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ABSTRACT

Decoupling procedures based on substructuring methods allow to predict the vibroacoustic behaviour
of a given system by removing a part of an original system that can be easily modelled. The reverse
Condensed Transfer Function (rCTF) method has been developed to decouple acoustical or
mechanical subsystems that are coupled along lines or surfaces. From the so-called condensed
transfer functions (CTFs) of the original system and of the removed part, the behaviour of the system
of interest can be predicted. The theoretical framework as well as a numerical validation have been
recently published. In the present paper, we focus on the influence of numerical errors on the results
of the rCTF method, when the CTFs are calculated using numerical models for the original system
and the removed part. The rCTF method is applied to a test case consisting in the scattering problem
of a rigid sphere in an infinite water domain and impacted by an acoustic plane wave. Discrete
green formulation and finite element method are used to estimate the CTFs. Numerical results will be
presented in order to evaluate the sensitivity of the method to model errors and the potential promises
and limitations of the method will be highlighted.

1. INTRODUCTION

Today, numerical methods in vibrations, acoustics and vibroacoustics are widely used in the industry
to design products meeting strong noise and vibration requirements. In these domains, substructuring
methods have emerged to circumvent prohibitive calculation costs that can be met at mid and high
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frequencies. Among these methods, admittance and impedance concepts have been derived as an
analogy between electrical and mechanical systems [1]. These methods, based on frequency transfer
functions, allow one to study complex systems by dividing them into subsystems for which the
transfer functions are evaluated by different means (analytical, numerical or experimental). A first
formulation, based on point-coupled mechanical subsystems, has been derived by Rubin [2] and
O’Hara [3]. The approach was extended to multi-point coupled structures by Petersson and Plunt [4]
and to weakly coupled structural-acoustic systems by Kim and Brennan [5].

The approach was then extended to surface-coupled subsystems via the Patch Transfer Function
(PTF) method, initially developped to couple two acoustic domains [6]. The interface between the
two domains is decomposed into patches that are defined using a wavelength-based criterion. This
method was highly studied over the past years for industrial applications such as automotive [7] and
naval [8] domains, and the convergence of the method was improved by partitioning the subsystems
outside the acoustic near field of the structures [8] and by introducing residual mode shapes in the
modal expansion of the Patch Transfer Functions [9]. As a generalization of the PTF method, the
Condensed Transfer Function (CTF) method was introduced to study linear vibro-acoustic problems
coupled along lines or surfaces [10]. Condensation functions, that can take numerous forms (patches,
but also complex exponentials or Chebyshev polynomials) are used as a basis for evaluating the forces
and displacements at the junctions. This method can find industrial applications, for example in the
naval domain, where it has been used to predict the vibroacoustic behaviour of stiffened cylindrical
shells coupled to non-axisymmetric internal structures [11].

More recently, a reverse formulation of the CTF (rCTF) method has been developped by the
authors in order to remove a subsystem from a global system [12]. Such an approach can be
interesting to model the effect of a default or a void in a complex structure. Similar decoupling
techniques have already been studied in the past, in experimental studies to estimate the impedances
of a part of a system [13, 14] and in numerical studies for plate systems [15]. It has been highlighted
that they exhibit errors around the natural frequencies of the removed subsystem [17]. In the
proposed approach, the systems studied can be either mechanical, acoustical, or vibroacoustical, and
the response of the system can be obtained at any point of the domain. The validity of the method
has already been studied in a previous paper [12], hence this article focuses on the sensitivity of the
method when model errors are introduced via the calculation of the Condensed Transfer Functions.

2. PRINCIPLE OF THE REVERSE CTF METHOD

Figure 1: Scattering of a plane wave by a rigid object.

The system of interest of this study is defined in Figure 1, which is the scattering of a plane wave
by a rigid object in a fluid medium. This rigid object can be considered as a presence of a void in the
medium, and for which we want to study the effect. In order to do so, we can consider the decoupling
problem presented in Figure 2.

Let us consider two domains initially coupled along a surface Q, where the first subsystem is
excited by an external force that takes the form of an acoustic plane wave, as illustrated in Figure 2.
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Figure 2: Principle of the reverse CTF method.

