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ABSTRACT
Statistical modal Energy distribution Analysis (SmEdA) was developed from classical Statistical
Energy Analysis (SEA). It allows computing power flow between coupled subsystems from the
deterministic modes of uncoupled subsystems without assuming the SEA modal energy equipartition.
SmEdA is well adapted in mid-frequency when the subsystems have not a very high modal density.
However, for some systems e.g. the plate cavity system, one subsystem can exhibit a low modal
density while the other one a high one. The goal of the paper is then to propose an extension of
SmEdA formulation that allows describing one subsystem by its deterministic modes, and the other
one supposing modal energy equipartition and a diffuse field. The uncertain subsystem is then
characterized by sets of natural frequencies and mode shapes constructed based on the Gaussian
Orthogonal Ensemble matrix and the cross-spectrum density of a diffuse field, respectively. This
formulation permits not only the computation of mean noise response but also the variance generated
by the uncertainties and furthermore without bringing in much computation. It is demonstrated that
the obtained analytical results from the proposed hybrid SmEdA/SEA are consistent with that of a
Monte Carol simulation which is calculated with samples having randomness in the dimension of the
cavity.
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1. INTRODUCTION

The vibroacoustic analysis of complex systems plays an important role in the engineering field
especially for transportation equipment such as vehicles, ships, aerospace structures, etc. In high-
frequency range, the uncertainties and randomness that exist inevitably in complex systems highly
affect the deterministic response [1], thus Statistical Energy Analysis (SEA), which describes the
vibrational behavior of each subsystem statistically with averaged energetic variables, is more widely
used [2]. In classical SEA, the system is divided into subsystems and the response is characterized
by the mean energy in each of the subsystems. Strictly speaking, the "mean" output is indicating
the average taken over an ensemble of systems having similar properties in general but differ in
details [3]. Sometimes, SEA-like (SEAL) is also used in the engineering field for convenience, in
which the "mean" output is defined as a frequency-band average taken on one particular deterministic
sample [4].

Several assumptions need to be fulfilled when using the SEA, which makes its range of
validity mostly in the high-frequency domain [5]. To widen its application to the mid-frequency
range, Statistical modal Energy distribution Analysis (SmEdA) was derived based on Dual Modal
Formulation (DMF) [6]. The modal energy equipartition assumption is removed in the SmEdA
derivation, therefore, SmEdA can be adapted well to systems containing low modal density
subsystems [7–9]. However, when it is applied to a complex system that contains both low and high
modal density subsystems (e.g. a structure-cavity system), it may encounter computation problems
because the governing equation system describing the power balance of each mode may consist of
thousands of linear equations. Moreover, deterministic modes of the cavity are sometimes difficult to
obtain especially when the cavity is in an irregular shape.

Under this circumstance, a Hybrid method is developed by combining the advantages of SmEdA
and SEA, which allows characterizing the low modal density subsystem by its deterministic modes
and high modal density subsystem by a diffuse field. The diffuse field is described by a set of natural
frequencies and mode shapes constructed based on the Gaussian Orthogonal Ensemble (GOE) and the
cross-spectrum density of a diffuse field [10]. The ensemble-averaged response and the corresponding
variance can be obtained by employing a Monte Carlo (MC) simulation with each sample consisting
of one realization of the diffuse field together with the deterministic modes of the low modal density
subsystem [11].

In this paper, the governing equations of SmEdA-SEAL are formulated in section 2. Section
3 introduces a diffuse model for the studied cavity, upon which the SmEdA-SEA is developed by
establishing an MC simulation. The numerical calculation proceeds in section 4, the result predicted
by SmEdA-SEAL is validated with DMF and SmEdA approach, while the results obtained by
SmEdA-SEA are verified with that of an uncertain model that is an MC simulation consisting of
deterministic samples with a certain degree of randomness.

2. FORMULATION OF HYBRID SMEDA-SEAL

In this section, the governing equations when using hybrid SmEdA-SEA are derived for one complex
system containing low modal density subsystem 1 and high modal density subsystem 2.

