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Introduction

Let G be a graph. A k-labelling : E(G) → {1, . . . , k} is an assignment of labels 1, . . . , k to the edges of G. From , we can compute different parameters of interest for all vertices v, such as the sum σ (v) of incident labels (being formally σ (v) = Σ u∈N (v) (uv)), or similarly the multiset µ (v) of labels incident to v or the product ρ (v) of labels incident to v. We say that is s-proper if σ is a proper vertex-colouring of G, i.e., we have σ (u) = σ (v) for every edge uv ∈ E(G). Similarly, we say that is m-proper and p-proper, if µ and ρ , respectively, form proper vertex-colourings of G.

In the context of so-called distinguishing labellings, the goal is generally to not only distinguish vertices within some distance according to some parameter computed from labellings (such as the parameters σ , µ and ρ above, to name a few), but also to construct such k-labellings with k as small as possible. We refer the interested reader to [START_REF] Gallian | A dynamic survey of graph labeling[END_REF], which lists hundreds of labelling techniques.

Regarding s-proper, m-proper and p-proper labellings, which are the main focus in this work, we are thus interested, as mentioned above, in finding such klabellings with k as small as possible, for a given graph G. In other words, we are interested in the parameters χ S (G), χ M (G) and χ P (G) which denote the smallest k ≥ 1 such that s-proper, m-proper and p-proper, respectively, k-labellings exist (if any). Actually, through greedy labelling arguments, it can be observed that the only connected graph G for which χ S (G), χ M (G) or χ P (G) is not defined, is K 2 , the complete graph on 2 vertices. Consequently, these three parameters are generally investigated for so-called nice graphs, which are those graphs with no connected component isomorphic to K 2 . S-proper, m-proper and p-proper labellings form a subfield of distinguishing labellings, which has been attracting attention due to the so-called 1-2-3 Conjecture, raised, in [START_REF] Karoński | Edge weights and vertex colours[END_REF], by Karoński, Luczak and Thomason in 2004:

1-2-3 Conjecture (sum version). If G is a nice graph, then χ S (G) ≤ 3.

Later on, counterparts of the 1-2-3 Conjecture were raised for m-proper and p-proper labellings. Addario-Berry et al. first raised, in 2005, the following in [START_REF] Addario-Berry | Vertex colouring edge partitions[END_REF]:

1-2-3 Conjecture (multiset version). If G is a nice graph, then χ M (G) ≤ 3.
while Skowronek-Kaziów then raised, in 2012, the following in [START_REF] Skowronek-Kaziów | Multiplicative vertex-colouring weightings of graphs[END_REF]:

1-2-3 Conjecture (product version). If G is a nice graph, then χ P (G) ≤ 3.
It is worth mentioning that all three conjectures above, if true, would be tight, as attested for instance by complete graphs. Note also that the multiset version of the 1-2-3 Conjecture is, out of the three variants, the easiest one in a sense, as every s-proper or p-proper labelling is also m-proper (thus, proving the sum or product variant of the 1-2-3 Conjecture would prove the multiset one).

To date, the best result towards the sum version of the 1-2-3 Conjecture, proved by Kalkowski, Karoński and Pfender in [START_REF] Kalkowski | Vertex-coloring edge-weightings: towards the 1-2-3 Conjecture[END_REF], is that χ S (G) ≤ 5 holds for every nice graph G. Another significant result is due to Przyby lo, who recently proved in [START_REF] Lo | The 1-2-3 Conjecture almost holds for regular graphs[END_REF] that even χ S (G) ≤ 4 holds for every nice regular graph G. Karoński, Luczak and Thomason themselves also proved in [START_REF] Karoński | Edge weights and vertex colours[END_REF] that χ S (G) ≤ 3 holds for nice 3-colourable graphs. Regarding the multiset version, for long the best result was the one proved by Addario-Berry, Aldred, Dalal and Reed in [START_REF] Addario-Berry | Vertex colouring edge partitions[END_REF], stating that χ M (G) ≤ 4 holds for every nice graph G. Building on that result, Skowronek-Kaziów later proved in [START_REF] Skowronek-Kaziów | Multiplicative vertex-colouring weightings of graphs[END_REF] that χ P (G) ≤ 4 holds for every nice graph G. She also proved that χ P (G) ≤ 3 holds for every nice 3-colourable graph G.

