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A proof of the Multiplicative 1-2-3 Conjecture?
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Abstract. We prove that the product version of the 1-2-3 Conjecture,
raised by Skowronek-Kaziów in 2012, is true. Namely, for every connected
graph with order at least 3, we can assign labels 1, 2, 3 to the edges so
that no two adjacent vertices are incident to the same product of labels.
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1 Introduction

Let G be a graph. A k-labelling ` : E(G) → {1, . . . , k} is an assignment of
labels 1, . . . , k to the edges of G. From `, we can compute different parameters
of interest for all vertices v, such as the sum σ`(v) of incident labels (being
formally σ`(v) = Σu∈N(v)`(uv)), or similarly the multiset µ`(v) of labels incident
to v or the product ρ`(v) of labels incident to v. We say that ` is s-proper if σ`
is a proper vertex-colouring of G, i.e., we have σ`(u) 6= σ`(v) for every edge
uv ∈ E(G). Similarly, we say that ` is m-proper and p-proper, if µ` and ρ`,
respectively, form proper vertex-colourings of G.

In the context of so-called distinguishing labellings, the goal is generally to
not only distinguish vertices within some distance according to some parameter
computed from labellings (such as the parameters σ`, µ` and ρ` above, to name
a few), but also to construct such k-labellings with k as small as possible. We
refer the interested reader to [4], which lists hundreds of labelling techniques.

Regarding s-proper, m-proper and p-proper labellings, which are the main
focus in this work, we are thus interested, as mentioned above, in finding such k-
labellings with k as small as possible, for a given graph G. In other words, we are
interested in the parameters χS(G), χM(G) and χP(G) which denote the smallest
k ≥ 1 such that s-proper, m-proper and p-proper, respectively, k-labellings exist
(if any). Actually, through greedy labelling arguments, it can be observed that
the only connected graph G for which χS(G), χM(G) or χP(G) is not defined, is
K2, the complete graph on 2 vertices. Consequently, these three parameters are
generally investigated for so-called nice graphs, which are those graphs with no
connected component isomorphic to K2.

? Some proofs in this paper are voluntarily omitted due to space limitation; the inter-
ested reader will find them in [3], the full version of the current paper.

?? Corresponding author. Email address: julien.bensmail.phd@gmail.com.
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S-proper, m-proper and p-proper labellings form a subfield of distinguish-
ing labellings, which has been attracting attention due to the so-called 1-2-3
Conjecture, raised, in [6], by Karoński,  Luczak and Thomason in 2004:

1-2-3 Conjecture (sum version). If G is a nice graph, then χS(G) ≤ 3.

Later on, counterparts of the 1-2-3 Conjecture were raised for m-proper and
p-proper labellings. Addario-Berry et al. first raised, in 2005, the following in [1]:

1-2-3 Conjecture (multiset version). If G is a nice graph, then χM(G) ≤ 3.

while Skowronek-Kaziów then raised, in 2012, the following in [8]:

1-2-3 Conjecture (product version). If G is a nice graph, then χP(G) ≤ 3.

It is worth mentioning that all three conjectures above, if true, would be
tight, as attested for instance by complete graphs. Note also that the multiset
version of the 1-2-3 Conjecture is, out of the three variants, the easiest one in a
sense, as every s-proper or p-proper labelling is also m-proper (thus, proving the
sum or product variant of the 1-2-3 Conjecture would prove the multiset one).

To date, the best result towards the sum version of the 1-2-3 Conjecture,
proved by Kalkowski, Karoński and Pfender in [5], is that χS(G) ≤ 5 holds for
every nice graph G. Another significant result is due to Przyby lo, who recently
proved in [7] that even χS(G) ≤ 4 holds for every nice regular graph G. Karoński,
 Luczak and Thomason themselves also proved in [6] that χS(G) ≤ 3 holds for
nice 3-colourable graphs. Regarding the multiset version, for long the best result
was the one proved by Addario-Berry, Aldred, Dalal and Reed in [1], stating that
χM(G) ≤ 4 holds for every nice graph G. Building on that result, Skowronek-
Kaziów later proved in [8] that χP(G) ≤ 4 holds for every nice graph G. She also
proved that χP(G) ≤ 3 holds for every nice 3-colourable graph G.

