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TITS-TYPE ALTERNATIVE FOR CERTAIN GROUPS ACTING ON
ALGEBRAIC SURFACES

IVAN ARZHANTSEV AND MIKHAIL ZAIDENBERG

Abstract. A theorem of Cantat and Urech says that an analog of the classical Tits alter-
native holds for the group of birational automorphisms of a compact complex Kähler surface.
We established in [AZ21] the following Tits-type alternative: if X is a toric affine variety and
G ⊂ Aut(X) is a subgroup generated by a finite set of unipotent subgroups normalized by
the acting torus then either G contains a nonabelian free subgroup or G is a unipotent affine
algebraic group. In the present paper we extend the latter result to any group G of auto-
morphisms of a complex affine surface generated by a finite collection of unipotent algebraic
subgroups. It occurs that either G contains a nonabelian free subgroup or G is a metabelian
unipotent algebraic group.
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Introduction

Let k be an algebraically closed field of characteristic zero, and let Ga and Gm stand for the
additive and multiplicative groups of k, respectively, viewed as algebraic groups. Given an
algebraic variety X over k and a subgroup U of Aut(X) isomorphic to Ga and acting regularly
on X, U is called a one-parameter unipotent subgroup or a Ga-subgroup. Any Ga-subgroup
has the form U = exp(t∂) ⊂ SAut(X) where t ∈ k and ∂ is a locally nilpotent derivation (an
LND for short) of the structure ring O(X).

The general linear group GLn(k) verifies the Tits alternative [Tit72], that is, any subgroup
G ⊂ GLn(k) either contains a nonabelian free subgroup or is a finite extension of a solvable

2020 Mathematics Subject Classification: 14J50, 14R20, 14L30, 14E07, 22F50.
Key words: affine surface, group action, unipotent group, one-parameter subgroup, Cremona group, Tits
alternative.
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group 1. In the case of a connected linear algebraic group G defined over k this alternative
follows from the Levi-Malcev theorem. Indeed, consider the Levi decomposition G = Ru ⋊L =
Ru ⋊ (S ⋅ T ) where Ru is the unipotent radical of G, L is a reductive Levi subgroup, S is a
semisimple algebraic group and T is an algebraic torus. We have the alternative: either G
is solvable or G contains a semisimple algebraic subgroup S of positive dimension. In the
latter case S contains a subgroup isomorphic either to SL(2,k) or to PSL(2,k), which in
turn contains a nonabelian free subgroup. It follows that G has no nonabelian free subgroup
if and only if S is trivial, if and only if G is solvable.

If G has no nontrivial character then L = S, that is, G = Ru⋊S. In this case G is generated
by a finite collection of Ga-subgroups normalized by a given maximal torus Tmax of S. Indeed,
this clearly holds for Ru. In turn, S is generated by the finite collection of root Ga-subgroups
with respect to Tmax. Such a group G has no nonabelian free subgroup if and only if S is
trivial, if and only if G is unipotent. The latter issue holds as well in the following more
general setup.

Theorem 0.1 ([AZ21, Theorem 1.1]). Consider a toric affine variety X over k. 2 Let
a subgroup G = ⟨U1, . . . , Us⟩ of Aut(X) be generated by a finite collection of Ga-subgroups
U1, . . . , Uk normalized by the acting torus. Then either G contains a nonabelian free subgroup
or G is a unipotent algebraic group.

Assuming that dimX ≥ 2, X is smooth in codimension 2 and has no nonconstant invertible
regular function one can always find a group G as in Theorem 0.1 acting on the smooth
locus of X highly transitively, that is, n-transitively for any natural number n [AKZ19,
Theorem 1.3]. If G acts doubly transitively then G contains a nonabelian free subgroup,
see [AZ21, Corollary 1.2].

The natural question arises whether the assertion of Theorem 0.1 remains true for more
general affine varieties, disregarding the existence of a torus action. In Section 4 we give a
positive answer for the complex affine surfaces. Our main result (Theorem 4.1) is as follows.

Theorem 0.2. Let X be an affine algebraic surface over C and G be a subgroup of Aut(X)
generated by a finite collection of Ga-subgroups U1, . . . , Uk. Assume that G contains no non-
abelian free subgroup. Then G is a metabelian unipotent affine algebraic group.

