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CLOSED GEODESICS IN DILATION SURFACES

ADRIEN BOULANGER, SELIM GHAZOUANI, AND GUILLAUME TAHAR

Abstract. We introduce the notion of exotic dilation surface, which pro-
vides a way to produce a weak form of compactification of the moduli
space of dilation surfaces. This notion is devised to enable one to keep
track of dynamical properties of their directional foliations along degen-
erating sequences. We derive from this construction a proof that every
dilation surface contains a closed regular geodesic.

1. Introduction

We consider in this article the problem of the existence of regular closed
geodesics in dilation surfaces. Our main theorem is the following.

Theorem 1. For any closed dilation surface Σ, there is a dense set of direc-
tions θ such that the directional foliation Fθ has a periodic orbit. Equivalently,
the set of directions covered by a cylinder is dense in the circle S1.

In particular, any dilation surface Σ carries at least one closed geodesic. This
generalises to the context of dilation surfaces a celebrated theorem of Masur
[Mas86] for translation surfaces.

As the two equivalent formulations of Theorem 1 suggest, it can be viewed
from either a dynamical or geometric perspective. From the geometric point
of view, it guarantees that every dilation surface contains the simplest building
block that can be imagined, a cylinder, thus giving valuable insight into the
geometric structure of the arbitrary dilation surface.

On the dynamical side, this theorem guarantees the ubiquity of periodic orbits
in some particular (but very natural) one-parameter families of unidimensional
of dynamical systems, in the form of the following corollary.

Corollary 2. For every affine interval exchange transformation T0 : [0, 1] −→
[0, 1], the set of parameters t such that the map x 7→ T0(x) + t mod 1 has a
periodic orbit is dense in R.

Results about particular families of dynamical systems of this type are usually
difficult to prove; a result analogous to Corollary 2 where T0 is an arbitrary
generalised interval exchange map seems out of reach of current methods.

1.1. Affine structures on surfaces. The question of the existence of closed
geodesics can be considered in the wider context of affine (complex or real)
structures on surfaces1. For Riemannian structures, the existence of closed

1A real (resp. complex) affine structure on a surface is an atlas of charts taking values
in R2 (resp. C) such that transition maps lie in the group of real affine transformations

1
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geodesics as been known for a long time (see for example [GM69] and references
therein). The case of translation surfaces, which lie in the intersection of the
affine and Riemannian world, is now very well understood. On the contrary, for
general affine structures very little is known. We therefore pose the following
problem.

Problem. Characterise the affine structures on closed surfaces which carry a
regular closed geodesic.

Note that a complete solution to this problem is likely to be very difficult, as
it contains as a particular case the notoriously hard question of determining
whether the billiard flow of every polygonal table has a periodic orbit. We
conclude this digression on affine structures with the following conjecture.

Conjecture. The set of real affine structures on a given closed surface Σ car-
rying a closed geodesic has full measure in the (finite dimensional) parameter
space of real affine structures on Σ.

This conjecture is supported by considerations on the dynamical nature of the
geodesic foliations of generic affine structures, numerical simulations and the
genus one case where many examples can be worked out explicitly.

1.2. Dilation surfaces vs general affine surfaces. Dilation surfaces are
particular complex affine surfaces whose structural group is the set of trans-
formations of the form z 7→ a · z + b where a is a positive real number and
b ∈ C. Whilst it is expected that the generic complex affine surfaces does not
have any closed geodesic, the main theorem we prove in this article predicts
that any dilation surface does.

We explain what the condition on the structural group defining dilation sur-
faces implies at the dynamical level. Every (complex or real) affine structure
induces a ”geodesic” foliation on T1Σ the unit tangent bundle of the surface
and the existence of a closed regular geodesic is equivalent to the existence of
a closed for this foliation. T1Σ is a 3-dimensional manifold thus the dynamical
system induced by the foliation is essentially 2-dimensional. In the particular
case of dilation surfaces, T1Σ decomposes into a 1-parameter family of invari-
ant surfaces for the foliation. While this gives no indication as to which affine
structures always have periodic orbits, it explains why dilation surfaces are
essentially different from the general case:

• the problem for dilation surfaces is about finding periodic orbits in
one-parameter families of unidimensional dynamical systems;
• the problem for the generic affine surface is about finding a periodic

orbit for a given 2-dimensional dynamical system.

The analysis of 2-dimensional dynamical systems is far more intricate than
that of their 1-dimensional counterparts; furthermore with dilation surfaces
we have an entire 1-parameter family of one-dimensional dynamical systems
(which are easier to analyse) to find a periodic orbit. This discussion also

Gl2(R) n R2 (resp. complex affine transformations C∗ n C), with possibly finitely many
cone-type singularities.
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explains why, despite the fact that in principle it is plausible that a lot of real
affine surfaces carry closed geodesics, the dilation case is of a different nature
and probably easier to analyse.

1.3. Action of Sl2(R) and strategy of proof. We now explain the ideas
behind the proof of Theorem 1. It is very much inspired by the translation
case, and we remind the reader of the general structure of the proof in this
case.

Both moduli spaces of dilation and translation surfaces carry an action of
the group Sl2(R). This action is naturally defined by the post-composition
of the charts defining the dilation/translation structure. It has the following
important property : two surfaces are on the same Sl2(R)-orbit if and only if
they define the same underlying real affine structure. In particular, if a surface
has a closed geodesic, it is the case for every surface in its Sl2(R)-orbit.

In the translation case, the proof goes by induction on the combinatorial com-
plexity2 of the surface.

(1) It is easy to check that translation surfaces of lowest complexity, flat
tori, always carry closed geodesics.

(2) Assume that we know that all surfaces of complexity lesser than k do
carry closed geodesics and consider a translation surface Σ of com-
plexity k. It is not hard to find a sequence (Σn) of surfaces in the
Sl2(R)-orbit of Σ which diverges i.e. does not converge in the moduli
space of surfaces of complexity n.

(3) Geometric tools building on the Riemannian structure of translation
surfaces allow to show the following dichotomy : either (Σn) Gromov-
Haussdorff converges (up to passing to a subsequence) towards a trans-
lation surface of lesser complexity or the Riemannian diameter of Σn

tends to infinity.
(4) In the first case, since having a cylinder is a property that is open in pa-

rameter space and by the induction hypothesis, for n large enough Σn

has a closed geodesic. Since Σn induces the same real affine structure
as Σ, so does Σ.

(5) An elegant lemma due to Masur and Smillie [MS91][Corollary 5.5]
ensures that a translation surface of large diameter contains a long
flat cylinder and thus contains a closed geodesic, which concludes the
proof.

This strategy relies heavily on the Riemannian nature of translation surfaces
to get a rather simple analysis of the ways a sequence of translation surfaces
can degenerate; this part of the proof breaks down when trying to generalise
it to the case of dilation surfaces. Most of the work done in the present article
is to replace the last three points of the strategy outlined above by a suitable
analysis of the different ways a sequence of dilation surfaces can degenerate,
which we explain thereafter.

2We define the complexity to be the number of triangles in a triangulation whose set of
vertices is the set of singular points
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1.4. Exotic dilation surfaces. In order to do so, we introduce a class of
objects aimed at providing some sort of appropriate compactification of the
moduli space of dilation surfaces having the following properties:

• they contain dilation surfaces as a subset;
• they carry directional foliations and it makes sense to talk about closed

geodesics for these objects;
• the property of having a closed geodesic is open in their parameter

space;
• the Sl2(R)-action extends to their parameter space in such a way that

the property of having a closed geodesic is Sl2(R)-invariant;
• the parameter space is sequentially compact;
• there is a notion of complexity for these objects that can be decreased

by taking limits in the Sl2(R)-orbit of any such object;
• finally, it is easy to prove that objects of lowest complexity have closed

geodesics.