The responses are calculated in harmonic regime. We are interested in getting the reponse at any point
M, of the decoupled subsystem 1. To do so, a set of N orthonormal functions defined on Q, called
the condensation functions, is considered: {¢'};<;<y. For each subsystem a, the pressures p, and
normal velocities u, at the junction can be approximated as a linear combination of the condensation
functions:

N N
pa(®) = Y Pigi(x) and () = Y Ulg'(x), xeQ (1)
i=1 i=1

As the theoretical developments of the rCTF method are fully described in [12], a reminder of the
quantities that are necessary to apply the method will be given here. These quantities are related to
the known subsystems 142 and 2.

In order to estimate Pfl and U ("I in Eq. (1), condensed transfer functions (CTFs) between ¢; and ¢;
are defined for each uncoupled subsystem by applying a prescribed velocity u, = ¢/ on Q:

Z,‘j — <]5m ()Dl> —
(N
where p, is the resulting pressure on the junction Q when the subsystem is excited by u, = ¢/, and
(e, ®) is a scalar product. The condensed impedance matrix of subsystem 2, Z, is hence obtained by
this process, as well as the condensed impedance matrix of subsystem 1, Z;. As for subsystem 1+2,
the condensed transfer function between ¢ and ¢/ is defined by applying a prescribed velocity jump
corresponding to ¢/ at the junction Q:
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The other quantities that are necessary to apply this decoupling process are related to subsystem

1+2:

= (P12 ') 3)

- p1+2(My), which is the pressure induced by the plane wave at point M, of subsystem 1+2.

- Py,,, which is the condensed pressure at the surface Q of subsystem 1+2 induced by the plane
wave.

- PIAS, which is the condensed pressure at the surface Q of subsystem 1+2, induced by a

monopole source of unit volume volume velocity located at point M.

These quantities allow us to obtain the two necessary informations from the decoupled subsystem
1. The condensed impedance Z; is given by:

Zy = Zy(Zs — Z112)"' Zin “)



While the pressure at any point M of the subsystem 1 can be written as:

PrMY) = pro(M) + (I + 22 (22 — Z142)™' Z1iaZ;') P Z5" P ©)

where I is the identity matrix.

3. NUMERICAL SIMULATIONS ON A TEST CASE

3.1. Definition of the test case

The rCTF method has already been validated from a theoretical point of view in a previous work
[12]. This paper is hence focused on the sensitivity of the method to model errors. In this regard, the
rCTF method will be applied on an academic test case consisting in the scattering of an acoustic plane
wave by a rigid sphere immersed in an infinite water domain. As illustrated in Figure 3, this test case
consists in removing a water sphere (subsystem 2) from an infinite water domain (subsystem 1+2).
The result will be the infinite water domain with a rigid sphere at its center (subsystem 1), which is
the origin of the coordinates in the spherical coordinate system. The characteristrics of the infinite
domain and of the sphere are given in Table 1.

1 1+2 2

~, -
******

Figure 3: Application of the reverse CTF method to the scattering of a plane wave by a rigid sphere.

Table 1: Material characteristics and dimensions.

Parameter Notation Value Unit

Radius a 1 m
Density 0 1000 kg.m
Sound speed Co 1500 m.s!
Loss factor n 0.001 -

For purposes of comparison, a theoretical reference calculation has been carried out by expanding
the incident plane wave and the scattered pressure field in spherical harmonics, and the harmonic
responses are calculated in the frequency range [100, 1 000] Hz with 1 Hz steps. In this frequency
range lie the first two resonant frequencies (i.e. 497 Hz and 798 Hz) and first anti-resonant frequency
(i.e. 750 Hz) of the sphere. In order to apply the rCTF approach, the condensed impedances, as
defined in Section 2, can be calculated by different means, either analytical or numerical. These
calculations depend on the condensation functions that are considered, as stated in Eq. (2). These
condensation functions will be presented in the next section.