Recall that any abelian group is also metabelian. The proof of Theorem 0.2 uses Proposi-
tions 2.1 and 3.1. The former claims the validity of the theorem for the affine plane X = A2

C.
Example 3.7 shows that the conclusion of Theorem 0.2 does not hold any longer for the
Cremona group Bir(P2

k). In Proposition 3.1 we describe the exceptional cases. The proof
of Theorem 0.2 is done in Section 4. In Proposition 5.1 we study the actions of unipotent
algebraic groups on affine surfaces. Using this proposition and Theorem 0.2 we deduce a
Tits-type alternative for Gizatullin affine surfaces, see Proposition 5.2.

The reason why in our specific setting a solvable subgroup in the Tits alternative is re-
placed by a unipotent one, is clear in the case where the subgroup G of Aut(X) generated
by unipotent algebraic subgroups is solvable and contained in an affine algebraic group G̃.

1In [AZ21] we called this property the enhanced Tits alternative in order to distinguish from the usage of the
term “Tits alternative” applied exceptionally to finitely generated subgroups.
2In [AZ21] X is assumed to be a toric variety with no toric factor. However, the statement obviously holds
without the latter assumption.
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Indeed, in this case G is contained in a Borel subgroup B of G̃ and any unipotent subgroup
of G is contained in the unipotent radical of B. Hence G itself is unipotent.

However, a priori it is not clear why a solvable subgroup G of Aut(X) generated by a
finite collection of unipotent algebraic subgroups must be algebraic. This happens indeed
in the setting of Theorem 0.2. In higher dimensions, it is known to be the case for any
subgroup G = ⟨U1, . . . , Uk⟩ of Aut(An

k) contained in the de Jonquères subgroup of triangular
automorphisms of An [AS20].

The proofs in the present paper rely on several results established only for varieties defined
over C. Let us formulate the following

Conjecture. An analog of Theorem 0.2 holds for any affine algebraic variety of arbitrary
dimension defined over any algebraically closed field of characteristic zero.

1. Preliminaries

1.1. Subgroups of Aut(A2
k) and the Tits alternative. Recall the following facts.

Theorem 1.1 (Rentchler [Ren68]). Any Ga-subgroup of Aut(A2
k) is conjugate to a subgroup

of triangular transformations

(x, y)↦ (x + τp(y), y), τ ∈ k

generated by a triangular LND ∂ = p(y)∂/∂x for some p ∈ k[y].
For the following theorem see e.g. [Jun42, vdK53, Nag72, Kam75, Wri75, Wri78].

Theorem 1.2 (Jung-van der Kulk). There is a free amalgamated product decomposition
Aut(A2

k) = A ∗C B where C = A ∩B, A = Aff(A2
k) is the affine group of the affine plane and

Jonq+(A2
k) is the group of de Jonquières transformations

(x, y)↦ (αx + p(y), βy + γ) with α,β ∈ k∗, γ ∈ k.

Notice that Theorem 1.1 can be deduced from Theorem 1.2. Indeed, any algebraic subgroup
of Aut(A2

k) has bounded degree, hence also bounded length [Wri79, 1.10]. However, any
subgroup of bounded length of an amalgamated product A∗CB is conjugate to a subgroup of
one of the factors A and B [Ser80, Theorem 8]; cf. [Kam79, Corollary 4.2 and Theorem 4.3]
and [Wri79, Propositions 0.35 and 1.11] for alternative arguments.

The abelian subgroups of an amalgamated product of two groups are described as follows.

Theorem 1.3 (Moldavanskii [Mol67]). Consider a free product with amalgamated subgroup
F = A ∗C B. Then for any abelian subgroup G of F precisely one of the following holds:

(1) G is conjugate in F to a subgroup of either A or B;
(2) G = ⋃iHi where H0 ⊂ H1 ⊂ . . . ⊂ Hi . . . is an infinite non-stationary chain of subgroups

such that each Hi is conjugate in F to a subgroup of C while G is not conjugate to any
subgroup of A or B;

(3) G =H ×⟨g⟩ where H is conjugate to a subgroup of C and g ∈ G is an element of infinite
order non-conjugate to any element of A or B.