These properties are exactly what is needed to formally implement the in-
ductive scheme of proof discussed in the previous paragraph for translation
surfaces.

The construction of such objects, which we call exotic dilation surfaces, and
the proof of the above properties occupies the bulk of the article.

• In Section 4, we give a formal definition of exotic dilation surfaces.
Very roughly, these are objects obtained by gluing polygons together,
but allowing for edges to be glued onto vertices and degenerate (1-
dimensional) polygons, in order to encode infinite changes of scale that
can occur when a dilation surface degenerates (think of a hyperbolic
cylinder whose multiplier tends to infinity for instance).
• Extending the notions of directional foliations, closed geodesic, the

Sl2(R)-action is completely straightforward from the definition of an
exotic dilation surface and is also done in Section 4.
• The first difficult point is to define what it means for a sequence of

exotic dilation surfaces to converge; this is done in Section 5 using in
a crucial way Delaunay polygonations of dilation surfaces that were
first introduced in [Vee97] in the particular setting of complex affine
structures.
• The second point is to show that with this unusual notion of conver-

gence, the property of having a closed geodesic is open in parameter
space; this is done in Section 6. It is probably fair to say that if a lot of
what is done in this article is giving the good formal setting to be able
to do proofs, the heart of the mathematical argument is contained in
Section 6.
• Finally, a minor difficulty is to show that some sequence of elements

in the Sl2(R)-orbit of any exotic dilation surfaces actually degenerates,
which is done in Proposition 12.

With all these elements in place, the reader should be convinced that an
inductive scheme of proof as outlined earlier can easily be carried out to prove
that every dilation surface carries a closed geodesic. In Section 7 we give a
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rigorous proof of the slightly more general statement that the set of directions
corresponding to a closed geodesic is actually dense in the circle. The proof of
this statement follows the same lines but is a little more technically involved.

1.5. An important shortcoming and an open problem. We prove that
every dilation surface contains a closed geodesic but unfortunately we were
not able to infer anything as to the nature of the cylinder carrying this closed
geodesic. In particular, our proof does not preclude the existence of a strict
dilation surface all of whose cylinders are flat (although the existence of such
a surface seems highly unlikely).

Problem. Show that a dilation surface whose cylinders are all flat is a trans-
lation surface.

Acknowledgements. The second author is greatly indebted to Bertrand
Deroin for introducing him to the topic of affine structures on surfaces and
asking him the question that lead to the present article. The third author
is supported by the Israel Science Foundation (grant No. 1167/17) and the
European Research Council (ERC) under the European Union Horizon 2020
research and innovation programme (grant agreement No. 802107). He would
also like to thank Dmitry Novikov for valuable remarks and discussions.

2. Dilation surfaces

The symbol Σ will always stand for a compact surface of genus g ≥ 0 with a
finite number of boundary components.

2.1. Generalities. The main objects we will deal with in this article are
dilation structures, defined as follows.

Definition 1. A dilation structure on a topological surface Σ - possibly
with boundary - is given by a finite set S ⊂ Σ, the singularities of Σ, and
an atlas of charts A = (Ui, ϕi)i∈I on Σ \ S such that

• the transition maps are locally restriction of elements of AffR∗+(C) =

{z 7→ az + b | a ∈ R∗+ , b ∈ C};
• seen in any chart, any connected component of the boundary - if any

- must be a straight line;
• each singularity in the interior of Σ has a punctured neighbourhood

which is affinely equivalent to a punctured neighbourhood of the cone
point of a dilation cone;
• each singularity on the boundary of Σ has a punctured neighbour-

hood which is affinely equivalent to a neighbourhood of the centre of
a Euclidean angular sector of arbitrary angle.

A particularly simple way of constructing a dilation surface is to glue polygons
in the plan by using dilations as illustrated in Figure 1. We will see that, from
the perspective of the existence of cylinder, the study can be reduced to the
case of dilation surfaces that can be described this way. Such a dilation surface
is called polygonable.
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Figure 1. The sides of the two polygons are glued according
to the colours. Topologically, the resulting surface has genus 2
and has only one singularity which corresponds to the extremal
points of these two polygons.

Note that the notion of straight line on the surface is well-defined since changes
of coordinates are affine maps. Moreover, in any direction θ ∈ S1 the foliation
by straight lines of C in the direction defined by θ being invariant by dila-
tion maps, it gives rise to a well-defined oriented foliation Fθ on any dilation
surface. Such a foliation is called a directional foliation. We call the direc-
tional foliations the resulting family of foliations, therefore indexed by the
circle, that we denote (Fθ)θ∈S1 . We shall call by extension a straight line any
piece of leaves of one this foliations.

Definition 2. Let Σ be a dilation surface.

• A closed geodesic in Σ is a periodic leaf of a directional foliation.
• A saddle connection is a topological segment on the surface Σ \ S

which is also a straight line (a piece of leaf of a directional foliation)
and whose boundary consists of two singularities.

We conclude this subsection by the following definition which will use to mea-
sure the complexity of a dilation surface.

Definition 3. We define the complexity of a polygonable dilation surface
as the number of triangles of any triangulation whose set of vertices is exactly
the set of singularities of the dilation surface.

The above definition is consistent since this number of triangles does not de-
pend on the choice of such a triangulation. A quick way of proving this fact
in two use the well know fact that the Euler characteristic χ(Σ) of the surface
Σ equals the number of triangles + number of singularities (which is fixed) -
number of edges. But the number of triangles is determined by the number of
edges since any edge is exactly shared by two triangles and since all triangles
have exactly three edges on their boundary. This shows that the number of
singularities and the genus determine the number of triangles.

2.2. Cylinders. Cylinders are the geometric counterpart of the periodic or-
bits of the directional foliations as, in particular, each cylinder contains a
periodic orbits. A flat cylinder is a dilation surface with boundary obtained
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by gluing a pair of the opposite sides of a parallelogram embedded in R2. A
dilation cylinder is a dilation surface (with boundary) obtained by cutting
be a sector of C of angle θ < 2π based at 0. The quotient of Cθ by the dilation
z 7→ λz with λ > 1 real is called a dilation cylinder.

Cθ

Figure 2. On the left a flat cylinder with a periodic leaf in
dashed green (corresponding to the only direction in which
there is a periodic leaf). On the right an affine cylinder with
two periodic leaves of two different directional foliations (whose
directions belong to the cone Cθ).

Modulus of a cylinder. In this paragrah we define a notion of modulus that
extends the classical notion of modulus for flat cylinders/conformal annuli.

• Recall that the modulus of a flat cylinder obtained from a rectangle
of base (z1, z2) ∈ C2 where the sides glued together are those corre-
sponding to z2 is by definition

|z2
z1
|.

The intuition at the level of the flat structure is that the longer and
thinner a cylinder is, the bigger its modulus is.
• For a dilation cylinder of angle θ and multiplier λ > 1, we define its

modulus to be

2 tan θ
2

λ− 1
.

This notion is devised to account for how ”long and thin” a dilation cylinder
is, in a way that a continuous deformation of cylinders from flat to strictly
dilation makes the modulus continuous.

