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INTRODUCTION

The vibroacoustic analysis of complex systems plays an important role in the engineering field especially for transportation equipment such as vehicles, ships, aerospace structures, etc. In highfrequency range, the uncertainties and randomness that exist inevitably in complex systems highly affect the deterministic response [START_REF] Wright | New Directions in Linear Acoustics and Vibration: Quantum Chaos, Random Matrix Theory and Complexity[END_REF], thus Statistical Energy Analysis (SEA), which describes the vibrational behavior of each subsystem statistically with averaged energetic variables, is more widely used [START_REF] Lyon | Theory and Application of Statistical Energy Analysis[END_REF]. In classical SEA, the system is divided into subsystems and the response is characterized by the mean energy in each of the subsystems. Strictly speaking, the "mean" output is indicating the average taken over an ensemble of systems having similar properties in general but differ in details [START_REF] Langley | Response variance prediction in the statistical energy analysis of built-up systems[END_REF]. Sometimes, SEA-like (SEAL) is also used in the engineering field for convenience, in which the "mean" output is defined as a frequency-band average taken on one particular deterministic sample [START_REF] Finnveden | Ensemble averaged vibration energy flows in a three-element structure[END_REF].

Several assumptions need to be fulfilled when using the SEA, which makes its range of validity mostly in the high-frequency domain [START_REF] Lafont | Review of statistical energy analysis hypotheses in vibroacoustics[END_REF]. To widen its application to the mid-frequency range, Statistical modal Energy distribution Analysis (SmEdA) was derived based on Dual Modal Formulation (DMF) [START_REF] Maxit | A dual modal formulation for multiple flexural subsystems connected at a junction in energy-based models[END_REF]. The modal energy equipartition assumption is removed in the SmEdA derivation, therefore, SmEdA can be adapted well to systems containing low modal density subsystems [START_REF] Hwang | Smeda vibro-acoustic modelling in the mid-frequency range including the effect of dissipative treatments[END_REF][START_REF] Van Buren | Effect of model-form definition on uncertainty quantification in coupled models of mid-frequency range simulations[END_REF][START_REF] Deng | Transmission loss of plates with multiple embedded acoustic black holes using statistical modal energy distribution analysis[END_REF]. However, when it is applied to a complex system that contains both low and high modal density subsystems (e.g. a structure-cavity system), it may encounter computation problems because the governing equation system describing the power balance of each mode may consist of thousands of linear equations. Moreover, deterministic modes of the cavity are sometimes difficult to obtain especially when the cavity is in an irregular shape.

Under this circumstance, a Hybrid method is developed by combining the advantages of SmEdA and SEA, which allows characterizing the low modal density subsystem by its deterministic modes and high modal density subsystem by a diffuse field. The diffuse field is described by a set of natural frequencies and mode shapes constructed based on the Gaussian Orthogonal Ensemble (GOE) and the cross-spectrum density of a diffuse field [START_REF] Shorter | On the reciprocity relationship between direct field radiation and diffuse reverberant loading[END_REF]. The ensemble-averaged response and the corresponding variance can be obtained by employing a Monte Carlo (MC) simulation with each sample consisting of one realization of the diffuse field together with the deterministic modes of the low modal density subsystem [START_REF] Van Hoorickx | Gaussian orthogonal ensemble modeling of built-up systems containing general diffuse components and parametric uncertainty[END_REF].

In this paper, the governing equations of SmEdA-SEAL are formulated in section 2. Section 3 introduces a diffuse model for the studied cavity, upon which the SmEdA-SEA is developed by establishing an MC simulation. The numerical calculation proceeds in section 4, the result predicted by SmEdA-SEAL is validated with DMF and SmEdA approach, while the results obtained by SmEdA-SEA are verified with that of an uncertain model that is an MC simulation consisting of deterministic samples with a certain degree of randomness.

FORMULATION OF HYBRID SMEDA-SEAL

In this section, the governing equations when using hybrid SmEdA-SEA are derived for one complex system containing low modal density subsystem 1 and high modal density subsystem 2.

