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ABSTRACT

The understanding of wave propagation in a metamaterial with hierarchical, auxetic rectangular perforations is
presented in this work. The metamaterial is a 2D structure with chaining horizontal and vertical perforations
exhibing auxetic in-plane behaviour. The unit cell of this lattice is identified as the reference level 0. Hierarchical
structures are composed of structural elements which themselves have structure. At level 0, 4 rigid squares are
present in the unit cell. In each square, the reference structure is used by applying a scale ratio to obtain the
level 1. The same strategy is used to reach the upper level in each subunit. A geometric parametric investigation
of these rectangular perforations using a numerical asymptotic homogenisation finite element approach is done.
Some numerical eigenvalue tools are used for the dispersion analysis of this structure. It is first observed that
the total width of Band gaps increases with the hierarchy. The porosity induced by the perforations is taken into
account in the mechanical properties. The symmetry of the geometry in the x-y plane allow to define the entire
geometry of the unit cell using only 2 parameters: the void aspect ratio, the intercell spacing and the hierarchy
level. When decreasing the intercell spacing, the total width of Band gaps increases and the effective stiffness in
x and y directions decrease, allowing for increased rotations of the rigid sqares, so auxetic behaviour is greater.
Hierarchical levels shift from isotropic to orthotropic, hierarchical levels are always auxetic.

Keywords: periodic, perforations, hierarchy, auxetic, mechanical properties, homogenisation.

1. INTRODUCTION

A periodic medium is a material or a structural system that exhibits spatial periodicity. The study of periodic
structures has a long history in the field of vibrations and acoustics. This topic has interested researchers over
the years, and a growing activity on this field is observed on the last years, with the objective of designing
structures exhibiting properties that conventional ones cannot possess.

A very detailed review of historical origins, recent progress and future outlook of this topic has been published
recently.1 The reader is invited to refer to this article and the following discussion2 that cover the most important
aspects of this topic.

Dynamic performances of structured media at the macroscopic scale is of first interest for many engineering
applications, with increasing number of papers either for passive3 or active4–7 devices.

Hierarchical structures are composed of structural elements witch themselves have structure.8–11

Auxetic materials are materials with a negative Poisson’s ratio. For conventional materials, during an uniaxial
tensile test, a reduction of the dimensions perpendicular of the load is observed, in the case of auxetic materials
an increasing of these dimensions is obtained.12
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Dispersion analysis of plates with hierarchical, auxetic rectangular perforations are described in this paper. A
geometric parametric investigation of these rectangular perforations using a numerical asymptotic homogenisation
finite element approach is done in order to understand the macroscopic behavior of the structured medium.
This approach is valid for static and low frequency response of the structure of interest. Then, for the higher
frequency range, a dispersion analysis of the system is investigated, allowing description of the wave propagation
characteristics of the hierarchical system.

2. GEOMETRY OF THE HIERARCHICAL PERFORATED AUXETIC LATTICE

Figure 1a shows the structural dimensions of the square lattice with rectangular perforations. The symmetry of
the geometry in the x− y plane allow to define the entire geometry of the unit cell using only 2 parameters: the
void aspect ratio, AR = a/b and the intercell spacing S.13

a s

b

r

(a) (b)

Figure 1: (a) Geometry parameters of the base unit cell. (b) Hierarchical, auxetic rectangular perforations at
Levels 1, 2 and 3 with AR = 4 and from S = 0.2 to S = 0.8.

As a reference, the level 113 is compared with the hierarchical levels 2 and 3. Hierarchical structures are
systems witch are composed of structural elements witch themselves have structure. At level 1, 4 rigid squares
are present in the unitcell. In each square, the reference structure is used by applying a scale ratio to obtain the
level 2. Exactly the same at level 3, in this subunit, there are 4 rigid squares, the reference structure is used by
applying a second scale ratio to obtain the level 3.

The parametric analysis is carried out with the aspect ratios (AR), the intercell spacing (S) and the level of
hierarchy. Figure 1b shows how intercell spacing change in both level of hierarchy. Voids are larger than a low
parameter S and the porosity increases with the level of hierarchy.

3. IN-PLANE MECHANICS

The numerical asymptotic homogenisation is carried out with a commertial FE code. The unit cell shown in
figure 1a is meshed using PLANE82 (8-nodes with 2 degrees of freedom) elements.

The homogenized stress-strain tensor C of the structure is given by
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C =

C11 C12 0
C21 C22 0
0 0 C66

 . (1)

The engineering material parameters can be identified from the compliance matrix S linked to the stress-strain
tensor C in the case of special orthotropic materials in plane strain, namely

S = C
−1

=

 1/E1 −ν21/E2 0
−ν12/E1 1/E2 0

0 0 1/G12

 . (2)

3 virtual experiments are used to determine 2 Young’s modulus (E1, E2), 2 Poisson’s ratio (ν12, ν21) and
the shear modulus (G12). The reaction force and the displacement are then computed using the finite element
model. For example, in the x tensile virtual test, the first one is used for effective elastic modulus calculation
E1 = σ1/ε1 and the second is used for the Poisson’s ratio14 ν12 = −ε2/ε1.