2.1. Review of SmEdA
The SmEdA approach was derived by Maxit and Guyader from Dual Modal Formulation [12, 13],

in which one of the subsystems is characterized with blocked pressure modes on the coupling area, and
the other is characterized with its free displacement modes. Assuming there are N1 resonant modes
in subsystem 1 and N2 in subsystem 2 in the studied frequency band, the interactions of the modes
between two subsystems are interpreted as interacted oscillators with gyroscopic coupling without
dissipation of energy (no direct coupling between two modes of the same subsystem). Assuming the



modal interaction is weak, and the external excitation are uncorrelated white noise, the time-averaged
power flow Πpq between mode p of subsystem 1 and mode q of subsystem 2 is proportional to the
difference in the time-averaged modal energies as Equation 1 [14, 15]

Πpq = βpq

(
Ep − Eq

)
. (1)

where Ep and Eq are the modal energies of mode p and mode q. Modal coupling loss factor βpq can
be expressed in terms of the modal information as in Equation 2 [16],

βpq =
(Wpq)2
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where Mp, ωp, ηp and Mq, ωq, ηq are respectively the modal mass, natural frequency, and modal
damping loss factor of mode p of subsystem 1 and mode q of subsytem 2. Wpq is the interaction
modal work between mode p and q. Considering mode p of subsystem 1 and mode q of subsystem 2,
the principle of energy conservation yields a linear equation system on modal energies Ep and Eq as

Π
p
in j = ηpωpEp +

N2∑
q=1

βpq

(
Ep − Eq

)
, ∀p ∈ [1,N1],

Π
q
in j = ηqωqEq −

N1∑
p=1

βpq

(
Ep − Eq

)
, ∀q ∈ [1,N2],

(3)

where Π
p
in j and Π

q
in j respectively represent the inject power into pth mode of subsystem 1 and qth mode

of subsystem 2 by external white noise excitation. ηpωpEp and ηqωqEq are time-averaged dissipated
powers by mode p and model q. Solving this equation system yields modal energies Ep and Eq, The
total energy of each subsystem E1 and E2 can be obtained by adding up all the modal energies in the
studied frequency band.

2.2. Extension of SmEdA to SEAL and hybrid SmEdA-SEAL
In classical SEA, modal energy equipartition is assumed in all the subsystems, then one can get

the modal energies of Ep and Eq in forms of

Ep =
E1

N1
, Eq =

E2

N2
. (4)

Introducing this relation into Equation 3 and adding the modal energy conservation equation for each
subsystem, the energy balance equation of SEAL method can be built as

Π1
in j = ωcη1E1 + ωcη12

(
E1 −

N1

N2
E2

)
,

Π2
in j = ωcη2E2 + ωcη12

(
N1

N2
E2 − E1

)
,

(5)

where Π1
in j and Π2

in j respectively represent the power injected into subsystem 1 and subsystem 2,
ωcη1E1 and ωcη1E1 is the power dissipated in subsystem 1 and subsystem 2, and η12 is the SEAL
coupling loss factor given by,

η12 =
1

N1ωc

N1∑
p=1

N2∑
q=1

βpq (6)

When SEAL is employed, the underlying assumption implies that energy equipartition can be
fulfilled in all the subsystems. However, it is not necessarily true for a complex system containing a



low modal density subsystem. It may be for instance the case for a structure-cavity system for which
the structure has a low modal density whereas the cavity has a high one. To consider the situation
when one subsystem is diffuse and the other is not, the hybrid SmEdA-SEA-like (SmEdA-SEAL) is
presented here. Applying the equipartition assumption only to the cavity, the energy conservation
equation Equation 3 becomes

Π
p
in j =

(
ηpωp + N2γp

)
Ep − γpE2, ∀p ∈ [1,N1],

Π2
in j = −

N1∑
p=1

N2γpEp +

 N1∑
p=1

γp + η2ωc

 E2,
(7)

where γp = 1
N2

∑N2
q=1 βpq represents the averaged modal coupling loss between mode p in subsystem 1

and all the modes in subsystem 2.

3. FORMULATION OF HYBRID SMEDA-SEA

The following analysis is concerned with the Hybrid SmEdA-SEA modeling, in which an uncertain
system characterized by statistical properties. For simplifying the presentation, we will suppose
that the uncertain subsystem is an uncertain acoustic cavity although the proposed approach can be
generalized to any type of subsystem.