Non-polygonable surfaces. The following theorem ensures that dilation
surfaces that do not carry cylinders of large angle are polygonable.

Theorem 3 (Veech). Any closed dilation surface which carries at least one
singularity and which does not contain any cylinder of angle larger or equal
than π is Delaunay polygonable.

This theorem is optimal since cylinders of angle greater than π are not polyg-
onable as shown in Figure 3. See [DFG19] for a proof.

2.3. Action of SL(2,R). We now define a natural action of SL(2,R) on the
space of dilation surfaces.
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θ

Figure 3. In black, a fundamental domain for the action of
z 7→ 2z on a cone of angle θ > π. Any leaf entering the cylinder
is trapped within it forever regardless of the direction of the
leaf, as the one represented here in red. This property prevents
a polygonation to ’connect’ both sides of the cylinder.

Let Σ be a dilation surface and consider A ∈ SL(2,R). Let (Ui, ϕi)i∈I a
maximal atlas defining the dilation structure of Σ. Define

A · Σ
to be the dilation structure defined by the maximal atlas (Ui, A ◦ϕi)i∈I where
A acts on C via the standard identification C ' R2. This new atlas indeed
defines a dilation structure as SL(2,R) centralises the group AffR∗+(C). If the

dilation surface was given by gluing a bunch of polygons together, the new
surface is also polygonable. Indeed, the image of the initial set of polygons
with edges identifications is mapped by the linear action of the matrix A to
another set of polygons. Since A is linear, the sides of the polygon that were
parallel are still parallel after applying the matrix A so that one can still
glue them using dilations of the plane: the resulting dilation surface is the
image of Σ under the matrix A, see Figure 4 for an example with the matrix

A :=

(
2 0
0 1/2

)

Figure 4. On the right a dilation torus. On the left the image
of the polygon defining it under the matrix A defined above.

3. Delaunay polygonations

3.1. Delaunay polygonation. The goal of this subsection is to define the
Delaunay polygonation of a (polygonable) dilation surface. The construction
we will give actually is Veech’s proof of Theorem 3: to show that surfaces that
do not carry cylinders of angle larger than π are polygonable, he showed that
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the following construction defines a polygonation. We refer to [DFG19] for
the full proof. We will here only describe it.

The vertices of this polygonation are by definition the singularities of Σ. The
edges of the polygonation are saddle connections: a given saddle connection
between singularities s1 and s2 belong to the edges of the Delaunay triangula-
tion if there is a closed disk in Σ such that s1 and s2 belongs to the boundary
circle of this disk and such that there are no other singularities in it. A disk in
Σ is said to be Delaunay if it does not contain any singularities in its interior
but at least 3 on its boundary.

The faces correspond to what is left
after suppressing the edges and the
vertices: they are convex polygons
whose extremal points belongs all to
the same Delaunay disks. The Figure
on the right illustrates the construc-
tion: the black disk is a Delaunay disk
whose boundary contains the singular-
ities si1≤i≤4 corresponds to the singu-
larities. In red the edges of the polyg-
onation and in faded green one of its
faces.

s1

s2

s3

s4

Figure 5

Note that the Delaunay polygonation gives you a way to recover from an
’abstract’ polygonable dilation surface a concrete set of polygons that defines
it.

3.2. Polygons up to dilation and their limits. In this paragraph we con-
sider the space of polygons with exactly p ≥ 3 vertices arising from Delaunay
polygonation. We consider these polygons as marked and up to dilation,
which means that

• these polygons are exactly the polygons the vertices of which lie on
the same circle;
• we keep track of the role of each side which is what we mean by marked;
• a polygon an its image by a rotation are considered to be different

(because polygons are considered up to dilation and not similarity).

We denote the set described above by Pp, which can be parametrised the fol-
lowing way. Consecutive (marked) sides are parametrised by complex numbers
z1, · · · , zp which are subjected to the following condition∑

i

zi = 0.

Two p-tuples parametrise the same element in Pp if and only if they are scalar
multiple of one another by a positive real constant. An abstract way to for-
mulate this is that we obtain a natural parametrisation of Pp by a subset of
the sphere S2p−1.
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A diverging sequence of polygons is said to converge to a degenerate polygon if
it converges in S2p−1, in the aforementioned parametrisation. In the following
definition we classify, in a way suitable to the analysis done in this paper, some
of the possibilities for a sequence of polygons not to converge.

Definition 4. (See Figures 6 and 7) Let p be fixed. Consider a sequence of
polygons (Pk)k∈N in Pp. We say that this sequence is

• of convergent type if (Pk)k∈N converges in Pp as defines above. Oth-
erwise the polygon is said to degenerate, in which case we distinguish
three different ways of doing so; a degenerating sequence of polygons
is said to be
• of Type 1 if all the vertices of (Pk)k∈N converge towards a given point

of the circle containing all vertices of Pk.
• of Type 2 if the set of vertices of (Pk)k∈N converges towards a set of

exactly 2 points of the circle containing all vertices of Pk.
• of Type 3 if (Pk)k∈N converges geometrically towards a polygon of

strictly fewer vertices but at least 3.

long side

long side
long side

s∞ s∞s∞

Figure 6. The three first polygons of a degenerating sequence
of type 1 whose vertices all converge toward s∞. The termi-
nology long side is explained below.

long sides

s1∞

s2∞

s1∞

s2∞

s1∞

s2∞

long side

long side

long side

Figure 7. The three first polygons of a degenerating sequence
of type 1 whose vertices all converge toward either s1∞ or s2∞.
The terminology long side is explained below.

We now introduce the following terminology which will be useful when proving
our main theorem.

• If (Pk)k∈N is of type 1, the longest side of the polygon, corresponding
to the closest one from the center of the circle in which it is inscribed,
is called the long side while the other sides will be called short.
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• If (Pk)k∈N is of type 2, the 2 longest sides, corresponding to the edges
going from and out the 2 limits points, will be called the long sides
while the others sides are called short.

3.3. Sequence of degenerating dilation surfaces. In this paragraph we
consider sequences of dilation surfaces of fixed combinatorial type (that is,
fixed genus, fixed number of singularities and prescribed angles at the singu-
larities). We want to define what it means for a such a sequence to degenerate.
Usually, what one would do is to define a moduli space of dilation surfaces and
say that a sequence degenerates if the sequence of points in moduli space it
defines eventually leaves every compact set. Because we want to avoid these
considerations, and also because we want to have a concrete way to tell that
a sequence is degenerating, we do things differently here.

Let (Σn)n∈N be a sequence of dilation surfaces of same combinatorial type. Up
to extracting a subsequence, we can assume that their Delaunay polygonations
are all combinatorially equivalent. Precisely this means that for any n,m ∈ N
their Delaunay polygonations have the same pattern: one can label for each
n the set I of polygons, say as (Pn(i))I∈i, in a way that

• the sequence (Pn(i))n∈N has always the same numbers of sides
• one can mark the sides of the polygons in a way that the gluing pattern

of the sides of the marked polygons (Pn(i))i∈N is constant with respect
to the marking.

In that case we say that the Σn’s have constant Delaunay pattern.

Definition 5. A sequence (Σn)n∈N of constant Delaunay pattern is said to
degenerate if at least one of its Delaunay polygons degenerates in the sense
of Definition 4.

