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The goal of the paper is a rigorous derivation of a macroscopic traffic flow model with a bifurcation or a local perturbation from a microscopic one. The microscopic model is a simple follow-the-leader with random parameters. The random parameters are used as a statistical description of the road taken by a vehicle and its law of motion. The limit model is a deterministic and scalar Hamilton-Jacobi on a network with a flux limiter, the flux-limiter describing how much the bifurcation or the local perturbation slows down the vehicles. The proof of the existence of this flux limiter-the first one in the context of stochastic homogenization-relies on a concentration inequality and on a delicate derivation of a superadditive inequality.

Introduction

In this paper we study traffic flows models with a bifurcation consisting in a single incoming road which is divided after a junction into several outgoing ones. As a particular case our analysis contains traffic flow models on a single road with a localized perturbation (a bottleneck for instance). There are two main classes of models to describe these situations: microscopic models, which explain how each vehicle behaves in function of the vehicles in front; and macroscopic ones, taking the form of a conservation law in which the main unknown is the density of vehicles on the roads. Our aim is to start from simple microscopic models on a bifurcation (or on a perturbation) and derive from these models continuous ones after scaling. The point is to get a better understanding of the continuous traffic flow models arising as the limit of discrete ones. Indeed there exists many different continuous models of traffic flow on a junction or with a local perturbation in the literature [START_REF] Andreianov | Microscopic selection of solutions to scalar conservation laws with discontinuous flux in the context of vehicular traffic[END_REF][START_REF] Benyahia | A macroscopic traffic model with phase transitions and local point constraints on the flow[END_REF][START_REF] Cristiani | On the micro-to-macro limit for first-order traffic flow models on networks[END_REF][START_REF] Garavello | The Aw-Rascle traffic model with locally constrained flow[END_REF][START_REF] Garavello | Traffic flow on networks[END_REF][START_REF] Villa | Moving bottlenecks for the Aw-Rascle-Zhang traffic flow model[END_REF] and the relation between these models is not completely clear. If the basic continuous model on a single straight road (the socalled LWR model, from Lighthill and Whitham [START_REF] Lighthill | On kinematic waves. ii. a theory of traffic flow on long crowded roads[END_REF] and Richards [START_REF] Richards | Shock waves on the highway[END_REF]) is well understood and justified by micro-macro limits in several contexts [START_REF] Aw | Derivation of continuum traffic flow models from microscopic follow-the-leader models[END_REF][START_REF] Chiarello | Micro-macro limit of a nonlocal generalized Aw-Rascle type model[END_REF][START_REF] Francesco | Rigorous derivation of nonlinear scalar conservation laws from follow-the-leader type models via many particle limit[END_REF][START_REF] Goatin | A traffic flow model with non-smooth metric interaction: well-posedness and micro-macro limit[END_REF][START_REF] Holden | The continuum limit of Follow-the-Leader models-a short proof[END_REF], there is no consensus for problems with a junction or a bifurcation: the models are only obtained so far by heuristic arguments, with the exception of [START_REF] Forcadel | Homogenization of a discrete model for a bifurcation and application to traffic flow[END_REF] discussed below. In this paper we show that the continuous model suggested in [START_REF] Galise | A junction condition by specified homogenization and application to traffic lights[END_REF][START_REF] Imbert | Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks[END_REF] pops up as the natural limit of follow-the-leader models. The continuous model in [START_REF] Galise | A junction condition by specified homogenization and application to traffic lights[END_REF][START_REF] Imbert | Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks[END_REF] takes the form of a flux limited Hamilton-Jacobi equation: it is a kind of integrated form of the basic LWR model outside the junction combined with a "flux limiting condition" on the junction. Our micro-macro derivation holds for a large class of follow-the-leader models, allowing for a possible heterogeneous behavior of the vehicles.

Our starting point is a microscopic model. Before describing it, let us recall that few discrete traffic flow models with a junction or a local perturbation exist in the literature: [START_REF] Colombo | On the microscopic modeling of vehicular traffic on general networks[END_REF] discusses an interesting leader follower model with a junction including several incoming and outgoing roads: the model we present in the present paper shares similar flavors, but in the much simpler setting of a single incoming road; [START_REF] Andreianov | Microscopic selection of solutions to scalar conservation laws with discontinuous flux in the context of vehicular traffic[END_REF] presents a microscopic model of traffic with a flow limitation at a point and formally justifies the derivation of a conservation law with a discontinuous flux (but leaves the rigorous proof as an open problem); [START_REF] Forcadel | Specified homogenization of a discrete traffic model leading to an effective junction condition[END_REF] describes a traffic flow model with (deterministic) traffic lights and derives rigorously the continuous model (in terms of a flux limited Hamilton-Jacobi equation on the line). The only model proving micro-macro derivation in the case of a bifurcation is [START_REF] Forcadel | Homogenization of a discrete model for a bifurcation and application to traffic flow[END_REF]: in [START_REF] Forcadel | Homogenization of a discrete model for a bifurcation and application to traffic flow[END_REF] there are two outgoing roads and it is assumed (no too realistically) that every second vehicle takes a given road. In this setting the authors show that the convergence of the discrete problem to a flux limited solution of a Hamilton-Jacobi equation on a junction. One of the goals of the present paper is to introduce a more realistic model in which one replaces the deterministic rule of [START_REF] Forcadel | Homogenization of a discrete model for a bifurcation and application to traffic flow[END_REF] by a random one (e.g., every second vehicle in average takes a given outgoing road). The introduction of randomness in traffic flow problems is natural and can be traced back to [START_REF] Chiabaut | From heterogeneous drivers to macroscopic patterns in congestion[END_REF]. The micro-macro derivation of the LWR model from a random one on a single road was established in [START_REF] Cardaliaguet | From heterogeneous microscopic traffic flow models to macroscopic models[END_REF]. Here we prove the corresponding result for a bifurcation.

Short description of the microscopic model. In our discrete model there is one incoming road and K outgoing ones, where K P N, K ě 1. A position on the road is given by a pair px, kq where x is a real number and k is a label in t0, . . . , Ku. If x is nonpositive, then by convention k " 0 and the vehicle is on the incoming road. If x is positive then k P t1, . . . , Ku and the vehicle is on the outgoing road k. The junction is an interval around x " 0, say, to fix the ideas, r´R 0 , 0s. The vehicles are labelled by i P Z. The position of the vehicle labelled i at time t is denoted by U i ptq. The outgoing road the vehicle chooses is fixed from the beginning (independent of time) and denoted by T i P t1, . . . , Ku. The motion of the vehicles is given by a leader-follower model: it satisfies the system of ordinary differential equations d dt U i ptq " V Zi pU i`1 ptq ´Ui ptq, U i ptq ´Ui ptq, U i ptqq, t ě 0, i P Z.

We assume that all the vehicle are going or have gone through the junction and were ordered before going through the junction: i `1 is the label of the vehicle right in front of the vehicle i before this vehicle has gone through the junction. We denote by i the label of the first vehicle in front of vehicle i taking the same outgoing road as i (in other words, i " inftj ą i, T i " T j u). Each vehicle has a type Z i encoding, on the one hand, the outgoing road the vehicle is taking or is going to take (namely, T i " T pZ i q for a deterministic map T : Z Ñ t1, . . . , Ku) and, on the other hand, the "behavior" of the vehicle (for instance, if it is a truck or a race car). The velocity law V " V z pe 1 , e 2 , xq depends on the type z P Z of the vehicle, the distances e 1 or e 2 to the next vehicle and the position x of the vehicle. In order to obtain a limit model with a few unknowns and as simple as possible, we do not keep track of all the vehicles of a given type (in contrast with [START_REF] Colombo | A multispecies traffic model based on the Lighthill-Whitham and Richards model[END_REF]). Instead we prefer a statistical description and assume that the types pZ i q of the vehicles are random, independent and with the same law (i.i.d.); as a consequence the pT i q are also i.i.d. In addition, we also suppose that the traffic is homogeneous outside the junction: namely, we assume that, before the junction (i.e., x ď ´R0 ), V z pe 1 , e 2 , xq depends only on e 1 and z, i.e., V z pe 1 , e 2 , xq " Ṽ 0 z pe 1 q. In the same way, after the junction (i.e., x ě 0) we suppose that V z pe 1 , e 2 , xq " Ṽ k z pe 2 q depends only on e 2 , k " T pzq and z. There are two main reasons to do so: first (and again in contrast with [START_REF] Colombo | A multispecies traffic model based on the Lighthill-Whitham and Richards model[END_REF]), we will see that these assumptions yield to a relatively simple continuous scalar equations. Second, tracing the type of a vehicle (and even more the road it is going to take later on) seems an impossible task in practice: a statistical description is probably more justified, at least if the structure of the traffic is stable in time.

For later use we denote by π k :" PrT i " ks the proportion of vehicle taking (or planning to take) road k.

The convergence result and the continuous model. For ą 0, we look at the (scaled) traffic density of vehicles on each road: m pdx, k, tq " $ ' & ' % ÿ iPZ, Ti"k δ Uipt{ q pdxq if x ą 0, k P t1, . . . , Ku ÿ iPZ δ Uipt{ q pdxq if x ď 0, k " 0 and want to understand the limit, as Ñ 0, of m . For this it is convenient to integrate in space m and look instead at:

ν px, k, tq " $ ' ' ' ' ' ' & ' ' ' ' ' ' %
pπ k q ´1 ˜ÿ iPZ, iď0, Ti"k δ Uipt{ q ppx, `8qq ´ÿ iPZ, ią0, Ti"k δ Uipt{ q pp´8, xsq if x ą 0, k P t1, . . . , Ku ˜ÿ iPZ, iď0

δ Uiptq ppx, `8qq ´ÿ iPZ, ią0 δ Uiptq pp´8, xsq ¸if x ď 0, k " 0.

Note that B x ν " ´m if x ď 0 while B x ν " ´pπ k q ´1m if x ě 0 and k P t1, . . . , Ku. This choice ensures the map ν to be "almost continuous" at 0 since the vehicles are split between the K roads after the junction in proportion π k for the road k. Our main result (Theorem 1.1) roughly states that, under suitable assumptions on V and if ν p¨, ¨, 0q has a locally uniform (deterministic) limit ν 0 p¨, ¨q at time t " 0, then ν has a.s. a locally uniform (deterministic) limit ν which is the unique viscosity solution to

$ & % B t νpx, k, tq `Hk pB x νpx, k, tqq " 0 if x ‰ 0, t ą 0 B t ν `maxt Ā, H 0,`p B 0 νq, H 1,´p B 1 νq, . . . , H K,´p B K νqqu " 0 at x " 0 νpx, k, 0q " ν 0 px, kq for any x, k.

(

The first equation is a Hamilton-Jacobi (HJ) equation in which the homogenized Hamiltonians H k ppq can be explicitly computed from the Ṽ k . As we explain below it corresponds to an integrated form of the LWR equation. The second equation describes the behavior of the vehicles at the junction (reduced after scaling to x " 0): we explain below the different terms. It roughly says that B t ν `Ā " 0 at x " 0 (unless the HJ equation is satisfied at x " 0). The real number Ā is the so-called flux limiter. This is the main unknown of the paper. It quantifies how the traffic is slowed down by the junction. We show that A 0 ď Ā ď 0, where A 0 :" max kPt0,...,Ku min pPR H k ppq.

When Ā " A 0 , the flux is not limited at all. If Ā " 0, then the traffic is completely stopped by the junction (this does not happen under our assumptions). The existence of Ā is the main point of the paper, which presents the first existence result of a flux limiter in the context of a stochastic homogenization problem. We show that Ā can be computed as follows:

Ā " ´lim tÑ`8 1 t 7 i P Z, Ds P r0, ts, U e,i psq " 0 ( , where 7E denotes the number of elements of a set E, e " pe k q k"0,...,K is such that H k p´1{e k q " min p H k ppq for any k P t0, . . . , Ku and pU e,i q is the solution to (1) with the "flat" initial condition U e,i p0q " e k i (where k " 0 if i ď 0 and k " T i if i ě 0). The quantity Ā can be interpreted as the maximal fraction of vehicles the junction can let pass given an amount of time.

The introduction of Hamilton-Jacobi equations on a junction or stratified domains can be traced back to [START_REF] Achdou | Hamilton-Jacobi equations constrained on networks[END_REF][START_REF] Achdou | Hamilton-Jacobi equations for optimal control on junctions and networks[END_REF][START_REF] Achdou | Hamilton-Jacobi equations on networks as limits of singularly perturbed problems in optimal control: dimension reduction[END_REF][START_REF] Barles | A Bellman approach for two-domains optimal control problems in R N[END_REF][START_REF] Bressan | Optimal control problems on stratified domains[END_REF][START_REF] Camilli | A comparison among various notions of viscosity solution for Hamilton-Jacobi equations on networks[END_REF][START_REF] Imbert | A Hamilton-Jacobi approach to junction problems and application to traffic flows[END_REF][START_REF] Schieborn | Viscosity solutions of HamiltonJacobi equations of Eikonal type on ramified spaces[END_REF][START_REF] Schieborn | Viscosity solutions of Eikonal equations on topological networks[END_REF]; a general theory of flux limited solutions was developed in [START_REF] Imbert | Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks[END_REF] (see also [START_REF] Barles | Flux-limited and classical viscosity solutions for regional control problems[END_REF]) with, as fundamental result, a comparison theorem; [START_REF] Lions | Viscosity solutions for junctions: well posedness and stability[END_REF][START_REF] Lions | Well-posedness for multi-dimensional junction problems with Kirchoff-type conditions[END_REF] present different arguments for the comparison while [START_REF] Barles | An illustrated guide of the modern approches of Hamilton-Jacobi equations and control problems with discontinuities[END_REF] proposes a general survey on the topic.

Short discussion of the problem in terms of scalar conservation law. Hamilton-Jacobi equations on a junction and scalar conservation laws with discontinuous coefficients seem intimately connected, although the rigorous relationships between the two notions has not been discussed so far. We do not intend to investigate this point here but only develop formal arguments and postpone a more detailed analysis to future works.

For k P t1, . . . , Ku, we define the random measures

ρ pdx, k, tq " $ ' ' & ' ' % pπ k q ´1 ÿ iPZ, Ti"k, U i pt{ qě0 δ U i pt{ q pdxq if x ě 0, k P t1, . . . , Ku ÿ iPZ, U i pt{ qă0 δ U i pt{ q pdxq if x ă 0, k " 0
The quantities are the scaled densities of the traffic on each branch of the junction. A elementary computation shows that we have, in the sense of distribution, ρ " ´Bx ν . According to our main result (Theorem 1.1) ρ converges a.s. and in the sense of distribution, to ρ :" ´Bx ν. As ν solves (2) and is Lipschitz continuous, it is known [START_REF] Caselles | Scalar conservation laws and Hamilton-Jacobi equations in one-space variable[END_REF] that ρ is, outside the junction, an L 8 entropy solution of the scalar conservation law

B t ρ `Bx pf pρ, x, kqq " 0 for x ‰ 0, (3) 
where f pρ, x, kq " " ´Hk p´ρq if x ą 0 and k P t1, . . . , Ku, ´H0 p´ρq if x ă 0 and k " 0, with an initial condition given by ρpx, k, 0q " ´Bx ν 0 px, kq.

It is well-known [START_REF] Adimurthi | Optimal entropy solutions for conservation laws with discontinuous flux-functions[END_REF] that an extra conditions at the junction (depending on the model) is needed to ensure the uniqueness of such a scalar conservation law. The additional equation at x " 0 for ν in [START_REF] Achdou | Hamilton-Jacobi equations for optimal control on junctions and networks[END_REF] should lead to this extra condition. It does not seem however obvious how to interpret it in terms of the limit density ρ.

Method of proof.

We now describe the method of proof of our main result. As it is quite involve it is convenient for this discussion to reduce drastically the problem by considering the case of a single road on which the vehicle behave in an identical way, expect on a small zone on which they are subject to a perturbation depending on their type. This situation pops up for instance when the vehicles are slowed down on a small portion of a road by a speed bump to which they may react in a different way depending on their size. The leader-follower model now reads

d dt U i ptq " V Zi pU i`1 ptq ´Ui ptq, U i ptqq (4) 
where Z i is as before the type of the vehicle (supposed to be an i.i.d. random variable) and where V z pp, xq " Ṽ ppq outside the perturbation r´R 0 , 0s. Following [START_REF] Imbert | Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks[END_REF] (see also [START_REF] Forcadel | Specified homogenization of a discrete traffic model leading to an effective junction condition[END_REF][START_REF] Forcadel | Homogenization of a discrete model for a bifurcation and application to traffic flow[END_REF]), one expects the limit model to be of the form of a LWR model with a flux limiting condition at the origin. The fundamental diagram outside the perturbation is given by Hppq " p Ṽ p´1{pq and the only issue is to compute the flux limiter. In the case of a deterministic model (for instance time periodic, see [START_REF] Forcadel | Specified homogenization of a discrete traffic model leading to an effective junction condition[END_REF]; or periodic in the type, see [START_REF] Forcadel | Homogenization of a discrete model for a bifurcation and application to traffic flow[END_REF]) a standard method consists in building a corrector. However in the random setting such a corrector does not necessarily exist: see for instance the discussion in [START_REF] Lions | Correctors for the homogenization of Hamilton-Jacobi equations in the stationary ergodic setting[END_REF]. A standard way to overcome this difficult issue is to identify subadditive quantities [START_REF] Armstrong | Stochastic homogenization of level-set convex Hamilton-Jacobi equations[END_REF][START_REF] Lions | Homogenization of "viscous" Hamilton-Jacobi equations in stationary ergodic media[END_REF][START_REF] Souganidis | Stochastic homogenization of Hamilton-Jacobi equations and some applications[END_REF]. In the case such a quantity is not directly available, a different, more quantitative approach has been developed in [START_REF] Armstrong | Stochastic homogenization of quasilinear Hamilton-Jacobi equations and geometric motions[END_REF] and later used in different contexts [START_REF] Calder | The limit shape of convex hull peeling[END_REF][START_REF] Feldman | Homogenization and non-homogenization of certain non-convex Hamilton-Jacobi equations[END_REF][START_REF] Lin | Stochastic homogenization for reaction-diffusion equations[END_REF]. As no subadditive quantity seems adequate in our setting we follow this alternative approach. The starting point is to explore what happens for the "flat" initial condition U i p0q " ei (i P Z), where e ą 0 is such that Hp´1{eq " min p Hppq. In the absence of a perturbation, this initial condition would be a steady state of the problem: namely, U i ptq " ei `t Ṽ peq solves (4) outside the perturbation. The point is to understand how this steady state solution is modified by the perturbation. For this we introduce the (random) quantity θ e ptq " infti ě 0, U ´iptq ď 0u, which corresponds to the number of vehicles having gone through the perturbation at time t. If the problem was unperturbed, one would have simply θ e ptq » t Ṽ peq{e. To understand if the macroscopic model is affected by the perturbation, one is therefore led to investigate the behavior of θ e ptq{t as t tends to infinity. The existence of such a limit is the main difficulty of the work. Indeed, θ e does not seem to enjoy any obvious sub-or superadditivity property. Following [START_REF] Armstrong | Stochastic homogenization of quasilinear Hamilton-Jacobi equations and geometric motions[END_REF] the first step of the proof consists in showing that θ e ptq{t is almost deterministic. Namely, we prove that there is a constant C (depending on e) such that, for all P p0, 1s and all t ě C ´1,

P

" |θ e ptq ´θ e ptq| ą t ‰ ď Ct 2 exp ´ 2 t{C ( .

where θe ptq " E rθ e ptqs. For this the technique developed in [START_REF] Armstrong | Stochastic homogenization of quasilinear Hamilton-Jacobi equations and geometric motions[END_REF] consists in showing that the martingale

M n ptq :" E r θ e ptq | F n s ´E rθ e ptqs ,
(where pF n q is the filtration generated by tZ ´n, Z ´n`1 , . . . u) has bounded increments, coincides with θ e ptq for n " rCts (where C is a large constant) and then use Azuma's inequality. Although we won't study this model in detail later, it is indeed possible to show in this case that pM n q has bounded increments by using three facts:

• First M 0 ptq " 0 since the randomness of θ e ptq comes only from Z i with i ď 0 (indeed, U i ptq " ei `Ṽ peqt for i ě 0 is deterministic),

• Second one can show that two subsequent vehicles remain at a distance not larger than e before the perturbation,

• Third one can prove that a vehicle close to the perturbation will cross it in a controlled time.

The next step consists in establishing that θe ptq{t has indeed a limit as t Ñ `8. The difficult issue is to understand how the profile of the solution pU i ptqq at time t looks like the profile of the pU i p0q " eiq at time 0. For this one looks at how much pU i ptqq iPZ is far from the unperturbed solution pei `Ṽ peqtq: namely one looks at the quantity

M e ptq :" inf iPZ U i ptq ´ei ´Ṽ peqt.
If the traffic is slowed down by the perturbation, this quantity is expected to be nonpositive and to decrease in time. An almost finite speed of propagation argument (Lemma 2.6) shows that, far from the perturbation, the solution is almost given by the steady state and therefore the infimum in M e ptq (if negative) cannot be achieved by large values of |i|. So there is a minimum point i 0 for M e ptq. By the envelop theorem one expects that

0 ą d dt M e ptq " d dt U i0 ptq ´Ṽ peq " V Zi pU i0`1 ´Ui0 ptq, U i0 ptqq ´Ṽ peq.
By minimality of i 0 , one also has U i ptq ´Ui0 ptq ě epi ´i0 q @i P Z.

(

) 5 
The two inequalities above imply that U i0 ptq P r´R 0 , 0s because otherwise one would have, as Ṽ is nondecreasing and (5) holds, 0 ą d dt M e ptq " Ṽ pU i0`1 ´Ui0 ptqq ´Ṽ peq ě Ṽ peq ´Ṽ peq " 0.

The fact that U i0 ptq P r´R 0 , 0s then implies that i 0 is close to ´θe ptq and thus that M e ptq " U i0 ptq ´ei 0 ´Ṽ peqt " eθ e ptq ´Ṽ peqt `Op1q.

On the other hand, by [START_REF] Andreianov | Microscopic selection of solutions to scalar conservation laws with discontinuous flux in the context of vehicular traffic[END_REF], one has U i ptq ě U i0 ptq `epi ´i0 q ě epi ´i0 ´R0 {eq @i P Z.

Setting i 1 " i 0 `R0 {e, we obtain by comparison that the solution U i at time t `s is above the solution starting from epi ´i1 q:

U ω i pt `sq ě U τi 1 ω i´i1 psq @i P Z,
(the shift in the ω is due to the fact that one has to shift also the types of the vehicles). By the concentration inequality and the fact that i 0 « ´θe ptq « ´θ e ptq, this implies that θe pt `sq ě θe psq `θ e ptq ´C.

Fekete's Lemma then implies that θe ptq{t has a limit and therefore that θ e ptq{t has a limit. One can also prove that this limit gives the value Ā of the flux limiter.