Review of SmEdA

The SmEdA approach was derived by Maxit and Guyader from Dual Modal Formulation [START_REF] Maxit | Extension sea model to subsystems with non-uniform modal energy distribution[END_REF][START_REF] Maxit | Analysis of the modal energy distribution of an excited vibrating panel coupled with a heavy fluid cavity by a dual modal formulation[END_REF], in which one of the subsystems is characterized with blocked pressure modes on the coupling area, and the other is characterized with its free displacement modes. Assuming there are N 1 resonant modes in subsystem 1 and N 2 in subsystem 2 in the studied frequency band, the interactions of the modes between two subsystems are interpreted as interacted oscillators with gyroscopic coupling without dissipation of energy (no direct coupling between two modes of the same subsystem). Assuming the modal interaction is weak, and the external excitation are uncorrelated white noise, the time-averaged power flow Π pq between mode p of subsystem 1 and mode q of subsystem 2 is proportional to the difference in the time-averaged modal energies as Equation 1 [START_REF] Maxit | Estimation of sea coupling loss factors using a dual formulation and fem modal information, part i: Theory[END_REF][START_REF] Maxit | Estimation of sea coupling loss factors using a dual formulation and fem modal information, part ii: Numerical applications[END_REF] Π pq = β pq E p -E q .

(1)

where E p and E q are the modal energies of mode p and mode q. Modal coupling loss factor β pq can be expressed in terms of the modal information as in Equation 2 [START_REF] Totaro | SEA Coupling Loss Factors of Complex Vibro-Acoustic Systems[END_REF],

β pq = (W pq ) 2 M p M q           η p ω p ω 2 q + η q ω q ω 2 p ω 2 p -ω 2 q 2 + (η p ω p + η q ω q )(η p ω p ω 2 q + η q ω q ω 2 p )           (2) 
where M p , ω p , η p and M q , ω q , η q are respectively the modal mass, natural frequency, and modal damping loss factor of mode p of subsystem 1 and mode q of subsytem 2. W pq is the interaction modal work between mode p and q. Considering mode p of subsystem 1 and mode q of subsystem 2, the principle of energy conservation yields a linear equation system on modal energies E p and E q as

Π p in j = η p ω p E p + N 2 q=1 β pq E p -E q , ∀p ∈ [1, N 1 ], Π q in j = η q ω q E q - N 1 p=1 β pq E p -E q , ∀q ∈ [1, N 2 ], (3) 
where Π p in j and Π q in j respectively represent the inject power into pth mode of subsystem 1 and qth mode of subsystem 2 by external white noise excitation. η p ω p E p and η q ω q E q are time-averaged dissipated powers by mode p and model q. Solving this equation system yields modal energies E p and E q , The total energy of each subsystem E 1 and E 2 can be obtained by adding up all the modal energies in the studied frequency band.

Extension of SmEdA to SEAL and hybrid SmEdA-SEAL

In classical SEA, modal energy equipartition is assumed in all the subsystems, then one can get the modal energies of E p and E q in forms of

E p = E 1 N 1 , E q = E 2 N 2 . (4) 
Introducing this relation into Equation 3 and adding the modal energy conservation equation for each subsystem, the energy balance equation of SEAL method can be built as

Π 1 in j = ω c η 1 E 1 + ω c η 12 E 1 - N 1 N 2 E 2 , Π 2 in j = ω c η 2 E 2 + ω c η 12 N 1 N 2 E 2 -E 1 , (5) 
where Π 1 in j and Π 2 in j respectively represent the power injected into subsystem 1 and subsystem 2, ω c η 1 E 1 and ω c η 1 E 1 is the power dissipated in subsystem 1 and subsystem 2, and η 12 is the SEAL coupling loss factor given by,

η 12 = 1 N 1 ω c N 1 p=1 N 2 q=1 β pq ( 6 
)
When SEAL is employed, the underlying assumption implies that energy equipartition can be fulfilled in all the subsystems. However, it is not necessarily true for a complex system containing a low modal density subsystem. It may be for instance the case for a structure-cavity system for which the structure has a low modal density whereas the cavity has a high one. To consider the situation when one subsystem is diffuse and the other is not, the hybrid SmEdA-SEA-like (SmEdA-SEAL) is presented here. Applying the equipartition assumption only to the cavity, the energy conservation equation Equation 3becomes

Π p in j = η p ω p + N 2 γ p E p -γ p E 2 , ∀p ∈ [1, N 1 ], Π 2 in j = - N 1 p=1 N 2 γ p E p +         N 1 p=1 γ p + η 2 ω c         E 2 , (7) 
where

γ p = 1 N 2 N 2
q=1 β pq represents the averaged modal coupling loss between mode p in subsystem 1 and all the modes in subsystem 2.

