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Widely used approaches for extracting phylogenetic information from aligned sets of molecular sequences rely upon probabilistic models of nucleotide substitution or amino-acid replacement.

The phylogenetic information that can be extracted depends on the number of columns in the sequence alignment and will be decreased when the alignment contains gaps due to insertion or deletion events. Motivated by the measurement of information loss, we suggest assessment of the Effective Sequence Length (ESL) of an aligned data set. The ESL can differ from the actual number of columns in a sequence alignment because of the presence of alignment gaps. Furthermore, the estimation of phylogenetic information is affected by model misspecification. Inevitably, the actual process of molecular evolution differs from the probabilistic models employed to describe this process. This disparity means the amount of phylogenetic information in an actual sequence alignment will differ from the amount in a simulated data set of equal size, which motivated us to develop a new test for model adequacy. Via theory and empirical data analysis, we show how to disentangle the effects of gaps and model misspecification. By comparing the Fisher information of actual and simulated sequences, we identify which alignment sites and tree branches are most affected by gaps and model misspecification.

INTRODUCTION

Conventional information criteria such as the AIC [START_REF] Akaike | A new look at the statistical model identification[END_REF]) and the BIC [START_REF] Schwarz | Estimating the dimension of a model[END_REF]) can be used to compare models of sequence change (e.g., [START_REF] Posada | MODELTEST: testing the model of DNA substitution[END_REF][START_REF] Posada | Model selection and model averaging in phylogenetics: advantages of Akaike Information Criterion and Bayesian approaches over likelihood ratio tests[END_REF]Seo andKishino 2008, 2009). Relative to nucleotide substitution or amino acid replacement, less attention has been devoted to the effects of insertion and deletion when applying information criteria. One option for treating insertion and deletion is to explicitly include them in probabilistic models of sequence change (e.g., [START_REF] Thorne | An evolutionary model for maximum likelihood alignment of DNA sequences[END_REF][START_REF] Thorne | Inching toward reality: an improved likelihood model of sequence evolution[END_REF][START_REF] Hein | Statistical alignment: computational properties, homology testing and goodness-of-fit[END_REF][START_REF] Metzler | Statistical alignment based on fragment insertion and deletion models[END_REF][START_REF] Redelings | Joint Bayesian estimation of alignment and phylogeny[END_REF][START_REF] Fleissner | Simultaneous statistical multiple alignment and phylogeny reconstruction[END_REF][START_REF] Bouchard-Côté | Evolutionary inference via the Poisson Indel Process[END_REF][START_REF] Holmes | A Model of Indel Evolution by Finite-State, Continuous-Time Machines[END_REF][START_REF] Maio | The Cumulative Indel Model: Fast and Accurate Statistical Evolutionary Alignment[END_REF]. While explicit treatment is biologically and statistically appealing, it can be accompanied by daunting computational challenges.

A conventional and computationally convenient alternative to explicit probabilistic insertiondeletion models is to assume that the alignment between sequences is known with certainty. This alternative treats alignment gaps as data that are missing at random (e.g., see Felsenstein 2004), but can be especially problematic when there is substantial alignment uncertainty. Methods exist for identifying alignment columns that are prone to alignment error so that these columns need not be included in downstream analyses (e.g., [START_REF] Talavera | Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments[END_REF][START_REF] Dress | Noisy: identification of problematic columns in multiple sequence alignments[END_REF][START_REF] Capella-Gutierrez | trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses[END_REF]. However, some studies have questioned the value of filtering alignment columns in this way because removing some columns will reduce evolutionary information and may affect the reliability of downstream analyses [START_REF] Dessimoz | Phylogenetic assessment of alignments reveals neglected tree signal in gaps[END_REF][START_REF] Tan | Current methods for automated filtering of multiple sequence alignments frequently worsen single-gene phylogenetic inference[END_REF].

In this study, we quantify the informativeness of gap-containing columns. Because gaps are being considered as missing data, a simple and intuitive set of summary statistics regarding informativeness would be the proportions of gap positions in each aligned column and in each aligned sequence. Higher proportions of gaps would represent more missing data. A limitation of these summary statistics is they do not incorporate correlations among aligned sequences that are due to common ancestry. The effect on informativeness due to the presence of a gap at one position in a single aligned sequence will depend on which other sequences share the gap as well as on the phylogenetic relationships between the sequences.

Here, we rely upon the Fisher information to assess the impact of gaps. With an abundance of gaps, the curvature of the log-likelihood function at the maximum likelihood estimate (i.e., the Fisher information) becomes gradual relative to the more extreme curvature with an absence of gaps. By simulating sequence evolution and then introducing gaps where data should be missing, the information loss caused by gaps can be quantified. However, the Fisher information is affected both by presence-absence of gaps and model misspecification. These can be difficult to disentangle.

Whereas the difference in Fisher information between complete (i.e., ungapped) and incomplete (i.e., gap-containing) data is straightforward to assess via simulation, actual aligned data are generated according to an unknown process and ungapped versions of the actual gap-containing data are unavailable.

To quantify the impact of gaps, our approach contrasts simulated gap-containing data with the corresponding complete version of the simulated data. To assess model misspecification, the approach contrasts actual gap-containing data with simulated gap-containing data. Building upon previous work regarding model adequacy [START_REF] Goldman | Simple diagnostic statistical tests of models for DNA substitution[END_REF][START_REF] Duchêne | Differences in Performance among Test Statistics for Assessing Phylogenomic Model Adequacy[END_REF], we show that the ability to quantify model misspecification can form the basis for a goodness-of-fit test with the observed gap-containing data.

The ability to disentangle the gap and model misspecification effects permits us to compare Physical Sequence Length (PSL) and Effective Sequence Length (ESL). Whereas PSL is observable and is the number of columns in the sequence alignment, ESL represents the number of columns in 3 an ungapped alignment that would be needed to match the informativeness of an alignment with the observed PSL and the observed gap locations.

After introducing our statistical approach, we characterize it via simulation and then apply it to data sets of protein sequences from eukaryotes, nucleotide sequences from ray-finned fish, and nucleotide sequences from mouse lemurs. Based on the simulations, our test of model adequacy has low power but our ESL estimates are relatively robust to model misspecification. We conclude by discussing refinements and extensions of our approach.

THEORY

Basic assumptions

Our approach has three key assumptions. First, it assumes that the alignment relating the sequence data is correct. Second, the aligned sequence columns are assumed to be independently and identically distributed random samples. Third, the approach assumes that no information is contained in gaps and this implies that the nucleotide substitution (or amino acid replacement) process is independent of the insertion-deletion processes. All three assumptions are standard in phylogenetics and the first two are widely acknowledged (e.g., see Felsenstein 2004).

The third assumption permits reliance upon likelihood-based treatments of aligned sequence data that include explicit models of nucleotide substitution (or amino acid replacement) but that do not include explicit models of insertion and deletion. Our likelihoods represent the probabilities of aligned sequence data conditional upon the substitution model, its parameter values, and the evolutionary tree that relates the aligned sequences. With this third assumption, likelihoods can be calculated by treating the alignment gaps as data that are missing at random. Rather than modeling the missing data process, the likelihoods condition upon which data are missing. In the DISCUSSION, we discuss this assumption of independence between substitution and insertiondeletion in more detail.

Measuring Fisher Information of sequence data

Consider the true and unknown data-generating mechanism gp¤q and the adopted model f p¤|θq, where θ is a d-dimensional vector. Although the Fisher information is represented by a matrix when there is more than one parameter, we discuss the univariate case for the convenience of explanation. A more general description can be found in the APPENDIX and key mathematical notation is summarized in Table 1.