See [Wri79] for an alternative approach based on the Bass-Serre theory [Bas76, Ser80].
This approach is also used in [Lam01]. We give the following reformulation of [Lam01,
Theorem 2.4, Propositions 3.12 and 4.10].
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Theorem 1.4 (Lamy). For any subgroup G of Aut(A2
C) one of the following holds:

(1) either G is conjugate to a subgroup of Aff(A2
C) or Jonq+(A2

C),
or G belongs to one of the following types:

(2) G is an abelian torsion group;
(3) G is a solvable group which contains a subgroup of finite index isomorphic to Z;
(4) G contains a nonabelian free subgroup.

Notice that any abelian subgroups G ⊂ Aut(A2
C) of type (2) resp. (3) fits in case (2) resp.

(3) of Theorem 1.3. Let us remind that the de Jonquières group Jonq+(A2
C) is solvable, see

e.g. [Lam01, Corollary 2.5]. The following corollary of Theorem 1.4 is immediate.

Corollary 1.5 (Lamy [Lam01]). The group Aut(A2
C) verifies the Tits alternative.

1.2. Subgroups of the Cremona group Bir(P2
C). More generally, we have the following

theorem.

Theorem 1.6 (Cantat-Urech [Can11, Ure21]). Let X be a compact complex Kählerian sur-
face. Then the group Bir(X) verifies the Tits alternative.

The birational actions of algebraic groups were considered e.g. by Weil [Wei55], Rosen-
licht [Ros56], Matsumura [Mats63], Grothendieck [Gro67, §20.5] and Demazure [Dem70, §1].
We address [Ser10], [BF13] and [Bla17] for a recent treatment. Recall the following definitions.

Definition 1.7. Let X,Z be algebraic varieties over k. A mapping f ∶Z → Bir(X) is said to
be a morphism if the following holds:

● the induced map

Z ×X → Z ×X, (z, x)↦ (z, f(z)(x))

is a birational transformation which induces a biregular isomorphism U
≅Ð→ V between

some dense open subsets U,V ⊂ Z ×X whose projections to Z are surjective.

Definition 1.8. Let G be an algebraic group over k. A birational action of G on an algebraic
variety X over k is a morphism G → Bir(X) which is also a group homomorphism. A
subgroup H of Bir(X) is called algebraic if H is the image of some algebraic group G under
a homomorphism G → Bir(X) which is a morphism. If H ≠ 1 is algebraic and G = Ga then
H is called a Ga-subgroup of Bir(X).

Recall that any algebraic subgroup of Bir(Pn
k) is a linear group [BF13, Remark 2.21]. For

the following lemma we send the reader to [Dem70, §1], see also [Bla17, Remark 2.4].

Lemma 1.9. Let X and Y be algebraic varieties. Then any birational map X ⇢ Y induces
a group isomorphism Bir(X) ≅ Bir(Y ) and conjugates birational group actions on X to
birational group actions on Y .

For the next theorem see [Wei55, Theorem on p. 375], [Ros56, Theorem 1] and also [Bla17,
Theorem 2.17].

Theorem 1.10. Let X be an algebraic variety, G be an algebraic group and G → Bir(X) a
birational group action. Then, there exists a birational map X ⇢ Y where Y is an algebraic
variety that conjugates this action to a biregular group action of G on Y .
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Next we turn to classification of nilpotent and solvable subgroups of the complex Cremona
group Bir(P2

C).
Theorem 1.11 (Déserti [Des07]). Let G be a nilpotent subgroup of Bir(P2

C). Then G is either
a torsion group or a virtually metabelian group.

The next theorem is a reformulation of [Des21, Theorem 8.49], which in turn integrates the
results of [Des15] and [Ure21, Theorem 8.1] based in particular on [Can11, Proposition 6.14
and Theorem 7.7].

Theorem 1.12 (Déserti–Urech). Let G be a solvable subgroup of Bir(P2
C). Then one of the

following holds:

(1) G is conjugate to a subgroup of PGL(2,C(t)) ⋊PGL(2,C);
(2) G is conjugate to a subgroup of an affine algebraic group defined over C;
(3) G is conjugate to a subgroup of the normalizer N(T ) ≅ G2

m ⋊GL(2,Z) of the standard
2-torus T ⊂ Bir(P2

C);
(4) G is isomorphic to H ⋊Z for a finite subgroup H of Bir(P2

C).