The proof in the general case (a bifurcation with several outgoing roads) follows the same lines but is much more involved. Many arguments described above are no longer valid. For instance, it is no longer true that M 0 ptq vanishes, because, as the distribution of the vehicles at initial time on the outgoing roads is random, θ e ptq actually depends on the behavior of all the vehicles. We overcome this issue by using the approximate finite speed of propagation. Second, the distance between two subsequent vehicle can be arbitrarily large: this is already true at the initial time on the outgoing roads. In addition, because the vehicles have different types, the maximal speed of a leader can be larger than the maximal speed of its follower. We show however that this distance is controlled by the distance to the first "slow" vehicle in front of the leader (Lemma 2.5). The main consequence of this is that M n ptq cannot have bounded increments (in contrast with [START_REF] Armstrong | Stochastic homogenization of quasilinear Hamilton-Jacobi equations and geometric motions[END_REF] for instance; see however [START_REF] Calder | The limit shape of convex hull peeling[END_REF]); one has to rely on more refined concentration inequalities. Finally the presence of a bifurcation (instead of a perturbation) makes the proof of the superadditive inequality much trickier: it actually relies on the delicate construction of a corrector outside the junction (Subsection 3.3).

Organization of the paper

In the first part we explain the problem and the notation, introduce the standing assumption and state the main result (Theorem 1.1). In the second part we give several facts which are valid for any solution of the system: an estimate of the distance to the next vehicle (Lemma 2.5) and an approximation finite speed of propagation (Lemma 2.6). In the third part we study the time function θ e ptq{t, show its concentration (Theorem 3.4) and prove its convergence (Theorem 3.12). In the last part, we derive from this the behavior of the solution starting from the flat initial datum (Lemma 4.3), infer definition of the flux limiter Ā and finally show the homogenization result.

Throughout the paper, the letter C denote a deterministic constant which may change from line to line and which depends on the data but not on time.

1 The main result

Statement of the problem

We consider the system

d dt U ω i ptq " V Z ω i pU ω i`1 ptq ´U ω i ptq, U ω ω i ptq ´U ω i ptq, U ω i ptqq i P Z, t ě 0, (6) 
where V : Z ˆR3 Ñ R `is Lipschitz continuous in the three last variables (uniformly in the z´variable), nondecreasing with respect to the two middle ones and bounded by }V } 8 . The type of the vehicle i P Z is the random variable Z i in Z. We assume that Z is a finite set and that the pZ i q iPZ are i.i.d.

There is a single incoming road and K outgoing roads (where K P Nzt0u). The junction R is given by

R " K ď k"0 R k , R 0 " p´8, 0s ˆt0u, R k " r0, `8q ˆtku for k P t1, . . . , Ku.
We also denote by o R the interior of the roads:

o R" K ď k"0 o R k , o R 0 " p´8, 0q ˆt0u, o
R k " p0, `8q ˆtku for k P t1, . . . , Ku.

The outgoing road chosen by a vehicle is determined by its type z and is given by the map T : Z Ñ t1, . . . , Ku. We set T ω i " T pZ ω i q and ω i " inftj ą i, T ω j " T ω i u @i P Z.

The vehicle i is the first vehicle in front of i which takes the same outgoing road as i. As the vehicles with the same outgoing road remain ordered, i does not depend on time. For k P t1, . . . , Ku, let π k " PrT 0 " ks be the probability for a vehicle to take the outgoing road k. By convention, we set π 0 " 1.

Without loss of generality, we assume throughout the paper that π k P p0, 1s for any k P t1, . . . , Ku. In this case i is well-defined a.s. since, P´a.s., tj ą i, T ω j " T ω i u is nonempty.

The bifurcation is supposed to be at x " 0. We assume that the equation is homogeneous outside a transition zone r´R 0 , 0s near the bifurcation: namely we suppose the existence of R 0 ą 0 and of Ṽ 0 , . . . , Ṽ K : r0, `8q Ñ r0, `8q such that

V z pe 1 , e 2 , xq " " Ṽ 0 z pe 1 q if x ď ´R0 Ṽ k z pe 2 q if x ě 0 and T pzq " k.
The meaning of this assumption is that, if the position U i ptq of a vehicle i at time t is not in the interval p´R 0 , 0q, the velocity of this vehicle is determined by its type and by the distance to the vehicle in front of it (which has label i `1 if U i ptq ď ´R0 and i if U i ptq ě 0). It is only when the vehicle is in the transition zone r´R 0 , 0s that its velocity also depends possibly on its position and on the vehicles in front; for instance it may slow down to prepare the change of road.

The problem as stated above contains the following particular cases:

• Problem on a single road with a perturbation: in this case there is a single outgoing road and the vehicles solve the simpler system

d dt U ω i ptq " V Z ω i pU ω i`1 ptq ´U ω i ptq, U ω i ptqq i P Z, t ě 0,
where V z pe 1 , xq " Ṽz pe 1 q does not depend on x if x R r´R 0 , 0s.

• Problem in which the type is only the choice of the outgoing road: in this case the system is still of the form (6) but one has Z " t1, . . . , Ku, T pzq " z and the Ṽ k z do not depend on z. There is still a transition zone r´R 0 , 0s on which the velocity of the vehicle i passes from a dependence to the distance to the vehicle right in front (with label i `1) to the distance to the vehicle going on the same outgoing road (with label i ).

If the proof of homogenization would be somewhat simpler in the first case (as described in the introduction), the second case contains already (almost) all the difficulties we will meet below.

The goal of the paper is to understand the behavior of the solution on large scale of time and space: namely, the behavior of px, tq Ñ U rx{ s pt{ q, (where rys is the integer part of the real number y).

Notation: Throughout the paper, Ω :" Z Z is endowed with the product σ´field F and with the product probability measure P. We denote by τ : Z ˆΩ Ñ Ω the shift map defined by pτ n ωq i " ω i`n , @ω " pω i q iPZ P Ω, @n P Z.

We set Z ω i " ω i for ω " pω i q P Ω and i P Z. As P is the product measure on Ω, this means that the pZ i q i P Z are i.i.d. We note for later use that Z τnω i´n " Z ω i while τnω i " ω i`n ´n for any n, i P Z. For x, y P R, we denote by rxs the integer part of x, set pxq `" maxt0, xu, pxq ´" maxt0, ´xu, x ^y " mintx, yu. If E P F, then E c " ΩzE.

Assumptions

Let us state our standing assumptions on V z : pH 1 q For any z P Z, the map pe 1 , e 2 , xq Ñ V z pe 1 , e 2 , xq is Lipschitz continuous from R 2 `ˆR to R `and nondecreasing with respect to the first two variables; pH 2 q There exists e max ą ∆ min ą 0 and 0 ă R 2 ă R 1 ă R 0 , with R 0 ą e max , such that for any z P Z, for any pe 1 , e pH 3 q There exists Ṽ 0 , . . . , Ṽ K : r0, `8q Ñ r0, `8q such that

V z pe 1 , e 2 , xq " " Ṽ 0 z pe 1 q if x ď ´R0 Ṽ k
z pe 2 q if x ě 0 and T pzq " k.

pH 4 q For any z P Z and any k P t0, . . . , Ku, there exists h k max,z P p∆ min , e max s such that p Ñ Ṽ k z ppq is increasing and concave in r∆ min , h k max,z s and constant on rh k max,z , `8q; pH 5 q There exists κ ą 0 such that, for any z P Z, (i) V z pe 1 , e 2 , xq " Ṽ 0 z pe 1 q if e 1 ď e 2 , x ď ´R2 and V z pe 1 , e 2 , xq ď κ, (ii) B x V z pe 1 , e 2 , xq ě 0 if x P r´R 1 , 0s and V z pe 1 , e 2 , xq ď κ,

(iii) V z pe 1 , e 2 , xq ą 0 if e 1 ^e2 ą ∆ min .
Note that, by assumption (H 2 ), we have Ṽ k z peq " 0 if e ď ∆ min and Ṽ k z peq " Ṽ k z pe max q if e ě e max .

Some comment on the assumption are now in order. The assumption that Z is finite is useful throughout the proofs but could be relaxed; as this would introduce an extra layer of technicalities, we prefer to keep this condition for simplicity. Assumption (H 2 ) is standard in the analysis of leader-follower models. The existence of ∆ min prevents vehicles to collide (and could correspond to the size of the smallest vehicle for instance). The existence of e max just says that the vehicles do not take into account the vehicles too far ahead. Assumption R 0 ą e max can be made without loss of generality. Assumption (H 3 ) means that the roads are homogeneous outside the bifurcation. This formalizes the fact that we concentrate here on a single bifurcation. Assumption (H 4 ) is also standard in the analysis of leaderfollower models. There is one restriction though: the minimal distance such that the velocity has to be positive (i.e., here ∆ min ) has to be the same for all vehicle and is not allowed to depend on the type of the vehicle; this restriction is related to the last (and technical) assumption (H 5 ). Assumption (H 5 ) has to do with the behavior of vehicles with slow velocity on the junction and ensures that the vehicles starting with a flat initial condition pU i p0q :" e k iq iPZ (where k " 0 if i ď 0 and k " T i if i ě 0 and e k is such that H k p´1{e k q " min p H k ppq) have a velocity bounded below by a positive constant independent of time and position (Lemma 3.1). This last property is instrumental throughout the proofs. Assumption (H 5 ), without being unrealistic, is a little restrictive, but we do not know if it is possible to relax it. We illustrate these assumptions by an example.

An example. Let 0 ă r 3 ă r 2 ă r 1 ă r 0 . Fix three smooth and nonincreasing maps ξ i : R Ñ r0, 1s such that ξ i pxq " 1 for x ď ´ri´1 , ξ i pxq " 0 for x ě ´ri (i " 1, 2, 3). Fix also s ą 0 and, for any z P Z and k P t0, . . . , Ku, W k z : r0, `8q Ñ r0, `8q a smooth and nondecreasing map with W z p0q " 0, W z psq " W z psq for any s ě s; we also assume that W k is increasing on r0, ss. Then the map defined by e 1 , e 2 ě 0, x P R, z P Z and k " T pzq by V z pe 1 , e 2 , xq "ξ 1 pxqW 0 z `pe 1 ´∆min q `˘`p1 ´ξ1 pxqqξ 2 pxqW 0 z `pe 1 ^e2 ´∆min q `p1 ´ξ2 pxqqW k z `ξ3 pxqpe 1 ^e2 ´∆min q ``p1 ´ξ3 pxqqpe 2 ´∆min q `satisfies the required conditions with R 0 " r 0 , R 1 " r 2 , R 2 " r 3 and Ṽ k z ppq " W k z ppp ´∆min q `q. The complicated expression of V expresses the transition between a configuration in which the vehicle drives at speed Ṽ 0 z and considers only the vehicle in front on road 0 to a configuration in which it drives at speed Ṽ k z and considers only the vehicle in front on road k. Namely, before ´r0 , the vehicle, driving at speed Ṽ 0 z , takes into account only the next vehicle on road 0. Between ´r0 and ´r1 , the vehicle, still driving at speed Ṽ 0 z , slows down in order to take also into account the next vehicle on the road k. Between ´r1 and ´r2 , the vehicle adapts its speed to road k (passes from velocity Ṽ 0 z to Ṽ k z ). Between ´r2 and ´r3 , the vehicle, driving at speed Ṽ k z , looses track of the vehicle which was in front on road 0 and only considers the vehicle in front on road k after 0.

The homogenized velocities and Hamiltonians.

Let V k max,z :" Ṽ k z ph k max,z q. Under assumptions (H1)-(H4), the map Ṽ k z : r∆ min , h k max,z s Ñ r0, V k max,z s is increasing and continuous for any z P Z and any k P t0, . . . , Ku. We denote by p Ṽ k z q ´1 its inverse.

Let v0 :" inf zPZ Ṽ 0 z pe max q, vk :" inf zPZ, T pzq"k Ṽ k z pe max q. ( 7 
)
We recall from [START_REF] Cardaliaguet | From heterogeneous microscopic traffic flow models to macroscopic models[END_REF] the definition of the homogenized velocities V k and homogenized Hamiltonians: V 0 is the inverse of the continuous increasing map defined on p0, v0 q by v Ñ E " p Ṽ 0 Z0 q ´1pvq ı . We note that V 0 is defined on p∆ min , E " p Ṽ 0 Z0 q ´1pv 0 q ı q. We extend it for any e P r0, ∆ min s by V 0 peq " 0 and for e ě E " p Ṽ 0 Z0 q ´1pv 0 q ı by V 0 peq " v0 . In the same way we define V k as the inverse of the continuous increasing map defined on p0, vk q by v Ñ E

" p Ṽ k Z0 q ´1pvq | T 0 " k ı . It defines V k on p∆ min , E " p Ṽ k Z0 q ´1pv 0 q | T 0 " k ı q.
We extend it for any e P r0, ∆ min s by V k peq " 0 and for any e ě E

" p Ṽ k Z0 q ´1pv 0 q | T 0 " k ı by V k peq " vk .
The maps V k (for k P t0, . . . , Ku) are continuous and bounded on r0, `8q. We set, for any k P t1, . . . Ku,

H 0 ppq " p V 0 p´1{pq, H k ppq " p V k p´1{pπ k pqq, p P p´8, 0q, H 0 ppq " H k ppq " 0, @p ě 0 and A 0 " max kPt0,...,Ku min pPR H k ppq. (8) 
By Assumption pH4q, for i P t0, . . . , Ku, H k is convex in p´1{pπ k ∆ min q, 0q (see Lemma A.4).

A last set of notation will be needed in order to define the condition at the junction: for k P t0, . . . , Ku, we denote by H k,`( resp. H k,´) the largest nondecreasing (resp. nonincreasing) map below H k .

The main result

The main result of the paper states that the system homogenizes: let pU 0, i q iPZ be a deterministic family of initial conditions satisfying the compatibility condition: for any i P Z,

U 0, i`1 ě U 0, i `∆min if U 0, i`1 ď ´R2 and U 0, i ě U 0, i `∆min for any i P Z. (9) 
Up to relabel the indices, we also assume that U i,0 ď 0 iff i ď 0. Let U be the solution of ( 6) with initial condition pU 0, i q iPZ . Let us define, for k P t1, . . . , Ku and px, tq P R ˆr0, `8q,

N ,ω px, k, tq " ÿ iPZ, iď0, Ti"k δ U i ptq ppx, `8qq ´ÿ iPZ, ią0, Ti"k δ U i ptq pp´8, xsq. (10) 
and set for x ď 0 N ,ω px, 0, tq "

ÿ iPZ, iď0
δ U i ptq ppx, `8qq.

Then we introduce the scaled quantities ν ,ω px, k, tq " " pπ k q ´1N ,ω px{ , k, t{ q @px, k, tq P R ˆt1, . . . , Ku ˆr0, `8q N ,ω px{ , 0, t{ q @px, tq P p´8, 0s ˆr0, `8q

Theorem 1.1. There is a set Ω 0 of full probability and a constant Ā ă 0 (the flux limiter) such that, if pU 0, i q iPZ is a family of initial conditions such that the associated scaled function ν p¨, ¨, 0q defined by (11) (with t " 0) converges locally uniformly in R to a Lipschitz continuous map ν 0 : R Ñ R, then, for any ω P Ω 0 , ν converges locally uniformly in R ˆr0, `8q to the unique continuous viscosity solution of the Hamilton-Jacobi equation with flux limiter Ā:

$ ' & ' % B t ν `HpB x νq " 0 in o R ˆp0, `8q B t ν `maxt Ā, H 0,`p B 0 νq, H 1,´p B 1 νq, . . . , H K,´p B K νqqu " 0 at x " 0 νpx, k, 0q " ν 0 px, kq in R. (12) 
Let us recall the notion of viscosity solution of [START_REF] Barles | An illustrated guide of the modern approches of Hamilton-Jacobi equations and control problems with discontinuities[END_REF]. For this we define the set of test functions C 1 pR ˆp0, `8qq as the set of continuous maps φ : R ˆp0, `8q Ñ R such that the restriction to each branch of R is of class C 1 on this branch and B t φ exists and is continuous everywhere. We denote by B k φp0, tq its derivative at x " 0 on the branch k (namely, B k φp0, tq " B x φp0, k, tq, which is well-defined by continuity).

We say that a map ν is a viscosity solution of ( 12) if ν : R ˆr0, `8q Ñ R is uniformly continuous, and if, for any test function φ P C 1 pR ˆp0, `8qq such that ν ´φ has a local maximum (respectively minimum) at px, k, tq P R ˆp0, `8q one has

B t φpx, k, tq `H kpB x φpx, k, tqq ď 0 if x ‰ 0 (resp. ě 0) B t φp0, tq `maxt Ā, H 0,`p B 0 φp0, tqq, H 1,´p B 1 φp0, tqq, . . . , H K,´p B K φp0, tqqqu ď 0 if x " 0 (resp. ě 0)
2 Properties of the solution

In this section we investigate two important properties of the solution: the distance to the next vehicle and the finite speed of propagation.

Throughout the paper we need to define the solution pU i q of (6) for a finite number of indices, namely for i P ti 1 , . . . , i 0 u where i 0 , i 1 P Z, i 1 ă i 0 . We say that pU i q iPti1,...,i0u is a subsolution (respectively a supersolution) of ( 6) on a time interval r0, T s if, for any i P ti 1 , . . . , i 0 u, the map t Ñ U i ptq is nondecreasing, Lipschitz continuous with a Lipschitz constant not larger than }V } 8 and if, for any i P ti 1 , . . . , i 0 u

with i ď i 0 , d dt U ω i ptq ď V Z ω i pU ω i`1 ptq ´U ω i ptq, U ω ω i ptq ´U ω i ptq, U ω i ptqq @t P r0, T s (resp. d dt U ω i ptq ě V Z ω i pU ω i`1 ptq ´U ω i ptq, U ω ω i ptq ´U ω i ptq, U ω i ptqq @t P r0, T s.q 2.

Basic properties

Given an initial condition pU 0 i q iPZ satisfying the compatibility condition ( 9), there exists a unique solution U " pU i q iPZ to (6). Moreover we have the following basic comparison principle: if pU i q iPZ and p Ũi q iPZ are two solutions of ( 6) such that U i p0q ď Ũi p0q for any i P Z, then U i ptq ď Ũi ptq for any i P Z and any t ě 0. These results are standard and are easy consequences of Lemma 2.6 below.

Lemma 2.1 (Basic ordering). Let i 0 , i 1 P Z with i 1 ă i 0 , T ą 0 and pU i q iPti1,...,i0u be a solution of (6) on the time interval r0, T s with pU i p0qq satisfying the compatibility condition [START_REF] Barles | An Introduction to the Theory of Viscosity Solutions for First-Order Hamilton-Jacobi Equations and Applications[END_REF]. We have U i ptq ď U j ptq ´∆min for any i 1 ď i ă j ď i 0 such that i ď i 0 and j ď i 0 and any t P r0, T s with U j ptq ď ´R2 or U i ptq ď ´R2 . In addition, for any i P ti 1 , . . . , i 0 u with i ď i 0 and any t P r0, T s , U i ptq ď U i ptq ´∆min .

Recall that R 2 and ∆ min are defined in Assumption (H 2 ). Note that, after the junction, the order is not necessarily preserved among the vehicles if they have not the same type.

Remark 2.2. We note for later use that, if U j ptq ď ´R2 and i ă j, then U i ptq ď U j ptq ´pj ´iq∆ min .

Proof. To prove the first claim, it is enough to check that U i´1 ptq ď U i ptq ´∆min for t P r0, T s if U i´1 ptq ď ´R2 or U i ptq ď ´R2 . We start with the first case. Assume by contradiction that there exists i P ti 1 `1, . . . , i 0 u and a time s P r0, T s such that δ :" ∆ min ´pU i psq ´Ui´1 psqq ą 0 and U i´1 psq ď ´R2 . Let τ ą 0 be the largest time such that U i ptq ´Ui´1 ptq ě ∆ min ´δ on r0, τ q. Note that τ ď s, U i pτ q ´Ui´1 pτ q " ∆ min ´δ and U i´1 pτ q ď ´R2 . Then, for ą 0 small enough, the map t Ñ U i ptq ´Ui´1 ptq ` {pτ ´tq has a minimum on r0, τ q, which is less than ∆ min and reached at a time t P p0, τ q. By optimality condition we have

V Zi pU i`1 p tq ´Ui p tq, U i p tq ´Ui p tq, U i p tqq ´VZi´1 pU i p tq ´Ui´1 p tq, U i´1 p tq ´Ui´1 p tq, U i´1 p tqq ` {pτ ´tq 2 " 0,
where by Assumption (H 2 ) the second term vanishes because U i´1 p tq ď ´R2 and U i p tq ´Ui´1 p tq ď ∆ min . So there is a contradiction and we have proved that U i´1 ptq ď U i ptq if U i´1 ptq ď ´R2 .

Let us now check that U i´1 ptq `∆min ď U i ptq if U i ptq ď ´R2 . Let τ be the first time (if any) such that U i´1 pτ q " ´R2 . We have just proved that U i´1 psq `∆min ď U i psq if s P r0, τ s. Thus U i pτ q ą ´R2 , which implies that t ă τ and proves the claim.

The proof of the second statement is analogous: if there is i P ti 1 , . . . , i 0 u with i ď i 0 , a time s P r0, T s and δ ą 0 such that U i psq ą U i psq ´∆min `δ, then we look at the largest time τ such that U i ptq ă U i ptq ´∆min `δ on r0, τ s. We have U i pτ q " U i pτ q ´∆min `δ and, by the previous step, we know that U i pτ q ą ´R2 . Let t P p0, τ q be a minimum point of the map t Ñ U i ptq ´Ui ptq ` {pτ ´tq on r0, τ q. For ą 0 small enough, this minimum is less than ∆ min . Then by optimality we have

V Z i pU i`1 p tq ´U i p tq, U i p tq ´U i p tq, U i p tqq ´VZi pU i`1 p tq ´Ui p tq, U i p tq ´Ui p tq, U i p tqq ` {pτ ´tq 2 " 0,
where the second term vanishes by assumption (H2) because U i p tq ě ´R2 ą ´R1 and U i p tq ´Ui p tq ď ∆ min . So there is a contradiction and we have proved that U i ptq ď U i ptq ´∆min .