Using the log-likelihood function lp¤q at the maximum likelihood estimate (MLE; θ), we represent the estimate of Fisher information for the ith parameter θ i of the adopted model f p¤|θq,

¡ 1 n d 2 dθ 2 i lp θq ¡ 1 n n j1 d 2 dθ 2 i log f px pjq | θq : p Ĩgfii (1) E g ¡ d 2 dθ 2 i log f p X| θq & E g ¡ d 2 dθ 2 i log f p X|θ ¦ q & : Ĩgfii (2)
where n is the sequence length and xpjq is the jth potentially gap-containing (i.e., incomplete) sequence column. The notation ':' means the term on the right is defined as the term on the left.

The ' ˜' sign over the data xpjq and over the Fisher information Ĩp¤q implies the data may potentially contain gaps. The first and second subscript indices of p Ĩgfii and Ĩgfii respectively represent the true and adopted models, while the third and fourth indices represent the row and column position in the Fisher Information matrix. Although only diagonal elements of the Fisher information are considered here, the theory can be generalized to incorporate the off-diagonal elements (see APPENDIX [C]). To emphasize this, we intentionally adopt double indices for the explanation of univariate Fisher information.

As n increases, the MLE θ approaches an unknown value θ ¦ that minimizes the Kullback- Leibler divergence (KLD) between gp¤q and f p¤|θq [START_REF] White | Maximum likelihood estimation of misspecified models[END_REF]see APPENDIX [B]). Importantly, the Hessian of the KLD is the Fisher information and the KLD serves as a central connection between the fields of information theory and statistics. In the following, we describe our theory via Fisher information rather than KLD for the convenience of statistical description.

The empirically obtained p

Ĩgfii in Equation (1) can serve as estimates of Ĩgfii in Equation (2).

In the definition of Ĩgfii in Equation ( 2), the expectation E g r¤s is performed with respect to the true distribution gp¤q because the xpjq in Equation (1) were generated by gp¤q rather than f p¤|θq.

Paralleling the definitions of p

Ĩgfii and Ĩgfii for incomplete data in Equations (1,2), we define the Fisher information for complete data,

I gf ii : E g ¡ d 2 dθ 2 i log f pX|θ ¦ q & ,
where X is a random variable representing a complete sequence column. That is, I gf ii is the Fisher information of θ i when there are no gaps.

The ratio Ĩgfii {I gf ii is the relative amount of information from incomplete data when compared to complete data. This ratio is not identifiable. Ĩgfii can be estimated from given incomplete data via Equation ( 1), but I gf ii cannot be determined because complete (ungapped) data are unavailable.

I gf ii cannot be estimated via simulation because the true process gp¤q is unknown.

Using the adopted model f p¤|θq, I f f ii can be estimated via simulation,

I f f ii : E f ¡ d 2 dθ 2 i log f pY |θ ¦ q & ¡ 1 nm nm j1 d 2 dθ 2 i log f py pjq | θq : p I f f ii , (3) 
where m is a large integer that can be arbitrarily determined based on the preference of estimation precision and computation time. For the convenience of calculation, we set the simulated data size to be exactly m times the original data size n.

Similar to the definition of Ĩgfii in Equation ( 2), Ĩffii and its estimate from simulated incomplete data can be defined,

Ĩffii : E f ¡ d 2 dθ 2 i log f p Ỹ |θ ¦ q & ¡ 1 nm nm j1 d 2 dθ 2 i log f pỹ pjq | θq : p Ĩffii , (4) 
where ỹpjq is generated by replacing some nucleotides in y pjq with gaps. The data size of Equations (3,4) is m times the original data size n, where the gaps in each column of x are copied into m columns when generating ỹ. Specifically, the gap pattern of xpjq p1 ¤ j ¤ nq is copied into sites j, tn ju, t2n ju, ¤ ¤ ¤ , tpm ¡ 1qn ju of ỹ. These sites are therefore correlated in terms of gap pattern and these sites are resampled simultaneously during our bootstrap procedure (see the following subsection).

Instead of the unidentifiable ratio Ĩgfii {I gf ii , consider the identifiable ratio Ĩgfii {I f f ii , Ĩgfii

I f f ii Ĩffii I f f ii ¤ Ĩgfii Ĩffii : G i ¤ M i , p Ĩffii p I f f ii ¤ p Ĩgfii p Ĩffii : p G i ¤ x M i (5) 
where G i will be referred to as the 'Gap factor' or 'G-Factor' for the ith parameter of model f p¤|θq and where M i will be referred to as the 'Model factor' or 'M-Factor' for the ith parameter. The G-Factor G i represents the proportion of information that remains after gaps are inserted. The range of the G-Factor is 0 ¤ G i ¤ 1. Using identical simulated data in conjunction with gap copying as in Equations (3,4) is very likely to restrict the estimated ratio of p G i to be equal to or less than 1. Furthermore, p G i 0 when only gaps are present and p G i 1 for complete data. Our empirical observation is that the G-Factor is robust for different choices of the model f p¤|θq (see RESULTS ).

Because of this robustness, we expect that the G-Factor will be similar to the unidentifiable ratio Ĩgfii {I gf ii when some care is taken in choosing f p¤|θq.

The M-Factor M i represents the 'goodness of fit' of data to the model. When the adopted model is correct (f g), M i 1. Whereas p G i is very unlikely to exceed 1, x M i varies around 1 when the adopted model is correct. If x M i significantly deviates from 1, this indicates model misspecification.

After the 'parameter-wise' G-Factors (i.e., the G i 's) and M-Factors (i.e., the M i 's) are estimated, an 'overall' G-Factor G and an 'overall' M-Factor M for the phylogeny can be inferred via weighted averages of parameter-wise values, G :

d i1 u i G i d i1 p u i p G i : p G (6) M : d i1 v i M i d i1 p v i x M i : x M , (7) 
where the u i and v i represent weights. As explained in the APPENDIX [B], these weights are

u i : I 2 f f ii °i I 2 f f ii p I 2 f f ii °i p I 2 f f ii : p u i (8) v i : I f f ii Ĩffii °i I f f ii Ĩffii p I f f ii p Ĩffii °i p I f f ii p Ĩffii : p v i . (9) 
Bootstrap procedure to measure uncertainty of G-Factors and M-Factors

To assess the uncertainty of the overall G-Factor p G (Equation ( 6)) and the overall M-Factor x 

p Ĩ¦ gf ii 1 n n ŗ1 x ¦ r p Ĩffii 1 nm nm ŗ1 y r , p Ĩ¦ f f ii 1 nm nm ŗ1 y ¦ r p I f f ii 1 nm nm ir z r , p I ¦ f f ii 1 nm nm ir z ¦ r . (10) 
Resampling x ¦ r follows a simple and conventional RELL-like procedure with

x ¦ r : x pprq pr 1, ¤ ¤ ¤ , nq, (11) 
where pprq is a uniformly and randomly selected integer from 1 to n. After obtaining the x ¦ r , we reuse their pprq indices for generating the y ¦ r and z ¦ r . Because the gap pattern of x j is copied to columns j, tn ju, t2n ju, ¤ ¤ ¤ , tpm¡1qn ju of y, we mimic this dependency during bootstrapping.

To do this, we use the stored pprq indices and define the resampled y ¦ p¤q as y ¦ r pk¡1qn :

y pprq pk¡1qn 3 p Ĩ¦ gf ii ¡ p Ĩgfii A pk 1, ¤ ¤ ¤ , mq (12) 
where r 1, ¤ ¤ ¤ , n. 