A breakthrough result was recently obtained by Vučković, as he totally
proved the multiset version of the 1-2-3 Conjecture in [9]. Due to connections
between m-proper and p-proper 3-labellings, we observed in [2] that this result
directly implies that χP(G) ≤ 3 holds for every nice regular graph G. Inspired
by Vučković’s proof scheme, we were also able to prove that χP(G) ≤ 3 holds
for nice 4-chromatic graphs G, and to prove related results that are very close
to what is stated in the product version of the 1-2-3 Conjecture.

Building on these results, we prove the following throughout this paper.

Theorem 1. The product version of the 1-2-3 Conjecture is true. That is, every
nice graph admits p-proper 3-labellings.

2 Proof of Theorem 1

Let us start by introducing some terminology and recalling some properties of
p-proper labellings, which will be used throughout the proof. Let G be a graph,
and ` be a 3-labelling of G. For a vertex v ∈ V (G) and a label i ∈ {1, 2, 3}, we
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denote by di(v) the i-degree of v by `, being the number of edges incident to v
that are assigned label i by `. Note then that ρ`(v) = 2d2(v)3d3(v). We say that v
is 1-monochromatic if d2(v) = d3(v) = 0, while we say that v is 2-monochromatic
(3-monochromatic, resp.) if d2(v) > 0 and d3(v) = 0 (d3(v) > 0 and d2(v) = 0,
resp.). In case v has both 2-degree and 3-degree at least 1, we say that v is
bichromatic. We also define the {2, 3}-degree of v as the sum d2(v) + d3(v) of its
2-degree and 3-degree. If v is bichromatic, then its {2, 3}-degree is at least 2.

Because ` assigns labels 1, 2, 3, and, in particular, because 2 and 3 are co-
prime, note that, for every edge uv of G, we have ρ`(u) 6= ρ`(v) when u and
v have different 2-degrees, 3-degrees, or {2, 3}-degrees. In particular, u and v
cannot be in conflict, i.e., verify ρ`(u) = ρ`(v), if u and v are i-monochromatic
and j-monochromatic for i 6= j, or if u is monochromatic while v is bichromatic.

Before going into the proof of Theorem 1, let us start by giving an overview
of it. Let G be a nice graph. Our goal is to build a p-proper 3-labelling ` of G.
We can clearly assume that G is connected. We also set t = χ(G), where, recall,
χ(G) refers to the chromatic number3 of G. In particular, t ≥ 2.

In what follows, we construct ` through three main steps. First, we need to
partition the vertices of G in a way verifying specific cut properties, forming
what we call a valid partition of V (G) (see later Definition 1 for a more formal
definition). In short, a valid partition V = (V1, . . . , Vt) is a partition of V (G) into
t independent sets V1, . . . , Vt fulfilling two main properties, being, roughly put,
that 1) every vertex v in some part Vi with i > 1 has an incident upward edge
to every part Vj with j < i, and 2) for every connected component of G[V1 ∪V2]
having only one edge, we can freely swap its two vertices in V1 and V2 while
preserving the main properties of a valid partition.

Once we have this valid partition V in hand, we can then start constructing
`. The main part of the labelling process, Step 2 below, consists in starting from
all edges of G being assigned label 1 by `, and then processing the vertices of
V3, . . . , Vt one after another, possibly changing the labels by ` assigned to some
of their incident edges, so that certain product types are achieved by ρ`. These
desired product types can be achieved due to the many upward edges that some
vertices are incident to (in particular, the deeper a vertex lies in V, the more
upward edges it is incident to). The product types we achieve for the vertices
depend on the part Vi of V they belong to. In particular, the modifications we
make on ` guarantee that all vertices in V3, . . . , Vt are bichromatic, every two
vertices in Vi and Vj with i, j ∈ {3, . . . , t} and i 6= j have different 2-degrees
or 3-degrees, all vertices in V2 are 1-monochromatic or 2-monochromatic, and
all vertices in V1 are 1-monochromatic or 3-monochromatic. By itself, achieving
these product types makes ` almost p-proper, in the sense that the only possible
conflicts are between 1-monochromatic vertices in V1 and V2. An important point
also, is that, through these label modifications, we will make sure that all edges
of G[V1∪V2] remain assigned label 1, and no vertex in V3∪· · ·∪Vt has 3-degree 1,

3 Recall that a proper k-vertex-colouring of a graph G is a partition (V1, . . . , Vk) of
V (G) where all Vi’s are independent. The chromatic number χ(G) ofG is the smallest
k ≥ 1 such that proper k-vertex-colourings of G exist. G is k-colourable if χ(G) ≤ k.
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2-degree at least 2, and odd {2, 3}-degree; in last Step 3 below, we will use that
last fact to remove remaining conflicts by allowing some vertices of V1 ∪ V2 to
become special, i.e., make their product realising these exact label conditions.