We conclude this section with some remarks on local constraints being im-
posed to a degenerating Delaunay polygonations. We will denote by (Σn) a
sequence of polygonable dilation surfaces of constant Delaunay pattern.

As illustrated in the following figure, one cannot glue the long side of a degen-
erating polygon of type 1 to the long side of a degenerating polygon of type 2
or of type 1.
Another remark, that will be needed in Section 6, is that finitely many de-
generating type 2 polygons glued along their long sides must be ’concavely
shaped’, see Figure 17, as shown in Figure 17.

4. Exotic dilation surfaces

This section is dedicated to giving a formal definition of exotic dilation sur-
faces, which are objects generalising dilations surfaces in a way to encode in
some way their degenerations.

4.1. An informal account of what exotic dilation surfaces are. We
consider a sequence of dilation surfaces (Σn)n∈N that is degenerating in the
sense given by Definition 5. As in the previous Section, we denote by (Pn(i))i∈I
the polygons of the Delaunay polygonation of Σn. We want the limit Σ∞ to
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Figure 8. On the left, a Delaunay admissible configuration
of two polygons of type 1: none of the singularities lies inside
the 2 Delaunay circles. As the polygons shrink, the Delaunay
circle tend to cover half a plane. On the right a Forbidden
configuration: the red dot lies in inside a large Delaunay circle
(becoming half a plane).

Figure 9

be ”what is left from the Delaunay triangulation” when passing to the limit.
At an intuitive level, we will do the following operations (see Figure 10, Figure
11 and Figure 12).

(1) A sequence of Delaunay polygons (Pn(i))n∈N which converges to a
polygon P∞ is kept as it is: the limit will be given by the limit polygon
(even if it does not carry has many edges than those of sequence).

(2) Delaunay polygons which degenerate in a type 2 fashion are replaced
with ”two-sided” edges, with infinitely small sides represented by
the end points of the edges (see Figure 7). These edges must be thought
of as degenerated polygons of Type 2, as discussed in paragraph 3.2.

(3) Delaunay polygons which degenerate in a type 1 fashion will eventually
be removed, and neighbouring (possibly degenerate) polygons will be
glued according to the pattern that these type 2 polygons suggest.

The three first drawings represent some terms of a degenerating dilation sur-
face of genus 2 with one singularity whose ’connecting’ flat cylinder degenerates
as its modulus goes to infinity. At the level of the Delaunay polygonation, the
two parts left after removing the connecting cylinder (the top polygon and
the bottom one), converge as all the polygons converge up to dilation. The
limit object we want to associate will be given by
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Figure 10

• two edges glued along their long sides to form an ”infinitely long”
cylinder;
• a flat torus, which is the ”Delaunay limit” of the top part of the Figure;
• a non flat torus with one boundary component, which is attached to

the edge representing the infinitely long cylinder.

This is just an informal account of what to expect from the formal construction
that is to be explained in the next paragraph. Because in general degenerations
(from the point of view of the Delaunay trianulation) can be fairly complicated,
the formal construction is a bit involved; and it is good to keep in mind
concrete examples as the one we have just explained.

4.2. Exotic dilation surfaces, formal definition. We define an exotic dila-
tion surface to be a dilation surface (potentially with boundary, not necessarily
connected) with boundary (which we call the the core dilation surface of
the exotic dilation surfaces) and two extra building blocks defined as follows.

An edge is the datum of a (topological) segment with extremities p1 and p2;
together with the datum of a direction θ(p1, p2) ∈ S1 (the direction from p1
to p2, or simply from p1) and a direction θ(p2, p1) ∈ S1 (the direction from p2
to p1, or simply from p2) such that θ(p1, p2) = −θ(p2, p1). An edge has two
sides corresponding formally to the angular sectors [θ(p1, p2), θ(p1, p2)+π] and
[θ(p2, p1), θ(p2, p1)+π]. The black edge and the red one of Figure 10 are edges.

(An edge is to be thought of as the limit of a degenerating sequence of polygons
of Type 2. We will see in Section 5 that not all such sequences are kept in the
limit, only ”essential” ones.)

A hole is the datum (topological) segment together with the datum of a di-
rection θ ∈ S1 and the choice of a sector [θ, θ + π] or [θ − π, θ] which is called
the entry of the hole (see Figure 11).
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(A hole is to be thought of as the limit of a degenerating sequence of cylinders
whose angle goes to π.)

Figure 11. The first three drawing represent some terms of
a degenerating dilation surface of genus 2 with one singularity
whose ”connecting” cylinder degenerates as its angle goes to π.
At the level of the Delaunay polygonation, the two parts left
after removing the connecting cylinder converge since all the
polygons converge. The limit object we want to associate is a
2-components dilation surface with boundaries that are glued
to a hole. Whenever a trajectory enters the hole it never comes
out.

An exotic dilation surface (see the right part of Figure 10, 11 and 11) is
the data of

• a dilation surface Σ (potentially with boudary, not necessarily con-
nected);
• finitely many edges which we call of type C, for example the black

edge of Figure 10 is a type C edge (C stands for cylinder) ;
• finitely many edges of type P (P stands for triangle);
• finitely many holes, for example the black segment in the right part

of Figure 11.

with finitely many incidence relations :

(1) sides of of edges of type P or segments of a boundary component of Σ
can be attached to an extremity of an edge of any type;

(2) a segment of a boundary component can also be attached to the entry
side of a hole, or to a marked point of the dilation surface Σ.

(3) a side of an edge of type P can also be attached to a point on Σ.

A point on the core dilation surface to which is attached either an edge of
type P or a boundary component of the core dilation surface is called an
entry point.
Another important precision is the following: there is no limit on the number
of sides of edges or boundary components that can be attached to either an
entry side of hole, an extremity of an edge or an entry point.
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Figure 12

These incidence relations are subject to the following directions compatibility
restrictions.

(1) If an edge (of whichever type) is attached to a boundary segment
of the core dilation surface Σ, the direction from the extremity of
the edge that is attached to the boundary component must belong to
the (closed) sector of outer directions of the segment (the sector of
directions ”coming out of the surface”).

(2) If an edge (of whichever type) is attached to the side of an edge of type
T , the direction from the attaching point must belong to the (closed)
angular sector of the side to which it is attached.

(3) If a side of an edge of type T or a boundary component of Σ is glued
to a point p ∈ Σ and that the angle at p is larger than 2π, the exit
angular sector at π must be specified.

Definition 6. An exotic dilation surface is said to be closed is every boundary
segment of Σ, every side of an edge of type 1 and every entry side of each hole
is attached to something.

4.3. Directional pseudo-foliation. The interest in putting forward this no-
tion of exotic dilation surface is that it is a good notion to study degeneration
of dilation surfaces without loosing any relevant dynamical information. To
this end, we extend the notion of directional foliations to exotic dilation sur-
faces. The main point to address is how to extend a straight line in a coherent
way outside Σ. The rules are the following: if a straight line on Σ in a direction
θ0 hits a boundary component, we look at what it is glued to.

• If it is glued to nothing, the trajectory stops.
• If it is glued to a point p on Σ, we continue it from p in direction θ0.
• If it is glued to an edge of type C, the trajectory stops.
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• If it is glued to a hole, the trajectory stops.
• If it is glued to an extremity of an edge of type T , and if the direction of

the edge from the gluing extremity is different from θ0, the trajectory
exits from the side the angular sector of which θ0 belongs to. The
trajectory is thus continued until it either stops, enters a hole or re-
enters Σ, from which point it is continued in the classical way.