I f f ii { p Ĩffii ¡ p I f f ii A pk 1, ¤ ¤ ¤ , mq. (13) 
The translocation factor 

3 p Ĩ¦ f f ii p I f f ii { p Ĩffii ¡ p I f f ii A of

Model adequacy: Hypothesis test of M-Factors

In Equation ( 5), M 1 if g f . Thus, large absolute values of t x M ¡ 1u suggest model misspecification. We develop a hypothesis test in which the null hypothesis is g f and the test statistic

is x M ¡ 1 .
Here, we describe a test for the overall M-Factor that has a null hypothesis of M 1, but the approach also can be applied to parameter-wise M-Factors (i.e., M i 's).

To test for a deviation of x

M from 1, we use the following approximation of distributions,

3 x M ¡ 1 A d 3 x M ¦piq ¡ x M ¦ A , (14) 
where x M ¦piq is the overall M-Factor estimate from the ith resampled data, and x M ¦ is the average x M ¦piq . Following the guideline of 'bootstrap centering' [START_REF] Hall | Two guidelines for bootstrap hypothesis testing[END_REF], we measure the significance of x

M ¡ 1 via the distribution of x M ¦piq ¡ x M ¦ . For our two-tailed test of x M 1, the p-value of x M ¡ 1 is estimated as 1 B B i1 I ¡ x M ¦piq ¡ x M ¦ ¡ x M ¡ 1 © , ( 15 
)
where B is the number of bootstrap samples and the indicator variable Ip¤q is 1 if the condition within the parentheses is satisfied and is 0 otherwise.

ESL vs. PSL

We refer to the number of alignment columns n in the observed data as the 'Physical Sequence is n e : nG where G is given in Equation ( 6). For a given incomplete sequence data set, PSL can be directly observed whereas ESL is not directly observable but can be estimated via Fisher information and PSL.

We can also consider 'sitewise ESL (s-ESL)' and 'site-parameter-wise ESL (sp-ESL)'. The basic idea is to separate the total ESL into components for each site or into components that represent each combination of site and parameter. To simplify notation, define l 2 pjq ii as the second derivative at the jth site of Equation ( 1),

l 2 pjq ii : d 2 dθ 2 i log f px pjq | θq.
By using Equations (5 -9), we represent p 

n e as p n e : n p G n d i1 p u i p G i d i1 p u i n j1 5 ¡l 2 pjq ii p I f f ii x M i C' : d i1 p u i n j1 2 p n pi,jq e @ ' ( 16 
) d i1 p u i 5 n j1 ¡l 2 pjq ii p I f f ii x M i C' : d i1 p u i 2 p n pi,¤q e @$ (17) n j1 5 d i1 ¡p u i l 2 pjq ii p I f f ii x M i C n j1 5 d i1 p u i p n pi,jq

RESULTS

We studied our approach with simulations and applied it to both DNA and protein sequence data.

As discussed in more detail in the APPENDIX [C], our implementation only considers the diagonal elements of the Fisher Information matrix and branch lengths are the only parameters represented in our Fisher Information estimates. We demonstrate with our empirical data analyses that model violations can be detected via their effects on Fisher information related to branch-length parameter estimates.

Simulation studies

We performed three-step simulations to evaluate our procedure for estimating the G-Factor (G)

and M-Factor (M ):

Step 1: Sequence generation

Figure 1 shows a phylogeny of 12 taxa. All branch lengths on this phylogeny are 0.1 nucleotide substitutions per site. The PSL (n) of the simulated original data is 1000. The odd-numbered taxa in Figure 1 have exclusively gaps in their final n{2 500 sites. The ungapped nucleotide data were generated with the GTR+Gamma model [START_REF] Tavaré | Some probabilistic and statistical problems on the analysis of DNA sequences[END_REF]Yang 1994aYang , 1994b) ) and with nucleotide frequencies of A, C, G, and T respectively being 0.2, 0.3, 0.2, and 0.3. The rate matrix parameters were set to 0.7 (AØC), 0.8 (AØT), 10.0 (AØG), 5.0 (CØT), 0.9 (CØG) and 1.0 (TØG). A discrete-gamma model with 5 categories and α 1.0 (Yang 1994b) was used to incorporate rate heterogeneity among sites.

Step 2: Estimation Each simulated data set was analyzed with the GTR+Gamma, TN93+Gamma [START_REF] Tamura | Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees[END_REF] and JC+Gamma [START_REF] Jukes | Evolution of protein molecules[END_REF] models. Using each adopted model, we generated an extremely long sequence data set with m 100 (see Equations (3, 4)) and then estimated the G i 's, M i 's, G, and M .

Step 3: Uncertainty assessment

After estimating the G-Factors and M-Factors, we applied the RELL-like bootstrap procedure with B=500 replicates. These replicates allowed precise estimation of the variability of G-Factors and M-Factors as well as testing of M 1.

Repetition: Steps 1-3 were repeated 500 times to yield 500 p-values for the model adequacy test of M 1 as well as 500 sets of x

M , p G, x M i 's, and p G i 's.
The simulated alignments and the underlying phylogeny (see Figure 1) were designed to have three-fold symmetry between the taxon subsets T 1 -T 4 , T 5 -T 8 , and T 9 -T 12 . Because of the symmetry and because all odd-numbered taxa have gaps in their final 500 sites, we focus only on the branches b 1 -b 4 (see Figure 1). For each of these branches, we obtained a p G i value for each of the 500 simulated data sets.

In the analysis with the GTR+Gamma model, the average and standard deviations of p G i for b 1 -b 4 are respectively 0.500 (¨3.00 ¢ 10 ¡4 ), 0.673 (¨1.35 ¢ 10 ¡3 ), 0.742 (¨1.66 ¢ 10 ¡3 ) and 0.882 (¨6.92 ¢ 10 ¡4 ). Because T 1 has gaps in half of its sites, p G 1 0.500 is consistent with the simulation setting. Although T 2 is complete (i.e., ungapped), p G 2 is less than 1 because of the effects of gaps in other sequences. This illustrates the point made in the INTRODUCTION that a simple gap proportion is a flawed measure for information loss. For the internal branch b 3 , the average G-Factor p G 3 is less than 1 but greater than p G 2 . This suggests gaps have a stronger effect on information in terminal than interior branches, presumably because information about interior branches is more evenly distributed among sequences. The average G-Factor p G 4 is presumably greater than p G 3 because internal branch b 4 is farther from the gaps of T 1 than is internal branch b 3 . Among the 500 simulated data sets, the average overall p G is 0.631 (¨6.68 ¢ 10 ¡4 ) which is less than the 0.75 proportion of alignment positions that are ungapped.

For each of the 500 simulated data sets and for each of the three substitution models, we tested model adequacy via a null hypothesis of M 1. If the null hypothesis is true and the model adequacy test functions as intended, the distribution of x

M ¡ 1 should be well approximated by

x M ¦ ¡ x M ¦ so that P p x M ¦ ¡ x M ¦ x
M ¡ 1.0q has a uniform distribution between 0 and 1. First, we explored the case where the null hypothesis was true because the GTR+Gamma model was used for both simulating and analyzing the data. For each of the simulated data sets, x

M was estimated and then 500 bootstrap replicates were employed to approximate

P p x M ¦ ¡ x M ¦ x M ¡ 1.0q.
The concentration around 0.5 in Figure 2A differs from a uniform distribution and indicates that the This conservative nature of the model adequacy test is presumably because it relies upon "plugin" parameter estimates rather than actual values of parameters when approximating the test statistic distribution. This "plug-in" nature of our approach can produce conservative or anticonservative hypothesis tests [START_REF] Robins | Asymptotic distribution of P values in composite null models[END_REF]. However, the conservativeness will decrease as n increases. Although a derivation is omitted, the difference between second derivatives at the true θ and at the MLE θ is bounded in probability with the order of n ¡1{2 (for a definition of 'bounded in probability', see [START_REF] Bishop | Discrete multivariate analysis[END_REF]. Because the variances of the original and bootstrapped M-Factor estimates are asymptotically equal (see Supplementary Information [B]), the conservative nature of our model adequacy test should be diminished when n is large.