Step 3 is designed to get rid of the last conflicts between the adjacent 1-
monochromatic vertices of V1 and V2 without introducing new ones in G. To
that end, we will consider the set H of the connected components of G[V1 ∪ V2]
having conflicting vertices, and, if needed, modify the labels assigned by ` to
some of their incident edges so that no conflicts remain, and no new conflicts are
created in G. To make sure that no new conflicts are created between vertices
in V1 ∪ V2 and vertices in V3 ∪ · · · ∪ Vt, we will modify labels while making sure
that all vertices in V1 ∪ V2 are monochromatic or special. An important point
also, is that the fixing procedures we introduce require the number of edges in a
connected component of H to be at least 2. Because of that, once Step 2 ends,
we must ensure that H does not contain a connected component with only one
edge incident to two 1-monochromatic vertices. To guarantee this, we will also
make sure, during Step 2, to modify labels and the partition V slightly so that
H has no such configuration.

Step 1: Constructing a valid partition

Let V = (V1, . . . , Vt) be a partition of V (G) where each Vi is an independent set.
Note that such a partition exists, as, for instance, any proper t-vertex-colouring
of G forms such a partition of V (G). For every vertex u ∈ Vi, an incident upward
edge (downward edge, resp.) is an edge uv for which v belongs to some Vj with
j < i (j > i, resp.). Note that all vertices in V1 have no incident upward edges,
while all vertices in Vt have no incident downward edges.

We denote by M0(V) (also denoted M0 when the context is clear) the set of
isolated edges in the subgraph G[V1∪V2] of G induced by the vertices of V1∪V2.
That is, M0 contains the edges of the connected components of G[V1 ∪ V2] that
consist in one edge only. To lighten the exposition, whenever referring to the
vertices of M0, we mean the vertices of G incident to the edges in M0.

For an edge uv ∈ M0 with u ∈ V1 and v ∈ V2, swapping uv consists in
modifying the partition V by removing u from V1 (v from V2, resp.) and adding
it to V2 (V1, resp.). In other words, we exchange the parts to which u and
v belong. Note that if V1 and V2 are independent sets before the swap, then,
because uv ∈M0, by definition the resulting new V1 and V2 remain independent.
Also, the set M0 is unchanged by the swap operation.

We can now give a formal definition for the notion of valid partition.

Definition 1 (Valid partition). For a t-colourable graph G, a partition V =
(V1, . . . , Vt) of V (G) is valid (for G) if V verifies the following properties.

(I) Every Vi is an independent set.
(P1) Every vertex in some Vi with i ≥ 2 has a neighbour in Vj for every j < i.
(S) For every sequence (ei)i of edges of M0(V), successively swapping every ei

(in any order) results in a partition V ′ verifying Properties (I) and (P1).
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Note that Property (S) implies the following property:

(P2) Swapping any number of edges of M0(V) results in a valid partition V ′.

To prove Theorem 1, as mentioned earlier, to start constructing ` we need to
have a valid partition of G in hand. The following result guarantees its existence.

Lemma 1. Every nice t-colourable graph G admits a valid partition.

Proof. For a partition V = (V1, . . . , Vt) of V (G) where each Vi is independent
(such a partition exists, as attested by any proper t-vertex-colouring of G), set
f(V) =

∑t
k=1 k · |Vi|. Among all possible V’s, consider a V that minimises f(V).

Suppose that there is a vertex u ∈ Vi with i ≥ 2 for which Property (P1)
does not hold, i.e., there is a j < i such that u has no incident upward edge
to Vj . By moving u to Vj , we obtain another partition V ′ of V (G) where every
part is an independent set. However, note that f(V ′) = f(V) + j − i < f(V), a
contradiction to the minimality of V. From this, we deduce that every partition
V minimising f must verify Property (P1).