3.2. Definition of the condensation functions

In order to apply the rCTF method, the condensation functions must be defined. In this work, the
condensation functions that are investigated are the 2D gate functions, defined depending on their
surface Q;:

@0, 0) =4 V& b1 <, <¢ . i€[l,N] (6)
0 elsewhere

L. { 01 <6, <86;
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These condensation functions are orthonormal following the scalar product at the surface of the
sphere in spherical coordinates:

21 /2
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where 6;; is the Kronecker symbol, and * denotes the complex conjugate. Using 2D gate functions as
condensation functions amounts to dividing the sphere into N patches, and the condensed impedance
between patches i and j is computed by calculating the mean pressure on patch i when a unit
prescribed velocity is imposed on patch j. The definition of the four angles 6,_, 6;, ¢;_; and ¢; that
appear in Eq. (6) is given in Figure 4a, while the patches at the surface of the sphere are shown in
Figure 4b. Following the definition of the PTF method, using these condensation functions can be
considered as applying the reverse PTF approach.

(a)

Figure 4: (a) Definition of a patch related to a 2D gate function. (b) Definition of the patches over the
sphere surface.

In order for the rCTF method to correctly converge, the size and the number of the patches
must be carefully chosen (see [10]). According to previous studies on the PTF and CTF methods,
a criterion based on the Nyquist-Shannon sampling theorem has been derived stating that at least
two points per wavelength are necessary to sample a signal. Following this recommandation, the
acoustic wavelength at the highest frequency of interest (i.e. 1 000 Hz) should be considered, yielding
Anin = 1.5 m. As for the size of the patches, they should be smaller than half the shortest wavelength:

/lmin
: ®)
The sphere is thus divided into 58 patches as shown in Figure 4b, following the criterion in Eq. (8).
It is important to mention that the geometrical particularities of the patches (namely, that the patches
at the top and bottom of the sphere are triangular, and that the nodes of two consecutive patches
are not necessarily coincident) do not have any influence on the results of the PTF and reverse PTF
methods.

d<




3.3. Numerical calculation of the condensed impedances

Once that the condensation functions have been defined, it is necessary to compute the condensed
impedances of the different subsystems in order to apply the rCTF method, based on Egs. (4) and
(5). In our previous work [12], the condensed impedances have been calculated by analytical means,
in order to validate the method from a theoretical point of view. Hence, as this paper is focused on
the sensitivity of the method to model errors, the condensed impedances will be computed using
numerical formulations. The analytical calculation can still serve as a reference to evaluate the
decoupling of the condensed impedances of Eq. (4).

According to Eq. (4), the condensed impedances of the subsystem 1, which is of interest and
corresponds to the rigid sphere in an infinite water medium, are obtained from the condensed
impedances of the subsystem 142, which is the infinite water domain, and of the subsystem 2, which
is the sphere of water. Let us focus at first on the numerical calculation of the condensed impedances
of the subsystem 1+2.

(a) Condensed impedances of the subsystem 1+2: according to Filippi [18], layer potentials can be
used as a solution of the homogeneous Helmholtz equation in an open domain. The pressure at the
fictitious surface of the sphere in subsystem 142 can hence be expressed using a single layer potential:

p(M) = fg V(PYG(M, P) d(P), MOy, pu) € Q, P(bp,pp) € Q ®)

where v(P) is the single layer potential due to a layer of spherical sources and represents a velocity
jump at the crossing of the fictitious surface of the sphere. G(M, P) is the Green function and
corresponds to the sound field at point M due to a spherical point source located at point P. With
the temporal dependency of the problem being e, it is defined as:

eik(l—in)r(M,P)

G(M,P) = “ L P) (10)

with k being the acoustic wavenumber, 17 the damping loss factor (to account for dissipative effects in
the domain) and r(M, P) the distance between points M and P. In order to include this formulation
into the rCTF problem to calculate the condensed impedances of the subsystem 1+2, the velocity jump
in Eq. (9) must correspond to a condensation function ¢/. Following this, the integration in Eq. (9)
must be evaluated numerically. One way to do so is to discretize the integral with a rectangular rule.
According to the definition of the condensation functions in Eq. (6), the patch j corresponding to ¢’
must be discretized into R; points between 6;_; and 6; in the § dimension and into S ; points between
¢j-1 and ¢; in the ¢ dimension. Eq. (9) can then be written:

R; G(Qr QM,(]b; ¢M) sin gr 0. € [9 1 9]
)=, : . L50,0¢;, R (1)

where Q; is the surface of the patch j, and 66; and 6¢; are the discretization step in the # dimension and
¢ dimension of patch j, respectively. According to the definition of the condensed transfer functions
in Eq. (3), the discretized condensed transfer function between patch i and patch j for the subsystem
1+2 is then obtained by projecting the expression in Eq. (11) on the condensation function ¢’. Once
again, it is done by discretizing the patch i into R; points between 6,_; and 6; in the 6 dimension and
into §; points between ¢;_; and ¢; in the ¢ dimension.