t x M ¦ ¡ x M ¦ u test
When the null hypothesis is wrong, P p x M ¦ ¡ x M ¦ x M ¡ 1.0q will be concentrated around 0 or 1 if the model adequacy test has power to reject the null hypothesis. For the case where JC+Gamma was the adopted model but the truth was GTR+Gamma, Figure 2B summarizes the histogram of We inferred the maximum likelihood tree with the LG+Gamma model [START_REF] Le | An Improved General Amino Acid Replacement Matrix[END_REF]) by using RAxML software version 8.24 [START_REF] Stamatakis | RAxML Version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies[END_REF]) along with a 4-category discretized gamma distribution to incorporate rate heterogeneity among sites (Yang 1994b). For the estimation of G-Factors and M-Factors, we applied four amino acid models: LG+Gamma, WAG+Gamma [START_REF] Whelan | A general empirical model of protein evolution derived from multiple protein families using a maximum likelihood approach[END_REF], JTT+Gamma [START_REF] Jones | The rapid generation of mutation data matrices from protein sequences[END_REF]) and Dayhoff+Gamma [START_REF] Dayhoff | A model of evolutionary change in proteins[END_REF].

P p x M ¦ ¡ x M ¦ x M ¡ 1.
Assuming the maximum likelihood tree topology and these four substitution models, the maximum log-likelihood scores were respectively -490769.53, -494591.39, -500473.62, and -500900.11. the correct model (LG+Gamma) is adopted for analyzing the simulated data, the parameter-wise M-Factors are distributed around 1 with a mean of 0.999 and a standard deviation of 0.022. In contrast, the M-Factors from the actual data tend to be substantially less than 1. Among the 107 branches on the eukaryotic tree, all yield M-Factors that are less than 1. These estimates from the actual data have a maximum of 0.947, a minimum of 0.626, a mean of 0.873, and a standard deviation of 0.0653. The contrast between the results from simulated and original data implies that the substantially smaller M-Factors from the original data are not artefacts.

Evaluation of filtering scheme: By using the Gblocks filtering program [START_REF] Castresana | Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis[END_REF] with options that were slight modifications of the defaults, Derelle and Lang (2012) removed 2759 gap-containing sequence columns from the original sequence data. We measured the sitewise ESL (s-ESL) of positions that were removed by [START_REF] Derelle | Rooting the Eukaryotic Tree with Mitochondrial and Bacterial Proteins[END_REF]. A high value of s-ESL implies consistency of the column with the reconstructed phylogeny. About 6% (167 of 2759) of the removed sites had an s-ESL that exceeded 5. In contrast, only about 2% (180 of 8741) retained sites exceeded 5. This suggests that Gblocks tends to remove sites with high information content. Figure 4 displays the s-ESL distributions among removed and retained sites. It has been suggested that Gblocks tends to remove too many gap-rich columns from data sets (e.g., [START_REF] Tan | Current methods for automated filtering of multiple sequence alignments frequently worsen single-gene phylogenetic inference[END_REF]. The relatively high frequency of high s-ESL values among removed sites is consistent with the possibility that the removed sites actually contain substantial phylogenetic information.

The s-ESL distributions in Figure 4 are skewed because the distribution of sitewise second derivatives is highly skewed. Our experience is that a large proportion of sitewise Fisher information values (i.e., negative second derivatives) are distributed near zero and some are even negative. A relatively small proportion of sites show large positive values of sitewise Fisher information. For this reason, the resampled data with our RELL-like procedure often will not closely approximate the original skewed distribution for small sequence lengths n. This unsatisfactory behavior when n is small is characteristic of RELL-like procedures.

Empirical data analysis 2: Ray-finned fish DNA sequences

To illustrate the approach with aligned nucleotide sequences, we used a ray-finned fish data set [START_REF] Li | Optimal data partitioning and a test for Ray-Finned fishes (Actinopterygii) based on ten nuclear loci[END_REF] Although there is compelling justification for analyzing these fish data with more parameter-rich modeling frameworks [START_REF] Li | Optimal data partitioning and a test for Ray-Finned fishes (Actinopterygii) based on ten nuclear loci[END_REF] Relative to the parameter-wise G-Factor estimates, the parameter-wise M-Factor ( x M i ) estimates from the ray-finned fish data show more variability among models. The overall M-Factor is 0.8667 (¨6.7 ¢ 10 ¡3 ) for the GTR+Gamma model. This is significantly different from 1 (p-value 3 0.01).

The overall M-Factor was 0.8711 (¨6.7 ¢ 10 ¡3 ) for the TN93+Gamma model and 0.8971 (¨4.9 ¢ 10 ¡3 ) for JC+Gamma. As was the pattern when applying amino acid replacement models to the eukaryote protein data, these M-Factor estimates are consistent with the possibility that the difference between the true data-generating mechanism and these substitution models is far greater than the differences between these substitution models. Others have also concluded that widely-used models of sequence change provide poor fits to real data. For example, Chen et al. ( 2019) introduced a model adequacy test that strongly rejected the GTR+Gamma+"Invariant Sites" model for most of the data sets to which it was applied. The sp-ESL values are influenced by the estimated length of the branch to which they correspond and also by the strength of evidence that the site changed or did not change on the branch. Large positive sp-ESL values occur when there is strong evidence that a site changed on a short branch.

Interpretation of ESL:

When a site is unlikely to have changed on a short branch, sp-ESL values will tend to be slightly below zero. When evidence is weak regarding whether a site did or did not change on a branch, sp-ESL values will be close to 0. Weak evidence can stem from a combination of reasons including long branches, branches that are far from any tips of the tree, an abundance of gaps at a site, and changes at the site at multiple branches that are sufficiently nearby on the tree as to make the most parsimonious mapping of the site unreliable.

With our implementation, Fisher information concerning branch lengths is considered but Fisher information concerning rate and nucleotide frequency parameters is not. Therefore, a site must have at least two meaningful molecular characters to have a non-zero s-ESL value. This is because two characters correspond to a path in the phylogeny and thereby contain information for branch length estimation.

It is helpful to compare the ray-finned fish phylogeny of Figure 5 to the sites depicted in Table 2. Site #5242 of Group A in Table 2 has the highest s-ESL value (168.4) among all 7995 sites. This site appears to have experienced a change from G to A on the shortest branch of the phylogeny (i.e., the branch that ends at the most recent common ancestor of Taxa #47-56 in Figure 5). In fact, four of the five sites in Group A of Table 2 appear to have experienced a change on this shortest branch. These changes lead to large positive sp-ESL values that have a substantial influence on membership in Group A. To provide a contrast to the sites in Group A of Table 2, the sites of Group C were selected because they appear to have experienced a change on the moderately long branch of Figure 5 that ends with the most recent common ancestor of Taxa #9-56. Among all sp-ESL values for this branch, the sites in Group C yield the highest sp-ESL values. Because this branch is not short, these sites have s-ESL values that are not far above 0. By adopting the GTRGAMMA model for the mt-DNA and the GTRCAT model for the n-DNA, we estimated the maximum likelihood phylogeny for the two data sets with RAxML software version 8.24 [START_REF] Stamatakis | RAxML Version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies[END_REF].