The maximal distance to the next vehicle

In this part we investigate the maximal distance to the next vehicle. This question will play an important role in the proof of Theorem 3.4. Here we work in a deterministic setting: we fix a deterministic sequence pz i q iPZ in Z such that i :" inftj ě i `1, T pz j q " T pz i qu is finite for any i P Z. We consider the system of ODEs

d dt U i ptq " V zi pU i`1 ptq ´Ui ptq, U i ptq ´Ui ptq, U i ptqq i P Z, t ě 0, (13) 
Let us introduce some notation for the slow vehicles. Recall that v0 :" inf

zPZ Ṽ 0 z pe max q, vk :" inf zPZ, T pzq"k Ṽ k z pe max q
and let z k min (where k P t0, . . . , Ku) be elements of Z such that Ṽ 0 z 0 min pe max q " v0 and, for k ě 1,

T pz k min q " k and Ṽ k z k
min pe max q " vk . The types z k min correspond to "slow vehicles", in the sense that their maximal velocity is the smallest. Lemma 2.3. Let t ą 0, i 1 P Z. Assume that T pz i1 q " z 0 min and that pU i q iPZ is a solution to (13) on r0, ts with an initial condition satisfying the compatibility condition [START_REF] Barles | An Introduction to the Theory of Viscosity Solutions for First-Order Hamilton-Jacobi Equations and Applications[END_REF]. If U i1 p tq ď ´R0 , then for any i ď i 1 we have U i1 p tq ď U i p tq `Ui1 p0q ´Ui p0q `emax pi 1 ´iq.

Proof. We prove by induction on m P N that U i1 p tq ď U i1´m p tq`U i1 p0q´U i1´m p0q`e max m. The result is obvious for m " 0. Let us assume that it holds for some m ´1 with m ě 1. We set i :" i 1 ´m. We argue by contradiction and assume that there exists t P r0, ts such that U i1 ptq ´Ui ptq ą U i1 p0q ´Ui p0q `emax m.

Then for ą 0 small, the maximum of t Ñ U i1 ptq ´Ui ptq ´ {p t ´tq exists on r0, tq and is larger than U i1 p0q ´Ui p0q `emax m. We denote by t the point of maximum and we remark that t is positive by definition. By optimality condition, we have Ṽ 0 zi 1 pU i1`1 pt q ´Ui1 pt qq ´Ṽ 0 zi pU i`1 pt q ´Ui pt qq ´ {p t ´t q 2 " 0.

On the other hand, by induction assumption, we have U i1 pt q´U i`1 pt q ď U i1 p0q´U i`1 p0q`e max pm´1q. So U i`1 pt q ´Ui pt q " U i1 pt q ´Ui pt q ´pU i1 pt q ´Ui`1 pt qq ą U i1 p0q ´Ui p0q `emax m ´pU i1 p0q ´Ui`1 p0q `emax pm ´1qq ě e max , so that, by assumption (H2) Ṽ 0 zi pU i`1 pt q ´Ui pt qq " Ṽ 0 zi pe max q while, as z i1 " z 0 min , Ṽ 0 zi 1 pU i1`1 pt q ´Ui1 pt qq ď Ṽ 0 zi 1 pe max q " v0 ď Ṽ 0 zi pe max q.

This contradicts [START_REF] Boucheron | Concentration inequalities: A nonasymptotic theory of independence[END_REF] and proves the result.

Lemma 2.4. Let pU i q iPZ be a solution of (13) with an initial condition satisfying the compatibility condition [START_REF] Barles | An Introduction to the Theory of Viscosity Solutions for First-Order Hamilton-Jacobi Equations and Applications[END_REF]. Let i, i 0 P Z and k P t1, . . . , Ku with i 0 ą i, T pz i q " T pz i0 q " k and z i0 " z k min . If U i psq ě 0 for some s ě 0, then U i0 ptq ď U i ptq `Ui0 psq ´Ui psq `emax 7tj P ti `1, . . . , i 0 u, T pz j q " T pz i qu @t ě s.

Proof. We proceed by induction on the value of n :" 7tj P ti `1, . . . , i 0 u, T pz j q " T pz i qu. Let us fist assume that n " 1. Then i 0 " i . We argue by contradiction and assume that there exists t ě s such that U i ptq ´Ui ptq ą e max `Ui0 psq ´Ui psq. Then for ą 0 small, the maximum t of t Ñ U i ptq ´Ui ptq ´ t 2 exists on rs, `8q and is larger than e max `U i psq ´Ui psq. Hence t is larger than s. By optimality condition, we have (setting k " T pz i q)

Ṽ k z i pU i pt q ´U i pt qq ´Ṽ k zi pU i pt q ´Ui pt qq ´2 t " 0. ( 15 
)
As U i pt q ´Ui pt q ě e max , we get, by the definition of i 0 " i :

Ṽ k zi pU i pt q ´Ui pt qq " Ṽ k zi pe max q " ´2 t `Ṽ k z k min pU i pt q ´U i pt qq ă vk ,
which contradicts the definition of vk . So the result holds for n " 1.

Let us now assume that the result holds for n ´1 (where n ě 2) and let us prove it for n. We argue by contradiction in the same way and suppose that there exists t ě s such that U i0 ptq ´Ui ptq ą U i0 psq ´Ui psq `ne max . As above, for ą 0 small, the maximum t of t Ñ U i0 ptq ´Ui ptq ´ t 2 exists on rs, `8q and is larger than U i0 psq ´Ui psq `ne max . By the induction assumption we have U i0 pτ q ´U i pτ q ď U i0 psq ´U i psq `pn ´1qe max @τ ě s.

Hence

U i pt q ´Ui pt q " U i0 pt q ´Ui pt q ´pU i0 pt q ´U i pt qq ě U i0 psq ´Ui psq `ne max ´pU i0 psq ´U i psq `pn ´1qe max q ě e max .

Moreover, by optimality condition, we have Ṽ k zi 0 pU i 0 pt q ´Ui0 pt qq ´Ṽ k zi pU i pt q ´Ui pt qq ´2 t " 0, which leads to a contradiction as above.

Lemma 2.5. Let pU i q iPZ be a solution of (13) with an initial condition satisfying the compatibility condition [START_REF] Barles | An Introduction to the Theory of Viscosity Solutions for First-Order Hamilton-Jacobi Equations and Applications[END_REF]. Assume in addition that there exists δ ą 0 such that pd{dtqU i ptq ě δ for all t ě 0 and all i P Z. Then, there exists a constant C 0 depending on V and δ only such that, for any i, i 0 P Z and k P t1, . . . , Ku with i 0 ą i, T pz i q " T pz i0 q " k and z i0 " z k min , we have

U i0 ptq ď U i ptq `C0 pU i p0qq
´`U i0 p0q ´Ui p0q `C0 7tj P ti `1, . . . , i 0 u, T pz j q " ku @t ě 0.

If in addition there exists i 1 ě i 0 such that T pz i1 q " z 0 min and U i1 p0q ď ´R0 , then U i0 ptq ď U i ptq `C0 p1 `Ui1 p0q ´Ui p0q `i1 ´iq @t ě 0.

Proof. If U i p0q ě 0, the first result holds by Lemma 2.4. Let us now assume that U i p0q ă 0. We set n :" 7tj P ti `1, . . . , i 0 u, T pz j q " ku. Let t i " inftt ě 0, U i ptq " 0u. Then, as pd{dtqU i ptq ě δ, we have t i ď δ ´1p´U i p0qq. By Lemma 2.4, we have U i0 ptq ´Ui ptq ď U i0 pt i q ´Ui pt i q `emax n @t ě t i .

On the other hand, for t P r0, t i s, we get

U i0 ptq ´Ui ptq ď U i0 p0q ´Ui p0q `}V } 8 t i ď U i0 p0q ´Ui p0q `CpU i p0qq ´.
This proves the first part of the claim.

Assume now that U i1 p0q ď ´R0 . Let t " inftt ě 0, U i1 ptq " ´R0 u. We know from Lemma 2.3 that U i1 ptq ď U i ptq `Ui1 p0q ´Ui p0q `emax pi 1 ´iq @t P r0, ts.

This implies by Lemma 2.1 that U i0 ptq ď U i ptq `Ui1 p0q ´Ui p0q `emax pi 1 ´iq @t P r0, ts.

Let t i " inftt ě 0, U i ptq " 0u. Then, as U i p tq ě U i1 p tq ´pU i1 p0q ´Ui p0q `emax pi 1 ´iqq ě ´R0 ´pU i1 p0q ´Ui p0q `emax pi 1 ´iqq, while U i pt i q " 0, we have, since pd{dtqU i ptq ě δ, t i ´t ď δ ´1pU i pt i q ´Ui p tqq ď δ ´1pR 0 `Ui1 p0q ´Ui p0q `emax pi 1 ´iqq ď Cp1 `Ui1 p0q ´Ui p0q `i1 ´iq.

Note that U i0 p tq ď U i1 p tq " ´R0 ď 0. So, as U i pt i q " 0, U i0 pt i q ´Ui pt i q ď U i0 pt i q ´Ui0 p tq ď }V } 8 pt i ´tq ď Cp1 `Ui1 p0q ´Ui p0q `i1 ´iq.

By Lemma 2.4, we obtain U i0 ptq ´Ui ptq ď U i0 pt i q ´Ui pt i q `emax pi 0 ´iq ď Cp1 `Ui1 p0q ´Ui p0q `i1 ´iq @t ě t i .

Finally, for t P r t, t i s, we have

U i0 ptq ´Ui ptq ď U i0 pt i q ´Ui pt i q `}V } 8 pt i ´tq ď Cp1 `Ui1 p0q ´Ui p0q `i1 ´iq. (18) 
Combining ( 16), ( 17) and ( 18) proves the second part of the claim.

Approximate speed of propagation

The approximate speed of propagation says that the behavior of a vehicle mostly depends on a finite number of vehicles in front of it. To describe this result we need to introduce a few notation. Given T P Z, we define by induction J ω 0 pT q " T, J ω n pT q " inf kPt1,...,Ku sup

! i P Z, T ω i " k, ω i ď J ω n´1 pT q ) .
We note that the J n pT q are random and decreasing in n. By construction, if i ď J n pT q, then i `1 ď J n´1 pT q and i ď J n´1 pT q.

Lemma 2.6 (Approximate finite speed of propagation on the junction). Fix i 0 P Z, L P N, T ě 0 and E P F an event with a positive probability. Assume that, in E, pU i q iPti0,...,i0`Lu is a (non decreasing) subsolution while p Ũi q iPti0,...,i0`Lu is a supersolution of the system

d dt U i ptq " V Zi pU i`1 ptq ´Ui ptq, U i ptq ´Ui ptq, U i ptqq
for i " i 0 , . . . , J 1 pi 0 `Lq and t P r0, T s. Suppose in addition that, in E, U i p0q ď Ũi p0q for i P ti 0 , . . . , i 0 Lu. Then, for all n P Z, n ě 1, for all ω P E and for all i P ti 0 , . . . , J n pi 0 `Lqu,

U i ptq ď Ũi ptq `C 2 ´ne βt @t P r0, T s,
where, β " γ `2C 1 , with γ :" sup zPZ p}B 1 V z } 8 `}B 2 V z } 8 q and C 1 :" sup zPZ }B x V z } 8 , and where C depend on β and on }V } 8 only.

Proof. We work in E all along the proof. Let us set W i ptq " Ũi ptq ´Ui ptq for i " i 0 , . . . , J 1 pi 0 `Lq. Since we work with sub and super-solution, we extend the velocity V z pp, xq by 0 if p ď 0. Let n 0 be the largest integer such that J n0 pi 0 `Lq ě i 0 . We define, for n P t1, . . . , n 0 u, 

M n " sup iPti0,...,
M n ď 1 2 M n´1 . (19) 
Fix n P t2, . . . , n 0 u and i P ti 0 , . . . , J n pi 0 `Lqu. We have, for t P r0, T s,

d dt W i ptq ě V Zi p Ũi`1 ptq ´Ũ i ptq, Ũ i ptq ´Ũ i ptq, Ũi ptqq ´VZi pU i`1 ptq ´Ui ptq, U i ptq ´Ui ptq, U i ptqq. So d dt W i ptq ě A i,1 ptqpW i`1 ptq ´Wi ptqq `Ai,2 ptqpW i ptq ´Wi ptqq `Bi ptqW i ptq
where

A i,1 ptq :" ˆ1 0 B 1 V Zi pw i pτ qqdτ, A i,2 ptq :" ˆ1 0 B 2 V Zi pw i pτ qqdτ, B i ptq :" ˆ1 0 B 3 V Zi pw i ptqqdτ,
with w i ptq " pw i,1 pτ q, w 2,i ptq, w 3,i ptqq, w i,1 pτ q " p1 ´τ qp Ũi`1 ptq ´Ũ i ptqq `τ pU i`1 ptq ´Ui ptqq, w 2,i ptq " p1 ´τ qp Ũ i ptq ´Ũ i ptqq `τ pU i ptq ´Ui ptqq and w 3,i ptq " p1 ´τ q Ũi ptq `τ U i ptq. We note for later use that 0

ď A i,1 ď γ, 0 ď A i,2 ď γ and |B i | ď C 1 . Setting A i " A i,1 `Ai,2 , we find W i ptq ěW i p0q exp " ´ˆt 0 pA i ´Bi qpsqds * `ˆt 0 A i,1 psq exp " ´ˆt s pA i ´Bi qpτ qdτ * W i`1 psqds `ˆt 0 A i,2 psq exp " ´ˆt s pA i ´Bi qpτ qdτ * W i psqds.
As W i p0q ě 0 and A i ě 0, we infer that We now estimate the last term in the inequality above. After an integration by part, we have, since As i ď J n pi 0 `Lq, i`1 and i belong to ti 0 , . . . , J n´1 pi 0 `Lqu. So the right-hand side is less that M n´1 {2.

rW i ptqs ´ď ˆt 0 A i,
β 2 ě C 1 ě |B i | and 0 ď A i ď γ, ˆt 0 A i psq exp " ´ˆt s pA i ´|B i |qpτ
Taking the supremum over all i P ti 0 , . . . , J n pi 0 `Lqu gives [START_REF] Cardaliaguet | From heterogeneous microscopic traffic flow models to macroscopic models[END_REF].

By induction, we obtain that, for all n ď n 0 ,

M n ď 2 ´pn´1q M 1 ď C2 ´n,
from which we derive the result.

Next we investigate the behavior of J n for large values of n:

Lemma 2.7. There exists a constant α ą 0 such that, for any T P Z, any P p0, 1s and any n P N, P r|J n pT q ´T `αn| ě ns ď 2 expt´ 2 n{Cu.

Proof. Let T P Z and X n :" J ω n pT q, n P N. Then pX n`1 ´Xn q is a family of i.i.d. nonpositive random variables with law given by (for all m P N) PrX 1 ´X0 ă ´ms ď P " Dk P t1, . . . , Ku, 7ti P tT ´m, . . . , T u, T i " ku ď 1

ı ď K ÿ k"1 mp1 ´πk q m´1 ď Kmπ m´1 ď Cp 1 `π 2 q m ,
where π " max k p1 ´πk q ă 1 and C depends on π and K only. Therefore X 1 ´X0 satisfies Bernstein's conditions: there exist positive numbers ν and c (depending on π only) such that E " |X 1 ´X0 | 2 ‰ ď ν and E r|X 1 ´X0 | q s ď q!νc q´2 for any integer q ě 3 (see Subsection A.1 in the Appendix). Let us set α " E rX 0 ´X1 s ą 0. From Bernstein's Inequality (Corollary 2.11 in [START_REF] Boucheron | Concentration inequalities: A nonasymptotic theory of independence[END_REF]) P r|J n pT q ´T `αn| ě xs ď 2 expt´x 2 {pCpn `xqqu for some constant C depending on π only. This implies the result for P p0, 1s.

The time function

The goal of Sections 3 is to build the flux limiter at the junction. For doing so we consider the solution of our system starting with a "flat initial condition" and look at the time it takes to reach 0 from a position (far) on the ingoing road.

Let us fix from now on e " pe k q k"0,...K such that H k p´1{e k q " min p H k ppq. We note for later use that e k ą π k ∆ min , where ∆ min is defined in Assumption (H2). We define pU ω e,i q iPZ as the solution of (6) with initial condition defined for any i P Z by

U ω e,i " " e 0 i if i ď 0 e k i if i ě 0 and T i " k.
Then we set θ ω e ptq " infti ě 0, U ω e,´i ptq ď 0u. The quantity θ ω e ptq is the number of vehicles having gone through 0 at time t. The goal of the section is to show, by using a concentration inequality, that θ e ptq{t has a.s. a deterministic limit as t Ñ `8.

Preliminaries

Let us collect some basic facts on the pU ω e,i q iPZ and on θ e . Let us set v k e " V k pe k {π k q for k P t0, . . . , Ku (where π 0 " 1 by convention). Lemma 3.1. We have min kPt0,...,Ku v k e ą 0.

Proof. As e ą π∆ min and Z is finite, assumption (H 5 ) implies the existence of C ą 1 such that Ṽ 0 z pe 0 q ě C ´1 for any z P Z. Thus p V 0 q ´1pC ´1q " Erp Ṽ 0 Z0 q ´1pC ´1qs ď e 0 , which shows that v 0 e " V 0 pe 0 q ě C ´1. The proof for v k e (for k " 1, . . . , K) works in the same way.

Lemma 3.2. There exists δ ą 0 such that d dt U e,i ptq ě δ @t ě 0, @i P Z.

Proof. Recall the definition of κ in assumption (H 5 

V z pR 1 ´R2 `∆min , R 1 ´R2 `∆min , xqu.
By Lemma 3.1, the fact that e min ą ∆ min and assumption (H 5 -(iii)) (combined with the fact that Z is finite and that V is independent of x for x R r´R 0 , 0s), we have that δ ą 0. Fix n P N large (say, n ě R 0 {e 0 ) and let U n be the solution to [START_REF] Armstrong | Stochastic homogenization of level-set convex Hamilton-Jacobi equations[END_REF] with initial condition defined by for any i P Z, |i| ď n by

U n i p0q " " e 0 i if ´n ď i ď 0 e k i if 0 ď i ď n and k " T i .
If |i| ą n we define U n i p0q, by induction by setting, if i ă ´n, Ṽ 0 Zi´1 pU n i p0q ´U n i´1 p0qq " v 0 e and, if i ą n and k " T i , Ṽ k Zi pU n i p0q ´U n i p0qq " v k e . Then U n converges locally uniformly on Z ˆr0, `8q to U e as n Ñ `8. We are going to show that the claim holds for U n , which implies the claim for U e .

Let us first note that the claim holds for t " 0. Indeed, by definition of U n i p0q, we have, if ´n ď i ă 0,

d dt U n i p0q " V Zi pe 0 , U n i p0q
´U n i p0q, e 0 iq ě V Zi pe min , e min , eiq ě δ, while, if i ě 0 and k " T i , then

d dt U n i p0q " Ṽ k Zi pU n i p0q ´U n i p0qq " " Ṽ k Zi pp i ´iqe k q ě δ if i ď n, v k e ě δ otherwise. Finally, if i ă ´n, then d dt U n i p0q " Ṽ 0 Zi pU n i`1 p0q ´U n i p0qq " v 0 e ě δ.
So we have proved that, in any case, d dt U n i p0q ě δ.

By Lipschitz continuity in time of Iptq :" inf iPZ d dt U n i ptq, we have that Iptq ě δ{2 for t ě 0 small. Let r0, T s be an interval on which this inequality holds. We are going to show that actually Iptq ě δ on r0, T s, which is enough to prove the claim. For this we argue by contradiction and assume that there is p t, jq P r0, T s ˆZ such that d dt U n j p tq ă δ. Then, for ą 0 small enough,

I :" inf tPr0, tq, iPZ d dt U n i ptq ` t ´t
is less than δ. In the next step we show that the infimum is actually a minimum. For this we first note that Ū n i ptq :" U n i p0q `v0 e t for i ď ´N and t P r0, T s is a solution to [START_REF] Armstrong | Stochastic homogenization of level-set convex Hamilton-Jacobi equations[END_REF] for N large enough depending on T and n. So, by the approximate finite speed of propagation (Lemma 2.6) applied to U n i and Ū n i for i ď ´N and t P r0, T s, we have for any t P r0, T s

lim iÑ´8 U n i ptq ´U n i p0q " tv 0 e , so that lim iÑ´8 d dt U n i ptq " lim iÑ´8 Ṽ 0 Zi pU n i`1 ptq ´U n i ptqq " lim iÑ´8 Ṽ 0 Zi pU n i`1 p0q ´U n i p0qq " v 0 e ě δ.
On the other hand, by the construction of U n , we have for i ą n and T i " k that U n i ptq " U n i p0q `tv k e , so that lim

iÑ`8, Ti"k d dt U n i ptq " v k e ě δ.
This shows that the infimum in the definition of I is a minimum: let pt 0 , i 0 q be a minimum point such that i 0 is maximal. Recalling that Ip0q ě δ, we have t 0 ą 0. By the optimality of pt 0 , i 0 q and the maximality of i 0 , we have

d dt U n i0`1 pt 0 q ą d dt U n i0 pt 0 q and d dt U n i 0 pt 0 q ą d dt U n i0 pt 0 q. ( 20 
)
By optimality of t 0 ą 0, we also have (omitting the dependence of V Zi 0 with respect to its parameters to simplify the notation)

0 " B e1 V Zi 0 ˆd dt U n i0`1 pt 0 q ´d dt U n i0 pt 0 q ˙`B e2 V Zi 0 ˆd dt U n i 0 pt 0 q ´d dt U n i0 pt 0 q ˙`B x V Zi 0 d dt U n i0 pt 0 q` p t ´t0 q 2 .
By [START_REF] Caselles | Scalar conservation laws and Hamilton-Jacobi equations in one-space variable[END_REF], all the terms are nonnegative except perhaps B x V Zi 0 . By assumption (H 5 -(ii)), we cannot have U n i0 pt 0 q ě ´R1 since in this case B x V Zi 0 ě 0. So U n i0 pt 0 q ă ´R1 . Now, if U n i 0 pt 0 q ě U n i0`1 pt 0 q, then by assumption (H 5 -(i)), V Zi 0 does not depend on x and therefore B x V Zi 0 " 0. Thus U n i 0 pt 0 q ă U n i0`1 pt 0 q. By Lemma 2.1, with i " i 0 `1 and j " i0 ą i 0 `1, this implies that U n i 0 pt 0 q ě ´R2 `∆min and, hence, U n i0`1 pt 0 q ě ´R2 `∆min . Thus

d dt U n i0 pt 0 q ě V Zi 0 pR 1 ´R2 `∆min , R 1 ´R2 `∆min , U n i0 pt 0 qq ě δ,
which is again impossible.

A immediate consequence of Lemma 3.2 is that U e,i ptq Ñ `8 as t Ñ `8 and therefore θ e ptq Ñ `8 as t Ñ `8. Next we show a bound from above for θ e . Lemma 3.3. There exists a constant C θ ą 0 such that 0 ď θ e ptq ´θe psq ď C θ pt ´s `1q @0 ď s ď t.

Moreover, for t ě 0, θ e ptq ď C θ t.

Proof. Let us first prove the second statement. For this we note that, for any i ě }V } 8 t{e 0 , we have U e,´i ptq ď ´e0 i `}V } 8 t ď 0.