Let now V ′ be the partition of V (G) obtained by successively swapping edges
of M0(V). Recall that the swapping operation preserves Property (I) and ob-
serve that f(V) = f(V ′). Hence, V ′ minimises f and thus verifies Properties (I)
and (P1). Thus Property (S) also holds, and V is a valid partition of G. ut

From here, we assume that we have a valid partition V = (V1, . . . , Vt) of G.

Step 2: Labelling the upward edges of V3, . . . , Vt

From G and V, our goal now is to construct a 3-labelling ` of G achieving certain
properties, the most important of which being that the only possible conflicts
are between pairs of vertices of V1 and V2 that do not form an edge of M0. The
following result sums up the exact conditions we want ` to fulfil. Recall that a
vertex v is special by `, if d3(v) = 1, d2(v) ≥ 2 and d2(v) + d3(v) is odd. Note
that special vertices are bichromatic.

Lemma 2. For every nice graph G and every valid partition (V1, . . . , Vt) of G,
there exists a 3-labelling ` of G such that:

1. all vertices of V1 are either 1-monochromatic or 3-monochromatic,
2. all vertices of V2 are either 1-monochromatic or 2-monochromatic,
3. all vertices of V3 ∪ · · · ∪ Vt are bichromatic,
4. no vertex is special,
5. if u ∈ V1 and v ∈ V2 are adjacent, then `(uv) = 1,
6. if two vertices u and v are in conflict, then u ∈ V1 and v ∈ V2 (or vice

versa), and at least one of u or v has a neighbour w in V1 ∪ V2.

Proof. From now on, we fix the valid partition V = (V1, . . . , Vt) of G. During
the construction of `, we may have, however, to swap some edges of M0, re-
sulting in a different valid partition of G. Abusing the notations, for simplicity
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we will still denote by V any valid partition of G obtained this way, through
swapping edges. Recall that valid partitions are closed under swapping edges of
M0 (Property (P2) of Definition 1).

Our goal is to design ` so that it not only verifies the four colour properties
of Items 1 to 4 of the statement, but also achieves the following refined product
types, for every vertex v in a part Vi of V:

– v ∈ V1: v is 1-monochromatic or 3-monochromatic;
– v ∈ V2: v is 1-monochromatic or 2-monochromatic;
– v ∈ V3: v is bichromatic with 2-degree 1 and even {2, 3}-degree;
– v ∈ V4: v is bichromatic with 3-degree 2 and odd {2, 3}-degree;
– v ∈ V5: v is bichromatic with 2-degree 2 and even {2, 3}-degree;
– ...
– v ∈ V2n, n ≥ 3: v is bichromatic with 3-degree n and odd {2, 3}-degree;
– v ∈ V2n+1, n ≥ 3: v is bichromatic with 2-degree n and even {2, 3}-degree;
– ...

We start from ` assigning label 1 to all edges of G. Let us now describe how to
modify ` so that the conditions above are met for all vertices. We consider the
vertices of Vt, . . . , V3 following that order, from “bottom to top”, and modify
labels assigned to upward edges. An important condition we will maintain, is
that every vertex in an odd part V2n+1 (n ≥ 0) has all its incident downward
edges (if any) labelled 3 or 1, while every vertex in an even part V2n (n ≥ 1) has
all its incident downward edges (if any) labelled 2 or 1. Note that this is trivially
verified for the vertices in Vt, since they have no incident downward edges.

At any point in the process, let M be the set of edges of M0 for which
both ends are 1-monochromatic (initially, M = M0). When treating a vertex
u ∈ V3 ∪ · · · ∪ Vt, we define Mu as the subset of edges of M having an end that
is a neighbour of u. For every edge e ∈ Mu, we choose one end of e that is a
neighbour of u and we add it to a set Su. Note that |Su| = |Mu|. Another goal
during the labelling process, to fulfil Item 6, is to label the edges incident to
u so that at least one end of every edge in Mu is no longer 1-monochromatic.
Note that the set Mu considered when labelling the edges incident to u is not
necessarily the set of edges of M0 incident to a neighbour of u, as, during the
whole process, some of these edges might be removed from M when dealing with
previous vertices in V3 ∪ · · · ∪ Vt.

Let us now consider the vertices in Vt, . . . , V3 one by one, following that order.
Let thus u ∈ Vi be a vertex that has not been treated yet, with i ≥ 3. Recall
that every vertex belonging to some Vj with j > i was treated earlier on, and
thus has its desired product. Suppose that i = 2n with n ≥ 2 (i = 2n + 1 with
n ≥ 1, resp.). Recall also that u is assumed to have all its incident downward
edges labelled 1 or 2 (3, resp.), due to how vertices in Vj ’s with j > i have been
treated earlier on, and to have all its incident upward edges labelled 1.