R Si R S

G(er - er,-’ ¢s- - ¢si) sin Hr- sin Hr,- Hr- € [Hi—l’ 01]
) / ! 56,64 ;60,64 ’ (12)
2l Z; ; ; py= \VQ,Q; S { ¢, € [@i1, Pil




where €; is the surface of the patch i, and 66; and d¢; are the discretization step in the 8 dimension
and ¢ dimension of patch i, respectively. The size of the discretization is a key element to have a good
balance between good performances and effective computation cost. After a trial and error test, it has
been concluded that taking 66; = 6¢; = 66; = 6¢; = 2° is a good compromise in terms of performances
and computation cost. Finally, considering this method, it is important to study the particular case
of the direct condensed transfer function, that is when i = j. Regarding the definition of the Green
function in Eq. (10), a singularity happens when the excited and receiving nodes are the same. A first
possiblity to circumvent this issue is to define a criterion of minimal distance &£ between two nodes. If
the distance between the two nodes is smaller than &, it is forced into being €. A second possibility is
to approximate this condensed impedance by doing an analogy. The radiation impedance of a circular
baffled piston having the same surface as the patch, corresponding to the pressure at the surface of the
piston when a uniform vibrating velocity is prescribed, is defined as:

ZR = Z() 1- (13)

ka ka
where Z is the acoustic impedance, a,, is the radius of the circular piston, J; is the Bessel function of
the first kind and S, is the Struve function. An analogy of this expression can be done by considering
a uniform velocity jump at the surface of a baffled vibrating disk, and the calculation process would
lead to the same expression as Eq. (13). Experience has shown that the first solution is more precise
but also more time consuming when the discretization is fine (i.e. 96 < 2°), while the second solution
works quite well no matter the discretization and is very effective in terms of computation cost.

J1(2ka,) _ iSl(ZkaP))

14 14

(b) Condensed impedances of the subsystem 2: as for the condensed impedances of the subsystem
2, which is the water sphere, a FEM formulation is used. The mesh of the sphere is generated via
Altair Hypermesh, with a criterion of at least 6 elements per acoustic wavelength for the highest
frequency considered. The mass and stiffness matrices are extracted from the model using the
Structural Dynamic Toolbox implemented in Matlab [19]. The FEM formulation that is solved takes
the form:

(1K1 = &’ IM1(1 = 2im) {p} = Q) (14)

where [K] and [M] are the acoustic stiffness and mass matrices, respectively, 7 is the damping loss
factor, {p} is the output pressure vector, and {Q} is the input volume velocity vector. In order to apply
this Finite Element formulation to the calculation of the condensed impedances, the input velocity
vector on patch j must be the condensation function ¢’ Following this, the input volume velocity
vector {Q;} associated to patch j will have N components ¢,, with N being the number of nodes
belonging to the patch j:

ql=—=, nell,N] (15)

E‘%

where 6§, is the area around the node n. The resulting pressure at each node k of the Finite Element
model is then obtained by inverting Eq. (14):

2 -\
pi = (IK1 - ?[M1(1 - 2im)) Q) (16)

Finally, the condensed transfer function between patch i and patch j is obtained by projecting the
pressure in Eq. (16) on the condensation function ¢'. In practice, this projection is carried out via a
discrete sum over the M nodes of the Finite Element model belonging to the patch i:

M

ij Pm

Z = § S m (17)
m=1 VQi



where 65, is the area around the node m. As for the subsystem 1+2, the mesh size of the Finite
Element model is a very important parameter for the computation to be precise enough. As stated
before, a criterion of 6 elements per acoustic wavelength is generally used in this kind of studies.
However, applying such a criterion was not enough in this case as the resonant and anti-resonant
frequencies of the water sphere were not correctly described in this model. A criterion of 15 elements
per acoustic wavelength (at the highest considered frequency) was hence retained to be close enough
to the analytical calculation: the relative error on the frequency of the highest resonance (i.e. 750 Hz)
is 0.13%, against 1.4% for the criterion of 6 elements per acoustic wavelength.