Remark 1.13. By Theorem 1.11 the derived length of any connected nilpotent subgroup
of Bir(P2

C) is at most 2. The maximal derived length of a solvable subgroup G ⊂ Aut(A2
k)

(G ⊂ Bir(P2
C), respectively) equals 5 [FP18, Proposition 3.14] (is bounded above by 8, re-

spectively [Ure21, Theorem 1.8]). There is an example of a solvable 3-generated subgroup
G ⊂ Bir(P2

C) of derived length 3 [Cor13, Proposition 2.2]. This group admits no faithful linear
representation.

For any n ≥ 1 there is a nilpotent 2-generated torsion-free subgroup Gn of Bir(P2
k) of

nilpotency class n [Cor13, Lemma 2.1]. Furthermore, the unipotent algebraic subgroup G of
Aut(A2

C) generated by the Ga-subgroups

U1 = {(x, y)↦ (x + s, y)} and U2 = {(x, y)↦ (x, y + τxn)}, s, τ ∈ C
has nilpotency class n.

2. The case of the affine plane

In this section we prove Theorem 0.2 in the particular case X = A2
C. In section 4 we reduce

the general case to this one.

Proposition 2.1. Let G be a subgroup of Aut(A2
C) generated by a finite collection of Ga-

subgroups U1, . . . , Uk defined over C. Assume that G contains no nonabelian free subgroup.
Then G is a unipotent affine algebraic group conjugate in Aut(A2

C) to a subgroup of the
metabelian unipotent de Jonquières group

jonq+(A2
C) = {(x, y)↦ (x + p(y), y + γ) ∣p ∈ C[y], γ ∈ C}.

Proof. Under our assumption G is solvable, see Corollary 1.5. So, it is of one of types (1)-(3)
in Theorem 1.4. Since G is a connected subgroup of the ind-group Aut(A2

C) it cannot be of
type (2) or (3). Hence, G is of type (1), that is, G is conjugate to a subgroup of one of the
groups Aff(A2

C) and Jonq+(A2
C).

Let G be conjugate to a subgroup of Aff(A2
C). Then G is a connected solvable algebraic

group. Hence G is contained in a Borel subgroup B of Aff(A2
C). The unipotent subgroups

U1, . . . , Uk are contained in the unipotent radical U of B, hence also G ⊂ U . Consider the
5



standard faithful representation Aff(A2
C) → GL(3,C). Since the Borel subgroups of Aff(A2

C)
are conjugated we may suppose that the image of G in GL(3,C) consists of upper triangular
matrices of order 3 with unit diagonal. In other words, G is an algebraic subgroup of the
metabelian unipotent affine algebraic group

(x, y)↦ (x + ay + b, y + γ) where a, b, γ ∈ C.
In this case G is a metabelian unipotent algebraic group (of dimension at most 3).

Let now G be conjugate to a subgroup of Jonq+(A2
C). We may assume that G ⊂ Jonq+(A2

C).
There is a decomposition into a semidirect product

Jonq+(A2
C) = jonq+(A2

C) ⋊ T
where T = {(x, y) ↦ (αx,βy) ∣α,β ∈ C∗} is the maximal torus. Since any homomorphism
Ui → T is trivial Ui is contained in the unipotent radical jonq+(A2

C) of Jonq+(A2
C) for i =

1, . . . , k. Hence also G ⊂ jonq+(A2
C). There is the ascending filtration

jonq+(A2
C) =

∞

⋃
d=1

jonq+d(A2
C) where jonq+d(A2

C) = {f ∈ jonq+(A2
C) ∣deg(f) ≤ d}

is a metabelian unipotent affine algebraic group. This defines on jonq+(A2
C) a structure of

a nested ind-group. So Ui ⊂ jonq+d(A2
C) for all i = 1, . . . , k and for some d ≫ 1. Therefore,

G ⊂ jonq+d(A2
C) is a metabelian unipotent affine algebraic group. �

Remark 2.2. The validity of the Tits alternative for the group Aut(A3
C) is still an open

question. We do not know whether an analog of Proposition 2.1 holds in this setup. See
however [Pop17, Corollary 2] (cf. also [DF91, Corollary 3.2]) for the following partial result.

Every connected solvable affine algebraic subgroup G of Aut(A3
k) is rationally triangulable,

that is, conjugate in Bir(A3
k) to a subgroup of the de Jonquères group Jonq+(A3

k) of triangular
automorphisms of A3

k.