FORMULATION OF HYBRID SMEDA-SEA

The following analysis is concerned with the Hybrid SmEdA-SEA modeling, in which an uncertain system characterized by statistical properties. For simplifying the presentation, we will suppose that the uncertain subsystem is an uncertain acoustic cavity although the proposed approach can be generalized to any type of subsystem.

Natural frequency and mode shape realizations of the uncertain subsystem

For defining the natural frequencies of the uncertain cavity, one supposes that they can be represented by a Gaussian Orthogonal Ensemble (GOE).

The local eigenvalue spacing distribution of the GOE is very close to the Wigner distribution as

P(s) = π s 2 exp - πs 2 4 , (8) 
where P(s) • ds denotes the probability of having a spacing in the interval [s, s + ds]. To obtain the natural frequency realizations, one vector s consisting of random numbers from the Wigner distribution is generated as the normalized local eigenvalue spacing,

s = [s 1 , s 2 , s 3 , . . . , s n ] , n = 2N e , (9) 
where N e denotes the expected total number of natural frequencies in the studied frequency band that can be obtained by integrating the modal density n(ω) in that frequency band,

N e = ω u ω l n(ω) dω, with n(ω) = V ω 2 3π 2 c 3 0 , (10) 
in which V indicates the volume of the cavity and c 0 is the speed of sound. Multiplying vector s with averaged nearest-neighbor eigenvalue spacing ŝ gives the unnormalized ones,

S = s • ŝ = s n (λ r ) = s 2ω r n (ω r ) , (11) 
in which n(ω r ) is the averaged modal density in that frequency band. Then the nth eigenvalue can be obtained by summing the first nth order local spacing and the lowest eigenvalue in the frequency band of interest as

λ n = λ l + n i=1 S i , λ n < λ u .
For the mode shape realization of the uncertain cavity, firstly one mode shape vector containing the modal pressure on the coupling surface is defined as

ϕ r := ϕ r (x 1 ) ϕ r (x 2 ) . . . ϕ r (x L ) T . (12) 
Supposing a standard diffuse field in the cavity, the covariance function of the modal pressure at two different positions x 1 and x 2 should respect [START_REF] Reynders | Generalized reverberant acoustic field modeling based on the gaussian orthogonal ensemble[END_REF]:

C r := Cov ϕ r (x 1 )ϕ r (x 2 ) = E ϕ r (x 1 )ϕ r (x 2 ) = S ϕ r ϕ r sin (k r |x 2 -x 1 |) k r |x 2 -x 1 | (13) 
where k r = ω r c 0 is the wavenumber corresponding to the frequency ω r . S ϕ r ϕ r is the auto-spectrum density of boundary pressure ϕ r . The normalization condition for room pressure p r of a diffuse acoustic cavity with volume V is

1 V V p 2 r (x)dx = ρ 0 c 2 0 V (14) 
Considering that a ratio of 2 between the auto-spectrum density of boundary pressure S ϕ r ϕ r and the average of the quadratic pressure mode [START_REF] Daniel | Diffuseness and sound field distribution at room boundaries[END_REF],

S ϕ r ϕ r = 2ρ 0 c 2 0 V . ( 15 
)
Realizations of the modal pressure ϕ r can be achieved through an eigenvalue decomposition of the covariance matrix, C r := AΣA T (16)

The corresponding set of modal pressure on the coupling surface can be expressed as

ϕ k,r := AΣ 1 2 ξ ( 17 
)
where ξ is a vector of independent, standard normal random variables that can be realized with a Gaussian random number generator.