So θ e ptq ď }V } 8 t{e 0 , which proves the claim. We now prove the first statement. Let i 0 :" ´θe psq. Then U e,i0 psq ď 0. Let δ be the constant given by Lemma 3.2. Assume first that s ě R 2 {δ. Then, by Lemma 3.2, U e,i0 ps ´R2 {δq ď U e,i0 psq ´R2 ď ´R2 . Recalling Remark 2.2 after Lemma 2.1 we have, for any i ď i 0 ´}V } 8 pt ´s `R2 {δq{∆ min , U e,i ptq ď U e,i ps´R 2 {δq`}V } 8 pt´s`R 2 {δq ď U e,i0 ps´R 2 {δq´∆ min pi 0 ´iq`}V } 8 pt´s`R 2 {δq ď ´R2 ă 0. So, for any i ď i 0 ´}V } 8 pt ´s `R2 {δq{∆ min , we obtain U e,i ptq ă 0. This shows that θ e ptq ď ´i0 `}V } 8 pt ´s `R2 {δq{∆ min ď θ e psq `Cpt ´s `1q.

If t ď R 2 {δ, the conclusion obviously holds. Finally, if s ď R 2 {δ and t ą R 2 {δ, then, by the previous inequality and the first part of the proof, we have θ e ptq ďθ e pR 2 {δq `Cpt ´R2 {δ `1q ď}V } 8 R 2 {pδe 0 q `Cpt ´s `1q ďθ e psq `}V } 8 R 2 {pδe 0 q `Cpt ´s `1q ďθ e psq `C1 pt ´s `1q.

A concentration inequality

In this section, we prove a concentration inequality for θ e ptq " infti ě 0, U e,´i ptq ď 0u. Theorem 3.4. There is a constant C ą 0 such that for any P p0, C ´1s and any t ě C ´1, P r| θ e ptq ´Erθ e ptqs| ě ts ď C expt´ 2 t{Cu.

The proof requires several steps. The first issue is that θ e ptq depends a priori on all the Z i , even for any i ě 0 large. In order to reduce this dependence, we introduce the auxiliary quantity θ m e ptq defined, for any m P N large (say m ě 2), by θ m e ptq " infti ě 0, U m e,´i ptq ď 0u

where the pU m e,i q iPZ is the solution of (6) where the sequences Z i and the initial condition U e p0q are replaced into Z m i and U m e p0q defined as follows:

Z m i :" " Z i if i ď m ´1 z k min if i ě m and T i " k and U m e,i p0q " 
" U e,i p0q if i ď m ´1 e Ti pm ´1q `eTi 7tj P tm, . . . , iu, T j " T i u if i ě m.

Let us recall that the z k min are introduced at the beginning of Subsection 2.2. Before proceeding, let us collect several important properties of the U m e,i .

Lemma 3.5. 1. For each i P Z with i ď m ´1, U m e,i is σtZ j , j P ti, . . . , m ´1uu´measurable.

2. There exists δ ą 0 such that pd{dtqU m e,i ptq ě δ for any i P Z and any t ě 0.

3. There exists a constant C ą 0 such that 0 ď θ m e ptq ´θm e psq ď Cpt ´s `1q and θ m e ptq ď Ct @0 ď s ď t.

4. Setting σ i :" inftj ě i `1, Z j " z Ti min u and σ 0 i " inftj ě i `1, Z j " z 0 min u, we have U m e, i ptq ď U m e,i ptq `Cp1 `σ0 σi ^m ´iq @i ď m ´1, @t ě 0.

Proof. Given Z i , the above equation has deterministic coefficients since U m i ptq " e k pm ´1q `Ṽ k z k min pe k qt. For i ď m ´2, it can be proved by induction in the same way that U m e,i satisfies an ODE with coefficients which are σtZ j , j P ti, . . . , m ´1uu´measurable.

2) & 3) The existence of δ ą 0 such that pd{dtqU m e,i ptq ě δ is a consequence of Lemma 3.2 (which is a deterministic statement). In the same way, the estimate on θ m e is an application of Lemma 3.3. 4) Let us finally check [START_REF] Chiabaut | From heterogeneous drivers to macroscopic patterns in congestion[END_REF]. For this we use Lemma 2.5. Fix i ď m´1 and let k " T i , i 0 :" inftj ě i1 , Z m j " z k min u and i 1 " inftj ě i 0 , Z m j " z 0 min u (if this exists). Note that i 0 " σ i ^pinftj ě m, T j " kuq and i 1 " σ 0 σi if σ 0 σi ă m. If e 0 i 1 ď ´R0 , then by the second part of Lemma 2.5 we have U m e, i ptq ď U m e,i0 ptq ď U m e,i ptq `C0 p1 `U m i1 p0q ´U m i p0q `i1 ´iq ď U m e,i ptq `Cp1 `i1 ´iq @t ě 0.

As i 1 ď 0 ă m ´1 we also have i 1 " σ 0 σi ă m, which proves the inequality in this case. Let us now assume that e 0 i 1 ą ´R0 . According to the first part of Lemma 2.5 we have U m e, i ptq ď U m e,i0 ptq ď U m e,i ptq `C0 pe 0 iq ´`U m e,i0 p0q ´U m e,i p0q `C0 7tj P ti `1, . . . , i 0 u, T pZ m j q " ku.

As e 0 i 1 ą ´R0 , we have pe 0 iq ´ď e 0 pi 1 ^m ´iq `R0 ď e 0 pσ 0 σi ^m ´iq `R0 .

On the other hand, by the construction of the U m e,j p0q, we have U m e,i0 p0q " pm ^σi qe k . Finally, as by definition of the Z m j and of i 0 we also have (with k :" T i ) 7tj P ti `1, . . . , i 0 u, T pZ m j q " ku ď 7tj P ti `1, . . . , m ´1u, T pZ m j q " ku `1 ď σ i ^m ´i `1.

This shows that U m e, i ptq ď U m e,i ptq `Cpσ 0 σi ^m ´i `1q @t ě 0.

We now note that θ e and θ m e are close.

Lemma 3.6. There exists a constant C ą 0 such that, for any t ě C and if m " rCts,

P r|θ e ptq ´θm e ptq | ą Cs ď C expt´t{Cu.

Proof. Note that pU e,i q and pU m e,i q solve the same equation for i ď m ´1 with the same initial condition. Lemma 2.6 on the approximate speed of propagation then states that there exists constants C ą 0 and β ą 0 such that, for all n P N, n ě 1 and i ď J n pm ´1q, |U m e,i psq ´Ue,i psq| ď C 2 ´ne βs @s ě 0.

Fix t ą 0 and let us choose n " rβt{ lnp2qs `1 and m " rp1 `αqns where α ą 0 is defined in Lemma 2.7.

In the event tJ n pm ´1q ě 0u, we have

|U m e,i psq ´Ue,i psq| ď C @s P r0, ts, @i ď 0.

Let us check that this inequality implies in the event tJ n pm ´1q ě 0u that |θ m e ptq ´θe ptq| ď C.

Indeed, if U m e,i ptq ď 0, then U e,i ptq ď C. Assume t ě Cδ ´1 where δ is defined in Lemma 3.2. Then Lemma 3.2 implies that U e,i pt ´Cδ ´1q ď 0. This shows that θ e pt ´Cδ ´1q ď θ m e ptq, and thus, by Lemma 3.3, that θ e ptq ´C1 ď θ m e ptq, for some new constant C 1 . If t ă Cδ ´1, then, by Lemma 3.3, θ e ptq ď C 1 ď θ m e ptq `C1 .

Therefore θ e ptq ´θm e ptq ď C 1 in any case. The inequality θ m e ptq ´C1 ď θ e ptq can be checked in the same way, by using points 2) and 3) of Lemma 3.5. This proves [START_REF] Chiarello | Micro-macro limit of a nonlocal generalized Aw-Rascle type model[END_REF]. As [START_REF] Chiarello | Micro-macro limit of a nonlocal generalized Aw-Rascle type model[END_REF] holds in the event tJ n pm ´1q ě 0u, we get P r|θ e ptq ´θm e ptq| ą Cs ď P rJ n pm ´1q ă 0s ď P rJ n pmq ă 0s .

Recalling the choice of m and Lemma 2.7 (with " 1) we have P rJ n pmq ă 0s ď P rJ n pmq ´m `αn ă ´m `αn `1s ď P rJ n pmq ´m `αn ă ´ns ď C expt´t{Cu.

This gives the result.

The key step of the proof of Theorem 3.4 consists in establishing a concentration inequality for θ m e ptq. To do so, let us set, for n P N, F m,n " σtZ i , i P tm ´n, . . . , m ´1u u if n ě 1 and F m,0 " t∅, Ωu. We also set M n ptq " E rθ m e ptq | F m,n s ´E rθ m e ptqs . Note that pM n ptqq is a martingale with M 0 ptq " 0.

As, by Lemma 3.5, θ m e ptq ď Ct and tθ m e ptq ď nu " tU m ´nptq ď 0u is F m,m`n ´measurable for any n P N, we have that M n ptq " θ m e ptq ´Erθ m e ptqs for n ě n :" rCts for C large enough.

The next step is instrumental and consists in estimating |M n`1 ptq ´Mn ptq|.

Lemma 3.7. For any n P N,

|M n`1 ptq ´Mn ptq| ď Cp1 `σ0 σm´n ^m ´pm ´nqq,

where σ 0 and σ are defined in Lemma 3.5.

Proof. Let us first remark that, for any n ě 0, θ m e ptq1 tθ m e ptqďpm´n´1q´u is F m,n ´measurable. Hence In the next steps, we work in tU m m´n ptq ą 0u. Let us introduce some notation. Given n P N and a continuous componentwise nondecreasing map x " px 1 , . . . , x K q : r0, `8q Ñ R K , we denote by Û n,x " p Û n,x,ω i q iďm´n´1 the solution to

d dt Û n,x,ω i pτ q " $ ' & ' % V Z ω i p Û n,x,ω i`1 pτ q ´Û n,x,ω i pτ q, Û n,x,ω l ω i pτ q ´Û n,x,ω i pτ q, Û n,x,ω i pτ qq if i ď m ´n ´2, i ď m ´n ´1, V Z ω i p Û n,
x,ω i`1 pτ q ´Û n,x,ω i pτ q, x Ti pτ q ´Û n,x,ω i pτ q, Û n,x,ω i pτ qq if i ď m ´n ´2, i ě m ´n, V Z ω i px k0 pτ q ´Û n,x,ω i pτ q, x Ti pτ q ´Û n,x,ω i pτ q, Û n,x,ω i pτ qq if i " m ´n ´1,

with for i ď m ´n ´1 Û n,x,ω i p0q " " e 0 i if i ď 0 e k i if i ě 0 and k " T i
where k 0 P t1, . . . , Ku is such that x k0 p0q ď x k p0q for any k P t1, . . . , Ku (if there are several minimizers of x k p0q we choose the smallest one). An important property of the p Û n,x,ω i q iďm´n´1 is that they depend on tZ i , i ď m ´n ´1u only. We also define θn,x,ω ptq " inf ! i ě pm ´n ´1q ´, Û n,x,ω ´i ptq ď 0

) .

We note that U m,ω e,i pτ q " Û n, ´U m,ω e,l m´n,ω pkq ¯k"1,...,K ,ω i pτ q for any i ď m ´n ´1 and τ ě 0 where

l i,ω pkq " inftj ě i, T ω j " ku. (24) 
Moreover, θ m,ω e ptq " θn, ´U m,ω e,l m´n,ω pkq ¯k"1,...,K ,ω e ptq in tU m,ω e,m´n ptq ą 0u. As θn,x ptq depends only on tZ i , i ď m ´n ´1u while the U m,ω e,l m´n,ω pkq are F m,n ´measurable, we have, in tU m,ω e,m´n ptq ą 0u, E rθ m e ptq | F m,n s " E " θn,x ptq ı

x" ´Û m,ω e,l m´n,ω pkq ¯k"1,...,K .

In the same way, we have

E rθ m e ptq | F m,n`1 s ď 1 `E " θn`1,x ptq ı
x" ´Û m,ω l m´n´1,ω pkq ¯k"1,...,K .

So

|M n`1 ptq ´Mn ptq| ď

1 `ˇˇE " θn`1,x ptq ı

x" ´U m,ω l m´n´1,ω pkq ¯k"1,...,K ´E " θn,x ptq ı

x" ´U m,ω l m´n,ω pkq ¯k"1,...,K ˇˇ1 tθ m e ptqąpm´n´1q´u .

Next we estimate the difference between E " θn`1,x ptq ı and E " θn,x ptq ı when x " ´U m,ω l m´n´1,ω pkq ¯k"1,...,K and x " ´U m,ω l m´n,ω pkq ¯k"1,...,K (recall that we work in tU m m´n ptq ą 0u). For this we fix two C 1 maps x, x : r0, 8q Ñ R K such that there exists k 0 P t1, . . . , Ku and γ ě 1 with, for any k P t1, . . . , Ku, pd{dτ qx k pτ q ě δ and pd{dτ qx k pτ q ě δ,

x k " xk if k ‰ k 0 and ´γ `xk0 pτ q ď xk0 pτ q ď x k0 pτ q @τ ě 0.

Note that the conditions above are satisfied by x " pU m,ω l m´n´1,ω pkq q k"1,...,K and x " pU m,ω l m´n,ω pkq q k"1,...,K with γ " Cp1 `σ0 σm´n ^m ´pm ´nqq and k 0 " T m´n thanks to Lemma 3.5. Note also that the Û n,x,ω i and θn,x,ω satisfy the same conclusion as U e and θ e in Lemmas 3.2 (with the same constant δ) and 3.3, the proof being the same.

The main part of the proof consists in showing that, under [START_REF] Francesco | Rigorous derivation of nonlinear scalar conservation laws from follow-the-leader type models via many particle limit[END_REF],

ˇˇE " θn`1,x ptq ı ´E " θn,x ptq ıˇˇˇď Cp1 `γq. (27) 
For this we first check that

E " θn`1,x ptq ı ď E " θn`1,x ptq ı ď E " θn,x ptq ı `1. (28) 
The first inequality holds by comparison, which implies from assumption (26) that Û n`1,x i psq ď Û n`1,x i psq for any s ě 0 and any i ď m ´n ´2. For the second inequality, let us set W ω i psq " Û n`1,x,τ1ω i´1 psq for i ď m ´n and s ě 0. Then W ω i solves (since Z τ1ω i´1 " Z ω i , T τ1ω i´1 " T ω i and τ1ω i´1 " ω i ´1)

d dt W ω i pτ q " $ & % V Z ω i pW ω i`1 pτ q ´W ω i pτ q, W ω l ω i pτ q ´W ω i pτ q, W ω i pτ qq if i ď m ´n ´2, i ď m ´n ´1, V Z ω i pW ω i`1 pτ q ´W ω i pτ q, x Ti pτ q ´W ω i pτ q, W ω i pτ qq if i ď m ´n ´2, i ě m ´n, V Z ω i px k0 pτ q ´W ω i pτ q, x Ti pτ q ´W ω i pτ q, W ω i pτ qq if i " m ´n ´1, W ω i p0q " " e 0 pi ´1q if i ď 1 e k pi ´1q if i ě 1 and T τ1ω i´1 " T ω i " k ď Û n,x,ω i p0q for i ď m ´n ´1,
Therefore by comparison Û n`1,x,τ1ω i´1 pτ q " W ω i pτ q ď Û n,x,ω i pτ q @τ ě 0, @i ď m ´n ´1, which implies that θn`1,x,τ1ω ptq ď θn,x,ω ptq `1

and gives the second inequality in (28) after taking expectation.

Using [START_REF] Francesco | Rigorous derivation of nonlinear scalar conservation laws from follow-the-leader type models via many particle limit[END_REF], the definitions of Û n`1,x,ω i p0q and Û n,x,ω i p0q and the fact that pd{dtq Û n`1,x,ω i ptq ě δ ą 0 (since the Û n,x satisfy the conclusion of Lemma 3.2), we get that there exists C 1 ą 0 large (but which does not dependent on m, n, ω and i) such that

Û n`1,x,τ1ω i´1 pC 1 γq ě Û n,x,ω i p0q @i ď m ´n ´1, (29) 
and xk pt `C1 γq ě x k ptq @t ě 0, @k P t1, . . . , Ku.

We claim that, for some constant C 2 ą 0,

E " θn,x ptq ı ď E " θn`1,x ptq ı `C2 γ. ( 30 
)
To prove (30) let W ω i ptq " Û n`1,x,τ1ω i´1 pt `C1 γq for i ď m ´n ´1. For i ď m ´n ´1, W i solves, exactly as above,

d dt W ω i pτ q " $ & % V Z ω i pW ω i`1 pτ q ´W ω i pτ q, W ω l ω i pτ q ´W ω i pτ q, W ω i pτ qq if i ď m ´n ´2, i ď m ´n ´1, V Z ω i pW ω i`1 pτ q ´W ω i pτ q, xTi pτ `C1 γq ´W ω i pτ q, W ω i pτ qq if i ď m ´n ´2, i ě m ´n, V Z ω i px k0 pτ `C1 γq ´W ω i pτ q, xTi pτ `C1 γq ´W ω i pτ q, W ω i pτ qq if i " m ´n ´1, W ω i p0q " Û n`1,x,τ1ω i´1 pC 1 γq ě Û n,x,ω i p0q for i ď m ´n ´1.
As xk pτ `C1 γq ě x k pτ q and as V z is increasing in the first two variables, we obtain by comparison that

Û n`1,x,τ1ω i´1 pt `C1 γq " W ω i ptq ě Û n,x,ω i ptq @t ě 0, @i ď m ´n ´1.
Therefore 1 `θ n`1,x,τ1ω pt `C1 γq ě θn,x,ω ptq.

Using Lemma 3.3 (which holds for θ as explained above), we obtain C 2 γ `θ n`1,x,τ1ω ptq ě θn,ω ptq, which implies (30) after taking expectation.

Combining ( 28) and ( 30) gives [START_REF] Feldman | Homogenization and non-homogenization of certain non-convex Hamilton-Jacobi equations[END_REF]. Then recalling [START_REF] Colombo | On the microscopic modeling of vehicular traffic on general networks[END_REF], we obtain [START_REF] Cristiani | On the micro-to-macro limit for first-order traffic flow models on networks[END_REF].

Let us set ξ i ptq " |M i`1 ptq ´Mi ptq|.

and

rM s n " n ÿ i"1 pξ i ptqq 2 , xM y n " n ÿ i"1 E " pξ i ptqq 2 | F m,i ‰ .
Following [15, Theorem 2.1], the following concentration inequality holds:

P r|M n | ě x, rM s n `xM y n ď ys ď 2 expt´x 2 {p2yqu.
This implies that P r|M n | ě xs ď 2 expt´x 2 {p2yqu `P rrM s n `xM y n ą ys .

Lemma 3.8. There exists a constant C ą 0 such that

P rrM s n `xM y n ą Cns ď expt´n C u.
Proof. In view of Lemma 3.7 we have |ξ i ptq| ď Cp1 `σ0 σm´i ^m ´pm ´iqq.

We first replace the right-hand side by a more suitable random variable. For k P t1, . . . , Ku, let σ k i :" inftj ě i `1, T j " k, Z j " z k min u. Note that σ k i is independent of tZ j , j ď iu and that sup k σ k i ě σ i . Then

|ξ i ptq| ď C K ÿ k"1 p1 `σ0 σ k m´i ^m ´pm ´iqq. As σ 0 σ k m´i ^m is F m,i ´measurable, we have rM s n `xM y n ď Cn `C K ÿ k"1 n ÿ i"1 pσ 0 σ k m´i ^m ´pm ´iqq 2 ď Cn `C K ÿ k"1 n ÿ i"1 pσ 0 σ k m´i ^m ´σk m´i ^mq 2 `C K ÿ k"1 n ÿ i"1 pσ k m´i ^m ´pm ´iqq 2 .
For k P t0, . . . , Ku, let us define by induction

s k 0 " inftj ě m, T j " k, Z j " z k min u, s k i`1 " suptj ă s k i , T j " k, Z j " z k min u.
Note that the ps k i ´sk i`1 q iě0 are i.i.d. and that, by definition, for any j P ts k i`1 , . . . , s k i ´1u, one has σ k j " s k i . Therefore

s k i ´1 ÿ r"s k i`1 pσ k r ´rq 2 " s k i ´1 ÿ r"s k i`1 ps k i ´rq 2 ď Cps k i ´sk i`1 q 3 .
As s k 0 ě m while s k n ď m ´n, this shows that

n ÿ i"1 pσ k m´i ^m ´pm ´iqq 2 ď m´1 ÿ i"m´n pσ k i ´iq 2 ď n´1 ÿ j"0 s k j ´1 ÿ r"s k j`1 pσ k r ´rq 2 ď C n´1 ÿ j"0 ps k j ´sk j`1 q 3 .
On the other hand,

n ÿ i"1 pσ 0 σ k m´i ^m ´σk m´i ^mq 2 ď n ÿ i"1 pσ 0 σ k m´i ^m ´σk m´i ^mq 2 " n ÿ i"1 ÿ j, s k j ďm pσ 0 s k j ´sk j q 2 1 s k j "σ k m´i ď n ÿ j"1 pσ 0 s k j ´sk j q 2 ps k j ´sk j´1 q ď n ÿ j"1 pσ 0 s k j ´sk j q 4 `n ÿ j"1 ps k j ´sk j´1 q 2 ď m´1 ÿ i"s k n pσ 0 i ´iq 4 `n´1 ÿ j"1 ps k j ´sk j´1 q 3 .
The first term in the right-hand side can be treated as above and we obtain:

rM s n `xM y n ď Cn `C K ÿ k"1 ¨n´1 ÿ j"0 ps k j ´sk j`1 q 3 `m´s k n ´1 ÿ j"0 ps 0 j ´s0 j`1 q 5 '. Therefore P rrM s n `xM y n ą ys ď K ÿ k"1 P » - n´1 ÿ j"0 ps k j ´sk j`1 q 3 `m´s k n ´1 ÿ j"0 ps 0 j ´s0 j`1 q 5 ą pKCq ´1py ´Cnq fi fl ď K ÿ k"1 P « n´1 ÿ j"0 ps k j ´sk j`1 q 3 ą p2KCq ´1py ´Cnq ff `K ÿ k"1 P » - n´1 ÿ j"0 ps k j ´sk j`1 q 3 ď p2KCq ´1py ´Cnq , m´s k n ´1 ÿ j"0 ps 0 j ´s0 j`1 q 5 ą p2KCq ´1py ´Cnq fi fl . ( 32 
)
Let X k j " s k j ´sk j`1 (for k P t0, . . . , Ku). Then the pX k j q j"0,...,n are i.i.d. and X k 0 follows a geometric law of parameter p k :" PrZ 0 " z k min s which has exponential moments. In particular pX k 0 q 3 satisfies Bernstein's condition: there exists c k ą 0 such that, for any k P t0, . . . , Ku and p ě 2,

E " ˇˇ|X k 0 | ´E " |X k 0 | ‰ˇˇp ı ď p!pc k q p´2 2 v k where v k :" V arp|X k 0 | 3 q.
From Bernstein's Theorem (Corollary 2.11 in [START_REF] Boucheron | Concentration inequalities: A nonasymptotic theory of independence[END_REF]) we have

P « n ÿ j"0 ps k j ´sk j`1 q 3 ą E " |X k 0 | 3 ‰ n `xff ď exp " ´x2 2pnv k `xc k q * .
This allows to handle the first terms in the right-hand side of [START_REF] Garavello | The Aw-Rascle traffic model with locally constrained flow[END_REF]. As for the second term, we note that, in the event t ř n´1 j"0 ps k j ´sk j`1 q 3 ď p2KCq ´1py ´Cnqu, we have by Hölder's inequality: We can again use Bernstein's inequality to handle this later term: we have, for some constant c 0 ą 0 and

s k n " s k 0 `n´1 ÿ i"0 ps k i`1 ´sk i q ě m ´n2{3 ˜n´1 ÿ i"0 |X k i | 3
v 0 :" V arp|X 0 0 | 5 q, P « n ÿ j"0 ps 0 j ´s0 j`1 q 5 ą E " |X k 0 | 5 ‰ n `xff ď exp " ´x2 2pnv 0 `xc 0 q * .
So choosing y " C 2 n for a sufficiently large constant C 2 in (32), we obtain that

P rrM s n `xM y n ą C 2 ns ď 2K exp " ´n C 2 * .
Proof of Theorem 3.4. Coming back to (31) and using Lemma 3.8, we find

P r|M n | ě xs ď 2 expt´x 2 {pCnqu `expt´n C u.
Recalling that M n " θ m e ptq ´Erθ m e ptqs for n " Ct, we obtain therefore (for n " n, x " t and P p0, 1s)

P r|θ m e ptq ´E rθ m e ptqs| ě ts ď C exp

" ´ 2 t C * .
Then we use Lemma 3.6 to get the concentration inequality for θ e ptq.