If Mu 6= ∅, then we swap edges of Mu, if necessary, so that every vertex in
Su belongs to V2 (V1, resp.). This does not invalidate any of our invariants since
both ends of an edge in Su are 1-monochromatic.
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In any case, by Property (P1), we know that, for every j < i, there is a vertex
xj ∈ Vj which is a neighbour of u. In particular, the vertex x1 (x2, resp.) does
not belong to Su (but may be the other end of an edge in Mu). We label the
edges ux3, ux5, . . . , ux2n−1 with 3 (ux4, ux6, . . . , ux2n with 2, resp.). Note that,
at this point, d3(u) = n− 1 (d2(u) = n− 1, resp.). To finish dealing with u, we
need to distinguish two cases depending on whether Mu is empty or not.

– Suppose first that Mu = ∅. Label ux1 with 3 (ux2 with 2, resp.). Now u has
the desired 3-degree (2-degree, resp.). If i > 3, then label uxi−2 with 2 (3,
resp.) so that u is sure to be bichromatic. If i > 3 and the {2, 3}-degree of u
does not have the desired parity, then label ux2 with 2 (ux1 with 3, resp.).
If u ∈ V3 and the {2, 3}-degree of u is even, then u is already bichromatic
since d2(u) = 1. If u ∈ V3 and the {2, 3}-degree of u is odd, then label ux1
with 3 to adjust the parity of the {2, 3}-degree of u and make u bichromatic.
In all cases, u gets bichromatic with 3-degree n (2-degree n, resp.) and odd
{2, 3}-degree (even {2, 3}-degree, resp.), which is what is desired for u.

– Suppose now that Mu 6= ∅. Let z ∈ Su and let e be the edge of Mu containing
z. For every w ∈ Su \ {z}, we label the edge uw with 2 (3, resp.). Then:

• If d2(u) + d3(u) is odd (even, resp.), then label uz with 2 (3, resp.)
and ux1 with 3 (ux2 with 2, resp.). In this case, every edge in Mu is
incident to at least one vertex which is not 1-monochromatic, while u
is bichromatic with 3-degree n (2-degree n, resp.) and odd {2, 3}-degree
(even {2, 3}-degree, resp.).

• If d2(u) + d3(u) is even (odd, resp.) and d2(u) > 0 (d3(u) > 0, resp.),
then swap e and label uz with 3 (2, resp.). Note that, after the swap
of e, we have z ∈ V1 (z ∈ V2, resp.). In this case, every edge in Mu is
incident to at least one vertex which is not 1-monochromatic, while u
is bichromatic with 3-degree n (2-degree n, resp.) and odd {2, 3}-degree
(even {2, 3}-degree, resp.).

• The last case is when d2(u) + d3(u) is even (odd, resp.) and d2(u) = 0
(d3(u) = 0, resp.). If i > 4, then we can label uxi−2 with 2 (3, resp.)
and fall back into one of the previous cases. If i = 4, then the only
edge labelled 3 is the edge ux3 which implies that d3(u) = 1, which is
impossible since d2(u) = 0 and d2(u) + d3(u) is odd. If i = 3, then the
conditions of this case imply that d2(u) = 1 while every upward edge
incident to u is labelled 1 or 3 and similarly for every incident downward
edge; this case thus cannot occur.

To finish, we remove the edges of Mu from M since their two ends are not
both 1-monochromatic any more.

At the end of this process, all vertices in V1 are 1-monochromatic or 3-
monochromatic, while all vertices in V2 are 1-monochromatic or 2-monochromatic.
Every vertex in V3 ∪ · · · ∪ Vt is bichromatic and there are no conflicts involv-
ing any pair of these vertices. Indeed if a ∈ Vi and b ∈ Vj are adjacent with
i > j ≥ 3, then either i and j do not have the same parity, in which case a and
b do not have the same {2, 3}-degree; or both i and j are even (odd, resp.) and
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d3(a) = i
2 6=

j
2 = d3(b) (d2(a) = i−1

2 6=
j−1
2 = d2(b), resp.). Note also that no

vertex in G is special, as special vertices have 3-degree 1, 2-degree at least 2,
and odd {2, 3}-degree. Also, we did not relabel any edge in the cut (V1, V2).

