 

be translated into ST because the model-checker 

cannot interpret the other languages. Whatever the 

programming language would be, each scan cycle 

includes three main phases: input reading, program 

execution and output updating. 

3.1 Transformer Group Modeling 

  

Figure 2: UPPAAL model of switch. 

The variables “so” and “sf” (Figure 2) represent 

respectively the information “switch opened” and 

“switch closed”, and “close” (respectively “open”) 

represents closing order (respectively opening order) 

sent by the programs. The switch can reach three 

possible states: opened (so=true and sf=false), 

moving (so=false and sf=false), and closed 

(so=false and sf=true). Initially opened, it starts 

moving once it receives closing order from the 

program. Then, after a certain duration (x==time) it 

becomes fully closed if the order was still 

maintained, or otherwise returns to the initial state if 

closing order was released or if opening order was 

activated. The switch’s behaviour is practically the 

same when it receives opening order from closed 

state. We recall here that the order sent by operator 

is not directly received by the device, but rather by 

its SFC program which will apply it or not, if the 

program allows this action. 

 

Figure 3: UPPAAL model of circuit breaker. 

The model of a circuit breaker presented in 

Figure 3 has some particularities compared to switch 

model: 

o To close the circuit breaker, the two orders 

(open and close) must be maintained 

simultaneously for a certain duration 

(x==tmpEnclDJGT);  

o To open it, just release the opening order; 

o Contrary to the switch, opening time 

(timeOP) is different from closing time 

(timeCL). 



Note that although the transformer has 

continuous behaviour (magnetic, thermal…), we do 

not take it into account in its model. So we represent 

it as a structure of variables (observers, parameters, 

and observed faults) because these are the only 

information we need for this model: 

struct {bool defBLQ, blocDef, defTemp,  defBLQR, 

blocDefRed, defTempRed, wdMicom, TcMC, 

temp2TR, AMR, fuFuRC, AvDiode, imaxGT, 

OoAbsUHT, OoDjAbsUHT, deblocGT, absUBarre, 

presenceSGT, pres_Hexa; int tmpReencGT;} GT1; 

3.2 Control Program Modeling 

 

Figure 4: UPPAAL model of PLC cycle. 

The model in Figure 4 synchronizes all the other 

models of the system thanks to broadcast channels. 

PLC cycle structured as a loop includes a clock x 

which measures the cycle time (equal to 20 time 

units here). Initialisation of SFC programs and 

parameters is required during the first PLC cycle. 

Then, the cycle is composed of 6 steps: 

o Input reading (faults and devices’ states) 

o Command reading (sent  by operators) 

o Timers evolution (synchronised with TON! 

channel) 

o Execution of main program (SFC programs 

update) followed by output writing; 

o Evolution of operative part (channel PO!) 

o End of cycle (channel end!) 

To reduce states space, most of states are 

declared as committed so that time can elapse only 

during program execution. Therefore the duration of 

input acquisition and output emission is negligible. 

 

Figure 5: UPPAAL model of a TON block. 

The control program contains timing operations, 

described by functional blocks called TON (Timer 

On-delay). Its behaviour is explained in IEC 61131-

3 standard. This TON block has two input variables 

(boolean variable in to start or stop counting time, 

and time parameter PT which indicates the timing 

delay) and two output variables (boolean variable Q 

which equals 1 if the delay has expired, and time 

variable x which gives the time elapsed from the last 

rising edge of in). Initially idle, its location becomes 

running when the timer has been switched on, and 

timeout when the fixed delay (PT) has been 

reached. The model in Figure 5 has been inspired in 

(Mokadem et al., 2010). 

Any SFC program can use more than two TON 

block in its different steps. So instead of using a 

TON block for any step, we declare only one TON 

block per SFC program. In fact, after a structural 

analysis of these SFC programs, we noticed that we 

can never have more than one step simultaneously 

activated. Thus, a single TON block can be used by 

all steps of one SFC program without any conflict. 