A corrector outside the junction

In this part we build a random sequence pW i q iPZ which plays the role of a corrector for large values of |i|. We first use pW i q iPZ in this section to investigate the behavior of U e,i ptq for large |i|. The main role of the pW i q iPZ will be however in the next section where the property of being a kind of corrector for large values of |i| will be used in a crucial way. We recall that e " pe k q k"0,...,K is such that H k p´1{e k q " min p H k ppq. This implies in particular that v k e " V k pe k {π k q ă vk for all k P t0, . . . , Ku, where the vk are defined in [START_REF] Armstrong | Stochastic homogenization of quasilinear Hamilton-Jacobi equations and geometric motions[END_REF]. We define pW i q iPZ as follows: we set W ω 0 " 0 and define W ω i for i ď ´1 by backward induction by setting: Ṽ 0

Z ω i pW ω i`1
´W ω i q " v 0 e for i ă 0.

For i ě 1, define W ω i by forward induction by setting, if ω,´1 i :" suptj ă i, T ω j " T ω i u,

W ω i " 0 if i ě 1 and ω,´1 i ă 0 and Ṽ k Z ω ω,´1 i pW ω i ´W ω ω,´1 i q " v k e , where T ω i " k, if i ě 1 and ω,´1 i ě 0.
By the definition of e max , we have 0 ă W ω i`1

´W ω i ď e max if i `1 ď 0 while 0 ă W ω i ´W ω i ď e max if i ě 1. We now collect several properties of the sequence pW i q. Lemma 3.9. We have

|W i ´Wj | ď e max |i ´j| if T i " T j or if i ^j ď 0.
Proof. If i ď ´1, then by the definition of W i one has 0 ď W i`1 ´Wi ď e max . So the claim holds if i ď 0 and j ď 0. Let us now assume that j ě 0 and let us set k " T j . If ´1 j ă 0, then W j " 0 and

|W j ´W ´1 j | " |W ´1 j | ď ´emax ´1 j ď e max pj ´ ´1 j q.
If ´1 j ě 0, then by the definition of W j one has |W j ´W ´1 j | ď e max . By induction, this implies that |W j ´Wi | ď e max |j ´i| if T i " T j and i ě 0, j ě 0. The claim for i ě 0 and j ď 0 follows easily. Lemma 3.10. There exists C ą 0 such that, for any P p0, 1s, for any i 0 , i P Z, one has

P " |W τi 0 ï´i0 ´e0 pi ´i0 q| ą |i ´i0 | ‰ ď C expt´ 2 |i ´i0 |{Cu if i ď i 0 ´C ´1 and P " |W τi 0 ï´i0 ´eT τ i 0 ï pi ´i0 q| ą |i ´i0 | ı ď C expt´ 2 |i ´i0 |{Cu if i ě i 0 `C ´1.
Proof. Fix first i 0 " 0. For i ď 0, the proof is a straightforward application of Hoeffding's inequality ([14, Theorem 2.8]) combined with the property that, by the definition of V 0 , E " p Ṽ 0 Zi q ´1pv 0 e q ı " e 0 . Let us now investigate the case i ě 0. For k P t1, . . . , Ku, let s k 0 " infti ě 0, T i " ku and let us define by induction

s k i`1 " infti ě s k i `1, T i " ku. Then W s k i " i ÿ j"0 p Ṽ k Z s k j q ´1pv k e q,
where the p Ṽ k Z s k j q ´1pv k e q are i.i.d. with the same law as p Ṽ k Z0 q ´1pv k e q given T 0 " k, which is bounded by

e max . Recall that E " p Ṽ k Z0 q ´1pv k e q | T 0 " k ı " e k {π k
. So, by Hoeffding's inequality,

P " |W s k i ´ie k {π k | ą x ı ď 2 expt´x 2 {p2ie max qu.
Since we also have by Bernstein's inequality ([14, Corollary 2.11]):

P " |s k i ´pπ k q ´1i| ą i ‰ ď 2 expt´ 2 i{Cu,
we can infer that, for any i ě C ´1 and setting j k " rπ k is,

P " |W i ´eTi i| ą i ‰ ď K ÿ k"1 P " |W i ´ek i| ą i, T i " k, |i ´sk j k | ď i{p2e max q ‰ `P " |i ´sk j k | ą i{p2e max q ‰ ď K ÿ k"1 P " |W s k j k ´ek j k {π k | ą i{2 ´|j k {π k ´i| ı `P " |j k {π k ´sk j k | ą i{p2e max q ´|j k {π k ´i| ‰ ď C expt´ 2 i{Cu.
We now address the case i 0 ‰ 0. We note that i Ñ W τi 0 ω i´i0 can be built exactly as W ω i except that the origin is i 0 and ω is shifted by τ i0 . Thus we have in the same way

P " |W τi 0 ï´i0 ´e0 pi ´i0 q| ą |i ´i0 | ‰ ď C expt´ 2 |i ´i0 |{Cu @i P Z, i ď i 0 ´C ´1 and P " |W τi 0 ï´i0 ´eT τ i 0 ï pi ´i0 q| ą |i ´i0 | ı ď C expt´ 2 |i ´i0 |{Cu @i P Z, i ě i 0 `C ´1.
Fix C large and to be chosen below, ą 0, T ě 1 with T ě C, for C large enough. We define the event

E ,T :" ! sup |i|ď CT, |i0|ďC θ T |W τi 0 ï´i0 ´e0 pi ´i0 q1 iďi0 ´eT τ i 0 ï pi ´i0 q1 iąi0 | ď T, J r CT {p2αqs pr CT sq ě CT {2, J r CT {p8αqs pr´CT {4sq ě ´CT {2 ) , (33) 
where J n pT q and α are defined in Lemma 2.7. By Lemma 2.7, Lemma 3.9 and Lemma 3.10 we have

P " E c ,T ‰ ď CT 2 expt´ 2 T {Cu, (34) 
where C " Cp Cq. We assume that C is so large that

C θ ď C{10 and C ě 16βα{ lnp2q, ( 35 
)
where β is given in the approximate finite speed of propagation (Lemma 2.6) and C θ is defined in Lemma 3.3.

Lemma 3.11. If C is large enough we have, for T ě C ´1 and in E ,T , ˇˇe Ti i `vTi e s ´Ue,i psq ˇˇď 3 T @s P r0, 2T s, @i P r2pmin

k e k q ´1 T, CT {2s X Z (36) 
and ˇˇe 0 i `v0 e s ´Ue,i psq ˇˇď 3 T @s P r0, 2T s, @i P r´CT, ´CT {2qs X Z.

Proof. Let us first note that for i P r2pmin k e k q ´1 T, CT sXZ, since we are in E ,T , W i ě e Ti i´ T ě T ą 0. Then, the maps s Ñ U e,i psq and s Ñ W 1 i psq :" W i ´ T `vTi e s solve (6) with an initial condition which satisfies, since we are in E ,T , 0 ď W 1 i p0q ď U e,i p0q. So, by the approximate finite speed of propagation (Lemma 2.6) we have

W 1
i psq ď U e,i psq `2´n e βs @s ě 0, @n P N, @i P r2pmin k e k q ´1 T, J n pr CT sqs X Z.

Choosing n " r CT {p2αqs, we obtain, if C is large enough (depending on β only) and since we are in E ,T , e Ti i ´2 T `vTi e s ď W 1 i psq ď U e,i psq `1 @s P r0, 2T s, @i P r2pmin k e k q ´1 T, CT {2s X Z.

Replacing W 1 by W 2 i psq :" W i ` T `vk e s gives the opposite inequality. Thus (36) holds. To obtain [START_REF] Imbert | A Hamilton-Jacobi approach to junction problems and application to traffic flows[END_REF], we note that, for i P r´CT, ´CT {2s X Z, the maps s Ñ U e,i psq and s Ñ W 1 i psq :" W i ´ T `v0 e s solve (6) on the time interval r0, CT {p4}V } 8 qs with an initial condition which satisfies, since we are in E ,T , W 1 i p0q ď U e,i p0q. So we have as above W 1 i psq ď U e,i psq `2´n e βs @s P r0, CT {p4}V } 8 qs, @i P t´CT, . . . , J n pr´CT {4squ.

We choose n " r CT {p8αqs and get, for C large enough (depending on β and }V } 8 ), since we are in E ,T , W 1 i psq ď U e,i psq `1 @s P r0, 2T s, @i P r´CT, . . . , ´CT {2qs X Z.

Arguing as above we get (37).

A superadditive quantity

The aim of this section is to investigate the existence of a limit for θ e ptq{t as t Ñ `8. For doing so, we introduce new notation. Fix h ą 0 such that h ă min kPt0,...,Ku

v k e e k " min kPt0,...,Ku V k pe k {π k q e k " ´max kPt0,...,Ku H k p´1{e k q " ´A0 , (38) 
where A 0 is defined in [START_REF] Aw | Derivation of continuum traffic flow models from microscopic follow-the-leader models[END_REF]. Let us define θe psq " E rθ e psqs , Me, hptq " inf sPr0,ts θe psq ´hs.

We note that the quantity Me, h is nonpositive, nonincreasing in t and in h. The main result of this section is the following:

Theorem 3.12. The limit k e, h of Me, hptq{t, as t Ñ `8 exists, is nonpositive and nonincreasing with respect to h. Let us set k e :" inf

0ă hă´A0 k e, h " lim hÑ´A0 k e, h.
If k e ă 0, then the limit θe of θ e ptq{t, as t Ñ `8, exists almost surely, is deterministic and satisfies θe ă ´A0 .

If k e " 0, then the limit lim inf tÑ`8 θ e ptq{t is deterministic and is not smaller than ´A0 .

To prove the result, we are going to show that Me, h is almost superadditive (Lemma 3.16), which implies that Me, hptq{t has a limit k e, h as t Ñ `8 (Lemma 3.17). This, in turn, will show the existence of a limit for θe ptq{t if k e, h ă 0 and thus, by the variance estimate, the a.s. limit of θ e ptq{t (Lemma 3.18).

The proof of the superadditivity of Me, h is intricate and requires the introduction of several additional quantities. Let ξ ω : R ˆZ Ñ R be a measurable map which is smooth, uniformly Lipschitz continuous and increasing in the x variable, with inverse also uniformly Lipschitz continuous, and such that ξ ω e px, iq " " x{e 0 if x ď ´minpR 0 , e 0 q, x{e k if x ě 0, T i " k, and ˇˇξ ω e px, iq ´x e 0 1 xď0 ´x e k 1 txě0, T ω i "ku ˇˇď 1.

Since the inverse of ξ ω e is uniformly Lipschitz continuous, we have in particular, if x ě y ξ ω e px, iq ´ξω e py, iq ě C ´1px ´yq.

For 0 ă s ď T , let

M ω e,T psq " M ω e, h,T psq " inf iPZXr´CT, CT {2s, τ Pr0,ss
ξ ω e pU ω e,i pτ q, iq ´i ´hτ.

We also set, for any i 0 P Z X r´C θ T, 0s, M i0,ω e,T psq " M i0,ω e, h,T psq " inf τ Pr0,ss, iPZXr´CT, CT {2s

ξ ω e pU ω e,i pτ q, iq ´ξω e pW τi 0 ω i´i0 , i ´i0 q ´i0 ´hτ.

Note that M ω e,T p0q " 0 and that M ω e,T is nonpositive. We will prove below that M e,T and Me,T are good approximations of Me, h.

Let us introduce the event

Ẽ ,T " E ,T X # sup
sď2T ˇˇθ e psq ´θ e psq ˇˇď T, sup

iď2e ´1 max T i ď CT {2, J r CT {p16αqs`1 pr CT {2sq ě 0 + , (40) 
where E ,T is defined in [START_REF] Garavello | Traffic flow on networks[END_REF]. Recalling Lemma 2.7, Theorem 3.4 and (34) we have

P " Ẽc ,T ı ď CT 2 expt´ 2 T {Cu. (41) 
Lemma 3.13. In Ẽ ,T and for i 0 P Z X r´C θ T, 0s, we have, for s P r0, T s,

M ω e,T psq ď Me, hpsq ` T,

ˇˇM ω e,T psq ´M i0,ω e,T psq ˇˇď C T, where C depends only on the Lipschitz constant of ξ " ξ ω e px, iq with respect to x. Proof. Let 0 ď τ ď s ď T and choose i " ´θω e pτ q in the definition of M ω e,T psq. By [START_REF] Holden | The continuum limit of Follow-the-Leader models-a short proof[END_REF] we know that i " ´θω e pτ q P Z X r´CT, 0s. Then, as we are in Ẽ ,T , we have

M ω e,T psq ď 0 `θω e pτ q ´hτ ď θe pτ q ´hτ ` T.

Taking the infimum over τ P r0, ss gives the first inequality. For the second one, let us recall that, since we are in E ,T defined in (33), we have for any i P Z X r´CT, CT s and i 0 P Z X r´C θ T, 0s

|W τi 0 ω i´i0 ´e0 pi ´i0 q1 iďi0 ´eT τ i 0 ω i pi ´i0 q1 iąi0 | ď T.
As x Ñ ξ ω e px, iq is uniformly Lipschitz continuous with Lipschitz constant C and T τi 0 ω i " τ ω i´i0 we have ˇˇξ ω e pW τi 0 ω i´i0 , i ´i0 q ´pi ´i0 q ˇď ˇˇξ ω e pW τi 0 ω i´i0 , i ´i0 q ´ξω e pe 0 pi ´i0 q1 iďi0 ´eT

τ i 0 ω i pi ´i0 q1 iąi0 , i ´i0 q ˇˇ`1 ď C T `1.
This implies the second inequality.

We now use in a crucial way the construction of pW i q to obtain the key property of Me,T :

Lemma 3.14. Let , T be such that T ě C and fix C 1 ą 0, ω P Ẽ ,T , s P p0, T s and set i 0 " ´θω e psq. Assume that M i0,ω e,T psq ă 0 and that d ds M i0,ω e,T psq ă 0 for some s P p0, T q with |s ´s| ď C 1 1{2 T . Then there exists i 1 such that ps, i 1 q is a minimum point in the definition of M i0,ω e,T psq and there exists large constants c 1 and C (depending on C 1 but not on ω, , T , s or s) with the property that, if s ě c 1 T , then we have

|U ω i1 psq| ď C 1{2 T , |i 1 ´i0 | ď C 1{2 T and
U ω e,i psq ě e 0 pi ´i0 q1 iďi0 `eT ω i pi ´i0 q1 iąi0 ´C 1{2 T @i P Z X r´CT, CT {2s.

Proof. As d ds M i0,ω e,T psq ă 0 there exists i 1 P Z X r´CT, CT {2s such that ps, i 1 q is a minimum point in the definition of M i0,ω e,T psq. By the envelope theorem, we have

0 ą d ds M i0,ω e,T psq " B x ξ ω e pU ω e,i1 psq, i 1 q V Z ω i 1 pU ω e,i1`1 psq ´U ω e,i1 psq, U ω e, ω i 1 psq ´U ω e,i1 psq, U ω e,i1 psqq ´h. (43) 
On the other hand, by the optimality of i 1 , we have

ξ ω e pU ω e,i psq, iq ´ξω e pU ω e,i1 psq, i 1 q ě ξ ω e pW τi 0 ω i´i0 , i ´i0 q ´ξω e pW τi 0 ω i1´i0 , i 1 ´i0 q @i P Z X r´CT, CT {2s. (

We first claim that i 1 ě ´CT {2. Indeed, since we are in E ,T , inequality [START_REF] Imbert | A Hamilton-Jacobi approach to junction problems and application to traffic flows[END_REF] in Lemma 3.11 implies that, for any i P r´CT, ´CT {2s (which implies that i ď C θ t ď i 0 , U ω e,i psq ď ´R0 and

W τi 0 ω i´i0 ď ´R0 if C is big enough),
ξ ω e pU ω e,i psq, iq ´ξω e pW τi 0 ω i´i0 , i ´i0 q ´i0 ´hτ ě pe 0 q ´1pe 0 i `v0 e sq ´pe 0 q ´1pe 0 pi ´i0 qq ´i0 ´hs ´4 pe 0 q ´1T ě ppe 0 q ´1v 0 e ´hqs ´4 pe 0 q ´1T ą 0 since pe 0 q ´1v 0 e ą h and s ą c 1 T where c 1 is large enough. This shows that i 1 ě ´CT {2 because M i0,ω e,T psq ă 0.

In the same way, we have i 1 ď 2pmin k e k q ´1 T . Indeed, for i P r2pmin k e k q ´1 T, CT {2s, by (36) in Lemma 3.11 and for k " T ω i , we have ξ ω e pU ω e,i psq, iq ´ξω e pW τi 0 ω i´i0 , i ´i0 q ´i0 ´hs ě pe k q ´1pe k i `vk e sq ´pe k q ´1pe k pi ´i0 qq ´i0 ´hs ´4 pe k q ´1T ą ppe k q ´1v k e ´hqs ´4 pe k q ´1T ą 0.

Since M i0,ω e,T psq ă 0, this shows that i 1 ď 2pmin k e k q ´1 T . Recalling the definition of Ẽ ,T , we also have therefore that i1 ď CT {2.

We now prove that |U ω i1 psq| ď C 1{2 T . By contradiction, assume first that U ω e,i1 psq ě C 1{2 T , where C is to be chosen below. Then, as |s ´s| ď C 1 1{2 T we obtain U ω e,i1 psq ą 0 for C large enough. Since i 0 " ´θω e psq, we get that i 1 ě i 0 `1. Using successively that U ω e,i1 psq ą 0 (for the first equality), ( 44) and the fact that i1 ď CT {2 and that ω i1 ´i0 " τi 0 ω i1´i0 (for the inequality), and the definition of the pW i q (for the last equality), we have, for k " T ω i1 ,

B x ξ ω e pU ω e,i1 psq, i 1 q V Z ω i 1
pU ω e,i1`1 psq ´U ω e,i1 psq, U ω e, ω i 1

psq ´U ω e,i1 psq, U ω e,i1 psqq

" pe k q ´1V k Z τ i 0 ω i 1 ´i0 pU ω e, ω i 1 psq ´U ω e,i1 psqq ě pe k q ´1V k Z τ i 0 ω i 1 ´i0 pW τi 0 ω τ i 0 ω i 1 ´i0
´W τi 0 ω i1´i0 q " pe k q ´1v k e ą h, which contradicts [START_REF] Lions | Well-posedness for multi-dimensional junction problems with Kirchoff-type conditions[END_REF]. Assume now that U ω e,i1 psq ď p´C 1 1{2 T q ^p´R 0 q. Then as before, we have i 1 `1 ď i 0 if C 1 is large enough and we get

B x ξ ω e pU ω e,i1 psq, i 1 q V Z ω i 1
pU ω e,i1`1 psq ´U ω e,i1 psq, U ω e, ω i 1

psq ´U ω e,i1 psq, U ω e,i1 psqq " pe 0 q ´1 V 0

Z ω i 1
pU ω e,i1`1 psq ´U ω e,i1 psqq ě pe 0 q ´1V 0

Z τ i 0 ω i 1 ´i0 pW τi 0 ω i1`1´i0
´W τi 0 ω i1´i0 q " pe 0 q ´1v 0 e ą h.

This gives again a contradiction with [START_REF] Lions | Well-posedness for multi-dimensional junction problems with Kirchoff-type conditions[END_REF] and show that |U ω i1 psq| ď C 1{2 T for C large enough. We now claim that this inequality and the fact that i 0 " ´θω e psq imply that |i 0 ´i1 | ď C 1{2 T : indeed, let s be such that U ω i1 psq " 0 (if it exists, otherwise, we set s " 0). Then, by Lemma 3. If i 1 ě 0, we get in the same way |i 0 | ď C 1{2 T and so |i 0 ´i1 | ď C 1{2 T . By the choice of C in [START_REF] Holden | The continuum limit of Follow-the-Leader models-a short proof[END_REF], we have that i 0 P r´CT {10, 0s. Thus, for small enough, we obtain also i 1 P r´CT, CT {2s. Coming back to [START_REF] Richards | Shock waves on the highway[END_REF] we obtain therefore, using the facts that ξ is uniformly Lipschitz continuous, |U ω i1 psq| ď C 1{2 T |i 0 ´i1 | ď C 1{2 T and the fact that we are in E ,T , ξ ω e pU ω e,i psq, iq ě ξ ω e pW τi 0 ω i´i0 , i ´i0 q ´C 1{2 T @i P Z X r´CT, CT {2s.

Since the inverse of ξ is increasing and uniformly Lipschitz continuous, we get

U ω e,i psq ě W τi 0 ω i´i0 ´C 1{2 T @i P Z X r´CT, CT {2s.

Recalling that ω P E ,T , we find [START_REF] Lions | Viscosity solutions for junctions: well posedness and stability[END_REF].

Next we show that we can bound from below M ω e,T ptq by Me, hptq:

Lemma 3.15. Let , T be such that T ě C. There exists a constant C such that, in Ẽ ,T and for t P r0, T s, we have M ω e,T ptq ě Me, hptq ´C 1{2 T.