3.4. Decoupling of the condensed impedances

As a first step, to evaluate the sensitivity of the rCTF method to model errors, the calculation of
the condensed impedances of subsystem 1, Z;, are computed using Zy,2, Z2, and the decoupling
formula of Eq. (4). The results are compared to an analytical calculation of Z; (developpment not
shown here). In order to sweep different possibilities of transfer functions (TFs), the comparison is
shown for:

e adirect condensed impedance on a trapezoid patch (the excitation and observation patch are the
same) - 13 TF.

e adirect condensed impedance on a triangular patch - 2" TF.

e acrossed condensed impedance between two trapezoid patches that are close to each other - 3™
TF.

e acrossed condensed impedance between a trapezoid patch and a triangular patch that are widely
separated one from another - 4" TF.

(a) (b)
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Figure 5: (a) Comparison between the condensed impedances computed analytically and with the
rCTF approach. (b) Condition number of the inverted matrix for the three subsystems.

The comparison is shown in Figure 5a, and the results show a relatively good fit between the
reference calculation and the rCTF calculation. It can however be seen, especially for the 40 TF, that
discrepancies appear around 750 Hz. This frequency corresponds to the anti-resonant frequency of
the water sphere, which had already been identified as ill-conditionned in previous studies concerning
decoupling procedures [12, 17]. Indeed, the condition number of the inverted matrix (Zs — Z14,) is
particularly high at the resonant and anti-resonant frequencies of the water sphere, as seen on Figure
5b. The introduction of model errors in the calculation of the condensed impedances of subsystems
2 and 142 hence amplifies the ill-conditionning around the anti-resonant frequency, which explains



the observed errors. Although the results are not perfect, there is a clear tendancy showing that the
numerical decoupling calculation in very close to the reference calculation. Also, we are interested in
this study in evaluating the scattering of the plane wave by a rigid sphere, described by Eq. (5). The
next sections will hence be focused on the impact of the numerical errors on this calculation.

3.5. Calculation of the condensed pressures

In order to evaluate the decoupling formula of Eq. (5), the condensed pressure P e and Pry,
must also be evaluated by numerical means. It is reminded that P1 ., corresponds to the condensed
pressure at the fictitious surface of the sphere of subsystem 1+2 when the excitation is a unitary
monopole situated at point M;. On the other hand, P, is the condensed pressure induced at the
fictitious surface of the sphere of subsystem 142 when it is impacted by a plane wave. In order to
evaluate numerically these condensed pressures, the surface of the sphere is discretized using the

same process as for the condensed impedances of subsystem 1+2.

(a) Condensed pressure induced by a unitary monopole: the acoustic pressure field at any
point M(R, 0, ¢) of a fluid domain induced by a monopole of unit volume velocity located at point
M(Ry, 0;, ¢1) can be expressed using the free space Green function defined in Eq. (10):

p"' = iwpG(M, M) (18)

The condensed pressure is then obtained by evalutating the pressure of Eq. (18) at the surface of
the sphere and projecting it on the condensation function ¢'. In practice, this pressure is evaluated at
each discretization point belonging to the patch i and summed over the patch:

&y, € [di-1, il

As for the condensed impedances of subsystem 142, this formulation can exhibit a singularity
when the monopole is located at the surface of the sphere. When such a phenomenon appears, a
criterion of minimal distance, as described before, is then retained.

< Ger 0 s Ps . Hr-e 91'—»91'
1+2¢ 1wpzz O~ M1¢’ ¢M1)sm9,[69i6¢i, { ¢ € 101, 01 (19)

=1 s;=

(b) Condensed pressure induced by an acoustic plane wave: the acoustic pressure field of a plane
wave of angular frequency w travelling in the direction (6 = m, ¢ = 0) is defined by:

Pi(R,0) = Petofeos? (20)

where P; is the amplitude of the plane wave and k, the acoustic wavenumber. Similarly to the previous
calculation, the condensed pressure is obtained by evaluating the pressure in Eq. (20) at the surface
of the sphere and projecting it on the condensation function ¢'. For a patch i discretized into R; points
between 6;_; and 6; in the 6 dimension and into §; points between ¢i — 1 and ¢, in the ¢ dimension, it
yields:

Si zkoRcos&l
Pio; =P, Z Z sin 0,060,041, 6, € 61,6 21)

ri=1 s;=1

3.6. Computation of the pressure in the domain

Now that all the quantities that are necessary to calculate Eq. (5) have been obtained, we can focus
on evaluating the sensitivity of the method when numerical errors have been introduced in the models.
In order to do so, the decoupling formula of Eq. (5) will be compared to reference calculation based



on the expansion in spherical harmonics of the plane wave and the scattered field. This theoretical
development yields, for any point in the domain:

Jn(koa)h, (koR)

I (ko) 22)

+00
Pareo(R,6) = P; )" (2n + Di"P,(cos 0) | ju(koR) -
n=0
where P; is the amplitude of the plane wave, P,(cos6) is the Legendre polynomial, j, and j, are
the spherical Bessel function of the first kind and its derivative, and &, and A, are the spherical
Hankel function of the first kind and its derivative. In practice, this expression must be truncated
to a maximum number N of spherical harmonics. After a trial and error test, the calculation has
correctly converged in the frequency band of interest for N = 40 harmonics.

A first way of evaluating the rCTF calculation for the scattering of a plane wave by a rigid sphere
is to observe the evolution of the pressure over the frequency range at a single point of the domain.
The comparison between the theoretical calculation and the decoupling one is shown in Figure 6 for
3 different points in the fluid domain to account for different possibilities in terms of distance to the
surface of the sphere and of angular orientation. The quantity that is plotted here is the sound pressure
level, with a reference pressure py = 1uPa.
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Figure 6: Pressure scattered by the rigid sphere - evaluation of the decoupling for 3 points in the fluid
domain. Point1 -r=1.5m, 8 = 180°; Point2-r=1.3m, 8§ = 103°; Point 3 -r =1 m, 8 = 30°.

As could be expected from the calculation of the condensed impedances discussed in Section 4,
the calculation of the decoupled pressure exhibits errors that are mainly situated around the anti-
resonant frequency of the water sphere. One can also notice that these errors seem to be higher
when the pressure is observed at the surface of the sphere. Even if a criterion was established to
circumvent the singularities that can happen when the monopole is situated at the surface of the
sphere, the high values exhibited by monopoles at such short distances may be prohibitive. However,
we can emphasize that in most parts of the frequency range of the calculation the decoupling can be
considered as very effective. In order to validate this statement, a cartography of the scattered pressure
field around the rigid sphere can be plotted for several frequencies.

The cartography of the scattered pressure field for the two calculations is shown in Figure 7.
Figures (a) and (c) correspond to the reference calculation while the results of the decoupling
calculation are shown in Figures (b) and (d). As stated above, at 600 Hz (corresponding to Figures
(a) and (b)), there is no apparent error as this frequency showed no particular problem previously. As
a comparison, in Figures (c) and (d) are plotted the results at 750 Hz, the ill-conditionned frequency
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Figure 7: Pressure scattered by the rigid sphere - Comparison between theoretical results (a,c) and
decoupling results (b,d) for 2 frequencies: (a,b) 600 Hz; (c,d) 750 Hz.

which corresponds to the anti-resonance of the water sphere. However, even at this frequency, if
there are some discrepancies, one can observe that the global behavior stays well described by the
decoupling process, as the maxima and minima of pressure are correctly located.

4. CONCLUSIONS

After having been validated from an analytical point of view, the reverse Condensed Transfer Function
method has been applied to a test case in order to evaluate its sensitivity to model errors. To this
end, the condensed impedances and pressures necessary to apply the method have been computed by
numerical means. A discrete Green formulation has been used for the infinite water medium, while
the condensed impedances of the water sphere have been computed via a Finite Element formulation.

It has been shown that the method is particularly sensitive to errors around the anti-resonant
frequency of the subtracted subsystem, which was the water sphere, following the conclusions
previously drawn on decoupling procedures. The precision of the numerical models used to compute
the condensed impedances could hence be improved, resulting however in a substantial increase in
the computation time. Also, this decoupling method could be associated to a direct method to couple
a model of an elastic sphere, for example, hence potentially reducing the sensitivity of the method.
Finally, one has to keep in mind that a higher damping loss factor would strengthen the accuracy of
the method as it has been proven before.

The results of this study give a good overview of the potential advantages and drawbacks of the
rCTF method, and give insight on its applicability to industrial cases.
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