However, for two successive steps using the same 

TON, we must make sure that between the two 

steps’ activation, the TON’s output changes from 1 

to 0. For this, we must define correctly the inputs in 

and PT of the TON block used by the SFC program. 

In the example described in Figure 6, both steps x1 

and x2 use the same TON. When x1 is activated, 

time starts elapsing until it reaches 500ms. Then, 

output Q and transition ft1 change from 0 to 1, 

leading to x2’s activation and x1’s deactivation. 

Therefore, the input in (whose expression is shown 

in Figure 6) moves from 1 to 0 and resets the timer 

(thus output Q changes from 1 to 0 and input PT 

changes from 500ms to 1000ms). During the next 

PLC cycle, the value of ft1 will be updated because 

the step x1 is no more activated, so the input in will 

move again from 0 to 1 and time will start again 

elapsing for x2. But with these operations, we 

noticed a delay of one PLC scan time from x2’s 

activation to timer’s restart. To compensate this 



 

 

     

 

delay, we subtract it to the pre-set time of x2. This 

optimization will reduce the number of TON used, 

and consequently the space of reachable states. 

The whole program is not represented in our 

model because some lines of code are only dedicated 

to send information to other PLC through network 

(Factory Instrumentation Protocol). 

 

Figure 6: Example of TON’s use in a SFC program. 

So the control program is basically composed of: 

o SFC block programs: which command the 

equipment like switches and circuits breakers. 

The structure of the SFC program depends on 

the kind of equipment. 

o LD programs: where devices’ states are read 

and all observed faults are collected and used 

to compute observers. 

The SFC programs will be translated into 

Structured Text language (ST), using the classical 

algebraic representation of SFC (Machado et al., 

2006). The LD programs will also be translated into 

ST language (Figure 7). 

 

Figure 7: Example of LD programs translation into ST. 

3.3 Recipe Book Modeling 

After a structural analysis of recipe book, we 

realized that it could be translated into SFC 

programs (one per scenario) because it is composed 

of actions and transitions. In Figure 8 we present the 

translation of scenario described in Table 1. The 

variable “start elapsing” is dedicated to trigger a 

timer which counts the elapsed time in one step of 

the scenario (x1, x2, or x3 in this example). So if 

there is a step on which the elapsed time exceeds a 

certain value (which is not supposed to be reached if 

the program is valid), it will mean that program 

presents errors because the transition associated to 

that step cannot be satisfied. 

This translation will be applied for all scenarios 

of transformer group’s recipe book. 

 

Figure 8: Translation of scenario into SFC program. 

Then, the model described in Figure 9 will call 

and execute sequentially all scenarios. The recipe 

book’s evolution state will be updated during any 

PLC scan time. Each state automaton of this model 

(except the initial and last ones) corresponds to one 

scenario. During simulation, one scenario can be 

executed only if the previous one (if it exists) was 

satisfied. Therefore the program is valid only if the 

final state automaton (named valides in Figure 9) is 

reachable, or if it does not exist a blocking 

instruction in recipe book. 

 

Figure 9: Uppal model of recipe book. 



3.4 Simulation Results 

To validate the PLC program, all scenarios must be 

executed and satisfied during simulation. For this, 

we can verify if the final state automaton is 

reachable by using the query:  

E <> recipe_book.valides       (1) 

However the model checker does not return any 

trace if (1) is not satisfied. Thus (1) is only useful to 

determine if programs are valid or not, but not 

sufficient for diagnosis. So instead of this property, 

we verify if there exists a blocking step of a scenario 

where the corresponding condition is not satisfied by 

using the query:      

E<>time_step.timeout       (2) 

Time step is a timer which counts the elapsed 

time for any step of the recipe book. If (2) is 

satisfied, the model checker will return directly the 

scenario and blocking step on which simulation 

stopped. Moreover, by analysing the current state of 

programs, it will help for diagnosis. After a first 

simulation (see results in Table 2), we realized that 

(1) is satisfied and (2) is not: this is far from being a 

surprise because the program we used here has 

already been validated during factory tests.  