For the mt-DNA, only 46 of 107 branch length estimates are non-zero. Because our theory depends on branch length estimates having asymptotically normal distributions, its performance will be hampered when estimates are at or near their smallest possible value of zero (e.g., see Susko and Roger 2019). Therefore, we developed weak, moderate, and stringent constraints that can be used to identify branches whose length is reasonably far from zero (see Supplementary Information

[C]). The idea is to exclude branches that do not satisfy the constraints from G-factor and Mfactor calculations. As explained in the Supplementary information, the moderate constraints seem to strike an appropriate balance between excluding branches that are not well approximated by a normal distribution and not excluding too many branches. All branches from the ray-finned fish DNA data, the eukaryotic protein data, and the mouse lemur n-DNA satisfy the moderate constraints. However, only 19 of the 107 branches of the mouse lemur mt-DNA satisfy the moderate constraints.

With only 19 branches being used for the analysis, the mt-DNA G-Factor and M-Factor estimates are 0.596 p¨0.0421q and 0.955 p¨0.0288q. For the n-DNA, the G-Factor and M-Factor estimates are 0.810 p¨0.00689q and 0.689 p¨0.00993q. These n-DNA estimates have substantially less uncertainty than the mt-DNA estimates due to the larger amount of sequence data and the fact that no branches are excluded by the constraints.

Applicability of ESL for filtering or bootstrap

For both the eukaryotic and ray-finned fish data, we performed the experiment of removing sites with negative s-ESL values, re-estimating the phylogeny, and then measuring bootstrap support of the maximum likelihood phylogeny. Some branches showed increased bootstrap support, but others showed decreases and there was no strong pattern of overall increase or decrease (data not shown). As illustrated in Figure 6 When a molecular phylogenetics study is performed, we suggest that both the ESL and the PSL be reported. If the ESL is substantially less than the PSL, investigators should consider potential sources of the disparity and how they might impact phylogenetic inferences. We discuss these issues in more detail below.

One possible cause of the PSL greatly exceeding the ESL is insertion and deletion events that occurred during the evolutionary history of the sequence data being analyzed. A large disparity between the PSL and ESL does not necessarily mean that alignment uncertainty is problematic for a phylogenetic analysis, but it is consistent with this possibility. When such a disparity occurs, more than a usual amount of attention to alignment uncertainty may be warranted. It might be possible to apply the sitewise s-ESL measure to the detection of alignment error or to have s-ESL clarify whether filtering of alignment columns removes noise or hampers meaningful signal (e.g., [START_REF] Talavera | Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments[END_REF][START_REF] Dress | Noisy: identification of problematic columns in multiple sequence alignments[END_REF][START_REF] Capella-Gutierrez | trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses[END_REF][START_REF] Dessimoz | Phylogenetic assessment of alignments reveals neglected tree signal in gaps[END_REF][START_REF] Tan | Current methods for automated filtering of multiple sequence alignments frequently worsen single-gene phylogenetic inference[END_REF]. If not for its computationally demanding nature, our preferred option would be to treat alignment uncertainty with a probabilistic model of insertion and deletion (e.g., [START_REF] Redelings | Joint Bayesian estimation of alignment and phylogeny[END_REF]).

An alternative but not mutually exclusive cause of PSL greatly exceeding ESL is that alignment gaps may represent sequence data that have not been collected for some taxa. We note that such uncollected sequence data are not necessarily missing "at random" because uncollected sequence data may be more diverged or may otherwise collectively differ from sequence data that are collected and that are therefore represented in a sequence alignment. Ascertainment bias warrants careful attention for phylogenetic inference (e.g., [START_REF] Felsenstein | Phylogenies from restriction sites: a maximum-likelihood approach[END_REF][START_REF] Leaché | Short tree, long tree, right tree, wrong tree: new acquisition bias corrections for inferring SNP phylogenies[END_REF][START_REF] Tamuri | Avoiding ascertainment bias in the maximum likelihood inference of phylogenies based on truncated data[END_REF] and also for downstream analyses such as divergence time estimation.

Our approach relies on the conventional phylogenetic treatment of gaps as data that are missing at random. This conventional treatment is justified if the substitution process is independent of the insertion-deletion process and if ascertainment bias of uncollected data can be neglected. With these provisos, the conventional treatment of gaps will not cause bias in phylogenetic estimation.

Our model adequacy test could be modified to examine a null hypothesis of independence between insertion-deletion and substitution. There is ample justification for examining this hypothesis.

For example, amino acid replacement and insertion-deletion are correlated through protein structure. In fact, early methods utilized gaps in multiple sequence alignments to predict coils in protein secondary structure and they further leveraged patterns of amino acid variability within alignment columns to discriminate between coils, α-helices, and M -strands (e.g., [START_REF] Benner | Patterns of divergence in homologous proteins as indicators of secondary and tertiary structure: a prediction of the structure of the catalytic domain of protein kinases[END_REF][START_REF] Thornton | Prediction of progress at last[END_REF].

The assumption of independence between nucleotide substitution and insertion-deletion can be biologically unrealistic because of both natural selection and mutation. The reason why natural selection might violate the independence assumption is straightforward. Both point mutations and insertion-deletion mutations are likely to be selected against in genomic regions that are functionally constrained. The result is that there can be a positive correlation among genomic regions between the rate at which point mutations and insertion-deletion mutations fix (e.g., see [START_REF] Sjödin | Insertion and deletion processes in recent human history[END_REF]).

In addition, insertion-deletion and nucleotide substitution might be correlated due to mutation.

For example, [START_REF] Tian | Single-nucleotide mutation rate increases close to insertions/deletions in eukaryotes[END_REF] suggest that segregating insertion-deletion polymorphism might be mutagenic in heterozygous individuals.

Our work also has relevance to model selection. To compare competing models and select the best one, conventional options include the AIC [START_REF] Akaike | A new look at the statistical model identification[END_REF], the BIC [START_REF] Schwarz | Estimating the dimension of a model[END_REF], and the likelihood ratio test. These options cannot determine if the 'best model' is significantly different from an 'unknown data-generating mechanism'. Procedures to test model adequacy already exist (e.g., [START_REF] Goldman | Simple diagnostic statistical tests of models for DNA substitution[END_REF][START_REF] Duchêne | Differences in Performance among Test Statistics for Assessing Phylogenomic Model Adequacy[END_REF][START_REF] Kenney | Testing adequacy for DNA substitution models[END_REF]), but these existing procedures have a substantially different basis than ours. An attractive feature of our M-Factor approach is that it can investigate model adequacy of individual model parameters.

Due to its low power, we do not suggest that our model adequacy test is superior to conventional model comparison options but we believe that it can supplement them in order to illuminate goodness-of-fit and potentially to help pinpoint parameters associated with model deficiencies. Although the model adequacy test has low power, it strongly rejected all models that were considered for the eukaryotic and ray-finned fish data sets. These results are consistent with the view that widely-used models of sequence evolution are deeply flawed. [START_REF] Duchêne | Differences in Performance among Test Statistics for Assessing Phylogenomic Model Adequacy[END_REF] have emphasized the importance for phylogenetic inference of carefully assessing model adequacy.

Future directions: A limitation of our procedure is that the G-Factors and M-Factors do not account for topological uncertainty of the phylogeny. The impact of this limitation is likely to greatly vary among data sets. We hope to address and assess this limitation in the future.

Here, we focused on the parameter-wise M-Factors that correspond to individual branches of the phylogenetic tree. In future work, we hope to characterize how parameter-wise M-Factors can be leveraged to improve models of nucleotide substitution, especially codon-based models of nucleotide substitution (see also Seo andKishino 2008, 2009). The ability to interrogate the effect of individual parameters on model fit can potentially guide the development of more useful probabilistic models of sequence change.

APPENDIX [A] A criterion for matrix approximation

In our derivations, we repeatedly approximate some matrix A with a proportion of a different matrix B. We represent this sort of approximation and the corresponding exact relationship as

A αB A αB Rpαq, ( 19 
)
where Rpαq is the residual matrix for given α. 

d i,j pA ij ¡ tB ij q 2 D F E , (20) 
where A ij and B ij are the elements of the ith row and jth column of matrices A and B, respectively.