A breakthrough result was recently obtained by Vučković, as he totally proved the multiset version of the 1-2-3 Conjecture in [START_REF] Vučković | Multi-set neighbor distinguishing 3-edge coloring[END_REF]. Due to connections between m-proper and p-proper 3-labellings, we observed in [START_REF] Bensmail | Further Evidence Towards the Multiplicative 1-2-3 Conjecture[END_REF] that this result directly implies that χ P (G) ≤ 3 holds for every nice regular graph G. Inspired by Vučković's proof scheme, we were also able to prove that χ P (G) ≤ 3 holds for nice 4-chromatic graphs G, and to prove related results that are very close to what is stated in the product version of the 1-2-3 Conjecture.

Building on these results, we prove the following throughout this paper.

Theorem 1. The product version of the 1-2-3 Conjecture is true. That is, every nice graph admits p-proper 3-labellings.

Proof of Theorem 1

Let us start by introducing some terminology and recalling some properties of p-proper labellings, which will be used throughout the proof. Let G be a graph, and be a 3-labelling of G. For a vertex v ∈ V (G) and a label i ∈ {1, 2, 3}, we denote by d i (v) the i-degree of v by , being the number of edges incident to v that are assigned label i by . Note then that ρ

(v) = 2 d2(v) 3 d3(v) . We say that v is 1-monochromatic if d 2 (v) = d 3 (v) = 0, while we say that v is 2-monochromatic (3-monochromatic, resp.) if d 2 (v) > 0 and d 3 (v) = 0 (d 3 (v) > 0 and d 2 (v) = 0, resp.
). In case v has both 2-degree and 3-degree at least 1, we say that v is bichromatic. We also define the {2, 3}-degree of v as the sum d 2 (v) + d 3 (v) of its 2-degree and 3-degree. If v is bichromatic, then its {2, 3}-degree is at least 2.

Because assigns labels 1, 2, 3, and, in particular, because 2 and 3 are coprime, note that, for every edge uv of G, we have ρ (u) = ρ (v) when u and v have different 2-degrees, 3-degrees, or {2, 3}-degrees. In particular, u and v cannot be in conflict, i.e., verify ρ (u) = ρ (v), if u and v are i-monochromatic and j-monochromatic for i = j, or if u is monochromatic while v is bichromatic.

Before going into the proof of Theorem 1, let us start by giving an overview of it. Let G be a nice graph. Our goal is to build a p-proper 3-labelling of G. We can clearly assume that G is connected. We also set t = χ(G), where, recall, χ(G) refers to the chromatic number3 of G. In particular, t ≥ 2.

In what follows, we construct through three main steps. First, we need to partition the vertices of G in a way verifying specific cut properties, forming what we call a valid partition of V (G) (see later Definition 1 for a more formal definition). In short, a valid partition

V = (V 1 , . . . , V t ) is a partition of V (G) into t independent sets V 1 , .
. . , V t fulfilling two main properties, being, roughly put, that 1) every vertex v in some part V i with i > 1 has an incident upward edge to every part V j with j < i, and 2) for every connected component of

G[V 1 ∪ V 2 ]
having only one edge, we can freely swap its two vertices in V 1 and V 2 while preserving the main properties of a valid partition.

Once we have this valid partition V in hand, we can then start constructing . The main part of the labelling process, Step 2 below, consists in starting from all edges of G being assigned label 1 by , and then processing the vertices of V 3 , . . . , V t one after another, possibly changing the labels by assigned to some of their incident edges, so that certain product types are achieved by ρ . These desired product types can be achieved due to the many upward edges that some vertices are incident to (in particular, the deeper a vertex lies in V, the more upward edges it is incident to). The product types we achieve for the vertices depend on the part V i of V they belong to. In particular, the modifications we make on guarantee that all vertices in V 3 , . . . , V t are bichromatic, every two vertices in V i and V j with i, j ∈ {3, . . . , t} and i = j have different 2-degrees or 3-degrees, all vertices in V 2 are 1-monochromatic or 2-monochromatic, and all vertices in V 1 are 1-monochromatic or 3-monochromatic. By itself, achieving these product types makes almost p-proper, in the sense that the only possible conflicts are between 1-monochromatic vertices in V 1 and V 2 . An important point also, is that, through these label modifications, we will make sure that all edges of G[V 1 ∪V 2 ] remain assigned label 1, and no vertex in

V 3 ∪• • •∪V t has 3-degree 1,
2-degree at least 2, and odd {2, 3}-degree; in last Step 3 below, we will use that last fact to remove remaining conflicts by allowing some vertices of V 1 ∪ V 2 to become special, i.e., make their product realising these exact label conditions.