Finally, suppose that there is a conflict between two vertices u and v. Previous
remarks imply that u ∈ V1 and v ∈ V2 (or vice versa) and that both u and v
are 1-monochromatic. If none of u and v has another neighbour w in V1 ∪ V2,
then the edge uv belongs to the set M0. Since G is nice, one of u or v must have
a neighbour z in V3 ∪ · · · ∪ Vt. Hence uv ∈ Mz. Recall also that we relabelled
the edges incident to z in such a way that, for every edge of Mz, at least one
incident vertex became 2-monochromatic or 3-monochromatic, a contradiction
to the existence of u and v. Hence, all properties of the lemma hold. ut

Step 3: Labelling the edges between V1 and V2

From now on, we will modify a 3-labelling ` of G obtained by applying Lemma 2.
We denote by H the set of the connected components of G[V1 ∪V2] that contain
two adjacent vertices u ∈ V1 and v ∈ V2 having the same product by `. By
Items 1 and 2 of Lemma 2, such u and v are 1-monochromatic. Also, by Item 6
of Lemma 2, recall that every connected component of H has at least two edges.
In what follows, we only relabel edges of some connected components H ∈ H
with making sure that their vertices (in V1 ∪ V2) are monochromatic or special.
This ensures that only vertices of H have their product affected, thus that no
new conflicts involving vertices in V3 ∪ · · · ∪ Vt are created.

For a subgraph X of H ∈ H (possibly X = H), if, after having relabelled
edges of X, no conflict remains between vertices of X and all vertices of X are
either monochromatic or special, then we say that X verifies Property (P3).

Lemma 3. If we can relabel the edges of every H ∈ H so that every H verifies
Property (P3), then the resulting 3-labelling is p-proper.

Proof. This is because if we get rid of all conflicts in H, then the only possi-
ble remaining conflicts are between vertices in V1 ∪ V2 and in V3 ∪ · · · ∪ Vt. In
particular, recall that any two vertices of two distinct connected components
H1, H2 ∈ G[V1 ∪ V2] cannot be adjacent. Note also that, because we only rela-
belled edges in H, the vertices in V3∪· · ·∪Vt retain the product types described
in Lemma 2. In particular, they remain bichromatic and none of them is special.
Thus, they cannot be in conflict with the vertices in V1 ∪ V2. ut

In order to show that we can relabel the edges of every H ∈ H so that it
fulfils Property (P3), the following result will be particularly handy.

Lemma 4. For every integer s ∈ {2, 3}, every connected bipartite graph H
whose edges are labelled 1 or s, and any vertex v in any part Vi ∈ {V1, V2}
of H, we can relabel the edges of H with 1 and s so that ds(u) is odd (even,
resp.) for every u ∈ Vi \ {v}, and ds(u) is even (odd, resp.) for every u ∈ V3−i.
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Proof. As long as H has a vertex u different from v that does not verify the
desired condition, apply the following. Choose P any path from u to v, which
exists by the connectedness of H. Now follow P from u to v, and change the
labels of the traversed edges from 1 to s and vice versa. It can be noted that
this alters the parity of the s-degrees of u and v, while this does not alter that
parity for any of the other vertices of H. Thus, this makes u satisfy the desired
condition, while the situation did not change for the other vertices different from
u and v. Thus, once this process ends, all vertices of H different from v have
their s-degree being as desired by the resulting labelling. ut

We are now ready to treat the connected components H ∈ H independently,
so that they all meet Property (P3). To ease the reading, we distinguish several
cases depending on the types and on the degrees of the vertices that H includes.
In each of the successive cases we consider, it is implicitly assumed that H does
not meet the conditions of any previous case.

Claim 1. If H ∈ H has a 3-monochromatic vertex v ∈ V1, or a 1-monochromatic
vertex v1 ∈ V1 having two 1-monochromatic neighbours u1, u2 ∈ V2 with degree 1
(in H), then we can relabel edges of H so that H verifies Property (P3).

Proof. Recall that all edges of H are assigned label 1; thus, if a vertex of H is
3-monochromatic, then it must be due to incident downward edges to V3, . . . , Vt.