This will be referred to as the Minimum Frobenius Norm (MFN) criterion. The optimal α can be obtained with d dt }Rptq} F 0 and

α °i,j A ij B ij °i,j B 2 ij .
Note that α is identifiable only when both A and B are identifiable.

[B] The approximation of Fisher information matrices Assume the data were generated by the true but unknown distribution gp¤q and will be analyzed with model f p¤|θq. Subject to regularity conditions, the maximum likelihood estimate (MLE) p θ follows an asymptotically multivariate normal distribution when n is large [START_REF] White | Maximum likelihood estimation of misspecified models[END_REF],

¡ p θ ¡ θ ¦ © ¤ ¤ N ¢ 0, 1 n I ¡1 gf J gf I ¡1 gf , (21) 
where

I gf : E g ¡ f 2 fθfθ T log f pX|θ ¦ q & J gf : E g 4 f fθ log f pX|θ ¦ q B 4 f fθ log f pX|θ ¦ q B T '
, and where E g r¤s implies the expectation is performed with respect to the true distribution gp¤q. If the true and adopted models are identical (i.e., gpxq f px|θq ), I gf J gf and the variance of Equation ( 21) is reduced to tI ¡1 gf {nu.

Similar to Equation ( 21), the MLE θ for incomplete data follows an asymptotically multivariate normal distribution when the data are generated by gp¤q but analyzed with f p¤|θq,

¡ θ ¡ θ ¦ © ¤ ¤ N ¢ 0, 1 n Ĩ¡1 gf Jgf Ĩ¡1 gf , (22) 
where

Ĩgf : E g ¡ f 2 fθfθ T log f p X|θ ¦ q & Jgf : E g 4 f fθ log f p X|θ ¦ q B 4 f fθ log f p X|θ ¦ q B T '
, and where the notation X, Ĩgf and Jgf imply that the data contains gaps. The inverse of a variance such as found in Equation ( 22) is conventionally referred to as information. For Equation ( 22), the inverse of the variance represents the amount of information contained in an incomplete data set with a PSL of n.

Our purpose is to develop an approximate relationship between the information in the observed n columns of incomplete (gapped) data and the information in n e columns of complete (ungapped) data such that n Ĩgf J¡1

gf Ĩgf n e I gf J ¡1 gf I gf and so that we can estimate n e . We define k 1 : n e {n and parallel Equation ( 19) with the following approximate and exact relationships,

Ĩgf J¡1 gf Ĩgf k 1 I gf J ¡1 gf I gf , Ĩgf J¡1 gf Ĩgf k 1 I gf J ¡1 gf I gf E 1 , (23) 
where E 1 is the residual matrix for k 1 . With only an incomplete data set, the complete-data quantities I gf and J gf are unidentifiable. These quantities represent expectations with respect to the unknown gp¤q and there is no way to identify them even via simulation. Because I gf and J gf are unidentifiable, k 1 is unidentifiable in Equation ( 23). In contrast, Ĩgf and Jgf are identifiable because the observed incomplete data were generated with gp¤q.

Similar to Equation ( 19), consider the following approximate and exact relationships

Ĩ¡1 gf Jgf k 2 I ¡1 gf J gf Ĩ¡1 gf Jgf k 2 I ¡1 gf J gf E 2 , ( 24 
)
where k 2 is still unidentifiable because of I gf and J gf . Define I f f and Ĩff as

I f f E f ¡ f 2 fθfθ T log f pX| θq & Ĩff E f ¡ f 2 fθfθ T log f p X| θq & ,
where θ is the MLE for given incomplete data and is compatible with θ of Equation ( 22). An important feature of both I f f and Ĩff is that the expectation is performed with respect to the adopted model f p¤| θq so that these quantities are identifiable via simulation. By generating extremely long complete and incomplete sequences with model f p¤| θq, I f f and Ĩff can be estimated.

Similar to Equation ( 19), consider the following approximate and exact relationships

I gf k 3 I f f I gf k 3 I f f E 3 , (25) 
where k 3 is unidentifiable because of I gf .

Applying Equations ( 24) and ( 25) to Equation ( 23),

Ĩgf J¡1 gf Ĩgf k 1 I gf J ¡1 gf I gf E 1 ðñ Ĩgf J¡1 gf Ĩgf ¢ Ĩ¡1 gf Jgf 2 k 1 I gf J ¡1 gf I gf E 1 @ ¢ 2 k 2 I ¡1 gf J gf E 2 @ ðñ Ĩgf k 1 k 2 I gf k 1 I gf J ¡1 gf I gf E 2 k 2 E 1 I ¡1 gf J gf E 1 E 2 (26) k 1 k 2 tk 3 I f f E 3 u k 1 I gf J ¡1 gf I gf E 2 k 2 E 1 I ¡1 gf J gf E 1 E 2 k 1 k 2 k 3 I f f k 1 k 2 E 3 k 1 I gf J ¡1 gf I gf E 2 k 2 E 1 I ¡1 gf J gf E 1 E 2 .
Simplifying the last line of the above equation yields

Ĩgf k 1 k 2 k 3 I f f Ĩgf k 1 k 2 k 3 I f f E, (27) 
where

E k 1 k 2 E 3 k 1 I gf J ¡1 gf I gf E 2 k 2 E 1 I ¡1 gf J gf E 1 E 2 .
Because both Ĩgf and I f f are identifiable in Equation ( 27), the product of tk 1 k 2 k 3 u can be estimated by applying the MFN criterion of Equation ( 20). While the product k 1 k 2 k 3 can be inferred, the three factors in this product cannot be individually estimated with our approach.

Finally, consider the following approximate and exact relationships,

Ĩff k 4 I f f Ĩff k 4 I f f E 4 , (28) 
where both Ĩff and I f f are identifiable via simulation. Because random data can be generated and analyzed with f p¤| θq, k 4 is free from the model misspecification issue. Applying the MFN criterion to Equation (28),

k 4 : °i,j I f f ij Ĩffij °i,j I 2 f f ij , (29) 
where I f f ij and Ĩffij are respectively the elements at the ith row and jth column of matrices I f f and Ĩff .

Although Equation ( 29) relies upon the model f p¤| θq being used for both data generation and analysis, we found via simulation and empirical data analysis (see RESULTS ) that estimates of k 4

in Equation ( 28) are relatively robust to the choice of model used for analysis. That is, when we generate random sequences with f p¤| θq and analyze them with an incorrect model hp¤|θq, we can consider the following relationship that is similar to Equation (28),

Ĩfh k I 4 I f h Ĩfh k I 4 I f h E I 4 . (30) 
As described in the RESULTS section, we found k I 4 k 4 even for an incorrect model hp¤|θq.

We note that Equation ( 26) has the same structure as Equation ( 30). Therefore, we can expect k 1 k 2 k I 4 k 4 for a carefully selected model f p¤| θq that is not too far from the truth.