Step 3 is designed to get rid of the last conflicts between the adjacent 1monochromatic vertices of V 1 and V 2 without introducing new ones in G. To that end, we will consider the set H of the connected components of

G[V 1 ∪ V 2 ]
having conflicting vertices, and, if needed, modify the labels assigned by to some of their incident edges so that no conflicts remain, and no new conflicts are created in G. To make sure that no new conflicts are created between vertices in V 1 ∪ V 2 and vertices in V 3 ∪ • • • ∪ V t , we will modify labels while making sure that all vertices in V 1 ∪ V 2 are monochromatic or special. An important point also, is that the fixing procedures we introduce require the number of edges in a connected component of H to be at least 2. Because of that, once Step 2 ends, we must ensure that H does not contain a connected component with only one edge incident to two 1-monochromatic vertices. To guarantee this, we will also make sure, during Step 2, to modify labels and the partition V slightly so that H has no such configuration.

Step 1: Constructing a valid partition

Let V = (V 1 , . . . , V t ) be a partition of V (G)
where each V i is an independent set. Note that such a partition exists, as, for instance, any proper t-vertex-colouring of G forms such a partition of V (G). For every vertex u ∈ V i , an incident upward edge (downward edge, resp.) is an edge uv for which v belongs to some V j with j < i (j > i, resp.). Note that all vertices in V 1 have no incident upward edges, while all vertices in V t have no incident downward edges.

We denote by M 0 (V) (also denoted M 0 when the context is clear) the set of isolated edges in the subgraph

G[V 1 ∪ V 2 ] of G induced by the vertices of V 1 ∪ V 2 . That is, M 0 contains the edges of the connected components of G[V 1 ∪ V 2 ]
that consist in one edge only. To lighten the exposition, whenever referring to the vertices of M 0 , we mean the vertices of G incident to the edges in M 0 .

For an edge uv ∈ M 0 with u ∈ V 1 and v ∈ V 2 , swapping uv consists in modifying the partition V by removing u from V 1 (v from V 2 , resp.) and adding it to V 2 (V 1 , resp.). In other words, we exchange the parts to which u and v belong. Note that if V 1 and V 2 are independent sets before the swap, then, because uv ∈ M 0 , by definition the resulting new V 1 and V 2 remain independent. Also, the set M 0 is unchanged by the swap operation.

We can now give a formal definition for the notion of valid partition.

Definition 1 (Valid partition). For a t-colourable graph G, a partition V = (V 1 , . . . , V t ) of V (G) is valid (for G) if V verifies the following properties.
(I) Every V i is an independent set. (P 1 ) Every vertex in some V i with i ≥ 2 has a neighbour in V j for every j < i.

(S) For every sequence (e i ) i of edges of M 0 (V), successively swapping every e i (in any order) results in a partition V verifying Properties (I) and (P 1 ).

Note that Property (S) implies the following property:

(P 2 ) Swapping any number of edges of M 0 (V) results in a valid partition V .

To prove Theorem 1, as mentioned earlier, to start constructing we need to have a valid partition of G in hand. The following result guarantees its existence.

Lemma 1. Every nice t-colourable graph G admits a valid partition.

Proof. For a partition

V = (V 1 , . . . , V t ) of V (G)
where each V i is independent (such a partition exists, as attested by any proper t-vertex-colouring of G), set

f (V) = t k=1 k • |V i |. Among all possible V's, consider a V that minimises f (V).
Suppose that there is a vertex u ∈ V i with i ≥ 2 for which Property (P 1 ) does not hold, i.e., there is a j < i such that u has no incident upward edge to V j . By moving u to V j , we obtain another partition V of V (G) where every part is an independent set. However, note that f (V ) = f + j -i < f (V), a contradiction to the minimality of V. From this, we deduce that every partition V minimising f must verify Property (P 1 ).

Let now V be the partition of V (G) obtained by successively swapping edges of M 0 (V). Recall that the swapping operation preserves Property (I) and observe that f (V) = f (V ). Hence, V minimises f and thus verifies Properties (I) and (P 1 ). Thus Property (S) also holds, and V is a valid partition of G.