Definition 7. A closed geodesic is a trajectory as above that is periodic.

We say that two closed geodesics have the same combinatorial structure if
the sequence of consecutive edges crossed by each of them is the same (where
edges are either edges of the exotic dilation structure or edges of the Delaunay
polygonation of Σ).

Definition 8. A cylinder in an exotic dilation surface is either an equivalence
class of closed geodesics which have same combinatorial structure, a hole or
an edge of type C.

We extend the notion of modulus of cylinder defined in Section 2.2. The mod-
ulus of an edge of type C is infinite and the modulus of a cylinder containing
a closed geodesic traversing at least one edge of type P is equal 0. We do not
define a notion of modulus for holes.

4.4. The Sl2(R)-action. We just note here the following easy fact: the action
of Sl2(R) on the space of dilation surfaces naturally extends to the set of exotic
dilation surface. The image of a given exotic dilation surface by a matrix A is
the exotic dilation surface

• whose core dilation surface is the image of the initial one by A;
• with same edges and holes, same incidence relations;
• whose associated angular sectors are the images by the projective ac-

tion of A of those of the initial exotic dilation surface.

In particular the action is compatible with pseudo-foliations.

5. Delaunay limits of sequence of dilation surfaces

Having now defined exotic dilation surfaces, we need to define what it means
for a sequence of (exotic) dilation surfaces (Σn) to converge to Σ∞, which is
what we do in this Section. Note that we do NOT consider any moduli space
of (exotic) dilation surfaces and put a topology on it. We only define a notion
of convergent sequences that will be sufficient for our purpose. It is likely that
this notion of convergence actually leads to a compactification of the space of
dilation surfaces, but we do not pursue this line of research any further here.

5.1. Sequence of dilation surfaces. As previously emphasised a sequence
of bounded complexity of exotic dilation surfaces can be described by finitely
many parameters: those encoding the finitely many sides of the edges/holes/polygons
appearing in the Delaunay polygonation and a finite number of ways to glue
these together. From every sequence of bounded complexity dilation surfaces,
one can always extract a subsequence of constant pattern. With this in mind,
we shall, through the following definition, refine a bit the usual topology one
works with on the set of dilation surface of genus g and s singularities.
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Definition 9. A sequence of exotic dilation surfaces is said to be Delaunay-
convergent if

• its exotic structure is combinatorially constant (i.e. each surface has
the same number of building blocks and they are all glued together
according to the same combinatorial pattern);
• the core dilation surfaces of the sequence have constant Delaunay pat-

tern and all of the associated sequences of polygons converge (to a
possibly degenerate polygon, see Section 3.2);
• the angular sectors associated to edges and holes converge.

5.2. Delaunay pre-limit. We have defined above what it means to converge,
we now need to specify the limit. The first step, carried out in this paragraph,
is simply to look at the degenerated polygons that are obtained by passing to
the limit and build a hybrid object by keeping identification as they were. We
will call this object the Delaunay pre-limit. In the next paragraph we will get
rid of building blocks that are superfluous.

In the sequel, (Tn)n≥0 is a Delaunay-convergent sequence of exotic dilation sur-
faces whose associated dilation surfaces are denoted by (Σn)n≥0. By definition
of a Delaunay-convergent sequence, for all n ≥ 0,

• the Delaunay polygonation of (Σn)n≥0 are all topologically isomorphic,
let m be the number of polygons of the Delaunay polygonation of any
of the Σn’s.
• We denote by Pn(i) for 1 ≤ i ≤ m the polygons of the Delaunay

triangulation of Σn in such a way that for a given i and different values
of n the Pn(i) are mapped to one another via the homeomorphisms
realising the identifications between the Delaunay polygonations of the
Σn’s. By definition of a Delaunay-convergent sequence, the sequences
(Pn(i))n≥0 converge in the space of degenerated polygons.
• We define P∞(i)) to be the limit of (Pn(i))n≥0 if (Pn(i))n≥0 converges

to a non-degenerate polygon, to be an edge if (Pn(i))n≥0 degener-
ates in a type 2 fashion; we do not define anything in the case where
(Pn(i))n≥0 degenerates in a type 1 fashion (and we just keep the de-
generate polygon that we obtain in the limit)3.

Edges which are limits of sequences (Pn(i))n≥0 come with two extremities and
a direction from one extremity to another. We keep track of the information
of which sides/extremities are glued to what. Thus, at this point, each side of
an edge or polygon obtained this way is glued to either

(1) a side of another polygon/edge/type 2 degenerated polygon;
(2) an extremity of an edge;
(3) a vertex of a polygon.

This is the Delaunay pre-limit. Such a set of polygons/edges together with
those identification does not define a exotic dilation surface yet, for the fol-
lowing reasons :

• some edges might be glued along one of their sides to a polygon;

3An edge is also to be thought of a degenerate polygon, but since type 1 degenerated
polygons will eventually be removed, we do not bother giving them a proper name.
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Figure 13. The first three drawing represent some terms of
a degenerating dilation surface of genus 2 with one singularity.
At the level of the Delaunay polygonation, nothing happens on
the bottom but one gets a tiny quadrilateral on the top as the
relative size of the strip vanishes. This quadrilateron leads to
an edge, in green, which we want to get rid of. At the limit,
the two sides of the red edge are connected to the red points
(formally the bottom surface at the limit has two boundary
components).

• there might be collections of edges glued together along their sides;
• some edges do not have a specified type C or T yet;
• we must get rid of Type 2 degenerated polygons as they do not feature

the definition of a exotic dilation surface.

The next subsection aims at deleting all unnecessary edges/identifications in
order to make the previously defined Delaunay pre-limit an actual exotic di-
lation surface.

5.3. From Delaunay pre-limit to exotic dilation surface. To clarify the
structure, we shall explain all the steps one has to follow in order. These steps,
taken altogether, may have to be repeated finitely many times.

Step 1 : Deleting unnecessary edges. We consider all edges one of whose
(long) sides is glued to a polygon of the form P∞(i). Let e be such an edge.
We do the following :

• We delete e.
• Whatever was glued to to the other side of the edge is glued to the

side of P∞(i) to which e was initially glued to.
• Whatever was glued to the extremity of e is glued on to the corre-

sponding vertex of P∞(i).

Deleting this unnecessary edges is illustrated for example in Figures 13. We
then repeat Step 1 until they is no edge glued along one of its sides to a
polygon of the form P∞(i).
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Figure 14

Step 2 : Grouping together degenerate polygons of Type 2. We sim-
plify the picture further by considering maximal sequences of Type 2 degen-
erate polygons glued to one another via gluings always involving a long and a
short side.

We replace these ”trees” of Type 2 polygons by a single Type 2 degenerate
polygon. The upshot of this operation is that after this step, the long side of
Type 2 degenerate polygon is always glued to either an extremity of an edge
or a non-degenerate polygon (it cannot be glued to a side of an edge by virtue
of coming from a Delaunay triangulation).

Step 3 : Deleting Type 2s, the hole case. For this step, we consider all
Type 2 degenerate polygons whose big side is glued to one of its short sides.
We replace these with a hole, and whatever was glued to the other short sides
is glued to the entry of the hole, to the exception of extremity of edges which
we do not glue back. See Figure 11.