Applying the MFN criterion to Equation ( 27) followed by replacing k 1 k 2 with k 4 leads to

k 3 1 k 4 °i,j I f f ij Ĩgfij °i,j I 2 f f ij °i,j I f f ij Ĩgfij °i,j I f f ij Ĩffij . ( 31 
)
The formula for k 4 in Equation ( 29) and the formula for k 3 in Equation ( 31) both involve off-diagonal elements. Assuming these off-diagonal elements can be ignored, we have

k 3 °i I f f ii Ĩgfii °i I f f ii Ĩffii : M k 4 °i I f f ii Ĩffii °i I 2 f f ii : G.
We respectively refer to G and M as the overall G-Factor and the overall M-Factor, with G being the ESL/PSL ratio and M being the model misspecification factor. The ESL of the given incomplete sequence data can be obtained with G¢PSL. If we define

u i : I 2 f f ii °i I 2 f f ii v i : I f f ii Ĩffii °i I f f ii Ĩffii , G and 
M can be represented as the weighted average of the parameter-wise G i 's and M i 's as defined in Equations ( 6) and ( 7),

G d i1 u i G i M d i1 v i M i .
[C] Fisher information implementation

In our implementation, two important simplifications are made regarding Fisher Information estimates. First, branch lengths are the only type of parameter considered. This is mainly motivated by a desire to avoid numerical instability complications. We expect that a consequence of this simplification is reduced power of our model adequacy test because parameters controlling character-state transitions are not considered. Second, our implementation adopts the analytic formula for diagonal elements of the Hessian matrix that correspond to branch length estimates [START_REF] Yang | Maximum likelihood estimation on large phylogenies and analysis of adaptive evolution in human influenza virus A[END_REF] but it ignores off-diagonal elements in the Fisher information matrix because they could be burdensome with regard to computational time and memory. Furthermore, our bootstrap implementation saves computation and storage by resampling only sitewise second derivatives (i.e., sitewise diagonal elements of the Hessian matrix).

One way to assess the importance of off-diagonal elements is to measure their contribution to the Frobenius norm of Equation ( 20). This is straightforward when the data-generation mechanism and adopted model match so that Ĩff Jff and so that off-diagonal elements of Jff can be estimated by using the outer product of sitewise first derivatives [START_REF] Porter | Efficiency of covariance matrix estimators for maximum likelihood estimation[END_REF]Seo et al. 2004). The proportional contribution of the diagonal elements of the Frobenius norm is p

r d : °i | p Jffii | 2 °i °j | p Jffij | 2 .
We used the maximum likelihood estimates of the eukaryotic data set for the LG+Gamma model to simulate a data set with the observed size and gap patterns. We then analyzed this simulated data set with LG+Gamma and obtained p r d 0.962. This high proportion suggests that the diagonal elements are summarizing most of the information.

In a separate experiment, we randomly selected three of the 500 data sets that were simulated according to Figure 1. These three data sets yielded p r d values of 0.940, 0.944, and 0.945. Coupled with the simulation results of p G 1 0.500 (Figure 1), the high p r d proportions imply that ignoring the off-diagonals will have a minor impact on G-Factor estimation.

Although the high p r d values calculated in these experiments are all for the situation where f p¤|θq gp¤q, we expect that ignoring off-diagonal elements of Ĩgf will tend not to be problematic when f p¤|θq is a reasonably good approximation for gp¤q. Figure 5: Maximum likelihood phylogeny of ray-finned fish taxa. Each taxon name is followed in the parentheses by the taxon number that is used in Table 2. 
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  Length (PSL)'. The information about parameter i in a simulated incomplete data set of size n would be n Ĩffii . We let p n pi,¤q e be the number of simulated alignment columns needed in a complete (gapless) data set to have the same amount of information about parameter i as the amount of information n Ĩffii in the simulated data with gaps, n Ĩffii n pi,¤q e I f f ii . This leads to n pi,¤q e nG i . We refer to n pi,¤q e as the 'parameter-wise Effective Sequence Length' ('p-ESL') of incomplete data with respect to parameter i. Paralleling the derivation of the overall G-Factor (G) from individual G-Factors (i.e., G i 's) in Equation (6), an overall ESL can be derived from individual p-ESL terms. The overall ESL (n e )

  referred to as estimators of the site-parameterwise ESL (sp-ESL), parameter-wise ESL (p-ESL) and sitewise ESL (s-ESL). The sp-ESL, p-ESL and s-ESL, respectively represent informativeness of each parameter at each sequence column, each parameter and each sequence column. Although n p G is positive, an sp-ESL or s-ESL can be negative if it conflicts with the rest of the data. When sp-ESL and s-ESL coincide with the information in the overall data set, their values will be positive (and potentially large). We note that the p-ESL p n pi,¤q e of Equation (17) is the simple summation over sites of the sp-ESL p

  Overall G-Factors: For the LG+Gamma model, the overall G-Factor ( p G) is 0.8154 (¨4.7 ¢ 10 ¡3 ) and the ESL of the aligned data is 9377 ( 0.8154¢11500). In this case, the G-Factor is slightly greater than the proportion 0.8045 of ungapped positions in the alignment. The overall G-Factor was robust to the amino acid replacement model. The overall G-Factors for the WAG+Gamma, JTT+Gamma, and Dayhoff+Gamma models are respectively 0.8187 (¨5.1 ¢ 10 ¡3 ), 0.7902 (¨4.6 ¢ 10 ¡3 ), and 0.8152 (¨4.9 ¢ 10 ¡3 ).Parameter-wise G-Factors: As with the overall G-Factors, our estimates of the ratios Ĩffii {I f f ii (i.e., the parameter-wise G-Factors G i ) were robust to model choice (data not shown). Figure3maps the parameter-wise G-Factors that were estimated under the LG+Gamma amino acid model onto branches of the phylogeny. Consistent with the simulation results, the p G i estimates show a gradual change over branches. Some internal branches have high p G i and these seem to be the ones that are far from terminal taxa with many gaps.Overall M-Factors: Because the log-likelihood score with the LG+Gamma model is the highest among the four models that we explored, our discussion concentrates on results from it. The overall M-Factor ( x M ) is 0.7595 (¨5.5 ¢ 10 ¡3 ) and is significantly different from 1 (p-value 3 0.01). This implies that the adopted LG+Gamma model is significantly different from the unknown data-generating mechanism. The M-Factors for the WAG+Gamma, JTT+Gamma, and Dayhoff+Gamma models were respectively 0.7566 (¨5.2 ¢ 10 ¡3 ), 0.7492 (¨5.6 ¢ 10 ¡3 ), and 0.7714 (¨5.1 ¢ 10 ¡3 ). While these M-Factor estimates vary, all M-Factor estimates are approximately equally far from 1 and are significantly different from it. These M-Factor estimates are therefore consistent with the possibility that the difference between the true data-generating mechanism and any of these models is far bigger than the differences between these models.Parameter-wise M-Factors: Even for individual branches on the phylogeny, the LG+Gamma model does not fit well. Out of 107 branches, 100 show significant rejection of M i 1 (two-tailed p-value 0.05) when assuming the LG+Gamma model. To confirm that the large number of significant parameter-wise M-Factors are not artefacts, we performed a simple simulation. Using the maximum likelihood phylogeny with the LG+Gamma model, we simulated a data set with a PSL that matches the 11500 of the actual data and with a gap pattern that is identical to the original data. We then estimated G-Factors and M-Factors with the aforementioned amino acid replacement models. Consistent with our finding from the original data set, the G-Factors estimated from this simulated data set are robust to model choice (data not shown). However, the estimated M-Factors from the simulated data show a different pattern relative to the original data. When

  ; Seo and Thorne 2018), we contrast three simple substitution models (GTR+Gamma, TN93+Gamma and JC+Gamma) for the sake of illustration. With the GTR+Gamma model, the RAxML software (Stamatakis 2014) finds the topology depicted in Figure 5 that is used below. G-Factors and M-Factors: As with the analysis of amino acid sequences, we observed robustness of the parameter-wise G-Factors ( p G i ) among the nucleotide models (data not shown). For the GTR+Gamma model, the overall G-Factor ( p G) is 0.8547 (¨3.2 ¢10 ¡3 ). The overall G-Factors were again quite robust to model. The overall G-Factor was 0.8522 (¨3.3 ¢10 ¡3 ) for the TN93+Gamma model and 0.8494 (¨3.4 ¢ 10 ¡3 ) for the JC+Gamma model.