It follows that the derived length of G is at most 4. Indeed, the derived length of Jonq+(A3
k)

equals 4 [FP18, Lemma 3.2].
Notice also that there exists a stably non-linearizable involution τ ∈ Bir(P3

C), that is, such
that for any natural number n the extension of τ to an involution from Bir(P3

C × Pn
C) by the

identity of Pn
C is not conjugate to a linear involution in Bir(Pn+3

C ) [Pop13, Theorem 4.3].

3. The case of the projective plane

In this section we prove the following proposition.

Proposition 3.1. Let X be an algebraic surface over C and let G be a subgroup of Bir(X)
generated by a finite collection of Ga-subgroups U1, . . . , Uk. Assume that G contains no non-
abelian free subgroup. Then G is a solvable group. Furthermore, one of the following holds:

(1) G is a metabelian unipotent affine algebraic group;
(2) X is rational, G preserves a pencil of rational curves on X and contains a normal

subgroup N such that G/N ≅ Ga.

Recall [Des21, Theorem 1.1] that, given a pencil Λ of rational curves on P2
k, the subgroup

of the Cremona group Bir(P2
k) consisting of transformations preserving Λ is conjugate to the

de Jonquières subgroup J of the Cremona group Bir(P1
k × P1

k) ≅ Bir(P2
k). One has

J = PGL(2,k(t)) ⋊PGL(2,k)
6



where PGL(2,k) acts on P1
k × P1

k via automorphisms of the second factor and acts on
PGL(2,k(t)) via the natural PGL(2,k)-action on the rational function field k(t).

The proof of Proposition 3.1 is preceded by the following lemmas.

Lemma 3.2. Let G be a solvable subgroup of the subgroup PGL(2,k(t)) ⊂ J generated by
a finite collection of Ga-subgroups U1, . . . , Uk ⊂ Bir(P1

k × P1
k) defined over k. Then G is an

abelian subgroup of the unipotent radical Ru(B̃) where B̃ is a Borel subgroup of PGL(2,k(t)).

Proof. Let Ḡ be the minimal algebraic subgroup of PGL(2,k(t)) defined over k(t) which
contains G. Then Ḡ is solvable [MSE11], [FP18, Lemma 2.3] and connected. Indeed, the
component group of Ḡ is finite. Since the Ga-subgroup Ui is infinitely divisible it is contained
in the neutral component Ḡ0 of Ḡ. Hence G ⊂ Ḡ0 and so Ḡ = Ḡ0 is connected.

It follows that Ḡ is contained in a Borel subgroup B̃ of PGL(2,k(t)). Since every unipotent
subgroup Ui of B̃ is contained in the unipotent radical Ru(B̃) ≅ Ga(k(t)) then also G is. �

Lemma 3.3. Let X be a projective variety over k and G be a solvable subgroup of Bir(X)
generated by a finite collection of Ga-subgroups U1, . . . , Uk ⊂ Bir(X). Assume that G is con-
jugate to a subgroup of Aut(S) where S is a projective variety. Then G is a unipotent affine
algebraic group. The same conclusion holds if G is conjugate to a subgroup of an affine
algebraic group.

Proof. Assume G is conjugate to a subgroup of Aut(S). The group G being connected the
image of G in Aut(S) is contained in the neutral component Aut0(S). By the Matsusaka
theorem [Mat58] Aut0(S) is an algebraic group. According to a Chevalley theorem (see
[Ros56, Theorem 16]) there exists a connected affine algebraic normal subgroup H of Aut0(S)
such that A = Aut0(S)/H is an abelian variety. Since any homomorphism Ui → A is trivial
the image of Ui in Aut0(S) is contained in H for i = 1, . . . , k. Hence also the image of G
is contained in H. Being solvable and connected, the image of G is contained in a Borel
subgroup B of H. There is a decomposition B = U ⋊ T where U is the unipotent radical of
B and T is a maximal torus of H. Since any morphism Ui → T is trivial the image of Ui

is contained in U for i = 1, . . . , k. Therefore the image of G is a closed subgroup of U , and
so, a unipotent affine algebraic group. The same argument proves the last assertion of the
lemma. �

Remark 3.4. Let X be a normal affine variety over k and let H1, . . . ,Hk be algebraic sub-
groups of Aut(X). If these subgroups are contained in an algebraic subgroup H of Aut(X)
then by the Sumihiro theorem [Sum74, Theorem 3] there exists an H-equivariant completion
X̄ of X so that the action of H1, . . . ,Hk on X extends to their action on X̄. The proof of
Lemma 3.3 shows the converse, namely,

If the action of H1, . . . ,Hk on X can be extended to their action on some completion X̄ of X
then these subgroups are contained in an algebraic subgroup H of Aut(X).