Step 4 : Deleting Type 2s, the non-degenerate case. We now turn
to Type 2, degenerate polygons one of whose long side is glued to a non-
degenerate polygon P∞(i). Consider such a Type 2 polygon Q. Here we do
the following (see Figure 15)

(1) We subdivide the side s of P∞(i) which is glued to the long side of Q
according to the where are the extremities of the short sides of Q.

(2) We subdivide P∞(i) into finitely many polygons in such a way that
subdivisions of s created become sides of polygons of this subdivision.

(3) We glue whatever was glued to the short sides of Q to the sides of the
newly created polygons corresponding to the subdivision of e induced
by Q.

Step 5 : Deleting Type 2s, the edge case. Finally, we consider the case
of Type 2, degenerate polygons whose long side is glued to the extremity of
an edge. Again, let Q be such a degenerate polygon and let e be the edge to
which its long side is glued. We delete Q, and glue back whatever was glued
to small sides of Q to the extremity of e unless it was an edge glued to a small
side via its extremity.
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Figure 15

Step 6 : Deleting Type 2s, final touch. We then repeat Step 3, 4 and
5 until there are no Type 2 degenerate polygons left (as it might the case
that in the process described by Step 4 and Step 5, we will have created cases
that should have been dealt with by Step 3, for instance). Since they are but
finitely many such degenerate polygons, the process terminates.

Step 7 : Deleting connections between edges. If two edges are glued
along their extremities, we disconnect them.

Step 8 : Grouping edges together. Finally, we consider maximal collec-
tions of edges consecutively glued together along their long sides. For such a
collection

(1) If it loops, we replace it with an edge of type C.
(2) If it does not loop, we replace it with an edge of type T .

At any rate, we deal with identifications on the extremities of the original
collection of edges the following way. We distinguish extremities depending
on which ”end” of the collection of edges they were, and whatever was glued
to an extremity of an edge in the initial collection is glue to extremity of the
new edge that is on the corresponding extremity (see Figure 10).

The object thus obtained, after performing those eight steps, is an exotic
dilation surface; it is by definition the Delaunay limit of the sequence
(Σn)n∈N.

5.4. Some properties of Delaunay limits. We collect here a pair of obvi-
ous but important lemmata that we will be implicitly be using henceforth.

Lemma 4. Let (Σn)n∈N be a Delaunay convergent sequence of exotic dilation
surfaces. Then its Delaunay limit Σ∞ is not empty.

Proof. If at least one of the polygons of the Delaunay polygonation of the core
dilation surface does not degenerate, then the limit is obviously non-empty.
Assume that all these polygons degenerate. Then all degenerated polygons of
the Delaunay pre-limit are Type 1 or 2.

• If they are all of Type 1, one can build a chain of consecutive Type 1
polygons, the long side of one always being glued the small side of the
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next. Such a chain loops, giving rise to a hole. In that case, the limit
is non-empty.
• Finally, if there is a least one Type 2, there will be at least an edge in

the limit, as the only way one can suppress a Type 2 polygon is if one
of its long side is glued to a non-degenerate polygon in the pre-limit.

�
The following lemma is obvious from the construction.

Lemma 5. Let (Σn)n∈N be a Delaunay convergent sequence of closed exotic
dilation surfaces. Then its Delaunay limit Σ∞ is closed.

Finally, we have the almost tautological

Lemma 6. Let (Σn)n∈N be a sequence of exotic dilation surfaces of bounded
complexity. Then it has a subsequence which Delaunay converges.

Remark. We have only defined the notion of convergent sequence and not
a topology on the space of exotic dilation surfaces. It seems reasonable to
expect that there exists a topology whose convergent sequences are Delaunay
convergent sequence, but our approach does not yield the construction of such
a topology.

Remark. The use of the Delaunay polygonation is probably an artefact for
this construction, which might be possible to do in more abstract and intrinsic
terms. It would be interesting (and conceptually more satisfactory) to have a
definition of Delaunay limits which spares the use of Delaunay polygonations.

6. Stability of cylinders

This section is dedicated to proving the following Proposition, which can be
thought of as the heart of the proof of Theorem 1.

Proposition 7. Let (Σn)n∈N be a sequence of closed exotic dilation surfaces
Delaunay-converging to a surface Σ∞. Assume Σ∞ carries a cylinder, which
covers the direction θ0. Then for any ε, there exists n0 > 0 such that for all
n ∈ N, n ≥ n0, Σn carries a cylinder which covers a direction that is ε-close to
θ0. In addition to that, if the cylinder in Σ∞ is an edge of type C, the modulus

of the cylinder in Σn can be made arbitrarily large for n0 sufficiently large.

In the proof of Proposition 7, we distinguish upon four cases depending whether
the cylinder of Σ∞ is

(1) a hole;
(2) included within the core dilation surface of Σ∞;
(3) an edge of type C;
(4) contains an edge of type T or goes through a boundary component of

the core dilation surface of Σ∞ which is glued to a point. We refer to
this latter case as the ”infinite dilation ratio” case.

The first three cases are pretty much straightforward, only the last one requires
a careful analysis (and accounts for the main difficulty that degenerations of
dilations surfaces present when compared to translation surfaces).
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6.1. The cylinder of Σ∞ is a hole. If this hole was already a hole in Σn,
there is nothing to prove. Otherwise the hole was formed in the limit, which
means that Σn contained a sequence of Type 1 polygons such that two con-
secutive polygons in that sequence were glued, the long side of first polygon
being glued to a short side of the second. Such a sequence being cyclic, a
short side s of the last polygon is glued back to the long side l of the first one.
Consider the strip issued from s in the direction orthogonal to that of s and
l, for n sufficiently large this strip is well-defined until it hits l (see Figure 16
below) and is thus glued back within itself, which defines a cylinder.

Figure 16

6.2. The cylinder of Σ∞ is an edge of type C. The argument here follows
similar lines as the previous case. Again, if the edge of type C was already an
edge of type C in Σn, then there is nothing to prove. Otherwise, this edge of
type C came from a sequence of polygons of type 1 consecutively glued along
their long sides. It is easily seen that for n sufficiently large, the segment
joining the middle points of two extremal long sides (that are then glued to
one another) is contained within the union of all polygons and that it defines
in Σn a closed geodesics which in turn gives rise to a cylinder of very large
modulus.

6.3. The cylinder of Σ∞ is contained within its core dilation surface.
There always is a sequence of subsurfaces of (Σn)n∈N converging geometrically
to the core dilation surface of Σ∞. The existence of a cylinder follows from
the fact that the property of having a cylinder is open in the parameter space
of (standard) dilation surfaces.

6.4. The cylinder of Σ∞ has infinite dilation ratio. We are now treating
the last and main case. Let γ be the closed geodesic of Σ∞. Recall that it
consists of a sequence of adjacent edges of type T and bits of geodesics going
from an entry point of the core dilation surface to a boundary component
(itself is glued to either a entry point or an edge of type T ).

Lift of γ in the core dilation surface. Consider a part of the closed geodesic
γ in Σ∞ that is contained in the core dilation surface : this part goes from
an entry point p to a boundary component ∂. In Σn, the entry point of Σ∞
correspond to either a small side s of a Type 1 triangle or it was already an
entry point. For n sufficiently large, all lines issued from s in the direction of
the geodesic of Σ∞ cross the same sides of the Delaunay polygonation of Σn

before intersecting the edge of the traingulation corresponding to the boundary
component ∂ of Σ∞ (see Figure 18. Thus, we obtain for any component of
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γ travelling from an entry point of Σ∞ a ”lift” to Σn for n sufficiently large.
Such a lift is a strip issued from the edge of the Delaunay triangulation that
had been contracted to an entry point in Σ∞ in the process of constructing
Σ∞ (this strip being reduced to a line segment if the entry point p was already
an entry point in Σn).