Proof. Let s " sup ! s P r0, ts, M ω e,T psq ě M ω e,T ptq `4 1{2 p2T ´sq

) .

If there is no such a s P r0, ts, then M ω e,T ptq ě ´8 1{2 T since M ω e,T p0q " 0. So we have M ω e,T ptq ě ´C 1{2 T while Me, hptq ď 0, which proves the result in this case. In the same way, if s ď c 1 T (for c 1 to be chosen below), then, since s Ñ M ω e,T psq is Lipschitz continuous and M ω e,T p0q " 0, M ω e,T psq ě ´C s ě ´Cc 1 T and by the definition of s we have M ω e,T psq " M ω e,T ptq `4 1{2 p2T ´sq. So M ω e,T ptq ě ´C 1{2 T while Me, hptq ď 0, which proves the result also in this case. Assume now that s exists and satisfies s ą c 1 T . We also suppose in a first step that s `C1 1{2 T ď t with C 1 " C{2 where C is given by Lemma 3.13. Note that M ω e,T psq " M ω e,T ptq `4 1{2 p2T ´sq. Let i 0 " ´θω e psq. Then, recalling Lemma 3.13 and the definition of s, we have M i0,ω e,T psq ě M ω e,T psq ´C T " M ω e,T ptq `4 1{2 p2T ´sq ´C T ą M ω e,T ps `C1 1{2 T q ´4 1{2 p2T ´s ´C1 1{2 T q `4 1{2 p2T ´sq ´C T " M ω e,T ps ` 1{2 T q `C T ą M i0,ω e,T ps ` 1{2 T q.

So there exists s P rs, s ` 1{2 T s such that pd{dsq M i0,ω e,T psq ă 0. Note that |s ´s| ď C 1{2 T . Let ps, i 1 q (where i 1 P Z X r´CT, CT {2s) be a minimum point in the definition of M i0,ω e,T psq. From Lemma 3.14 we know that |U ω e,i1 psq| ď C 1{2 T and |i 1 ´i0 | ď C 1{2 T for a large constant C. Then we have (since we are in Ẽ ,T and by Lemma 3.13),

M ω e,T ptq ě M ω e,T psq ´C 1{2 T ě M i0,ω e,T psq ´C 1{2 T " ξ ω e pU ω e,i1 psq, i 1 q ´ξω e pW τi 0 ω i1´i0 , i 1 ´i0 q ´i0 ´hs ´C 1{2 T ě ´C 1{2 T ´i0 ´hs ě ´C 1{2 T `θω e psq ´hs ě ´C 1{2 T `θ e psq ´hs ě ´C 1{2 T `M e, hptq.

This proves the result.

The case where s satisfies s ą c 1 T and s `C1 1{2 T ą t can be treated in a similar way, by noticing in a first step that M i0,ω e,T psq ą M i0,ω e,T ptq and concluding as in the previous case that there exists a minimizer i 1 for M i0,ω e,T psq (for some s P rs, ts and thus such that |s ´s| ď C 1 t 1{2 T since 0 ď t ´s ď C 1 1{2 T ) such that |U ω i1 psq| ď C 1{2 T and |i 0 ´i1 | ď C 1{2 T . We can then complete the proof as above.

In the next step we show that Me, hptq is almost superadditive. Lemma 3.16. There is a constant C such that, for any t ě C and any h P r0, ts, Me, hpt `hq ě Me, hphq `M e, hptq ´Cp1 `plnptqq 1{8 t 7{8 q.

(45)

Proof. Fix 0 ď h ď t ď T :" 2t `1 and ą 0 small enough so that t ě c 1 T , where c 1 is as in Lemma 3.14. We also assume that t is large enough so that T ě C. Our aim is to show that a similar inequality holds if t ă t `h.

Let us first consider the case where t ă t `h and t ´γT ą t, where γ " C 1 1{4 for some large constant C 1 to be chosen below. Then Me, hp tq " Me, hptq ´ 1{4 t. In Ẽ ,T , we have by Lemma 3.13 (for the first inequality) and Lemma 3.15 (for the second one)

M ω e,T p tq ď Me, hp tq ` T " Me, hptq

´ 1{4 t ` T ď M ω e,T ptq `C 1{2 T ´ 1{4 t. ( 46 
)
As t ´γT P pt, t `hq, we have, by the definition of t, Me, hp t ´γT q ě Me, hptq ´ 1{4 p t ´γT q, so that

M ω e p t ´γT q ě Me, hp t ´γT q ´C 1{2 T ě Me, hptq ´ 1{4 p t ´γT q ´C 1{2 T ě M ω e,T ptq ´ 1{4 t ` 1{4 γT ´C 1{2 T ě M ω e,T p tq ´C 1{2 T ` 1{4 γT (by ( 46)) ě M ω e,T p tq `C´1 1{4 T, if we choose γ " C 1 1{4 for C 1 large enough and independent of t and T . Let us set i 0 " ´θω e p tq. For small enough, the inequality above implies (by Lemma 3.13) that M i0,ω e,T p t ´γtq ą M i0,ω e,T p tq.

So there exists t P r t´γt, ts such that M i0,ω e,T p tq ă 0 and pd{dtq M i0,ω e,T p tq ă 0. Note that | t´t| ď γt " C 1 1{4 t and that t ě t ě c 1 T . According to Lemma 3.14, there exists i 1 such that p t, i 1 q is a minimizer of M i0,ω e,T p tq, and i 1 satisfies |U ω e,i1 p tq| ď C 1{4 T , |i 1 ´i0 | ď C 1{4 T and

U ω e,i p tq ě e 0 pi ´i0 q1 iďi0 `eT ω i pi ´i0 q1 iąi0 ´C 1{4 T @i P Z X r´CT, CT {2s.

Let us set j 0 :" ´θ e p tq `rC 2 1{4 T s, where C 2 is a large constant. Using the definition of ξ e (for the first line and the last line), [START_REF] Lin | Stochastic homogenization for reaction-diffusion equations[END_REF] (for the second line) and the fact that we are in Ẽ ,T (for the third line), we have, if C 2 is large enough and for any i P Z X r´CT, CT {2s,

U ω e,i p tq ěξ ω e pi ´i0 , iq ´C 1{4 T ´1

ěξ ω e pi ´j0 , iq `C´1 pj 0 ´i0 q ´C 1{4 T ěξ ω e pi ´j0 , iq `C´1 pθ ω e p tq ´θ e p tq `C2 1{4 T ´1q ´C 1{4 T ěe 0 pi ´j0 q1 iďj0 `eT ω i pi ´j0 q1 iąj0 .

As the solution starting from e 0 pi ´j0 q1 iďj0 `eT ω i pi ´j0 q1 iąj0 is U τj 0 ω e,i´j0 , the approximate finite speed of propagation then implies for all n ě 1 U ω e,i p t `sq ě U τj 0 ω e,i´j0 psq ´2´n e βs @s ě 0, @i P Z X r´CT, J n pr CT {2sqs.

Choosing n " r CT {p16αqs `1 (with α as in Lemma 2.7), we obtain by the choice of C in [START_REF] Holden | The continuum limit of Follow-the-Leader models-a short proof[END_REF] (which ensures that ´n lnp2q `βT ď 0) since we are in Ẽ ,T (where J n pr CT {2sq ě 0):

U ω e,i p t `sq ě U τj 0 ω e,i´j0 psq ´1 ě U τj 0 ω e,i´j0 ps ´δ´1 q @s P rδ ´1, T s, @i P Z X r´CT, 0s, where δ is given by Lemma 3.2. Hence, in Ẽ ,T , and for s P rδ ´1, hs:

θ ω e p t `sq ě θ τj 0 ω e ps ´δ´1 q ´j0 .

As | t ´t| ď γt " C 1 1{4 t and by the definition of j 0 we get, in view of Lemma 3.3:

θ ω e p t `sq ě θ τj 0 ω e psq `θ e p tq ´C 1{4 T @s P r0, hs.

Recalling the bounds on θ e and on PrE c ,T s in [START_REF] Lions | Homogenization of "viscous" Hamilton-Jacobi equations in stationary ergodic media[END_REF] we obtain by taking expectation and for s P r0, hs: 

θe p t `
In order to handle the case where t ă t `h and t ´γT ď t, we note that, by the choice of T we have t ě t ě T {3. Then, for ą 0 small enough, we have in Ẽ ,T :

M ω e,T p tq ď Me, hp tq `C T " Me, hptq ´ 1{4 t `C T ď M ω e,T ptq ´ 1{4 T {3 `C 1{2 T ă M ω e,T ptq.

Thus we can find t P rt, ts such that M i0,ω e,T p tq ă 0 and pd{dtq M i0,ω e,T p tq ă 0. Note also that | t ´t| ď C 1 1{4 T because t ´γT ď t. Then we can complete the proof as in the previous case.

We now know that (47) always holds. If we choose " p3C lnpT q{T q 1{2 (where C is the constant in [START_REF] Souganidis | Stochastic homogenization of Hamilton-Jacobi equations and some applications[END_REF] and where this choice is possible since then t ě C ´1 for small), then, as T " 2t `1, (47) becomes Me, hpt `hq ě Me, hphq `M e, hptq ´Cp1 `plnptqq 1{8 t 7{8 q.

This holds for any 0 ď h ď t with t ě C for some large constant C.

The main consequence of the previous lemma is the following: Lemma 3.17. The limit k e, h :" lim tÑ`8 Me, hptq{t exists and is nonpositive as t Ñ `8. If k e, h ă 0, then Erθ e ptqs{t has a limit as t Ñ `8 given by pk e, h `hq. If k e, h " 0, then lim inf tÑ`8 

So s ď tpk e, h

´ q{pk e, h ` q ď p1 `C qt. In particular, t is finite and satisfies t ď tp1 `C q. Note that, by the definitions of t and of Me, As is arbitrary, this implies the a.s. convergence of pθ e pnq{nq to θe . The convergence of pθ e ptq{tq to θe as the continuous variable t tends to infinity comes directly from the regularity in time of θ e (Lemma 3.3). The proof in the case k e, h " 0 goes exactly along the same lines.

Proof of Theorem 3.12. It is a straightforward application of the previous lemmas.

Definition of the flux limiter and homogenization

We recall that e " pe k q k"0,...,K is such that H k p´1{e k q " min p H k ppq. The aim of this part is to define the flux limiter Ā, building on the construction of θe in the previous section. For this we introduce new notation. Recall that A 0 " max kPt0,...,Ku min pPR H k ppq. Given A P rA 0 , 0q and k P t0, . . . , Ku, we denote by p k,À (respectively p k,Á ) the largest (resp. the smallest) solution to H k ppq " A and set φ A px, kq " " p 0,Á x if x ď 0, k P t0, . . . , Ku p k,À x if x ě 0, k P t1, . . . , Ku

and ψ A py, kq " φ ´1 A p´y, kq " " p´p 0,Á q ´1y if y ď 0, k P t0, . . . , Ku p´p k,À q ´1y if y ě 0, k P t1, . . . , Ku.

We note for later use that if

A 1 ă A 2 , then φ A1 ă φ A2 and ψ A1 ă ψ A2 in Rzt0u.
We define the flux limiter Ā as Ā :"

" ´θ e if k e ă 0 A 0 otherwise with k e and θe defined by Theorem 3.12. Note that if k e ă 0, then, by Theorem 3.12, Ā " ´θ e ą max kPt0,...,Ku H k p´1{e k q " A 0 .

The limit of N e and U e

We recall that U e is the solution of ( 6) with initial condition U ω e,i p0q " e 0 i1 iď0 `eT ω i i1 iě0 . Let us define, for k P t1, . . . , Ku and px, tq P R ˆr0, `8q,

N ω e px, k, tq " ÿ iPZ, iď0, Ti"k δ U ω e,i ptq ppx, `8qq ´ÿ iPZ, ią0, Ti"k δ U ω e,i ptq pp´8, xsq (50) 
and, for px, tq P p´8, 0s ˆr0, `8q,

N ω e px, 0, tq "

K ÿ k"1 N k e px, tq " ÿ iPZ, iď0
δ U ω e,i ptq ppx, `8qq.

We set n ,ω e px, k, tq " N ω e px{ , k, t{ q and ν ω, e px, k, tq " " n ω, e px, 0, tq if k " 0 and x ď 0, pπ k q ´1n ω, e px, k, tq if k P t1, . . . , Ku and x P R. Lemma 4.1. There is a set Ω 0 of full probability such that, for all ω P Ω 0 , lim Ñ0 ν ω, e px, k, 0q " " ´x{e 0 if px, kq P p´8, 0s ˆt0, . . . , Ku, ´x{e k if px, kq P r0, `8q ˆt1, . . . , Ku, and the limit is locally uniform in x.

Proof. The result is obvious if k " 0 since U e,i p0q " e 0 i. We have, for k P t1, . . . , Ku and x ď 0,

N ω e px, k, 0q " ÿ iPZ, iď0, Ti"k δ e 0 i ppx, `8qq ´ÿ iPZ, ią0, Ti"k δ e k i pp´8, xsq

" 7ti P Z, x{e 0 ă i ď 0, T i " ku
(where 7E is the cardinal of a set E). So, by the law of large number, we have, a.s. and locally uniformly in p´8, 0s, n ,ω e px, k, 0q " 7ti P Z, x{p e 0 q ă i ď 0, T i " ku Ñ ´πk x{e 0 . This proves the locally uniform convergence for ν ,ω e px, k, 0q if k P t1, . . . , Ku on p´8, 0s. The proof for k P t1, . . . , Ku and x ą 0 is similar: since N ω e px, k, 0q " ÿ iPZ, iď0, Ti"k δ e 0 i ppx, `8qq ´ÿ iPZ, ią0, Ti"k δ e k i pp´8, xsq " ´7ti P Z, 0 ă i ă x{e k , T i " ku, we have as above that n ,ω e px, k, 0q " ´ 7ti P Z, 0 ă i ă x{p e k q, T i " ku Ñ ´πk x{e k , so that ν ,ω e px, k, 0q converges a.s. and locally uniformly to ´x{e k .

We now want to study the convergence of ν e as Ñ 0. Let us first give a regularity result for ν e . This result will be proved later in a more general setting (see Lemma 4.8).

Lemma 4.2. The function ν e satisfies, for any k P t0, . . . , Ku, |ν e px, k, tq ´ν e py, k, sq| ď Cp|x ´y| `|t ´s| ` q, for a constant C depending on ∆ min , pπ k q and }V } 8 only. Lemma 4.3. Let e be such that H k p´1{e k q " min p H k ppq and assume that k e ă 0, where k e is defined in Theorem 3.12. There exists a set Ω 0 of full probability such that, for all ω P Ω 0 , ν ω, e converges locally uniformly to ν e which satisfies ν e px, 0, tq " ν e px, 1, tq " ¨¨¨" ν e px, K, tq in p´8, 0s ˆr0, `8q

and is given by ν e px, k, tq " min φ Āpx, kq ´Āt , ´x{e k ´tH k p´1{e k q ( @px, k, tq P R ˆr0, `8q.

Proof. Let us denote by Ω 1 the intersection of the set of full probability measure given in Lemma 4.1 and in Lemma A.3. Let Ω 0 be the set of ω P Ω 1 such that θ ω e ptq{t converges to θe as t Ñ `8. By Lemma 3.18 we know that PrΩ 0 s " 1. Fix now ω P Ω 0 . By Lemma 4.2, we can consider a locally uniform limit w, up to a subsequence, of n ω, e p¨, 0, ¨q in p´8, 0s ˆr0, `8q. Then, by standard homogenization [START_REF] Cardaliaguet | From heterogeneous microscopic traffic flow models to macroscopic models[END_REF] (see Subsection A.3 in Appendix), w solves " B t w `H0 pB x wq " 0 in p´8, 0q ˆp0, `8q wpx, 0q " ´x{e 0 in p´8, 0s.

Moreover, by the definition of θ e , we have n ω, p0, 0, tq " θ ω e pt{ q. Therefore wp0, tq " θe t @t ě 0.

The solution to (52)-( 53) is unique and given by wpx, tq :" mint´x{e 0 ´H0 p´1{e 0 qt , p 0,Á x ´Ātu in p´8, 0q ˆp0, `8q,

since Ā ą H 0 p´1{e 0 q and H 0 is convex (see Lemma A.2). Therefore the whole sequence n ω, e p¨, 0, ¨q converges to w locally uniformly on p´8, 0s ˆr0, `8q as Ñ 0 for any ω P Ω 0 . We set n e px, 0, tq " ν e px, 0, tq :" wpx, tq.

Let us now fix ω P Ω 0 , y ă 0 and set i " ry{pe 0 qs. Our next step is to show that, if t ă y{pe 0 Āq, then upy, tq :" lim Ñ0

U ω e,i pt{ q " minty ´H0 p´1{e 0 qe 0 t , p´p 0,Á q ´1py{e 0 ´Ātqu.

Indeed, as the map t Ñ U ω e,i pt{ q is uniformly Lipschitz continuous with U ω e,i p0q Ñ y as Ñ 0, we can find a subsequence which converges to some map t Ñ upy, tq. Assume that U ω e,i pt{ q ď ´R0 for any small enough. Then for any i P Z with i ď 0, one has thanks to Lemma 2.1:

U ω e,i pt{ q ď U ω e,i pt{ q if and only if i ě i .

Therefore

N ω e pU ω e,i pt{ q, 0, t{ q " ´i . Multiplying by and letting Ñ 0, we find wpupy, tq, tq " ´y{e 0 and thus, by (54), upy, tq " w ´1p´y{e 0 , tq " minty ´H0 p´1{e 0 qe 0 t , p´p 0,Á q ´1py{e 0 ´Ātqu. This holds if U ω e,i pt{ q ď ´R0 for any small enough, which is ensured by the condition t ă y{pe 0 Āq and small enough thanks to the equality above. Our proof of (55) is then complete since the limit is independent of the subsequence.

We now turn to the proof of the convergence of n ω, e p¨, k, ¨q in p´8, 0s ˆr0, `8q. Fix ω P Ω 0 , x ă 0 and t ě 0. The map y Þ Ñ minty ´H0 p´1{e 0 qe 0 t , p´p 0,Á q ´1py{e 0 ´Ātq being increasing in p´8, t{pe 0 Āqq and being equal to 0 for y " t{pe 0 Āq, there exists y with t ă y{pe 0 Āq and such that upy, tq " x.

We set i " ry{pe 0 qs. Assume also that n ω, e p¨, k, ¨q converges up to a subsequence to n e p¨, k, ¨q. By the same argument as above, we have N ω e pU ω e,i pt{ q, k, t{ q " 7ti P ti , . . . , 0u, T i " ku.

We multiply by and let Ñ 0. Recalling Lemma 4.1 and the previous step, we get n e pupy, tq, k, tq " ´πk y{e 0 " π k wpupy, tq, tq.

By definition of y, this shows that n e px, k, tq " π k wpx, tq " π k n e px, 0, tq as well as the equality ν e px, k, tq " ν e px, 0, tq for any x ă 0 and t ě 0. By continuity of ν e p¨, k, ¨q (this is a direct consequence of Lemma 4.2), we also get the result for x " 0.

Next we turn to the limits for x ě 0. Let ω P Ω 0 and ν e p¨, k, ¨q be a locally uniform limit, up to a subsequence, of ν ω, p¨, k, ¨q for k P t1, . . . , Ku, which exists by Lemma 4.2. By the previous arguments, we know that for x ě 0 ν e px, k, 0q " ´x{e k , ν e p0, k, tq " ´Āt.

On the other hand, on each branch R k the dynamical system corresponds (up to relabelling) to the standard ODE d dt U j " V k Zj pU j`1 ptq ´Uj ptqq (where the sequence pZ j q jPZ, Tj "k is defined for indices j such that T j " k). By homogenization (See Subsection A.3 in Appendix) n k e solves B t n k e `H k pB x n k e q " 0 in p0, `8q ˆp0, `8q,

where Hk ppq " p V k p´1{pq for any p ă 0 and Hk ppq " 0 if p ě 0. Hence ν k e solves B t ν k e `Hk pB x ν k e q " 0 in p0, `8q ˆp0, `8q, where H k is given by H k ppq " pπ k q ´1 Hk pπ k pq " p V k p´1{pπ k pqq. Complemented with (56) this system has a unique solution given by ν e px, k, tq " min ! ´x{e k ´Hk p´1{e k qt , p k,À x ´Āt

) .

As before this shows that the whole sequence ν ω, p¨, k, ¨q converges to ν k e given above.

In the case k e " 0, we have the following result.

Lemma 4.4. Assume that e " pe k q is such that H k p´1{e k q " min p H k ppq for any k P t0, . . . , Ku and assume that k e " 0. Then there exists a set Ω 0 of full probability such that, for all ω P Ω 0 , ν ω, e converges to ν e which satisfies ν e px, 0, tq " ν e px, 1, tq " ¨¨¨" ν e px, K, tq in p´8, 0s ˆr0, `8q

and is given by ν e px, k, tq " min φ A0 px, kq ´A0 t , ´x{e k ´tH k p´1{e k q ( @px, k, tq P R ˆr0, `8q,

where A 0 is given by (8).

Proof. Note that with our choice of e we have A 0 " max kPt0,...,Ku H k p´1{e k q. Let θe ptq " Erθ e ptqs and θ e ptq " θe pt{ q. Then, using Lemma 3.3, θ e converges, up to a subsequence, to a Lipschitz continuous map t Ñ θe ptq. From now on we argue along this subsequence and note that it does not depend on ω. According to Lemma 3.18, we have θe ptq ě ´A0 t. We also note that, by Theorem 3.4, θ e pt{ q converges a.s. locally uniformly to θe ptq. Let Ω 1 0 be the set of ω P Ω 0 such that this limit holds (note that this set depends on the subsequence, we will come back to this point at the very end of the proof). Without loss of generality, we also assume that, for any ω P Ω 1 0 , lim sÑ´8 p´sq ´17ti P Z X ps, 0s, T ω i " ku " π k .

Recall that

N ω e p0, k, tq " 7ti P Z, i ď 0, T ω i " k, U ω e,i ptq ą 0u " 7ti P Z X p´θ ω e ptq, 0s, T ω i " ku.

Therefore n ω, p0, k, tq " 7ti P Z X p´θ ω e pt{ q, 0s, T ω i " ku.

where Ā " ´θ e if k e ă 0 and Ā " A 0 otherwise. This shows that yptq " " min ψ Āpy ´Āt, 0q , ye 0 ´e0 tH 0 p´1{e 0 q ( if y ď Āt min ψ Āpy ´Āt, kq , ye k ´ek tH k p´1{e k q ( if y ě Āt.

Since this limit is independent of the choice of the subsequence, we have proved the following (the case y ě 0 being treated in the same way):

Corollary 4.5. Let e be such that H k p´1{e k q " min p H k ppq. For k P t0, . . . , Ku, let u e py, k, tq :" U e,ry{ s k pt{ q.