If H has a 1-monochromatic vertex v1 ∈ V1 that is adjacent to two degree-1
1-monochromatic vertices u1, u2 ∈ V2, then we set `(v1u1) = `(v1u2) = 3. Note
that u1 and u2 become 3-monochromatic with 3-degree 1, and are thus no longer
in conflict with v1, as it becomes 3-monochromatic with 3-degree 2. Note that
either we got rid of all conflicts in H and H now verifies Property (P3) as desired,
or conflicts between other 1-monochromatic vertices of H remain. In the latter
case, we continue with the following arguments.

Assume H has remaining conflicts, and that H has a 3-monochromatic vertex
v ∈ V1 (and, due to the previous process, perhaps 3-monochromatic vertices u1
and u2 in V2, in which case their 3-degree (and degree in H) is precisely 1, while
their unique neighbour v in V1 ∩ V (H) is 3-monochromatic with 3-degree 2).
Let X be the set of all 3-monochromatic vertices of H belonging to V1. Let
C1, . . . , Cq denote the q ≥ 1 connected components of H−X that do not consist
in a 3-monochromatic vertex of V2 (the vertices u1 and u2 we dealt with earlier
on). For every Ci, we choose arbitrarily a vertex xi ∈ X and a vertex yi ∈ Ci

such that xi and yi are adjacent in H. Note that the vertices of Ci are either
1-monochromatic or 2-monochromatic (in which case they belong to V2), since
all 3-monochromatic vertices of H are part of X (or are the vertices u1 and u2
dealt with earlier on, which we have omitted and are not part of the Ci’s).

By Lemma 4, in every Ci we can relabel the edges with 1 and 2 so that all
vertices in (V2 ∩ V (Ci)) \ {yi} are 2-monochromatic with odd 2-degree, while
all vertices in V1 ∩ V (Ci) are 2-monochromatic with even 2-degree or possibly
1-monochromatic if their even 2-degree is 0. In particular, recall that yi must
be 1-monochromatic or 2-monochromatic. If yi has odd 2-degree, then there are
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no conflicts between vertices of Ci. If yi has even non-zero 2-degree, then we set
`(xiyi) = 3, thereby making yi special.

Let Y be the set of all 1-monochromatic yi’s having a 1-monochromatic
neighbour wi in Ci. Let H ′ be the subgraph of H induced by Y ∪ X. Note
that every edge of H ′ is labelled 1. Let now Q1, . . . , Qp denote the connected
components of H ′ and choose xk ∈ X∩V (Qk) for every k ∈ {1, . . . , p}. For every
k, we apply Lemma 4 with labels 1 and 3 so that all vertices in V2 ∩ V (Qk) get
3-monochromatic with odd 3-degree, while all vertices in V1 ∩ V (Qk) \ {xk} get
3-monochromatic with even 3-degree or possibly 1-monochromatic (3-degree 0).

If xk is involved in a conflict with a vertex yi ∈ V2 ∩ V (Qk), then this is
because xk has odd 3-degree. Then:

– If `(xkyi) = 3, then d3(yi) = d3(xk) ≥ 3 since xk ∈ X (xk must thus be
incident to at least one other edge labelled 3, either a downward edge to
V3, . . . , Vt or an edge incident to u1 (and similarly an edge incident to u2)).
We here assign label 1 to the edge xkyi and label 3 to the edge yiwi. This
way, xk gets even 3-degree while the 3-degree of yi does not change. Note
that yi and wi are not in conflict since d3(wi) = 1 and d3(yi) ≥ 3.

– Otherwise, if `(xkyi) = 1, then we assign label 3 to the edge xkyi and label 3
to the edge yiwi. This way, xk gets even 3-degree while the 3-degree of yi
remains odd and must be at least 3. Again yi and wi are not in conflict since
d3(wi) = 1 and d3(yi) ≥ 3.