From here, we assume that we have a valid partition

V = (V 1 , . . . , V t ) of G.
Step 2: Labelling the upward edges of V 3 , . . . , V t From G and V, our goal now is to construct a 3-labelling of G achieving certain properties, the most important of which being that the only possible conflicts are between pairs of vertices of V 1 and V 2 that do not form an edge of M 0 . The following result sums up the exact conditions we want to fulfil. Recall that a vertex v is special by , if

d 3 (v) = 1, d 2 (v) ≥ 2 and d 2 (v) + d 3 (v) is odd. Note that special vertices are bichromatic.
Lemma 2. For every nice graph G and every valid partition (V 1 , . . . , V t ) of G, there exists a 3-labelling of G such that:

1. all vertices of V 1 are either 1-monochromatic or 3-monochromatic, 2. all vertices of V 2 are either 1-monochromatic or 2-monochromatic, 3. all vertices of V 3 ∪ • • • ∪ V t are bichromatic, 4. no vertex is special, 5. if u ∈ V 1 and v ∈ V 2 are adjacent, then (uv) = 1, 6. if two vertices u and v are in conflict, then u ∈ V 1 and v ∈ V 2 (or vice
versa), and at least one of u or v has a neighbour

w in V 1 ∪ V 2 .
Proof. From now on, we fix the valid partition

V = (V 1 , . . . , V t ) of G.
During the construction of , we may have, however, to swap some edges of M 0 , resulting in a different valid partition of G. Abusing the notations, for simplicity we will still denote by V any valid partition of G obtained this way, through swapping edges. Recall that valid partitions are closed under swapping edges of M 0 (Property (P 2 ) of Definition 1).

Our goal is to design so that it not only verifies the four colour properties of Items 1 to 4 of the statement, but also achieves the following refined product types, for every vertex v in a part V i of V:

-v ∈ V 1 : v is 1-monochromatic or 3-monochromatic; -v ∈ V 2 : v is 1-monochromatic or 2-monochromatic; -v ∈ V 3 :
v is bichromatic with 2-degree 1 and even {2, 3}-degree; v ∈ V 4 : v is bichromatic with 3-degree 2 and odd {2, 3}-degree; v ∈ V 5 : v is bichromatic with 2-degree 2 and even {2, 3}-degree; -... v ∈ V 2n , n ≥ 3: v is bichromatic with 3-degree n and odd {2, 3}-degree; v ∈ V 2n+1 , n ≥ 3: v is bichromatic with 2-degree n and even {2, 3}-degree; -... We start from assigning label 1 to all edges of G. Let us now describe how to modify so that the conditions above are met for all vertices. We consider the vertices of V t , . . . , V 3 following that order, from "bottom to top", and modify labels assigned to upward edges. An important condition we will maintain, is that every vertex in an odd part V 2n+1 (n ≥ 0) has all its incident downward edges (if any) labelled 3 or 1, while every vertex in an even part V 2n (n ≥ 1) has all its incident downward edges (if any) labelled 2 or 1. Note that this is trivially verified for the vertices in V t , since they have no incident downward edges.

At any point in the process, let M be the set of edges of M 0 for which both ends are 1-monochromatic (initially, M = M 0 ). When treating a vertex u ∈ V 3 ∪ • • • ∪ V t , we define M u as the subset of edges of M having an end that is a neighbour of u. For every edge e ∈ M u , we choose one end of e that is a neighbour of u and we add it to a set S u . Note that |S u | = |M u |. Another goal during the labelling process, to fulfil Item 6, is to label the edges incident to u so that at least one end of every edge in M u is no longer 1-monochromatic. Note that the set M u considered when labelling the edges incident to u is not necessarily the set of edges of M 0 incident to a neighbour of u, as, during the whole process, some of these edges might be removed from M when dealing with previous vertices in

V 3 ∪ • • • ∪ V t .
Let us now consider the vertices in V t , . . . , V 3 one by one, following that order. Let thus u ∈ V i be a vertex that has not been treated yet, with i ≥ 3. Recall that every vertex belonging to some V j with j > i was treated earlier on, and thus has its desired product. Suppose that i = 2n with n ≥ 2 (i = 2n + 1 with n ≥ 1, resp.). Recall also that u is assumed to have all its incident downward edges labelled 1 or 2 (3, resp.), due to how vertices in V j 's with j > i have been treated earlier on, and to have all its incident upward edges labelled 1.