The results are normalised against the first mode of a plate with same overall dimensions. The stiffness and
the density calculated as E′ = E × φ2 and ρ′ = ρ × φ with the porosity φ = Vvoid/Vtot. The evolution of the
porosity for various values of the intercell spacing S at Levels 1, 2 and 3 is given in figure 2a. The frequencies
used for normalisation are presented in figure 2b. The normalised frequency band of interest is from 0 to 5.
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Figure 2: (a). Equivalent porosity for various sizes of the intercell spacing S at Level 1, 2 and 3. (b)Frequencies
used to normalise against the first mode of a plate with same overall dimensions including the porosity in various
size of the intercell spacing S at Level 1, 2 and 3.

The engineering material parameters can be identified using the numerical asymptotic homogenisation. The
structure is considered as orthotropic materials in plane strain with 5 mechanical parameters, Young’s modulus
in x and y directions (E1 and E2), Poisson’s ratios (ν12 and ν21) and the shear modulus (G12).

Figures 3a to 3b show the evolution of the non dimensional mechanical properties of the homogenized struc-
ture. Particular shapes corresponding to singular points and deformed shapes are also shown in these figures.
As seen in figure 3b, the Poisson’s ratio effect is linked to the rotation of the rigid squares. Poisson’s ratio effect
increases with higher hierarchical level.

For increasing the intercell spacing (S), the effective stiffness in x direction increase in figures 3a, same
tendency in the y direction, allowing for decreased rotations of the rigid squares, so auxetic behaviour is greater.
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At level 1, the structure is isotropic, with the increase of the S dimension the Poisson’s ratio tends to become
positive. The stiffness ratio between each levels in x and y directions decreases when the intercell spacing
increases. At Level 2 and 3, jumps in mechanical properties are observed due to transition of parts of the subunits
from contact to noncontact between voids figures 3a. Hierarchical levels shift from isotropic to orthotropic,
hierarchical levels are always auxetic figure 3b.
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Figure 3: Variation of the nondimensional Youngs modulus E1 (a) and in-plane Poisons ratiosν12 and ν21 (b)
versus the intercell spacing S at Levels 1, 2 and 3 for an aspect ratio of 4.

4. WAVE PROPAGATION

The finite element simulations in order to obtain the dispersion curves are carried out with a commercial FE
code.

The classical Floquet-Bloch approach is a method commonly used for the study of periodic structures. The
material constitutive law is linear, elastic and isotropic. The real geometry is used. The periodicity is defined
on the borders of the domain uR = e−jkxruL and vR = e−jkyrvL where uR (resp. vR) is the displacement on
the right border and uL (resp. vL) is the displacement on the left border in x (resp. y) axis, kx and ky are
respectively the wavenumbers in the x and y directions15 for details.

The harmonic homogeneous dynamical equilibrium of the system is driven by the following partial derivative
problem

ρω2u+∇σ = 0, σ = C : ε, (3)

where u ∈ R3 is the displacement, σ is the stress tensor, C is the elastic tensor and ε is the strain tensor.

A parametric eigenvalue analysis is performed using the Pardiso solver,16 two parameters (wavenumbers) are
considered, namely kx ∈ [0 π/r] and ky ∈ [0 π/r]. The wave’s dispersion curves of the undamped system are
plotted on the contours of the first Brillouin zone. The frequencies defining the bandgaps can always be found
by considering only the contour of the irreducible Brillouin zone for regular system.17 It is worth noticing that
this method is extensively used in open literature, although no formal proof of its validity is given, and therefore
the results obtained need to be looked at carefully.18

The results of the analysis correspond to dispersion diagrams which are determined for the various levels of
hierarchy and different intercell spaces (S). They provide the value of the wave numbers for varying angle of
propagation through the lattice together with the corresponding eigenfrequencies.
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The band diagram onlu provides information on the contour of the Brillouin zone allowing identification of
the bandgaps. Hence, only specific directions (0◦, 45◦ and 90◦) are investigated.
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Figure 4: Dispersions in the k-space for the lattice with AR = 4, S = 0.3 for Level 2. Full coloured areas
correspond to band gaps

Band gaps are observed at some specific values of AR and S (see 4). These band gaps are called omnidirec-
tional band gap because whatever the direction of the wave propagation, this wave can not propagate. And there
are also directional band gaps mean that for example in a frequency band waves are able to propagate along
several directions greater or lesser extent. But in our case, a particular interest is given only in omnidirectional
band gaps. The modal density increase with the hierarchy, it is true whatever the value of the parameter S is.

This can clearly be seen in figure 5 that provide a synthetic view of the band gaps for the various geometry
configurations.

5. CONCLUSION

Periodic, auxetic and hierarchical structures are interesting for waves propagation as they may exhibit complete
or at least partial frequency bandgaps such that the associated waves cannot propagate through the structure.
The determination of the dispersion curves is thus necessary to design specific structures for an absorption
purpose. It is first observed that the total width of Band gaps increases with the hierarchy. When decreasing the
intercell spacing, the total width of Band gaps increases and the effective stiffness in x and y directions decrease,
allowing for increased rotations of the rigid sqares, so auxetic behaviour is greater. Hierarchical levels shift from
isotropic to orthotropic, hierarchical levels are always auxetic. Other geometry or perforation can be investigate.
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