Hybrid SmEdA-SEA method

The SmEdA-SEA is established based on Monte Carlo simulation as shown in the flow chart Figure 1. For example for one rectangular plate cavity coupling system, the deterministic modes of the plate (subsystem 1) can be calculated analytically for simply supported plate or by FEM for a more complex case. For the cavity (subsystem 2), realizations of its natural frequencies and mode shapes in each frequency band can be done with the process described previously. The process of modal information realization is repeated N s times to generate a set of different realization, which together with the deterministic modes of the plate can be regarded as the samples of the following Monte Carlo Simulation. The frequency average response of each sample is calculated with SmEdA-SEL, then the ensemble average response taken on all the samples is calculated in the Monte Carlo simulation. This whole process is defined as the SmEdA-SEA model.

NUMERICAL RESULTS

In this section, numerical results for one plate cavity system (Figure 2) are calculated and compared to the reference results in order to validate and assess the foregoing developed methods. Employing the DMF, SmEdA, SEAL, and hybrid SmEdA-SEAL formulation for the plate cavity system, the averaged exchanged power between two subsystems are illustrated in Figure 3. The results predicted by SmEdA and the hybrid SmEdA-SEAL formulation both converge well to the DMF method with a difference less than 1dB from 700Hz. By contrast, the result predicted by the SEAL is not accurate, and the discrepancies are larger than 1dB in most of the studied frequency bands. The validate range of Hybrid SmEdA-SEAL is as wide as that of the SmEdA. Furthermore, considering the mode number in the cavity can be numerous, which leads to long-time calculation and large computation resources necessary for SmEdA analysis, the hybrid formulation can be a great alternative method for this kind of complex system that contains both high and low modal density subsystems.

Validation of SmEdA-SEA

In this case, the plate, of dimension 0.34m × 0.46m × 0.001m, is excited at position of (x e , y e ) = (0.22m, 0.11m). In the numerical calculation using SmEdA-SEA, the dimension of the coupled cavity is of dimension 1.0m × 0.9m × 0.8m and the relative position of the plate ∆x = 0.55m, ∆y = 0.32m. For the uncertainty model, the uncertainty is introduced into the cavity by dimension randomness in three directions meanwhile the volume of the cavity is fixed at 1.0m × 0.9m × 0.8m. When the vibrational field of a cavity is modeled as a diffuse field as in the SmEdA-SEA model, we suppose Figure 4 illustrates the confidence interval and ensemble average of exchanged power predicated hybrid SmEdA-SEA compared with that of the uncertainty model with 10% uncertainty in dimension. The difference between these two models in terms of ensemble-averaged exchanged power converges to less than 1dB above 880 Hz. However, the confidence interval of the uncertainty model is not completely contained in that of the hybrid SmEdA-SEA model. The modes that participate in the response calculation of the uncertainty model are deterministic, in which some modes are sensitive to dimension uncertainty while some others are less sensitive. Therefore, the output of the uncertainty model deviates slightly from the SmEdA-SEA model. If the cavity used for the uncertainty model 

CONCLUSIONS

A hybrid SmEdA-SEA is extended from SmEdA for the vibroacoustic analysis of complex systems containing both high and low modal density subsystems. The low modal density is characterized by its deterministic modes with the SmEdA while the high modal density subsystem is assumed to be uncertain and characterized by statistical properties: GOE for the modal frequencies and diffuse field for the mode shapes. The comparison of exchanged power between two subsystems calculated by DMF, SmEdA, SEA, and SmEdA-SEAL shows a good assessment for the proposed hybrid SmEdA-SEAL method. In order to validate the SmEdA-SEA, the results in terms of the confidence interval and ensemble average of the exchanged power obtained by SmEdA-SEA have been compared with those obtained by an uncertainty model with random dimension. As expected, the mean level of exchanged power shows a good agreement with the uncertainty model, while their confidence interval shows a slight difference owing to the non-strict diffuse acoustic field in the uncertainty simulation. In conclusion, the present hybrid approaches are well adapted to complex systems containing subsystems with high and low modal densities. It takes fewer computation resources without diminishing the accuracy, and hybrid SmEdA-SEA allows evaluating the variance of the response generated by the uncertainty in the system without a detailed description of its underlying random parameters.
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 12 Figure 1: flow chart of SmEdA-SEA
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 3 Figure 3: Exchanged power predicated by DMF, SmEdA, SEAL, and hybrid SmEdA-SEAL
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 4 Figure 4: Confidence intervals and ensemble averages of exchanged power predicated by uncertainty model (with 10% uncertainty) and SmEdA-SEA taken on 100 samples
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