If M u = ∅, then we swap edges of M u , if necessary, so that every vertex in S u belongs to V 2 (V 1 , resp.). This does not invalidate any of our invariants since both ends of an edge in S u are 1-monochromatic.

In any case, by Property (P 1 ), we know that, for every j < i, there is a vertex x j ∈ V j which is a neighbour of u. In particular, the vertex x 1 (x 2 , resp.) does not belong to S u (but may be the other end of an edge in M u ). We label the edges ux 3 , ux 5 , . . . , ux 2n-1 with 3 (ux 4 , ux 6 , . . . , ux 2n with 2, resp.). Note that, at this point, d 3 (u) = n -1 (d 2 (u) = n -1, resp.). To finish dealing with u, we need to distinguish two cases depending on whether M u is empty or not.

-Suppose first that M u = ∅. Label ux 1 with 3 (ux 2 with 2, resp.). Now u has the desired 3-degree (2-degree, resp.). If i > 3, then label ux i-2 with 2 (3, resp.) so that u is sure to be bichromatic. If i > 3 and the {2, 3}-degree of u does not have the desired parity, then label ux 2 with 2 (ux 1 with 3, resp.). If u ∈ V 3 and the {2, 3}-degree of u is even, then u is already bichromatic since d 2 (u) = 1. If u ∈ V 3 and the {2, 3}-degree of u is odd, then label ux 1 with 3 to adjust the parity of the {2, 3}-degree of u and make u bichromatic. In all cases, u gets bichromatic with 3-degree n (2-degree n, resp.) and odd {2, 3}-degree (even {2, 3}-degree, resp.), which is what is desired for u. -Suppose now that M u = ∅. Let z ∈ S u and let e be the edge of M u containing z. For every w ∈ S u \ {z}, we label the edge uw with 2 (3, resp.). Then:

• If d 2 (u) + d 3 (u)
is odd (even, resp.), then label uz with 2 (3, resp.) and ux 1 with 3 (ux 2 with 2, resp.). In this case, every edge in M u is incident to at least one vertex which is not 1-monochromatic, while u is bichromatic with 3-degree n (2-degree n, resp.) and odd {2, 3}-degree (even {2, 3}-degree, resp.).

• If d 2 (u) + d 3 (u) is even (odd, resp.) and d 2 (u) > 0 (d 3 (u) > 0, resp.),
then swap e and label uz with 3 (2, resp.). Note that, after the swap of e, we have z ∈ V 1 (z ∈ V 2 , resp.). In this case, every edge in M u is incident to at least one vertex which is not 1-monochromatic, while u is bichromatic with 3-degree n (2-degree n, resp.) and odd {2, 3}-degree (even {2, 3}-degree, resp.). • The last case is when d 2 (u) + d 3 (u) is even (odd, resp.) and d 2 (u) = 0 (d 3 (u) = 0, resp.). If i > 4, then we can label ux i-2 with 2 (3, resp.) and fall back into one of the previous cases. If i = 4, then the only edge labelled 3 is the edge ux 3 which implies that d 3 (u) = 1, which is impossible since d 2 (u) = 0 and d 2 (u) + d 3 (u) is odd. If i = 3, then the conditions of this case imply that d 2 (u) = 1 while every upward edge incident to u is labelled 1 or 3 and similarly for every incident downward edge; this case thus cannot occur. To finish, we remove the edges of M u from M since their two ends are not both 1-monochromatic any more.

At the end of this process, all vertices in V 1 are 1-monochromatic or 3monochromatic, while all vertices in V 2 are 1-monochromatic or 2-monochromatic. Every vertex in V 3 ∪ • • • ∪ V t is bichromatic and there are no conflicts involving any pair of these vertices. Indeed if a ∈ V i and b ∈ V j are adjacent with i > j ≥ 3, then either i and j do not have the same parity, in which case a and b do not have the same {2, 3}-degree; or both i and j are even (odd, resp.) and

d 3 (a) = i 2 = j 2 = d 3 (b) (d 2 (a) = i-1 2 = j-1 2 = d 2 (b), resp.
). Note also that no vertex in G is special, as special vertices have 3-degree 1, 2-degree at least 2, and odd {2, 3}-degree. Also, we did not relabel any edge in the cut (V 1 , V 2 ).