Lift of γ to the whole surface. We are now ready to lift the whole geodesic
to Σn. By hypothesis, γ goes across edges of type T . Such an edge e was
in Σn a collection of adjacent triangles of Type 1 glued along long sides. γ
had to enter e via either another edge of type T or a boundary component
of the core dilation surface. At any rate, this transition corresponds in Σn to
entering through the short side of one the adjacent triangles of Type 1. Let
s0 be this side.

Recall that we have the following:
given two adjacent type 2 polygons P1

and P2 whose short sides are on the
same side, then the polygon formed by
the union of P1 and P2 has to be con-
cave, see Figure 17. In particular, this
implies that for n sufficiently large, all
line segments issued from s0 ∈ Σ in the
direction of γ only cross long sides of
the finitely many polygons of Type 2
that are glued along. By definition, θ
the direction of γ is not the limiting di-
rection of the long side. Thus if n is
sufficiently large, any line segment is-
sued from a short side in the direction
of γ is going to exit the collection of
triangles of type 1 via the long side of
one of the extremal triangles, which we
call l.

Figure 17

We can thus consider the strip issued from s0 of line segment in direction θ
which goes straight from s0 to the boundary of the union of type 1 triangles.
Furthermore, when n tends to infinity, the ratio between the intersection of
this strip with the extremal long side l can be made arbitrarily small.

This strip issued from s0 either enters a new collection of triangles of type 1
corresponding to another edge of type T in Σ∞, for which l is now a short side,
and the argument above can be repeated. Otherwise, it enters the core dilation
surface via a side s which is the base of a lift of a part of γ in the core dilation
surface, defined in paragraph 6.4. The strip issued at s0 is from that point
onwards contained within that lift until it hits the side of the triangulation
corresponding to a boundary component of the core dilation surface of Σ∞,
see Figure 18. This side must be glued to either
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• a short side in a collection of type 1 triangles corresponding to an edge
of type T in the limit;
• an edge of type T .

Figure 18

At any rate the argument can be carried over until the strip issued at s0
gets back to s0. We have therefore managed to embed a strip in such a way
that one extremity is glued to back to a segment in the interior of the other
extremity (and the ratio between the extremity and the part to which the other
extremity is glued can be made arbitrary small provided n is taken sufficiently
large). This implies the existence of a cylinder of very large dilation ratio
(which would be infinite if the lift of γ in Σn contains an edge of type T ).

7. Proof of Theorem 1

In this Section we give a proof of Theorem 1, whose statement we recall for
the convenience of the reader

Theorem 8. For any closed dilation surface Σ, there is a dense set of direc-
tions θ such that the directional foliation Fθ has a periodic orbit. Equivalently,
the set of directions covered by a cylinder is dense in the circle S1.

7.1. Reduction to Proposition 10. We first reduce the proof of Theorem
8 to a statement about exotic dilation surfaces. We assume by contradiction
the existence of a dilation surface Σ0 such that Σ0 does not have any cylinder
covering a direction in an angular sector (θ1, θ2) (thought as a subset of RP1

and not of S1).

• Up to replacing Σ0 by an element of its SL(2,R)-orbit we can assume
that (θ1, θ2) contains [0, π2 ].
• We consider the sequence defined by

Σn =

(
en 0
0 e−n

)
· Σ0.
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Up to passing to a subsequence, we can assume that (Σn)n∈N Delaunay
converges to an exotic dilation surface Σ∞.

• Since the matrix

(
en 0
0 e−n

)
maps (θ1, θ2) onto an angular sector

(θ1(n), θ2(n)) with θ1(n) → 0 and θ2(n) → π, by virtue of Proposi-
tion 7, any cylinder of Σ∞ is in the horizontal direction (and therefore
is either a flat cylinder of an edge of type C).

We now want to control the moduli of cylinders of Σ∞. We have the following
Proposition, whose proof we postpone to paragraph 7.4.

Proposition 9. Let Σ be a dilation surface. There exists a constant M =
M(Σ) such that any cylinder in Σ has modulus less than Σ.

In particular the modulus of any dilation cylinder of Σ0 is uniformly bounded
by a constant M0. Consider such a cylinder C0, let θ0 be its angle and λ0 > 1

its multiplier. Recall that its modulus is 2
tan

θ0
2

λ−1 . We make the following

remark. The image of any angular sector (α1, α2) contained in the complement

of (θ1, θ2) by a matrix of the form

(
en 0
0 e−n

)
is never more than C|α2 −

α1 for a constant C depending only on (θ1, θ2). Thus the modulus of any
hyperbolic cylinder in Σn is never more than that of its pre-image in Σ0, up
to multiplication by a constant depending only on θ1 and θ2.
A similar but simpler argument guarantees that the images of flat cylinders in
Σn have modulus uniformly bounded, independently on n. We thus get that
cylinders in Σ∞ have uniformly bounded moduli.

Assuming the existence of a counterexample to Theorem 8, we have con-
structed a closed exotic dilation surface having the following property : all
its cylinders are flat, horizontal with finite modulus. Theorem 8 is thus a
consequence of the following Proposition.

Proposition 10. There is no closed exotic dilation surface all of whose cylin-
ders are horizontal and have bounded modulus.

7.2. Proof of Proposition 10. The proof goes by induction on the com-
plexity of the exotic dilation surface. We first prove the following claim to
initialise the induction.

Lemma 11 (Initialisation of the induction). A closed exotic dilation surface
of complexity 0 which does not contain an edge of type C has a closed geodesic
in any direction that is not a direction of an edge or a boundary direction of
an angular sector associated to a hole.

Proof. Consider any trajectory in a direction θ satisfying the hypothesis of
the lemma. In a complexity 0 exotic dilation surface, a trajectory is just a
sequences of edges. In the case where we exclude type C edges, such a trajec-
tory either finishes in a hole or is eventually periodic. At any rate there is a
closed geodesic in direction θ. �

We can now carry out the induction. Assume that there is no closed exotic
dilation surface of complexity less or equal to n satisfying the hypothesis of
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Proposition 10. Now assume that there is one of complexity n+ 1 that does,
call it Σ. The core dilation surface of Σ is nonempty, thus Σ has saddle
connections in at least two different directions (since it is polygonable). One
can then assume that Σ∞ carries a non-vertical saddle connection, say in a

direction d. Being given two directions d1 and d2, we denote by (gd1,d2t )t∈R
the Teichmüller flow (i.e. the flow generated by the associated one-parameter
subgroup of SL(2,R)) which contracts the direction d1 and dilates the direction
d2. The key tool we use to handle this case is contained in the statement of
the following Proposition, whose proof we postpone to the next paragraph.

Proposition 12. Let Σ be a dilation surface with boundary and γ a saddle
connection in direction d. For any θ ∈]0, π[, if the closure of the orbit in
positive time of Σ under gd,d+θ contains a dilation surface of same complexity
as the one of Σ then γ must be on the boundary of a hyperbolic cylinder of
angle θ.