Clearly, one can take for H the closure of ⟨H1, . . . ,Hk⟩ with respect to the Zariski topology of
the ind-group Aut(X). If the subgroupsH1, . . . ,Hk are connected then the group ⟨H1, . . . ,Hk⟩
is itself algebraic [Hum75, Proposition 7.5].

Lemma 3.5. Let C be a curve over k and U and U ′ be two different Ga-subgroups of Aut(C).
Then C ≅ P1

k, the fixed points of U and U ′ are distinct and ⟨U, U ′⟩ ≅ PGL(2,k).
7



The proof is a simple exercise and will be omitted.

Lemma 3.6. Let X be a projective surface over k and G be a solvable subgroup of Bir(X)
generated by a finite collection of Ga-subgroups U1, . . . , Uk. If X is irrational then G is an
abelian unipotent affine algebraic group.

Proof. If G is abelian then G is a quotient of the abelian affine algebraic group U1 × . . . ×Uk,
which implies the assertion in this case. Otherwise there is a pair of non-commuting Ga-
subgroups Ui and Uj. If the general orbits of Ui and Uj have distinct closures then for the
general point P ∈X the rational map

A2
k ⇢X, (s, t)↦ Ui(s)Uj(t)(P )

is dominant. So X is unirational. By the Castelnuovo rationality theorem X is rational,
contrary to our assumption.

Hence Ui and Uj have the same (one-dimensional) closures of general orbits. Let Õ be the
normalization of the closure Ō in X of the general orbit O of Ui. Then Ui∣Õ and Ui∣Õ are non-

commuting Ga-subgroups of Aut(Õ), see e.g. [Dem70, Exemple 3]. By Lemma 3.5 Õ ≅ P1
k,

the fixed points of Ui∣Õ and Uj ∣Õ are distinct and the group ⟨Ui∣Õ , Uj ∣Õ⟩ ≅ PGL(2,k) contains
a nonabelian free subgroup. Hence ⟨Ui, Uj⟩ as well contains a nonabelian free subgroup,
contrary to our assumption that G is solvable. �

Proof of Proposition 3.1. By Theorem 1.6 Bir(X) verifies the Tits alternative. Since the
connected subgroup G ⊂ Bir(X) contains no nonabelian free subgroup it is solvable. If X
is irrational then by Lemma 3.6 case (1) of the proposition holds. Assume now that X is a
rational surface and G ⊂ Bir(X) ≅ Bir(P2

C). By Theorem 1.12 G is one of the groups in (1)-(4)
of this theorem. Any Ga-subgroup Ui is infinitely divisible. Hence it admits no nontrivial
homomorphism to the group Γ =H ⋊Z where H is a finite group. The same holds as well for
G = ⟨U1, . . . , Uk⟩. Therefore G cannot be of type (4) in Theorem 1.12. It cannot be of type (3)
either, since otherwise the image of G in N(T ) is contained in T = N(T )0, which is impossible.
If G is of type (2), that is, G is conjugate to a subgroup of an affine algebraic group, then by
Lemma 3.3 G is a unipotent affine algebraic group. By Theorem 1.11 G is metabelian, which
corresponds to case (1) of the proposition. It remains to treat the possibility for G to be of
type (1) in Theorem 1.12.

Thus, we assume in the sequel that G is contained in the de Jonquère subgroup J =
PGL(2,C(t))⋊PGL(2,C) of Bir(P2

C). The latter is equivalent to the fact that G preserves a
pencil of rational curves on P2

C, see e.g. [Des21, p. 4]. Let ϕ∶J → PGL(2,C) be the quotient
morphism. The connected solvable subgroup ϕ(G) is contained in the Borel subgroup B
of PGL(2,C). For any i = 1, . . . , k the image ϕ(Ui) is contained in the unipotent radical
Ru(B) ≅ Ga. Thus, we have the exact sequence

(1) 1→ N = ker(ϕ)→ G
ϕÐ→ Ga = Ga(C).