Finally, suppose that there is a conflict between two vertices u and v. Previous remarks imply that u ∈ V 1 and v ∈ V 2 (or vice versa) and that both u and v are 1-monochromatic. If none of u and v has another neighbour w in V 1 ∪ V 2 , then the edge uv belongs to the set M 0 . Since G is nice, one of u or v must have a neighbour

z in V 3 ∪ • • • ∪ V t . Hence uv ∈ M z .
Recall also that we relabelled the edges incident to z in such a way that, for every edge of M z , at least one incident vertex became 2-monochromatic or 3-monochromatic, a contradiction to the existence of u and v. Hence, all properties of the lemma hold.

Step 3: Labelling the edges between V 1 and V 2

From now on, we will modify a 3-labelling of G obtained by applying Lemma 2. We denote by H the set of the connected components of In what follows, we only relabel edges of some connected components H ∈ H with making sure that their vertices (in V 1 ∪ V 2 ) are monochromatic or special. This ensures that only vertices of H have their product affected, thus that no new conflicts involving vertices in

G[V 1 ∪ V 2 ] that contain two adjacent vertices u ∈ V 1 and v ∈ V
V 3 ∪ • • • ∪ V t are created.
For a subgraph X of H ∈ H (possibly X = H), if, after having relabelled edges of X, no conflict remains between vertices of X and all vertices of X are either monochromatic or special, then we say that X verifies Property (P 3 ).

Lemma 3. If we can relabel the edges of every H ∈ H so that every H verifies Property (P 3 ), then the resulting 3-labelling is p-proper.

Proof. This is because if we get rid of all conflicts in H, then the only possible remaining conflicts are between vertices in

V 1 ∪ V 2 and in V 3 ∪ • • • ∪ V t .
In particular, recall that any two vertices of two distinct connected components

H 1 , H 2 ∈ G[V 1 ∪ V 2 ]
cannot be adjacent. Note also that, because we only relabelled edges in H, the vertices in V 3 ∪ • • • ∪ V t retain the product types described in Lemma 2. In particular, they remain bichromatic and none of them is special. Thus, they cannot be in conflict with the vertices in

V 1 ∪ V 2 .
In order to show that we can relabel the edges of every H ∈ H so that it fulfils Property (P 3 ), the following result will be particularly handy. Lemma 4. For every integer s ∈ {2, 3}, every connected bipartite graph H whose edges are labelled 1 or s, and any vertex v in any part V i ∈ {V 1 , V 2 } of H, we can relabel the edges of H with 1 and s so that d s (u) is odd (even, resp.) for every u ∈ V i \ {v}, and d s (u) is even (odd, resp.) for every u ∈ V 3-i .

Proof. As long as H has a vertex u different from v that does not verify the desired condition, apply the following. Choose P any path from u to v, which exists by the connectedness of H. Now follow P from u to v, and change the labels of the traversed edges from 1 to s and vice versa. It can be noted that this alters the parity of the s-degrees of u and v, while this does not alter that parity for any of the other vertices of H. Thus, this makes u satisfy the desired condition, while the situation did not change for the other vertices different from u and v. Thus, once this process ends, all vertices of H different from v have their s-degree being as desired by the resulting labelling.

We are now ready to treat the connected components H ∈ H independently, so that they all meet Property (P 3 ). To ease the reading, we distinguish several cases depending on the types and on the degrees of the vertices that H includes. In each of the successive cases we consider, it is implicitly assumed that H does not meet the conditions of any previous case. H), then we can relabel edges of H so that H verifies Property (P 3 ).

Claim 1. If H ∈ H has a 3-monochromatic vertex v ∈ V 1 , or a 1-monochromatic vertex v 1 ∈ V 1 having two 1-monochromatic neighbours u 1 , u 2 ∈ V 2 with degree 1 (in
Proof. Recall that all edges of H are assigned label 1; thus, if a vertex of H is 3-monochromatic, then it must be due to incident downward edges to V 3 , . . . , V t .

If

H has a 1-monochromatic vertex v 1 ∈ V 1 that is adjacent to two degree-1 1-monochromatic vertices u 1 , u 2 ∈ V 2 , then we set (v 1 u 1 ) = (v 1 u 2 ) = 3.
Note that u 1 and u 2 become 3-monochromatic with 3-degree 1, and are thus no longer in conflict with v 1 , as it becomes 3-monochromatic with 3-degree 2. Note that either we got rid of all conflicts in H and H now verifies Property (P 3 ) as desired, or conflicts between other 1-monochromatic vertices of H remain. In the latter case, we continue with the following arguments.