  Because the PSL is 7995, the ESL is about 6833 ( p G ¢ 7995). As shown in Equations (16-18), the total ESL (p n e : n p G) can be expressed as sums of terms that are sp-ESL (site-parameter-wise ESL), s-ESL (sitewise ESL), or p-ESL ( parameter-wise ESL). Because the number of sp-ESL terms is the product of the numbers of s-ESL and p-ESL terms, individual sp-ESL terms are particularly subject to stochastic error. Whereas p-ESL values will always be positive, the s-ESL and sp-ESL can have negative values.

Figure

  Figure 6A plots the 109 sp-ESL values (y-axis) versus branch index (x-axis) for Site #5242.

Figure 7

 7 Figure 7 contrasts the distribution of sp-ESL values for the shortest branch on the tree with

  , sites are typically associated with both positive and negative sp-ESL values. Furthermore, as shown in Figure4, conventional filtering schemes may remove sites in which s-ESL's are positively large and individual sp-ESL's are distributed over both negative and positive ranges. The widespread distribution of sp-ESL values implies that data filtering is not a simple task and illustrates why removing columns may reduce information[START_REF] Dessimoz | Phylogenetic assessment of alignments reveals neglected tree signal in gaps[END_REF][START_REF] Tan | Current methods for automated filtering of multiple sequence alignments frequently worsen single-gene phylogenetic inference[END_REF].DISCUSSIONIt is conventional in phylogenetics to report the number of columns in a sequence alignment (i.e., the PSL), but this statistic has little communicative value in isolation. Two alignments with the same number of columns are unlikely to be equally informative if one has no gaps and the other has abundant gaps. This work describes a procedure to measure the impact of gaps on phylogenetic information and to test model adequacy. It introduces the ESL measure that translates the phylogenetic information of a gapped data set to an intuitive summary representing how many ungapped columns would be in an equally informative alignment. An advantage of the ESL is its careful accounting of phylogenetic correlations among sequences. This work also introduces the s-ESL, p-ESL, and sp-ESL measures that can be employed to quantify the impacts of individual parameters and data components on phylogenetic analyses.

  Program code and example files are available at https://github.com/diploid2n/ESL FUNDING T.-K. S. was supported by the Korea Polar Research Institute (PE21130, PE21140). O.G was supported by PRAIRIE (ANR-19-P3IA-0001). J.L.T. was supported by N.S.F. (DEB-1754142) and N.I.H. (R01 GM118508).
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 1 Figure 1: Phylogeny of 12 taxa for simulation. All branch lengths are 0.1 substitutions per nu-
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 2 Figure 2: Histogram of the bootstrap approximation to the distribution of cumulative probabilities of the test statistic x M ¡ 1.0. Sequence data were simulated with GTR+Gamma and the bootstrap approximation was applied to estimate P p x M ¦ ¡ x M ¦
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 3 Figure 3: G-Factor (G i ) estimates for the Eukaryote data with the LG+Gamma model. Each
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 4 Figure 4: The s-ESL distributions among sites from the Eukaryotic data. The left histograms show
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 6 Figure 6: sp-ESL values for the sites with the highest and lowest s-ESL values of the ray-finned fish
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 7 Figure 7: Plots and histograms of sp-ESL values from the ray-finned fish data. (A) sp-ESL values

  Figure 1:.

  Similar to the y r translocations, we translocate the z r to resample z ¦ r . Using the position of p Ĩ¦

					f f ii
	and the stored pprq indices, we define z ¦ p¤q as		
	z ¦ r pk¡1qn : z pprq pk¡1qn	3 p Ĩ¦ f f ii p	
	The translocation factor	3 p Ĩ¦ gf ii ¡ p Ĩgfii	A	of Equation (12) is necessary because
	we generate p Ĩffii with θ. Therefore, p Ĩffii and p Ĩgfii are correlated and this correlation needs to be
	preserved for generating p Ĩ¦ f f ii and p Ĩ¦ gf ii (see Supplementary Information [A]).

  Equation (13) is necessary because p

	Ĩffii and
	p I f f ii are correlated and this correlation needs to be preserved for generating p Ĩ¦ f f ii and p I ¦ f f ii (see
	Supplementary Information [A]).
	By applying Equations (11, 12, 13), we generate the x ¦ p¤q , y ¦ p¤q and z ¦ p¤q . From these, we derive
	the overall G-Factor p G ¦ and the overall M-Factor x M ¦ . Via iteration of bootstrapping, we thereby
	approximate the distribution of p G ¦ and x M ¦ . These distributions can be used to estimate the
	variances of p G and x M . The distribution of x M ¦ can be further used to test model adequacy (see
	next subsection).

  0q from 500 simulated data sets and 500 bootstrap replicates per simulated data set. For this situation where the null hypothesis should be rejected, the null was rejected at a significance level of 0.05 in a proportion 0.326 of cases (163 out of 500). Whereas the model adequacy test often rejected the null when the JC+Gamma model was used, it had low power when

the TN93+Gamma model was assumed. Specifically, the null was rejected at a significance level of 0.05 in a proportion 0.022 of cases (11 out of 500). Our model adequacy test with PSL=1000 did not distinguish the TN93+Gamma and GTR+Gamma models, but conventional information criteria such as AIC and BIC as well as the likelihood ratio test

(Akaike 1973;[START_REF] Schwarz | Estimating the dimension of a model[END_REF]

) do better. For example, the likelihood ratio test rejected the TN93+Gamma model at a significance level of 0.05 in a proportion 0.284 (142 of 500) of cases when the truth was GTR+Gamma.

Empirical data analysis 1: Eukaryote protein sequences

We analyzed amino acid sequences from 55 Eukaryotic taxa

[START_REF] Derelle | Rooting the Eukaryotic Tree with Mitochondrial and Bacterial Proteins[END_REF]

. Aligned sequences were obtained from TreeBASE

[START_REF] Piel | TreeBASE v. 2: A Database of Phylogenetic Knowledge[END_REF][START_REF] Vos | NeXML: rich, extensible, and verifiable representation of comparative data and metadata[END_REF] TreeBASE Matrix ID:M11012)

. For this data set, the PSL is 11500 sites and the mean proportion of non-gap characters per taxon is 0.8045 (¨0.0237).

  in TreeBASE[START_REF] Piel | TreeBASE v. 2: A Database of Phylogenetic Knowledge[END_REF][START_REF] Vos | NeXML: rich, extensible, and verifiable representation of comparative data and metadata[END_REF] TreeBASE Study ID S2045).

	It
	represents 52 ray-finned fish and 4 outgroup taxa. The PSL of the original aligned data is 7995
	nucleotide sites and the mean proportion of non-gap characters per taxon is 0.8155 (¨0.0216).

  To get an optimal α, we use the Frobenius norm (}Rp¤q} F ; Golub and Van Loan 2013) of the residual matrix which is minimized at α,

	α : argmin t	6 8 7 }Rptq} F :

Table 2 :

 2 Sitewise ESL (s-ESL) values of the ray-finned fish group. Taxon numbering is compatible with that of Figure5. This table displays sites with the greatest (Group A) and smallest (Group F) s-ESL values. It also displays sites with relatively high s-ESL values (Group B), sites that yield the highest sp-ESL values for the moderately long branch on Figure5that ends with the most recent common ancestor of Taxa #9-56 (Group C), sites with s-ESL values that are slightly below zero (Group D), and sites with relatively low s-ESL values (Group E).
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Notation Equation Definition

I gf ii Fisher information of complete data Data were generated with unknown gp¤q but analyzed with f p¤|θq

Unidentifiable in general Ĩgfii

(2) Fisher information of gap-containing data Data were generated with unknown gp¤q but analyzed with f p¤|θq