In the following example, we used a modified 

program to verify if problems can be diagnosed 

during simulation. Table 2 presents simulation 

results, and gives the time and memory used for 

verification (on a windows machine with 4Gb RAM, 

Core i5).  

Table 2: Simulation results. 

 
As expected, (1) is not satisfied for the modified 

program, but to diagnose the problem, it is not 

sufficient. So when we verify by using (2), the 

model-checker has shown that the instruction N°1 of 

overcurrent test is blocking (step x1 of Figure 8) 

because the circuit breaker did not open after 

overcurrent. Moreover, when we analyse the current 

state of circuit breaker SFC program in simulation 

results (see in Figure 10), we notice that its 

evolution stopped in that moment on a step where it 

was waiting for opening order (step x5 of SFC 

program grafCtrCmdeDJGT1 in variables column 

of Figure 10). Thus, we conclude that the transition 

following that step is not correct because it did not 

take into account the overcurrent information. This 

result was expected because the expression “or 

Imax” was initially deleted from that transition. 

After correction and second simulation, the 

instruction N°2 of overcurrent test (transition ft2 of 

Figure 8) is not satisfied because the circuit breaker 

started closing when it received that order whereas it 

should not. In fact, the circuit breaker must stay 

opened while overcurrent does not disappear. This 

result was also expected because the expression 

“and not Imax” was also deleted from SFC 

program’s transition. In that way, we can diagnose 

quickly and correct the whole program by referring 

 

Figure 10: simulation view. 



 

 

     

 

to the expected results of recipe book, and 

simulation does not require too much memory. Its 

efficiency has already been validated with some 

examples of wrong programs. 

4 SAFETY PART VERIFICATION 

Although recipe book has served to validate 

PSEEL’s programs for many decades, it is not 

sufficient to verify formally installations safety. In 

fact, the previous method does not study all the 

reachable states of system (meaning all the 2Ne 

possible states, with Ne = number PSEEL’s sensors 

+ number of received orders). Moreover, it has also 

been proved in (Coupat, 2014) with a specific 

PSEEL, that there exists one scenario (with low 

occurrence) not included in recipe book, but which 

can expose that PSEEL in dangerous state, meaning 

that the method is not exhaustive. So supposing that 

events like sending orders by operator or faults 

apparition can occur whenever on system, the 

principle is to check with Uppaal if each of these 

states is not dangerous (meaning does not violate a 

set of safety properties). Therefore recipe book will 

no more represent a reference of verification. We 

delete its model and we add two others ones that 

generate randomly faults (left side on Figure 11) and 

sending order (right side of Figure 11). With the first 

model, fault can take two possible boolean values 

(true or false), and with the second one a device’s 

SFC program can receive opening order from 

operator (co=true and cf=false), closing order 

(co=false and cf= true), or no order (co=false and 

cf=false). During a PLC cycle, an order sent by an 

operator would not have any effect on system if the 

SFC program of the targeted device was not in a step 

waiting for that order. Thus, to avoid ineffective 

orders and reduce states space, we added some 

guards in these models.  

This method is more efficient than the first one 

because all the reachable states of system are 

browsed and studied, unlike the first method. And it 

can verify not only the safety part but also the 

functional correctness of PLC programs, according 

to the set of properties we verify. 

 

Figure 11: Uppaal models of fault and sending order. 