By Lemma 6 the orbit of Σ under gd has an accumulation point Σ∞. The
action of the flow decreases the moduli of every vertical cylinder of Σ so that
Σ∞ also satisfies to the assumption of Proposition 10. Then, Proposition 14
implies that Σ∞ has strictly smaller complexity than Σ since we assumed that
the only cylinders that carries Σ∞ are vertical, which contradicts the induc-
tion hypothesis. � �

7.3. Proof of Proposition 12 (lowering the complexity). This subsec-
tion is devoted to the proof of Proposition 12. We simplify a bit the statement
of Proposition 12 by making the two following remarks

• one can only take into account the dilation part of the exotic dila-
tion surface, a dilation surface with boundary, since the complexity is
defined through it;
• once can conjugate everything by an element of SL2(R) mapping the

direction d to the vertical one and d+ θ to the horizontal;

Proposition 12 is then equivalent to

Proposition 13. Let Σ0 a dilation surface with boundaries that carries a hor-
izontal saddle connection and whose orbit under the Teichmüller flow contains
a dilation surface with same complexity, then the saddle connection must be
the boundary of at least one periodic hyperbolic cylinder of angle π/2.

Proof. By assumption, there is a dilation surface Σ∞ with the same com-
plexity as Σ0 together with a sequence of times tn −→

n→∞
∞ such that Σn :=

gtn(Σ0) −→
n→∞

Σ∞. Note that the property ’carrying a horizontal saddle con-

nection’ is a closed property as well as invariant under the action of the Te-
ichmüller flow. In particular, the images of the saddle connection γ must not
to collapse for otherwise we will have collided 2 singularities which would have
lowered the complexity of Σ∞, contradicting the main assumption of Propo-
sition 12.
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Therefore, one knows a priori that Σ∞ has a horizontal saddle connection γ∞.
We will no longer use the assumption on the complexity of Σ∞. The key point
of the proof is the

Lemma 14. With the notation introduced in Theorem 13 and the paragraph
above. The saddle connection γ∞ of Σ∞ is the boundary of a periodic hyper-
bolic cylinder of angle π/2.

Let us postpone the proof of the above key lemma to see first how to use it
in order to get the conclusions of Theorem 13. Since the property ’carrying
a hyperbolic cylinder (not necessary of angle π/2) whose boundary is a given
horizontal saddle connection’ is open and invariant under the Teichmüller flow,
one knows that Σ0 also carries a hyperbolic cylinder whose boundary is a hor-
izontal saddle connection. Such a cylinder must be periodic (of angle π/2)
since any other angle would lead to a divergent orbit under the Teichmüller
flow, contradicting the assumption of Theorem 13.

Proof of Proposition 14. In order to show that Proposition 14 holds, we
shall use the developing map associated to the middle point Mγ∞ of the saddle
connection γ∞.

We denote by s1∞ and s2∞ the 2 sin-
gularities on the boundary of γ∞. We
start by choosing a ’side’ of γ∞; if γ∞ is
on the boundary of Σ∞, we choose the
’side’ of it toward the interior of the di-
lation surface and if γ∞ is not then we
choose whichever side (the other choice
of side will give us another cylinder in
this case). Let us define the ’closest’
singularity smin

∞ to γ∞ (with respect
to the choice made on the developing
map) on the left of γ as the first sin-
gularity encountered when developing
disks from Mγ∞ in the (closed) half
plane whose boundary is γ∞ which is
not either s1∞ or s2∞, as illustrated on
the right.

s2∞

s1∞

Mγ∞

smin
∞

γ∞

The key point is to show that smin
∞ is aligned with γ∞. In order to show it, we

argue by contradiction (we could have argued by considering the contraposi-
tive of the statement but we decided not to for the sake of clarity). Assume
that smin

∞ is included in the open half plane left delimited by γ∞. We will
reach our contradiction by exhibiting another singularity which is closer to
γ∞. In order to do so, we rely on the assumption that Σ∞ is accumulated
by images under the Teichmüller flow of Σ0. For any n ∈ N we denote anal-
ogously by γn the horizontal saddle connection gtn(γ) of Σn, by (sin)i∈{1,2}
the two endpoints of γn, by Mγn the midpoint of γn and by smin

n the closest
point to γn as defined above. Since developing maps are continuous and since
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we assumed that Σn −→
n→∞

Σ∞, all the quantities indexed by n must converge

toward their ∞-indexed quantity through the developing map associated to
Mγn . In particular for all ε one can find n large enough such that all m ≥ n
all the quantities introduces above are ε close, see Figure 19. Let then m > n
such that tm − tn ≥ 1. By construction we have gtn−tm(Σm) = Σn. Note
that tn − tm ≤ −1 so that the Teichmüller flow is now dilating (by a definite
amount independent on n, m and ε) in the horizontal direction and contract-
ing the vertical one. Note also that the image of smin

m under gtn−tm must be
a singularity of Σm. Since ε is arbitrary, one can take it as small as for the
singularity gtn−tm(smin

m ) to be closer to γn than smin
m , see Figure 19, which gives

the desired contradiction.

s2m

s1m

Mγm

smin
m

s2n

s1n

Mγn

smin
n

gtn−tm(smin
n )

Figure 19. The quantity ε here corresponds to the radii of
all small red circles. The assumption that Σ∞ is the limit of
the Σnn allows us to measure with respect to all the developing
maps making errors of size ε at most with respect to what will
be measured with the developing map of Σ∞. The red dots
corresponds to the singularity of Σ∞. On the left what happens
on Σn and on the right on Σm. The two faded disks correspond
to the definitions of smin

n and smin
m . The arrow symbolises that

smin
m should be map to a singularity closed to γn that smin

n .

In particular, we proved that there is another horizontal saddle connection
continuing γ∞, the one relating smin

∞ and one of the two endpoints of γ∞.
One can now repeat the previous argument with this new saddle connection
together with γ∞ to get another horizontal saddle connection continuing the
two previous ones. In the end, one is left with a sequence of saddle connections
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continuing one another. Since there are at most finitely many horizontal saddle
connections in a dilation surface, such a sequence must be periodic. The
concatenation of these horizontal saddle connections form a closed curve. Since
any two consecutive saddle connections differ only by an angle π, this curve
becomes simple if moved slightly toward the left. Such a simple curve must be
the boundary of a cylinder and the angle of such a cylinder must be π/2 for
otherwise, repeating the argument of the beginning of this proof, Σ∞ would
not be in the closure of the Teichmüller orbit of Σ0. �

7.4. Proof of Proposition 9. We will need the following lemma.

Lemma 15. If C1 and C2 are cylinders in a dilation surface, if C1 ∩C2 6= ∅,
the modulus of one of the two cylinders is less than 1.

Proof. A cylinder can always be presented as a trapezoid as in the Figure 20
below.

R

Figure 20. The modulus of a cylinder is the modulus of a
rectangle inscribed in it.

The modulus of a cylinder is exactly the ratio length/height of the rectangle R
inscribed in the trapezoid. Consider two cylinders C1, C2 whose correspond-
ing rectangles have respective heights h1, h2 and lengths l1, l2. If C1 and C2

intersect (see Figure 21) we see that l1 ≥ h2 and l2 ≥ h1. Let Mi = li
hi

be the
modulus of Ci. We see that

M1M2 ≤ 1.

In particular at least either M1 or M2 is less than 1. �

We can now prove Proposition 9. Assume that there are cylinders of arbitrary
large moduli. Since two different cylinders always define two different free
homotopy class, we can always find arbitrary cylinders of arbitrarily large
moduli which intersect. This contradicts Lemma 15. �
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