Assume H has remaining conflicts, and that H has a 3-monochromatic vertex v ∈ V 1 (and, due to the previous process, perhaps 3-monochromatic vertices u 1 and u 2 in V 2 , in which case their 3-degree (and degree in H) is precisely 1, while their unique neighbour v in V 1 ∩ V (H) is 3-monochromatic with 3-degree 2). Let X be the set of all 3-monochromatic vertices of H belonging to V 1 . Let C 1 , . . . , C q denote the q ≥ 1 connected components of H -X that do not consist in a 3-monochromatic vertex of V 2 (the vertices u 1 and u 2 we dealt with earlier on). For every C i , we choose arbitrarily a vertex x i ∈ X and a vertex y i ∈ C i such that x i and y i are adjacent in H. Note that the vertices of C i are either 1-monochromatic or 2-monochromatic (in which case they belong to V 2 ), since all 3-monochromatic vertices of H are part of X (or are the vertices u 1 and u 2 dealt with earlier on, which we have omitted and are not part of the C i 's).

By Lemma 4, in every C i we can relabel the edges with 1 and 2 so that all vertices in (V 2 ∩ V (C i )) \ {y i } are 2-monochromatic with odd 2-degree, while all vertices in V 1 ∩ V (C i ) are 2-monochromatic with even 2-degree or possibly 1-monochromatic if their even 2-degree is 0. In particular, recall that y i must be 1-monochromatic or 2-monochromatic. If y i has odd 2-degree, then there are no conflicts between vertices of C i . If y i has even non-zero 2-degree, then we set (x i y i ) = 3, thereby making y i special.

Let Y be the set of all 1-monochromatic y i 's having a 1-monochromatic neighbour w i in C i . Let H be the subgraph of H induced by Y ∪ X. Note that every edge of H is labelled 1. Let now Q 1 , . . . , Q p denote the connected components of H and choose x k ∈ X ∩V (Q k ) for every k ∈ {1, . . . , p}. For every k, we apply Lemma 4 with labels 1 and 3 so that all vertices in V 2 ∩ V (Q k ) get 3-monochromatic with odd 3-degree, while all vertices in V 1 ∩ V (Q k ) \ {x k } get 3-monochromatic with even 3-degree or possibly 1-monochromatic (3-degree 0).

If x k is involved in a conflict with a vertex

y i ∈ V 2 ∩ V (Q k )
, then this is because x k has odd 3-degree. Then:

-If (x k y i ) = 3, then d 3 (y i ) = d 3 (x k ) ≥ 3 since x k ∈ X (x k must thus be
incident to at least one other edge labelled 3, either a downward edge to V 3 , . . . , V t or an edge incident to u 1 (and similarly an edge incident to u 2 )).

We here assign label 1 to the edge x k y i and label 3 to the edge y i w i . This way, x k gets even 3-degree while the 3-degree of y i does not change. Note that y i and w i are not in conflict since d 3 (w i ) = 1 and d 3 (y i ) ≥ 3. -Otherwise, if (x k y i ) = 1, then we assign label 3 to the edge x k y i and label 3 to the edge y i w i . This way, x k gets even 3-degree while the 3-degree of y i remains odd and must be at least 3. Again y i and w i are not in conflict since d 3 (w i ) = 1 and d 3 (y i ) ≥ 3.

We claim that we got rid of all conflicts in H. Indeed, consider two adjacent vertices a ∈ V 1 ∩ V (H) and b ∈ V 2 ∩ V (H). Suppose first that a and b belong to some C i . Note that, with the exception of y i and maybe of the vertex w i (if it exists and y i ∈ Y ), every vertex of C i is 1-monochromatic or 2-monochromatic, the vertices of V 1 ∩ V (C i ) having even 2-degree and the vertices of V 2 ∩ V (C i ) having odd 2-degree. Thus, no conflict involves two of these vertices. Suppose now that b = y i . If y i is 2-monochromatic with odd 2-degree, then there is no conflict involving y i in C i since all of its neighbours in C i have even 2-degree. If y i is special, then it is the only special vertex of C i , so, here again, it cannot be involved in a conflict. If y i / ∈ Y and y i is 1-monochromatic, then y i has no other 1-monochromatic neighbour in C i by definition of Y . If y i ∈ Y , then y i is 3-monochromatic with odd 3-degree, the only other possible 3-monochromatic neighbour of y i in C i being w i , but we showed previously that their 3-degrees differ. Thus, in all cases, there cannot be conflicts between vertices of C i .

