European Aerosol Conference EAC 2021 # Experimental And Numerical Studies Of Gaseous And Particulate Pollutants Backflow Through An Opening From A Depressurized Enclosure: Application To Nuclear Dismantling Operations Z. Rida¹, E. Climent², C. Prevost¹ and T. Gelain¹ ### Presented by Zeinab RIDA Keywords: dynamic confinement; backflow; flow at openings; hybrid turbulent modelling. ¹Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSN-RES, SCA, LEMAC, Gif-sur-Yvette, 91192, France ²Institut de Mécanique des Fluides de Toulouse (IMFT). Université de Toulouse, CNRS-Toulouse INP-UPS, 31400, Toulouse, France # **Context and problematic** - <u>Context:</u> Safety of maintenance and dismantling sites. - **Problematic:** Characterize the efficiency of the dynamic containment in flexible dismantling sites (SAS), by studying the backflow phenomenon of gaseous or particulate pollutants near the openings. ### **Objectives** - Experimental: Local and global quantification of the pollutants emitted outside ventilated enclosure under the effect of an aeraulic disturbance - Numerical: Validation of the ability of the hybrid turbulence model DES to restitute and quantify these non-stationary phenomena ### Application to a real SAS Examples of a flexible SAS # Our study configuration Experimental enclosure Numerical enclosure **1**. **Experimental enclosure:** $(1,2 \times 0,5 \times 0,5) m^3$, opening $(0,1 \times 0,03) m^2$ **2. Extraction circuit:** U_{ope} at the opening 3. Disturbance circuit: V near the opening ## Visualization of the backflow - Dynamic containment: U_{ope} =1 m/s - Counter-current internal jet: V=0.7 and 1.3 m/s Validation of SST-DES model # Quantification of the backflow → Gaseous and particulate backflow coefficients: $$K_{He}$$ (%) = $\frac{C_{out\,He}}{C_{in\,He}}$; K_{aer} (%) = $\frac{C_{out\,aer}}{C_{in\,aer}}$ The experimental/numerical and gaseous/ particulate backflow coefficients are at the same order of magnitude # **Conclusions and perspectives** ### **Conclusions:** - 1. The **SST-DES model** is validated to restitute the **qualitative** and the **quantitative** aspects of the backflow in our conditions. - 2. The gas and the aerosol of 5 μ m* have a similar behavior in our conditions. - *: aerodynamic diameter ### **Perspectives:** - 1. Perform **experiments** on a **real depressurized airlock**, while varying the disturbance type. - 2. Test the ability of **numerical simulations** to predict the backflow phenomenon at this scale. Real scale depressurized airlock (SAS)