We claim that we got rid of all conflicts in H. Indeed, consider two adjacent
vertices a ∈ V1 ∩ V (H) and b ∈ V2 ∩ V (H). Suppose first that a and b belong to
some Ci. Note that, with the exception of yi and maybe of the vertex wi (if it
exists and yi ∈ Y ), every vertex of Ci is 1-monochromatic or 2-monochromatic,
the vertices of V1 ∩ V (Ci) having even 2-degree and the vertices of V2 ∩ V (Ci)
having odd 2-degree. Thus, no conflict involves two of these vertices. Suppose
now that b = yi. If yi is 2-monochromatic with odd 2-degree, then there is no
conflict involving yi in Ci since all of its neighbours in Ci have even 2-degree.
If yi is special, then it is the only special vertex of Ci, so, here again, it cannot
be involved in a conflict. If yi /∈ Y and yi is 1-monochromatic, then yi has no
other 1-monochromatic neighbour in Ci by definition of Y . If yi ∈ Y , then yi is
3-monochromatic with odd 3-degree, the only other possible 3-monochromatic
neighbour of yi in Ci being wi, but we showed previously that their 3-degrees
differ. Thus, in all cases, there cannot be conflicts between vertices of Ci.

We are left with the case where a and b do not belong to the same Ci. In
particular, this implies that a ∈ X and that a is 3-monochromatic. The only
possible 3-monochromatic vertices in V2 are the vertices of Y , which have odd 3-
degree, and the 3-monochromatic vertices u1 and u2 with 3-degree 1 and degree 1
in H which might have been created at the very beginning of the proof. If b ∈ Y ,
then, due to the application of Lemma 4 above, the only vertex of X which can
have odd 3-degree is some xk, but for this vertex we either ensured that it was
involved in no conflict, or we tweaked the labelling so that it got even 3-degree
without modifying the labelling properties obtained through Lemma 4. If b is u1
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or u2, then b has only one neighbour v. Note that the edges vu1 and vu2 are still
labelled 3 as they are not part of the Qi’s, and, thus, d3(b) = 1 and d3(v) ≥ 2.
Hence, there is no conflict between vertices of X and other vertices of H. This
implies that H verifies Property (P3). ut

We can thus assume that H does not meet any of the conditions in Claim 1.
The next step is showing that we can treat H in a similar way, in case H contains
a 1-monochromatic vertex u ∈ V2 with at least two neighbours in H. This can
be proved similarly as Claim 1, by investigating the structure of H and making
use of Lemma 4 to relabel edges of H in such a way that all remaining conflicts
are located in very precise places of H (so that we can then handle them one
by one). The formal proof being long, tedious, and in the same vein as that
of Claim 1, due to space limitation we omit it from this paper. The interested
reader will find the whole proof in [3], the full version of the current paper.

Claim 2. If H has a 1-monochromatic vertex u ∈ V2 with at least two neighbours
in H, then we can relabel edges of H so that H verifies Property (P3).

Assuming H does not meet any of the conditions in Claims 1 and 2, final
arguments allow to relabel edges of H to get rid of all its conflicts.

Claim 3. We can relabel edges of H so that it verifies Property (P3).

Proof. Let v ∈ V1 and u ∈ V2 be two adjacent 1-monochromatic vertices of H
(which must exist as otherwise H would verify Property (P3)). Because H has
at least two edges (as otherwise it would belong to M , not to H), at least one
of v and u must have another neighbour in H. Since Claim 2 does not apply,
note that u must have degree 1 in H (since all neighbours of u in H must be
1-monochromatic due to Claim 1 not applying). So v is also adjacent to k ≥ 1
vertices x1, . . . , xk ∈ V2 different from u, which must all be 2-monochromatic
(because of incident downward edges to V3, . . . , Vt; recall that all edges of H are
labelled 1) as otherwise Claim 2 would apply.

Set H ′ = H − u. According to Lemma 4, we can relabel edges in H ′ with 1
and 2 so that all vertices in (V1 ∩ V (H ′)) \ {v} have odd 2-degree, while all
vertices in V2 ∩ V (H ′) have even 2-degree. Recall that u is 1-monochromatic.
Thus, if also v is 2-monochromatic with odd 2-degree, then we are done. Assume
thus that v is 2-monochromatic with even 2-degree.

– Assume first that the 2-degree of v is even at least 2. In that case, set
`(vu) = 3. This way, u becomes 3-monochromatic, while v becomes special.

– Assume now v is 1-monochromatic. This implies that `(vx1) = 1. Change
`(vx1) to 3. This way, x1 becomes special (recall its 2-degree is even and at
least 1, due to incident downward edges), while v becomes 3-monochromatic.
Note that u remains 1-monochromatic.

In both cases, it can be checked that H now fulfils Property (P3). ut

At this point, we dealt with all connected components of H, and the resulting
labelling ` of G is p-proper by Lemma 3. The whole proof is thus complete.
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