We are left with the case where a and b do not belong to the same C i . In particular, this implies that a ∈ X and that a is 3-monochromatic. The only possible 3-monochromatic vertices in V 2 are the vertices of Y , which have odd 3degree, and the 3-monochromatic vertices u 1 and u 2 with 3-degree 1 and degree 1 in H which might have been created at the very beginning of the proof. If b ∈ Y , then, due to the application of Lemma 4 above, the only vertex of X which can have odd 3-degree is some x k , but for this vertex we either ensured that it was involved in no conflict, or we tweaked the labelling so that it got even 3-degree without modifying the labelling properties obtained through Lemma 4. If b is u 1 or u 2 , then b has only one neighbour v. Note that the edges vu 1 and vu 2 are still labelled 3 as they are not part of the Q i 's, and, thus, d 3 (b) = 1 and d 3 (v) ≥ 2. Hence, there is no conflict between vertices of X and other vertices of H. This implies that H verifies Property (P 3 ).

We can thus assume that H does not meet any of the conditions in Claim 1. The next step is showing that we can treat H in a similar way, in case H contains a 1-monochromatic vertex u ∈ V 2 with at least two neighbours in H. This can be proved similarly as Claim 1, by investigating the structure of H and making use of Lemma 4 to relabel edges of H in such a way that all remaining conflicts are located in very precise places of H (so that we can then handle them one by one). The formal proof being long, tedious, and in the same vein as that of Claim 1, due to space limitation we omit it from this paper. The interested reader will find the whole proof in [START_REF] Bensmail | A proof of the Multiplicative 1-2-3 Conjecture[END_REF], the full version of the current paper.

Claim 2. If H has a 1-monochromatic vertex u ∈ V 2 with at least two neighbours in H, then we can relabel edges of H so that H verifies Property (P 3 ).

Assuming H does not meet any of the conditions in Claims 1 and 2, final arguments allow to relabel edges of H to get rid of all its conflicts. Claim 3. We can relabel edges of H so that it verifies Property (P 3 ).

Proof. Let v ∈ V 1 and u ∈ V 2 be two adjacent 1-monochromatic vertices of H (which must exist as otherwise H would verify Property (P 3 )). Because H has at least two edges (as otherwise it would belong to M , not to H), at least one of v and u must have another neighbour in H. Since Claim 2 does not apply, note that u must have degree 1 in H (since all neighbours of u in H must be 1-monochromatic due to Claim 1 not applying). So v is also adjacent to k ≥ 1 vertices x 1 , . . . , x k ∈ V 2 different from u, which must all be 2-monochromatic (because of incident downward edges to V 3 , . . . , V t ; recall that all edges of H are labelled 1) as otherwise Claim 2 would apply.

Set H = H -u. According to Lemma 4, we can relabel edges in H with 1 and 2 so that all vertices in (V 1 ∩ V (H )) \ {v} have odd 2-degree, while all vertices in V 2 ∩ V (H ) have even 2-degree. Recall that u is 1-monochromatic. Thus, if also v is 2-monochromatic with odd 2-degree, then we are done. Assume thus that v is 2-monochromatic with even 2-degree.

-Assume first that the 2-degree of v is even at least 2. In that case, set (vu) = 3. This way, u becomes 3-monochromatic, while v becomes special. -Assume now v is 1-monochromatic. This implies that (vx 1 ) = 1. Change (vx 1 ) to 3. This way, x 1 becomes special (recall its 2-degree is even and at least 1, due to incident downward edges), while v becomes 3-monochromatic. Note that u remains 1-monochromatic.

In both cases, it can be checked that H now fulfils Property (P 3 ).

At this point, we dealt with all connected components of H, and the resulting labelling of G is p-proper by Lemma 3. The whole proof is thus complete.

  2 having the same product by . By Items 1 and 2 of Lemma 2, such u and v are 1-monochromatic. Also, by Item 6 of Lemma 2, recall that every connected component of H has at least two edges.

Recall that a proper k-vertex-colouring of a graph G is a partition (V1, . . . , V k ) of V (G) where all Vi's are independent. The chromatic number χ(G) of G is the smallest k ≥ 1 such that proper k-vertex-colourings of G exist. G is k-colourable if χ(G) ≤ k.