3.1. Natural frequency and mode shape realizations of the uncertain subsystem
For defining the natural frequencies of the uncertain cavity, one supposes that they can be

represented by a Gaussian Orthogonal Ensemble (GOE).
The local eigenvalue spacing distribution of the GOE is very close to the Wigner distribution as

P(s) =
π s
2

exp
(
−
πs2

4

)
, (8)

where P(s) · ds denotes the probability of having a spacing in the interval [s, s + ds]. To obtain
the natural frequency realizations, one vector s consisting of random numbers from the Wigner
distribution is generated as the normalized local eigenvalue spacing,

s = [s1, s2, s3, . . . , sn] , n = 2Ne, (9)

where Ne denotes the expected total number of natural frequencies in the studied frequency band that
can be obtained by integrating the modal density n(ω) in that frequency band,

Ne =

∫ ωu

ωl

n(ω) dω, with n(ω) =
V ω2

3π2c3
0

, (10)

in which V indicates the volume of the cavity and c0 is the speed of sound. Multiplying vector s with
averaged nearest-neighbor eigenvalue spacing ŝ gives the unnormalized ones,

S = s · ŝ =
s

n (λr)
= s

2ωr

n (ωr)
, (11)

in which n(ωr) is the averaged modal density in that frequency band. Then the n − th eigenvalue can
be obtained by summing the first n− th order local spacing and the lowest eigenvalue in the frequency
band of interest as

λn = λl +

n∑
i=1

Si, λn < λu.



For the mode shape realization of the uncertain cavity, firstly one mode shape vector containing the
modal pressure on the coupling surface is defined as

ϕr :=
[
ϕr (x1) ϕr (x2) . . . ϕr (xL)

]T . (12)

Supposing a standard diffuse field in the cavity, the covariance function of the modal pressure at two
different positions x1 and x2 should respect [17]:

Cr := Cov
[
ϕr(x1)ϕr(x2)

]
= E

[
ϕr(x1)ϕr(x2)

]
= S ϕrϕr

sin (kr|x2 − x1|)
kr|x2 − x1|

(13)

where kr = ωr
c0

is the wavenumber corresponding to the frequency ωr. S ϕrϕr is the auto-spectrum
density of boundary pressure ϕr. The normalization condition for room pressure pr of a diffuse
acoustic cavity with volume V is

1
V

∫
V

p2
r (x)dx =

ρ0c2
0

V
(14)

Considering that a ratio of 2 between the auto-spectrum density of boundary pressure S ϕrϕr and the
average of the quadratic pressure mode [18],

S ϕrϕr =
2ρ0c2

0

V
. (15)

Realizations of the modal pressure ϕr can be achieved through an eigenvalue decomposition of the
covariance matrix,

Cr := AΣAT (16)

The corresponding set of modal pressure on the coupling surface can be expressed as

ϕk,r := AΣ
1
2ξ (17)

where ξ is a vector of independent, standard normal random variables that can be realized with a
Gaussian random number generator.

3.2. Hybrid SmEdA-SEA method
The SmEdA-SEA is established based on Monte Carlo simulation as shown in the flow chart

Figure 1. For example for one rectangular plate cavity coupling system, the deterministic modes of
the plate (subsystem 1) can be calculated analytically for simply supported plate or by FEM for a
more complex case. For the cavity (subsystem 2), realizations of its natural frequencies and mode
shapes in each frequency band can be done with the process described previously. The process of
modal information realization is repeated Ns times to generate a set of different realization, which
together with the deterministic modes of the plate can be regarded as the samples of the following
Monte Carlo Simulation. The frequency average response of each sample is calculated with SmEdA-
SEL, then the ensemble average response taken on all the samples is calculated in the Monte Carlo
simulation. This whole process is defined as the SmEdA-SEA model.

4. NUMERICAL RESULTS

In this section, numerical results for one plate cavity system (Figure 2) are calculated and compared
to the reference results in order to validate and assess the foregoing developed methods.



Figure 1: flow chart of SmEdA-SEA

Figure 2: Simply supported plate excited by random force radiates into a cavity

4.1. Validation of SmEdA-SEAL
In this case, the plate, of dimension La = 0.93m, Lb = 0.86m and thickness h = 0.001m is

simply supported and excited by a random force F of white-noise type at position of (0.72, 0.81). It
radiates energy into a cavity with rigid walls and the cavity is of dimension Lx = 1m, Ly = 0.9m,
Lz = 0.8m. The position of the plate ∆x = 0.047m,∆y = 0.022m. The Young’s modulus of the
plate E = 2.1 × 1011Pa, Poisson ratio υ = 0.31 and density ρ = 7800kg/m3. The air in the cavity
is of density ρ0 = 1.29kg/m3 and air speed c0 = 340m/s. Damping coefficient for two subsystems
η1 = 0.01, η2 = 0.001.