Then u e converges a.s. and locally uniformly to u e py, k, tq :" " min ψ Āpy ´Āt, 0q , ye 0 ´e0 tH 0 p´1{e 0 q ( if y ď Āt min ψ Āpy ´Āt, kq , ye k ´ek tH k p´1{e k q ( if y ě Āt.

(61)

Comparison principle

An important point in the proof of the homogenization is to explain how the comparison for the solutions U pass to the limit. This is the aim of the following lemma:

Lemma 4.6. We fix a solution U of d dt U i ptq " V Zi pU i`1 ptq ´Ui ptq, U i ptq ´Ui ptq, U i ptqq i P Z and set u px, k, tq " U rx{ s k pt{ q. Let e be such that H k p´1{e k q " min p H k ppq. There exists a constant C ą 1 and a set Ω 0 of full probability independent of U such that, if ω P Ω 0 , if u ω ˚is any half relaxed lower limit of u ω, as Ñ 0 `(possibly up to a subsequence) and if there exists γ ą 0, a time t 0 ě 0 and a, b P R with b ą ´t0 , such that u ω ˚px, k, t 0 q ě u e px `a, k, t 0 `bq @px, kq P r´γ, γs ˆt1, . . . , Ku

and such that the minimum of px, kq Ñ u ω ˚px, k, t 0 q ´ue px `a, k, t 0 `bq is not reached on t´γ, γu t1, . . . , Ku, then u ω ˚px, k, t 0 `sq ě u e px `a, k, t 0 `b `sq @px, k, sq P r´γ{2, γ{2s ˆt1, . . . , Ku ˆr0, C ´1γs.

In the same way, if u ω,˚i s any half relaxed upper limit of some U ω i (possibly up to a subsequence) and if there exists γ ą 0, t 0 ě 0 and a, b P R with b ą ´t0 , such that u ω,˚p x, k, t 0 q ď u e px `a, k, t 0 `bq @x P r´γ, γs ˆt1, . . . , Ku and such that the maximum of px, kq Ñ u ω ˚px, k, t 0 q ´ue px `a, k, t 0 `bq is not reached on t´γ, γu t1, . . . , Ku, then u ω,˚p x, k, t 0 `sq ď u e px `a, k, t 0 `b `sq @px, k, tq P r´γ{2, γ{2s ˆt1, . . . , Ku ˆr0, C ´1γs.

Proof. We only prove the first statement, the proof for the second one being symmetric. Let Ω 0 be the set of ω such that u ω, e converges to u e locally uniformly, such that p J rγ{p3α qs p ´1γqq converges to γ ´αγ{p3αq " 2γ{3 as Ñ 0 (see Lemma 2.7) and for which the conclusions of Lemma 4.7 (below) hold.

Since u ω, e converges locally uniformly to u e , for any η P p0, 1q small and M ě 1 large (to be chosen below), there exists 0 ą 0 such that the set E η :" 

# ω P Ω, sup
We will use below that n Ñ a as Ñ 0 and therefore that m ,η converges to ´a as Ñ 0 and then η Ñ 0. By (62), the fact that u ω ˚is the half relaxed lower limit of u ω, and by the definition of m ,η , there exists px ,η , k ,η q P p´γ, γq ˆt1, . . . , Ku, minimum point of u ,ω p¨, ¨, t 0 q ´u ,τm ,η ω e p¨`a, ¨, t 0 `bq such that u ω, px ,η , k ,η , t 0 q ´uτm ,η ω e px ,η `a, k ,η , t 0 `bq Ñ min as and η tend to 0, where min :" min px,kqPr´δ,δsˆt0,...,Ku pu ω ˚p¨, ¨, t 0 q ´ue p¨`a, ¨, t 0 `bqq ě 0.

By minimality of px ,η , k ,η q, we have u τm ,η ω, e px `a, k, t 0 `bq ´uτm ,η ω, e px ,η `a, k ,η , bq ď u ω, px, k, t 0 q ´uω, px ,η , k ,η , t 0 q for px, kq P r´γ, γs ˆt1, . . . , Ku.

As ´ m ,η ď n ď a and u e is nondecreasing in the first variable, we obtain also u τm ,η ω, e

px ´ m ,η , k, t 0 `bq ´uτm ,η ω, e px ,η `a, k ,η , bq ď u ω, px, k, t 0 q ´uω, px ,η , k ,η , t 0 q for px, kq P r´γ, γs ˆt1, . . . , Ku.

For i P r´ ´1γ, ´1γs X Z, we have, if we set k :" T ω i " T τm ,η ω i´m ,η and x " i, that i " rx{ s ω k and i ´m ,η " rx{ ´m ,η s τm k ω k with x P r´γ, γs. Therefore we can rewrite the inequality above in terms of U e and U to get U τm ,η ω e,i´m ,η p ´1pt 0 `bqq ´r ,η ď U ω i p ´1t 0 q for i P r´ ´1γ, ´1γs X Z.

where r ,η :" ´1pu τm ,η ω, e px ,η `a, k ,η , bq ´uω, px ,η , k ,η , t 0 qq. Let us note for later use that, as Ñ 0, r ,η converges to ´min ď 0. By Lemma 3.2 and using the fact that t 0 `b ą 0 we obtain, from small enough, U τm ,η ω e,i´m ,η p ´1pt 0 `bq ´Cpr ,η q `q ď U ω i p ´1t 0 q for i P r´ ´1γ, ´1γs X Z.

As pU τm ,η ω e,i´m ,η p ´1pt 0 `bq ´Cpr ,η q ``¨qq and U ω i p ´1t 0 `¨qq solve equation ( 6) and can be compared at time 0 for i P r´ ´1γ, ´1γ ´1s X Z, we obtain by approximate finite speed of propagation (Lemma 2.6) that for any n P N, U τm ,η ω e,i´m ,η p ´1pt 0 `bq ´Cpr ,η q ``sq ď U ω i p ´1t 0 `sq `C2 ´ne βs for i P r´ ´1γ, J n p ´1γqs X Z, s ě 0.

Coming back to the scaled problem and choosing n " rγ{p3α qs (where α is defined in Lemma 2.7) and for s ď γ lnp2q{p3αβ q, so that ´lnp2qn `βs ď 0, this implies that u τm ,η ω, e

px ´ m ,η , k, b `t0 ´C pr ,η q ``tq ď u ω, px, k, t 0 `tq `C for px, k, tq P r´γ, J rγ{p3α qs p ´1γqs ˆt1, . . . , Ku ˆr0, γ{p3αβqs.

By the choice of ω, p J rγ{p3α qs p ´1γqq converges to 2γ{3 as Ñ 0. So, for small enough, we find u τm ,η ω, e

px ´ m ,η , k, b `t0 ´C pr ,η q ``tq ď u ω, px, k, t 0 `tq `C for px, k, tq P r´γ, γ{2s ˆt1, . . . , Ku ˆr0, C ´1γs.

Lemma 4.8. Let pU i,0 q and U be as above. Then, for any t ě 0, lim iÑ˘8 U i ptq " ˘8.

(66)

Hence ν is well-defined and satisfies, for any k P t0, . . . , Ku, |ν px, k, tq ´ν py, k, sq| ď Cp|x ´y| `|t ´s| ` q, for a constant C depending on ∆ min , π k and }V } 8 only.

Proof. The compatibility condition [START_REF] Barles | An Introduction to the Theory of Viscosity Solutions for First-Order Hamilton-Jacobi Equations and Applications[END_REF] implies that (66) holds for t " 0. Then it holds for any t since V is bounded. Fix k P t1, . . . , Ku and let x, y P R with x ă y. We have ˇˇδ U ω i pt{ q ppy{ , `8qq ´δU ω i pt{ q ppx{ , `8qq ˇˇ" " 1 if x{ ă U ω i pt{ q ď y{ , 0 otherwise. By Lemma 2.1 there are at most rpy ´xq{p ∆ min qs `1 vehicles of the same type in px{ , y{ s. Arguing in the same way for the difference ˇˇδ U ω i ptq pp´8, ysq ´δU ω i ptq pp´8, xsq ˇˇ, we infer that |ν px, k, tq ´ν py, k, tq| ď 2pπ k q ´1p|x ´y|{∆ min ` q.

Fix now 0 ď s ă t. We have ˇˇδ U ω i pt{ q ppx{ , `8qq ´δU ω i ps{ q ppx{ , `8qq ˇˇ" " 1 if U ω i ps{ q ď x{ ă U ω i pt{ q, 0 otherwise. Let i 0 P Z be the smallest index such that U ω i0 ps{ q ď x{ ă U ω i0 pt{ q and T i0 " k and i 1 be the largest one. Then U ω i1 ps{ q ď x{ ă U ω i0 pt{ q ď U ω i0 ps{ q `}V } 8 pt ´sq{ . Still by Lemma 2.1 we must have i 1 ´i0 ď r}V } 8 pt ´sq{p ∆ min qs `1, so that |ν px, k, tq ´ν px, k, sq| ď 2pπ k q ´1p}V } 8 pt ´sq{p∆ min q ` q.

The Lipschitz continuity of ν p¨, 0, ¨q " ř K k"1 π k ν p¨, k, ¨q is then immediate. We assume that ν ω, p¨, ¨, 0q Ñ ν 0 locally uniformly, where ν 0 is deterministic. Note that ν 0 is Lipschitz continuous and satisfies ν 0 px, 0q " ν 0 px, 1q " ¨¨¨" ν 0 px, kq for x ď 0. We fix ω P Ω 0 and let ν ω be any uniform limit of ν ω, . We already know (cf. Subsection A.3 in Appendix) that ν ω satisfies # B t ν `HpB x νq " 0 in o R ˆp0, T q νpx, k, 0q " ν 0 px, kq in R.

Our aim is to show that ν ω also satisfies B t ν `maxt Ā, H 0,`p B 0 νq, H 1,´p B 1 νq, . . . , H K,´p B K νqqu " 0 at x " 0.

We first show that ν ω is continuous in 0 (and does not depend on k for x ď 0). Lemma 4.9. Let ν ω be any uniform limit (up to subsequences) of ν ω, . Then, for all t ě 0 and x ď 0 ν ω px, 0, tq " ν ω px, 1, tq " ¨¨¨" ν ω px, K, tq.

|M n` 1

 1 ptq ´Mn ptq| " |E rθ m e ptq | F m,n`1 s ´E rθ m e ptq | F m,n s| 1 tθ m e ptqąpm´n´1q´u .

¸1{3 ě m

 m ´C1 n 2{3 py ´Cnq 1{3 .

  2 , xq P R 2 V z pe 1 , e 2 , xq " 0 if (e 1 ď ∆ min and x ď ´R2 ) or if (e 2 ď ∆ min and x ě ´R1 ), (ii) V z pe, e 2 , xq " V z pe max , e 2 , xq and V z pe 1 , e, xq " V z pe 1 , e max , xq if e ě e max ;

	`ˆR,
	(i)

  ´βs }V } 8 s ď C, where C depends on β and }V } 8 only. The main step consists in showing that, for all n P t2, . . . , n 0 u,

	M 1 ď	sup	sup
		iPti0,...,i0`Lu	sPr0,T s

Jnpi0`Lqu sup sPr0,T s e ´βs rW i psqs ´.

e

  ). Let us set e min " min k"0,...,K e k and

	δ :" mintκ , min k"0,...,K	v k e , min xPR, zPZ

V z pe min , e min , xq , min xPR, zPZ

  1) Let us first check that U m e,i ptq " U m e,i p0q `Ṽ k z k min pe k qt for any i ě m with T i " k. Indeed, for such any i ě m, we have

		d dt	U m e,i ptq " Ṽ k z k min	pe k q
	while		
	V Z m i pU m e,i`1 ptq ´U m e,i ptq, U m e, i ptq ´U m e,i ptq, U m e,i ptqq " Ṽ k z k min	pU m e, i ptq ´U m e,i ptqq
			" Ṽ k z k min	pU m e, i p0q ´U m e,i p0qq " Ṽ k z k min	pe k q.
	The measurability of U m e,i for i ď m ´1 can then be checked by backward induction. For i " m ´1, U m e,m´1 solves (if we set T i " k),
	d dt	U m e,m´1 ptq " Ṽ k Zi pU m i ptq ´U m e,i ptqq, t ě 0,	U m e,m´1 p0q " e k pm ´1q.

  so that |s ´s| ď δ ´1C 1 1{2 T . If i 1 ď 0, by the definition of s, θ ω e psq " ´i1 , we get, recalling Lemma 3.3: |i 0 ´i1 | " |θ ω e psq ´θω e psq| ď C θ p|s ´s| `1q ď C θ p|s ´s| `|s ´s| `1q ď C 1{2 T.

	2, we have
	|U ω e,i1 psq| ě |U ω e,i1 psq ´U ω e,i1 psq| ě δ|s ´s|,

  Let consider t " infts P rt, t `hs, Me, hpsq ă Me, hptq ´ 1{4 su if there is some s P rt, t `hs such that Me, hpsq ă Me, hptq ´ 1{4 s and set t " t `h otherwise. If t " t `h, since Me, hphq ď 0, we have Me, hpt `hq ě Me, hptq ´ 1{4 pt `hq ě Me, hphq `M e, hptq ´ 1{4 pt `hq.

  sq ě θe psq `θ e p tq ´CT 1{4 ´CT PrE c ,T s ě θe psq `θ e p tq ´Cp 1{4 T `T 3 expt´ 2 T {Cuq. `sq ´hp t `sq ě Me, hph `t ´tq `θ e p tq ´h t ´Cp 1{4 T `T 3 expt´ 2 T {Cuq ě Me, hphq `M e, hp tq ´Cp 1{4 T `T 3 expt´ 2 T {Cuq ě Me, hphq `M e, hptq ´Cp 1{4 T `T 3 expt´ 2 T {Cuq, where the last inequality comes from the fact that Me, hp tq " Me, hptq ´ 1{4 t. On the other hand, picking ω P Ẽ ,T and using successively Lemma 3.13, inequality | t ´t| ď C 1 1{4 t, the definition of t and the fact that |U ω e,i1 p tq| ď C 1{4 T and that |i 1 ´i0 | ď C 1{4 T with i 0 " ´θω e p tq, we obtain Me, hp tq ě M ω e,T p tq ´ T ě M i0,ω e,T p tq ´C T ě M i0,ω e,T p tq ´C 1{4 T " ξ ω e pU ω e,i1 p tq, i 1 q ´ξω e pW τi 0 ω i1´i0 , i 1 ´i0 q ´i0 ´h t ´C 1{4 T ě ´i1 ´C T ´h t ´C 1{4 T ě θ ω e p tq ´h t ´C 1{4 T ě θe p tq ´h t ´C 1{4 T. `sq ´hp t `sq ´C 1{4 T.So we have obtained the following inequality:Me, hpt `hq ě Me, hphq `M e, hptq ´Cp 1{4 T `T 3 expt´ 2 T {Cuq.

	Thus, using that t ´t ď 0, inf sPr0,h`t´ts θe p t Therefore Me, hpt `hq " inft Me, hp tq ,	inf sPr0,h`t´ts	θe p t `sq ´hp t `squ ě	inf sPr0,h`t´ts	θe p t

  Proof. As Me, hptq satisfies the almost superadditivity property (45), the limit k e, h :" lim tÑ`8 Me, hptq{t exists. If k e, h " 0, then, as, by the definition of Me, hptq, we have Me, hptq ď θe ptq ´ht and we obtain lim inf tÑ`8 θe ptq{t ě h.Let us now assume that k e, h ă 0. By the definition of Me, hptq we know that To prove the opposite inequality, let P p0, |k e, h|{2q and T ą 0 be such that | Me, hptq{t ´ke, h| ă for any t ě T . Fix t ě T and let us define t " supts ě t, Me, hptq " Me, hpsqu P rt, `8s. Then, for s P rt, tq, we have, since s ě T ,

											Erθeptqs t	ě h.
			lim inf tÑ`8	θe ptq t	ě lim inf tÑ`8	Me, hptq `ht t	" k e, h `h.
	´ ď	Me, hptq t	´ke, h "	Me, hpsq t	´ke, h "	s t	Me, hpsq s	´ke, h ď	s t	pk e, h ` q ´ke, h.

  hptq, we have θe p tq ´h t " Me, hp tq. Therefore, as θe is nonnegative and nondecreasing, Lemma 3.18. Let h ă ´A0 . Assume that k e, h ă 0, where k e, h is defined in Lemma 3.17. Then the limit θe of θ e ptq{t exists a.s. as t Ñ `8 and satisfies θe ă ´A0 .If k e, h " 0 for any h ă ´A0 , then lim inf tÑ`8 θ e ptq{t is deterministic and is not smaller than ´A0 .Proof. Assume that k e, h ă 0. Let us first check that, a.s., θ e ptq{t converges to the limit θe of θe ptq{t "Erθ e ptqs{t given by Lemma 3.17 and which satisfies θe ă ´A0 . This is a classical consequence of the variance estimate in Theorem 3.4. Fix ą 0 and let N P N be such that | θe pnq{n ´θ e | ď for any n P N, n ě N . By the variance estimate, we have

	As a consequence, we have						
		P	"ˇˇˇˇθ	e pnq n	´θ e ˇˇˇą 2		ď P	"ˇˇˇˇθ	e pnq n	´θ e pnq n	ˇˇˇą		ď 2 expt´ 2 n{Cu,
	where the right-hand side is summable. So by the Borel-Cantelli Lemma we have, a.s.
					θe ´2 ď lim inf n	θ e pnq n	ď lim sup
	θe ptq t	ď	θe p tq t	ď p1 `C q	θe p tq t " p1 `C q	Me, hp tq `h t	t	ď p1 `C qpk e, h ` `hq.
	So											
						lim sup				
						tÑ`8				

θe ptq t ď p1 `C qpk e, h ` `hq, which proves that θe ptq{t converges to k e, h `h since is arbitrary. n θ e pnq n ď θe `2 .

  Pp0, 0q }u ω, e ´ue } L 8 pr´M,M sˆt1,...,kuˆr0,M sq ď η + has a probability larger than 1 ´η. Let us set E η pωq :" tn P Z, τ n ω P E η u. Let n :" ra{ s. By Lemma 4.7 below, there exists m ,η ě ´n with m ,η P E η pωq and |m ,η `n | ď C 1 pω, ηq `C2 η|n |.
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If ω P Ω 1 0 , then we get lim Ñ0 n ω, p0, k, tq " θe ptqπ k .

because θ ω e pt{ q converges to the deterministic limit θe ptq. So arguing as above, for any ω P Ω 1 0 , we can find a subsequence (subsequence of the previous subsequence and depending this time on ω) such that ν ω, e converges locally uniformly to a continuous solution ν e of $ ' & ' % B t ν e `HpB x ν e q " 0 in o R ˆp0, `8q ν e px, k, 0q " ´x{e k in R ν e p0, k, tq " θe ptq @k P t0, . . . , Ku, t ě 0.

(58)

Let νe be the solution of the junction problem without flux limiter:

B t νe `HpB x νe q " 0 in o R ˆp0, `8q νe px, k, 0q " ´x{e k in R B t νe `maxtA 0 , H 0,`p B 0 νe q, H 1,´p B 1 νe q, . . . , H K,´p B K νe qq " 0 at x " 0.

(

The solution is given by (see Lemma A.1) νe px, k, tq " min φ A0 px, kq ´A0 t , ´x{e k ´tH k p´1{e k q ( .

We know from [START_REF] Imbert | Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks[END_REF]Theorem 2.7] that ν e is a subsolution to (59), as it is continuous and satisfies the Hamilton-Jacobi equation in pRzt0uq ˆt0, . . . , Ku ˆp0, `8q. Therefore ν e ď νe by comparison [START_REF] Imbert | Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks[END_REF]. In addition, we get by the definition of A 0 and since θe ptq ě ´A0 t: ´A0 t ď θe ptq " ν e p0, k, tq ď νe p0, k, tq " ´A0 t.

This shows that ν e p0, k, tq " θe ptq " ´A0 t for any k.

So we have proved that the whole sequence θe ptq{t converges as t Ñ `8 to ´A0 t. This shows, exactly as in the proof of Lemma 3.18 that θ ω e ptq{t converges a.s. to ´A0 t as t Ñ `8. We can then proceed as in the case k e ă 0 and find a set Ω 0 of full probability such that ν ω, e converges for any ω P Ω 1 0 to the unique solution of (58) with θe ptq " ´A0 t, which is nothing but νe . This completes the proof of the lemma.

For later use it will be convenient to rewrite the previous lemma in term of the behavior of the U e . Let us define, for k P t1, . . . , Ku and x P R rxs k " rxs ω k " supti P Z, i ď x, T i " ku.

We note that, a.s., lim

and that this convergence holds locally uniformly in x.

By the definition of N e , we have, for any y ă 0 and t ě 0, N e pU e,rys k ptq, k, tq " 7 j ď 0, T j " k, U e,j ptq ą U e,rys k ptq ( " 7 tj ď 0, T j " k, j ą rys k u .

since the order is preserved in time among vehicle with a same type (Lemma 2.1). Therefore ν e p U e,ry{ s k pt{ q, k, tq " pπ k q ´17 tj ď 0, T j " k, j ą ry{ s k u from which we derive that any uniform limit yp¨q (up to subsequences) of t Ñ U e,ry{ s k pt{ q satisfies ν e pyptq, k, tq " ´y.

We know by Lemma 4.3 (when k e ă 0) or Lemma 4.4 (when k e " 0), that ν e px, k, tq " min φ Āpx, kq ´Āt , ´x{e k ´tH k p´1{pe k qq ( , @px, kq P R So we obtain, from the definition of E η and for M large (depending on a and γ only) and for and η small: u e px´ m ,η , k, b`t 0 ´C pr ,η q ``tq ď u ω, px, k, t 0 `tq`η`C for px, k, tq P r´γ, γ{2sˆt1, . . . , Kuˆr0, C ´1γs.

Recall that m ,η converges to ´a while C pr ,η q `tends to 0 as and η tend to 0: we can let Ñ 0 (taking the half relaxed limit in the right-hand side) and then η Ñ 0 to find: u e px `a, k, t 0 `b `tq ď u ω ˚px, k, t 0 `tq for px, k, tq P r´γ, γ{2s ˆt1, . . . , Ku ˆr0, C ´1γs. This proves our claim. Lemma 4.7. Let E P F be such that PrEs ą 1 ´ where P p0, 1{16q. Let Epωq " tn P Z, τ n ω P Eu. There is a set Ω 0 of full probability such that, for any ω P Ω 0 , there exists C 1 pω, q and C 2 universal such that, for any n P Z, one can find m ˘P Epωq with |n ´m˘| ď C 1 pω, q `C2 |n|, m `ě n and m ´ď n.

Proof. By the ergodic theorem, we have lim rÑ`8 p2r `1q ´17 pEpωq X pr´r, rs X Zqq " PrEs ě 1 ´ a.s..

(where 7pAq is the cardinal of A). Let Ω 0 be the set of full probability for which this holds. Fix ω P Ω 0 and let R " Rpω, q be such that p2r `1q ´17 pEpωq X pr´r, rs X Zqq ě 1 ´2 @r ě Rpω, q.