With a program already validated by recipe 

book, we have to verify with this second method if 

there exists at least a path which leads system to a 

dangerous state. In that case, it would mean that the 

recipe book does not contain all required tests, and is 

therefore insufficient to guarantee safety. Currently, 

the SNCF experts help us to determine all the 

dangerous states of PSEEL in order to define all 

safety properties and complete the verification. We 

can already verify its efficiency by applying it to the 

previous modified program. An example of 

dangerous state is that a blocking fault appears 

during 300ms without the circuit breaker opens: 

E<>cycle.fin and TON_fault.timeout             

and  DG1.sf 

(3)  

TON_fault is a timer which counts the elapsed 

time since fault’s apparition while circuit breaker 

stays closed. After simulation, we noticed that this 

state is reachable only if overcurrent fault appears 

for 300ms: that is obvious because the variable 

“Imax” was deleted from that SFC program. 

This simulation requires more memory time 

(20.56s and 140Mb with (3)) because of states space 

increase, but this method is more efficient than the 

first one. All the errors detectable by recipe book are 

also detectable by this second method, meaning that 

the latter is also more exhaustive. 

5 AUTOMATIC GENERATION 

OF UPPAAL MODELS 

The methodology of formal verification must be 

applied for any new automation project. Because of 

heterogeneity of PSEEL and programs, systems 

engineers would be obliged to adapt Uppaal models 

according to installation’s structure, recipe book and 

program’s content.  This additional task goes against 

our principle in this work because it increases time 

project. As for programs and recipe book, we 

propose to generate automatically with Odil the 

Uppaal file (*.xml) which contains all required 

inputs data (PSEEL models, programs, and recipe 

book). The methodology used to generate this xml 

file is not detailed in this paper, but presented in 

(Coupat, 2014). The xml file contains exactly the 

same information as for program and recipe book, 

but in a different language. After automatic 

generation, the systems engineers have just to import 

from Uppaal the generated xml file (for any sub-

system of PSEEL), and execute it in order to analyse 

results and validate automatically programs, directly 



from their office and not necessarily in factory. 

Some examples of xml files has been generated and 

used for simulation. 

6 CONCLUSION 

The main objective of this research work was to 

optimize validation step of PSEEL’s PLC programs. 

The current method used by SNCF’s systems 

engineers consists in testing online some scenarios 

in the program by using a recipe book, and validate 

programs if all tests are satisfied. The simulation is 

necessarily done after electrical cabinets’ design and 

program’s implementation in PLC, and requires too 

much times (one week at least) because tests are 

manual. Moreover, manual tests can imply human 

errors due to mental workload (Coupat et al., 2014).  

The proposed solution in this work aims to solve 

these problems insofar as programs validation is 

faster and automatic (recipe book of transformer 

group is browsed in a few tens of milliseconds, see 

in Table 2), and can be done earlier without any use 

of physical device simulator compared to the 

previous method. Another objective in this work was 

to develop a method which verifies the safety of 

PLC programs. With model-checker Uppaal, we 

verify formally for each reachable state of system, if 

the set of dangerous states (representing the property 

to verify) is not violated. We proposed also in this 

work to generate automatically the Uppaal models of 

verification for any new project, so that systems 

engineers will not lose time in designing it 

themselves. 

The method of automatic verification has been 

presented to SNCF’s systems engineers, and was 

judged interesting insofar as it allows to verify 

quickly and automatically the correctness of any 

PLC programs. Moreover, it has been used to verify 

a program newly developed by systems engineers 

and not tested yet during factory tests. For this we 

implemented the program in our tool, and we 

corrected all the problems detected in the new 

program. The obtained results was presented to 

systems engineers, then they were approved. 

In addition to reduce time project and human 

error during verification, these results will facilitate 

validation step of electrical cabinets’ wiring. In fact, 

systems engineers use recipe book to validate both 

programs and cabinets. When they encounter an 

instruction not satisfied in recipe book, they must 

analyze it and determine if it is due to programming 

error, or wiring error. With our method, they can 

now exclude the first hypothesis during factory tests 

because programs are validated earlier. 

Our future work will focus on the improvement 

of validation step of electrical cabinets’ wiring. As 

for program validation, we will try to make it faster 

and automatic in order to reduce at most time 

validation during any automation project.  
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