Employing the DMF, SmEdA, SEAL, and hybrid SmEdA-SEAL formulation for the plate cavity
system, the averaged exchanged power between two subsystems are illustrated in Figure 3. The
results predicted by SmEdA and the hybrid SmEdA-SEAL formulation both converge well to the
DMF method with a difference less than 1dB from 700Hz. By contrast, the result predicted by the
SEAL is not accurate, and the discrepancies are larger than 1dB in most of the studied frequency
bands. The validate range of Hybrid SmEdA-SEAL is as wide as that of the SmEdA. Furthermore,
considering the mode number in the cavity can be numerous, which leads to long-time calculation
and large computation resources necessary for SmEdA analysis, the hybrid formulation can be a great
alternative method for this kind of complex system that contains both high and low modal density
subsystems.

4.2. Validation of SmEdA-SEA
In this case, the plate, of dimension 0.34m × 0.46m × 0.001m, is excited at position of (xe, ye) =

(0.22m, 0.11m). In the numerical calculation using SmEdA-SEA, the dimension of the coupled cavity
is of dimension 1.0m × 0.9m × 0.8m and the relative position of the plate ∆x = 0.55m,∆y = 0.32m.
For the uncertainty model, the uncertainty is introduced into the cavity by dimension randomness
in three directions meanwhile the volume of the cavity is fixed at 1.0m × 0.9m × 0.8m. When the
vibrational field of a cavity is modeled as a diffuse field as in the SmEdA-SEA model, we suppose
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Figure 3: Exchanged power predicated by DMF, SmEdA, SEAL, and hybrid SmEdA-SEAL

that the highest degree of uncertainty is introduced into the model. Therefore theoretically speaking,
the averaged exchanged power predicated by these two models should have an agreement and the
confidence interval of the uncertainty model should be contained in that of the hybrid model.

Figure 4 illustrates the confidence interval and ensemble average of exchanged power predicated
hybrid SmEdA-SEA compared with that of the uncertainty model with 10% uncertainty in dimension.
The difference between these two models in terms of ensemble-averaged exchanged power converges
to less than 1dB above 880 Hz. However, the confidence interval of the uncertainty model is not
completely contained in that of the hybrid SmEdA-SEA model. The modes that participate in the
response calculation of the uncertainty model are deterministic, in which some modes are sensitive to
dimension uncertainty while some others are less sensitive. Therefore, the output of the uncertainty
model deviates slightly from the SmEdA-SEA model. If the cavity used for the uncertainty model

Figure 4: Confidence intervals and ensemble averages of exchanged power predicated by uncertainty
model (with 10% uncertainty) and SmEdA-SEA taken on 100 samples

is ergodic, the generated vibration field becomes closer to a diffuse field, and the obtained reference
result would be closer to the result of the proposed hybrid SmEdA-SEA. This is what we want to
study in the next stages of this research.



5. CONCLUSIONS

A hybrid SmEdA-SEA is extended from SmEdA for the vibroacoustic analysis of complex systems
containing both high and low modal density subsystems. The low modal density is characterized by
its deterministic modes with the SmEdA while the high modal density subsystem is assumed to be
uncertain and characterized by statistical properties: GOE for the modal frequencies and diffuse field
for the mode shapes. The comparison of exchanged power between two subsystems calculated by
DMF, SmEdA, SEA, and SmEdA-SEAL shows a good assessment for the proposed hybrid SmEdA-
SEAL method. In order to validate the SmEdA-SEA, the results in terms of the confidence interval
and ensemble average of the exchanged power obtained by SmEdA-SEA have been compared with
those obtained by an uncertainty model with random dimension. As expected, the mean level of
exchanged power shows a good agreement with the uncertainty model, while their confidence interval
shows a slight difference owing to the non-strict diffuse acoustic field in the uncertainty simulation. In
conclusion, the present hybrid approaches are well adapted to complex systems containing subsystems
with high and low modal densities. It takes fewer computation resources without diminishing the
accuracy, and hybrid SmEdA-SEA allows evaluating the variance of the response generated by the
uncertainty in the system without a detailed description of its underlying random parameters.
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