(64)

Fix n P Z. For simplicity we assume that n ě 0 and we look for m `. The other case can be treated in a symmetric way. Let us choose r " 11 `R `rnp1 `8 qs and assume that rn, rs X Epωq " ∅. Then by (64) we have r ´n ď 2 p2r `1q, which implies that (as ď 1{16)

10 `R `8 n ď r ´n ď 2 p22 `2R `2np1 `8 qq ď 44{16 `R{4 `6 n.

This is impossible and therefore there exists m `P Epωq X rn, rs. Then m `P Epωq, m `ě n and m `´n ď r ´n ď n `C1 pω, q `C2 n where C 1 pω, q " 12 `Rpω, q while C 2 " 8.

Proof of the homogenization

From now on we fix Ω 0 such that PrΩ 0 s " 1 and such that, for any ω P Ω 0 , for e " pe k q such that H k p´1{e k q " min H k , ν e converges locally uniformly to the map ν e given in Lemma 4.3 or Lemma 4.4. Moreover, we assume that, if ω P Ω 0 the conclusions of Lemma 4.6 and of Lemma A.3 holds. Let pU i,0 q be a deterministic family of initial conditions satisfying the compatibility condition (9) and assume, up to relabel the indices, that U i,0 ď 0 if and only if i ď 0. Let pU i q be the solution to

We set, for k P t1, . . . , Ku and px, tq P R ˆr0, `8q,

and, for px, tq P p´8, 0s ˆr0, `8q,

We set n ω, px, k, tq " N ω px{ , k, t{ q and ν ω, px, k, tq " " n ω, px, 0, tq if k " 0 and x ď 0, π ´1 k n ω, px, k, tq if k P t1, . . . , Ku and x P R. Let us first check that ν is well defined.

Proof. Let x ď 0 and i 0 , i 1 P N be the indices such that U ´i 0 p0q ď x{ ă U ´i 0 `1p0q and U ´i 1 pt{ q ď x{ ă U ´i 1 `1 pt{ q. We assume in a first step that ν ω px, 0, tq ´νω px, 0, 0q ě 2c ą 0. Then, for small enough, ν ω, px, 0, tq ´νω, px, 0, 0q ě c. As, by assumption, U i,0 ď 0 if and only if i ď 0, this implies that

Since by Lemma 2.1, the cars remains ordered before 0, we deduce that i 1 ´i 0 ě c{ . Moreover, since

We then have that pi 1 ´i 0 q is bounded and converges, up to a subsequence, to a constant z. Remarking that ν ω, px, 0, tq ´νω, px, 0, 0q " pi 1 ´i 0 q Ñ ν ω px, 0, tq ´νω px, 0, 0q, we deduce that z " ν ω px, 0, tq ´νω px, 0, 0q. Hence, for every k P t1, . . . , Ku, by the law of large number,

Since ν ω px, k, 0q " ν ω px, 0, 0q, this implies that ν ω px, k, tq " ν ω px, 0, tq. Assume now that ν ω px, 0, tq ´νω px, 0, 0q " 0. Then 0 ď n ω, px, k, tq ´nω, px, k, 0q ď ν ω, px, 0, tq ´νω, px, 0, 0q.

Sending Ñ 0, we deduce that ν ω px, k, tq ´νω px, k, 0q " pπ k q ´1pn ω px, k, tq ´nω px, k, 0qq " 0 and so ν ω px, k, tq " ν ω px, k, 0q " ν ω px, 0, 0q " ν ω px, 0, tq.

It will be convenient to consider also the limit of u ω, py, k, tq :" U ω ry{ s k pt{ q along the same subsequence as for ν ω, for k P t1, . . . , Ku. Let u ω,˚a nd u ω ˚be the half-relaxed limits of u ω, (along that same subsequence). As x Ñ ν ω px, k, tq is nonincreasing, it has an inverse ũω py, k, tq :" inftx P R, ν ω px, k, tq ă ´yu (with ũω py, k, tq " `8 if there is no such a x)

Note that ũω is usc, while its lower semicontinuous envelope is given by ũω ˚py, k, tq :" inftx P R, ν ω px, k, tq ď ´yu " suptx P R, ν ω px, k, tq ą ´yu.

Lemma 4.10. We have u ω,˚ď ũω and u ω ˚ě ũω ˚.

Note that, at each point where ũω is continuous, we have u ω,˚" ũω " u ω ˚.

Proof. We only do the proof of the first inequality, the proof of the other one being similar. Fix py, k, tq with k P t1, . . . , Ku and let py , t q Ñ py, tq be such that u ω, py , k, t q Ñ u ω,˚p y, k, tq. Let i :" ry { s k . By the definition of N and the fact that the U i with T i " K remain ordered (see Lemma 2.1), we have

, where U ω i pt { q " U ω ry { s k pt { q " u ω, py , k, t q Ñ u ω,˚p y, k, tq while i Ñ y. So, by uniform convergence of ν ω, , we obtain ν ω pu ω,˚p y, tq, k, tq " ´y. This shows that ũω py, tq ě u ω,˚p y, tq. Lemma 4.11 (Supersolution at the junction). Let ξ : r0, T s Ñ R be a smooth test function and A ą Ā be such that px, k, tq Ñ ν ω px, k, tq ´ξptq ´φA px, kq has a local minimum on R ˆp0, `8q at p0, t 0 q. Then ξ 1 pt 0 q `A ě 0.

Proof. As px, k, tq Ñ ν ω px, k, tq´ξptq´φ A px, kq has a local minimum in Rˆp0, `8q at p0, t 0 q and φ Ā ă φ A on o R with an equality at 0, modifying ξ if necessary, the map px, k, tq Ñ ν ω px, k, tq ´ξptq ´φ Āpx, kq has a strict local minimum R ˆp0, `8q at p0, t 0 q: assuming that ξpt 0 q " 0, there exists γ ą 0 such that, for any px, k, tq P R ˆpt 0 ´γ, t 0 `γq with px, tq ‰ p0, t 0 q and |x| ď γ, ν ω px, k, tq ´ξptq ´φ Āpx, kq ą ν ω p0, t 0 q, (67)

with an equality at p0, t 0 q. As ν ω px, k, t 0 q " ν ω px, 0, t 0 q for x ď 0, inequality (67) actually holds for any px, k, tq P p´γ, γq ˆt1, . . . , Ku ˆpt 0 ´γ, t 0 `γq with px, tq ‰ p0, t 0 q. Let y 0 " ´νω p0, t 0 q. By (67), we have that ν ω px, k, t 0 q ą ´y0 for x P p´γ, 0q, so that ũω ˚py 0 , k, t 0 q " inftx P R, ν ω px, k, t 0 q ď ´y0 u " 0. By continuity of ν ω , there exists γ 1 P p0, γq such that, if py, k, tq P py 0 ´γ1 , y 0 `γ1 q ˆt1, . . . , Ku ˆpt 0 γ1 , t 0 `γ1 q, then ũω ˚py, k, tq " inftx P p´γ, `8q, ν ω px, k, tq ď ´yu. Therefore ũω ˚py, k, tq ě mintγ , inftx P p´γ, γq, ν ω px, k, tq ď ´yu u ě mintγ , inftx P p´γ, γq, ξptq `φ Āpx, kq ´y0 ď ´yu u ě mintγ , inftx P R, ξptq `φ Āpx, kq ´y0 ď ´yu u " mintγ , ψ Ā py ´y0 `ξptq, kqu.

If py, k, tq " py 0 , k, t 0 q, then ψ Ā py 0 ´y0 `ξpt 0 q, kq " ψ Ā p0, kq " 0 ă γ, so that, reducing γ 1 if necessary, we get ũω ˚py, k, tq ě ψ Ā py ´y0 `ξptq, kq @py, k, tq P py 0 ´γ1 , y 0 `γ1 q ˆt1, . . . , Ku ˆpt 0 ´γ1 , t 0 `γ1 q, (68)

In addition, as the inequality in (67) is strict, we have a strict inequality in the above inequality unless py, k, tq " py 0 , k, t 0 q. By (61) we have u e py, k, tq :" " min ψ Āpy ´Āt, kq , ye 0 ´e0 tH 0 p´1{e 0 q ( if y ď Āt min ψ Āpy ´Āt, kq , ye k ´ek tH k p´1{e k q ( if y ě Āt.

Let us fix T ą 0 and set y T :" ĀT . The equality above can be rewritten as u e py `Āpt ´t0 q `yT , k, t ´t0 `T q " " min ψ Āpy, kq , py `Āpt ´t0 q `yT qe 0 ´e0 pt ´t0 `T qH 0 p´1{e 0 q ( if y ď 0 min ψ Āpy, kq , py `Āpt ´t0 q `yT qe k ´ek pt ´t0 `T qH k p´1{e k q ( if y ě 0.

By (68), this implies that, for any py, k, tq P py 0 ´γ1 , y 0 `γ1 q ˆt1, . . . , Ku ˆpt 0 ´γ1 , t 0 `γ1 q, ũω ˚py, k, tq ě ψ Ā py ´y0 `ξptq, kq ě u e py ´y0 `ξptq `Āpt ´t0 q `yT , k, t ´t0 `T q. with a strict inequality if py, k, tq ‰ py 0 , k, t 0 q.

We apply Lemma 4.6 with initial time t 0 ´τ , where τ ą 0 is so small that the minimum of the map py, kq Ñ u ω ˚py, k, t 0 ´τ q ´ue py ´y0 `ξpt 0 ´τ q ´Āτ `yT , k, ´τ `T q. is not reached at y P t´γ, γu: this is possible since this minimum point converges to py 0 , 0q as τ Ñ 0`. Then by Lemma 4.6 we get, if s ě 0 and |y ´y0 | are small enough (depending on γ 1 only) u ω ˚py, k, t 0 ´τ `sq ě u e py ´y0 `ξpt 0 ´τ q ´Āτ `yT , k, ´τ `T `sq. For y " y 0 and s " τ , we get 0 " u ω ˚py 0 , k, t 0 q ě u e pξpt 0 ´τ q ´Āτ `yT , k, T q " " min ψ Āpξpt 0 ´τ q ´Āτ `yT ´ĀT, kq , e 0 pξpt 0 ´τ q ´Āτ `yT ´T H 0 p´1{e 0 qq ( if ξpt 0 ´τ q ď Āτ min ψ Āpξpt 0 ´τ q ´Āτ `yT ´ĀT, kq , e k pξpt 0 ´τ q ´Āτ `yT ´T H k p´1{e k qq ( if ξpt 0 ´τ q ě Āτ ě " min ψ Āpξpt 0 ´τ q ´Āτ, kq , e 0 pξpt 0 ´τ q ´Āτ q ( if ξpt 0 ´τ q ď Āτ min ψ Āpξpt 0 ´τ q ´Āτ, kq , e k pξpt 0 ´τ q ´Āτ q ( if ξpt 0 ´τ q ě Āτ because y T " ĀT ě T max k H k p´1{e k q. Assume now that ξ 1 pt 0 q ă ´Ā. Then, since ξpt 0 q " 0 and ξ 1 pt 0 q ă ´Ā, one has ξpt 0 ´τ q ´Āτ ą 0 and thus the right-hand side in the inequality above is positive. This leads to a contradiction and shows that ξ 1 pt 0 q ě ´Ā ě ´A.

Lemma 4.12 (Subsolution at the junction). Assume that Ā ą A 0 and let A 0 ď A ă Ā and ξ : r0, T s Ñ R be a smooth test function be such that px, k, tq Ñ ν ω px, k, tq ´ξptq ´φA px, kq has a local maximum on R ˆp0, `8q at p0, t 0 q. Then ξ 1 pt 0 q `A ď 0.

Proof. We argue as in the supersolution case. As px, k, tq Ñ ν ω px, k, tq ´ξptq ´φA px, kq has a local maximum on R ˆp0, `8q at p0, t 0 q and φ Ā ą φ A on o R with an equality at 0, modifying ξ if necessary, the map px, k, tq Ñ ν ω px, k, tq ´ξptq ´φ Āpx, kq has a strict local maximum at p0, t 0 q: assuming that ξpt 0 q " 0, there exists γ ą 0 such that, for any px, k, tq P R ˆpt 0 ´γ, t 0 `γq with px, tq ‰ p0, t 0 q and |x| ď γ, ν ω px, k, tq ´ξptq ´φ Āpxq ă ν ω p0, t 0 q, (69)

with an equality at p0, t 0 q. As ν ω px, k, tq " ν ω px, 0, tq for x ď 0, inequality (69) also holds for any px, k, tq P p´γ, γq ˆt1, . . . , Ku ˆpt 0 ´γ, t 0 `γq with px, tq ‰ p0, t 0 q. Let y 0 " ´νω p0, t 0 q. By (69), we have that ν ω px, k, t 0 q ă ´y0 for x P p0, γq, so that ũω py 0 , k, t 0 q " suptx P R, ν ω px, k, t 0 q ě ´y0 u " 0.

By continuity of ν ω , there exists γ 1 P p0, γq such that, if py, k, tq P py 0 ´γ1 , y 0 `γ1 q ˆt1, . . . , Ku ˆpt 0 γ1 , t 0 `γ1 q, then ũω py, k, tq " suptx P p´8, γq, ν ω px, k, tq ě ´yu.

Therefore ũω py, k, tq ď maxt´γ , suptp´γ, γq, ν ω px, k, tq ě ´yu u ď maxt´γ , suptx P p´γ, γq, ξptq `φ Āpx, kq ´y0 ě ´yu u ď maxt´γ , suptx P R, ξptq `φ Āpx, kq ´y0 ě ´yu u " maxt´γ , ψ Ā py ´y0 `ξptq, kqu.

If py, k, tq " py 0 , k, t 0 q, then ψ Ā py 0 ´y0 `ξpt 0 q, kq " ψ Ā p0, kq " 0 ą ´γ, so that, reducing δ 1 if necessary, we get ũω py, k, tq ď ψ Ā py ´y0 `ξptq, kq @py, k, tq P py 0 ´γ1 , y 0 `γ1 q ˆt1, . . . , Ku ˆpt 0 ´γ1 , t 0 `γ1 q. (70)

In addition, as inequality in (67) is strict, we have a strict inequality in the above inequality unless py, k, tq " py 0 , k, t 0 q. By (61) we have u e py, k, tq :" " min ψ Āpy ´Āt, kq , ye 0 ´e0 tH 0 p´1{e 0 q ( if y ď Āt min ψ Āpy ´Āt, kq , ye k ´ek tH k p´1{e k q ( if y ě Āt.

Let us fix T ą 0 and set y T :" ĀT . Note that u e py T , k, T q " ψ Āpy T ´ĀT, kq ă y T e k ´ek T H k p´1{e k q because Ā ą max kPt0,...Ku H k p´1{e k q. So, reducing γ 1 if necessary, the equality above can be rewritten as u e py `Āt `yT , t `T q " ψ Āpy, kq @py, k, tq P p´γ 1 , γ 1 q ˆt1, . . . , Ku ˆp´γ 1 , γ 1 q.

(71) By (70), this implies that, for any py, k, tq P py 0 ´γ1 , y 0 `γ1 q ˆt1, . . . , Ku ˆpt 0 ´γ1 , t 0 `γ1 q, ũω py, k, tq ď ψ Ā py ´y0 `ξptq, kq " u e py ´y0 `ξptq `Āpt ´t0 q `yT , k, t ´t0 `T q.

By Lemma 4.6, applied at time t 0 ´τ , we get, if s ě 0 and |y ´y0 | are small enough (depending on γ 1 only) u ω py, k, t 0 ´τ `sq ď u e py ´y0 `ξpt 0 ´τ q ´Āτ `yT , k, ´τ `T `sq.

For y " y 0 and s " τ , we get 0 " u ω py 0 , k τ , t 0 q ď u e pξpt 0 ´τ q ´Āτ `yT , k τ , T q " ψ Āpξpt 0 ´τ q ´Āτ `yT ´ĀT, k τ q " ψ Āpξpt 0 ´τ q ´Āτ, k τ q, where the second equality holds because of (71). Then, if ξ 1 pt 0 q ą ´Ā and since ξpt 0 q " 0 , one has ξpt 0 ´τ q ´Āτ ă 0 and thus the right-hand side in the inequality above is negative. This leads to a contradiction and shows that ξ 1 pt 0 q ď ´Ā ď ´A.

Proof of Theorem 1.1. We just have to show that ν ω satisfies in the viscosity sense B t ν `maxt Ā, H 0,`p B 0 νq, H 1,´p B 1 νq, . . . , H K,´p B K νqqu " 0 at x " 0.

Let A n ą Ā be such that A n Ñ A. By Lemma 4.11 and [36, Theorem 2.11], ν ω is a super-solution of

By stability [36, Proposition 2.6], we then get that ν ω satisfies B t ν `maxt Ā, H 0,`p B 0 νq, H 1,´p B 1 νq, . . . , H K,´p B K νqqu ě 0 at x " 0.

We now turn to the sub-solution property. Following [START_REF] Imbert | Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks[END_REF]Theorem 2.7], ν ω being continuous and a subsolution of the Hamilton-Jacobi equation in o R, is a subsolution at x " 0 with A " A 0 . So we can assume from now on that Ā ą A 0 . Arguing as above (taking A n ă Ā with A n Ñ Ā), we then get that B t ν `maxt Ā, H 0,`p B 0 νq, H 1,´p B 1 νq, . . . , H K,´p B K νqqu ď 0 at x " 0.

A Appendix

A.1 Computation for Lemma 2.7

Let X :" X 0 ´X1 . We have P rX ą ms ď Kr m for m P N and where r :" pπ `1q{2 P p0, 1q. So, for q ě 1,

Note that x Ñ x q r x is increasing on r0, ´q{ lnprqs and decreasing on r´q{ lnprq, `8s. So we can approximate the sum in the right-hand side by K r

ˆ8 0 y q e ´y dy " 2Kq! r| lnprq| q`1 .

A.2 Flux-limited solutions

Lemma A.1. Assume that e " pe k q is such that H k p´1{e k q " min p H k ppq for any k P t0, . . . , Ku. The solution of the junction problem without flux limiter:

in R B t νe `maxtA 0 , H 0,`p B 0 νe q, H 1,´p B 1 νe q, . . . , H K,´p B K νe qu " 0 at x " 0.

(

is given by νe px, k, tq " min φ A0 px, kq ´A0 t ,

Proof. By stability of super-solution, we classically have that νe is a super-solution. Let us prove that it is a sub-solution. First remark that for x ‰ 0, px, k, tq Þ Ñ φ A0 px, kq´A 0 t and px, k, tq Þ Ñ ´x{e k ´tH k p´1{e k q are (smooth) solutions of the equation. Then, using [9, Theorem 9.2 ii)], νe is a sub-solution. We then have to consider the case x " 0. Let φ be a test function such that νe ´φ reaches a minimum at p0, t 0 q. By [36, Theorem 2.7], it is sufficient to take φ such that φpx, k, tq " ψptq `φA0 px, kq. Since for x close to 0, we have νe px, t, kq " φ A0 px, kq ´A0 t (because A 0 ě H k p´1{e k q), we deduce that t Þ Ñ ´A0 t ´ψptq reaches a minimum at t 0 and so ψ 1 ptq " ´A0 . This implies that B t φ`maxtA 0 , H 0,`p B 0 φq, H 1,´p B 1 φq, . . . , H K,´p B K φqq " ´A0 `maxtA 0 , min p H 0 ppq, . . . , min p H K ppqu " 0 and so νe is a sub-solution. Finally, for t " 0, since A 0 ě H k p´1{e k q, we have νe px, k, 0q " ´x{e k ă φ A0 px, kq.

Lemma A.2. Assume that θe ă ´H0 p´1{e 0 q and H 0 is convex. Then, the solution of $ & % B t w `H0 pB x wq " 0 in p´8, 0q ˆp0, `8q wpx, 0q " ´x{e 0 in p´8, 0s wp0, tq " θe t for t ě 0.

(

is unique and given by wpx, tq :" mint´x{e 0 ´H0 p´1{e 0 qt , p 0,θ e x `θ e tu in p´8, 0q ˆp0, `8q.

Proof. The proof is similar to the one of Lemma A.1. Indeed it is sufficient to remark that, by [36, Proposition 2.12], w is solution of (74) iff w is solution of $ & % B t w `H0 pB x wq " 0 in p´8, 0q ˆp0, `8q wpx, 0q " ´x{e 0 in p´8, 0s B t w `maxtA e , H 0,`p Bwqu " 0 at x " 0,

where A e " ´ϑe .

A.3 Homogenization outside the junction

We consider a family of solutions pU i q of (6) and define ν from pU i q as in Section 4. Let us also fix a set pa, bq ˆtku ˆrt 0 , t 1 s with t 0 ă t 1 , a ă b ă 0 if k " 0 and b ą a ą 0 if k P t1, . . . , Ku. The following result is an easy adaptation of [START_REF] Cardaliaguet | From heterogeneous microscopic traffic flow models to macroscopic models[END_REF].

Lemma A.3. There is a set Ω 0 of full probability (independent of U ) such that, for any ω P Ω, if ν is bounded above (respectively below) on pa, bq ˆtku ˆrt 0 , t 1 s, then any half-relaxed upper limit (resp. half-relaxed lower limit) of ν as Ñ 0 (possibly up to a subsequence) is a viscosity subsolution (resp. supersolution) of the Hamilton-Jacobi equation B t νp¨, k, ¨q `Hk pB x νp¨, k, ¨qq " 0 in pa, bq ˆtku ˆrt 0 , t 1 s.

A.4 Convexity of the effective Hamiltonians

Lemma A.4. Assume that the Ṽ 0 z are concave on r∆ min , `8q for any z P Z. Then V 0 is also concave in r∆ min , `8q and H 0 is convex in r´1{∆ min , 0s. In the same way, the H k are convex on r´π k {∆ min , 0s for any k P t1, . . . , Ku.

Proof. Recall that a one-to-one map φ : I Ñ J (where I and J are open intervals) is increasing and concave if and only if φ ´1 is increasing and convex. Thus the maps p Ṽ 0 z q ´1 (for z P Z) are increasing and convex from p0, min z 1 h 0 max,z 1 q to p∆ min , ē0 q. So v Ñ E " p Ṽ 0 z q ´1pvq ı is also increasing and convex from p0, min z 1 h 0 max,z 1 q to p∆ min , ē0 q. This shows that its inverse V 0 is increasing and concave from p∆ min , ē0 q to p0, min z 1 h 0 max,z 1 q. As V 0 is continuous and is constant after ē0 , we infer that V 0 is concave on r∆ min , `8q. Finally, as H 0 ppq " p V 0 p´1{pq on p´1{∆ min , 0q, H 0 is convex on this interval: indeed, if H 0 and V 0 are smooth, then pH 0 q 2 ppq " p ´3p V 0 q 2 p´1{pq ě 0; the general case can be treated by approximation.