Assume first that N = G, that is, G ⊂ PGL(2,C(t)). By Lemma 3.2 G is abelian. Hence
G is a quotient of ∏k

i=1Ui and once again case (1) of the proposition holds.
Let now N ≠ G. Then ϕ is surjective, G/N ≅ Ga and we are in case (2) of the proposition.

�

The following example shows that the group G in Proposition 3.1 can be an infinite-
dimensional metabelian group.

8



Example 3.7. Consider the Ga-subgroups U1 and U2 of Bir(P1
k × P1

k) given in affine coordi-
nates (x, y) ∈ A2

k ⊂ P1
k × P1

k by formulas

U1 = {(x, y)↦ (x + τ, y)}, U2 = {(x, y)↦ (x, y + τ
x
)}, τ ∈ k.

They are generated by the locally nilpotent derivations

∂1 = ∂/∂x ∈ Der(k[x, y]) resp. ∂2 = x−1∂/∂y ∈ Der(k(x)[y]).
The Lie subalgebra L ⊂ Der(k(x)[y]) generated by ∂1 and ∂2 is two-step solvable. In fact,

L ∶= ⟨∂1, ∂2⟩ = ⟨L1, L2⟩ where L1 = k∂1 and L2 = {f(x−1)∂/∂y ∣ f ∈ uk[u]}
are abelian Lie subalgebras. We have [L,L2] ⊂ L2 where L2 ⊂ L is an abelian ideal. Hence
G = ⟨U1, U2⟩ is an infinite-dimensional metabelian (“unipotent”) subgroup of Bir(P1

k × P1
k) ≅

Bir(P2
k).

In the next example we exhibit a Ga-subgroup U of the semidirect product of the Borel
subgroups B̃⋊B ⊂ J which is not contained in the semidirect product of the unipotent radicals
Ru(B̃) ⋊Ru(B).

Example 3.8. Consider the Ga-subgroup U ⊂ B̃ ⋊ B ⊂ J acting on P1
k × P1

k via birational
transformations

(x, y)↦ (x + τ, x + τ
x

y + τ
x
) , τ ∈ k.

The infinitesimal generator of U is the derivation

∂ = ∂

∂x
+ y + 1

x

∂

∂y
where ∂2(x) = ∂2(y) = 0.

Clearly, U /⊂ Ru(B̃)⋊Ru(B) ≅ Ga(k(x))⋊Ga(k). Notice that U is conjugate in Bir(P2
k) to the

subgroup of translations (x, y)↦ (x + τ, y), τ ∈ k, see [Pop17, Corollary 5(i)]; cf. also [DF91,
Corollary 3.2].

4. The case of an affine surface

The next result is our main theorem.

Theorem 4.1. Let X be an affine surface over C and G be a subgroup of Aut(X) generated
by a finite collection of Ga-subgroups U1, . . . , Uk. Assume that G contains no nonabelian free
subgroup. Then G is a metabelian unipotent affine algebraic group.

Proof. By Proposition 3.1 the assertion holds unless X is rational, G preserves a pencil Λ of
rational curves on X and has a solvable normal subgroup N such that G/N ≅ Ga. In this
remaining case we consider a functorial resolution of singularities X̃ →X. It is G-equivariant
and the lift to X̃ of any regular action of an algebraic group on X is regular, see [Kol07, §3.4,
Proposition 3.9.1 and Theorem 3.36]. Since X is a surface, one can take for such a resolution
the normalization followed by the minimal resolution of singularities. Indeed, both of them
are functorial.

Thus, we may and will assume that X is a smooth quasi-projective surface and Λ is a
G-invariant pencil of non-complete rational curves on X. The fixed components of Λ are
G-invariant. Deleting these components we may suppose that the base locus Bs(Λ) is a finite
set of points. These points are fixed by the action of G. We can resolve the base points of
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Λ via a minimal sequence of successive blowups with zero-dimensional centers. The G-action
on X lifts to the resolution and the lift of any Ui-action remains regular. Therefore we may
assume that Λ is base-points free.

By our assumption, ϕ∶G → Ga in (1) is surjective. Hence ϕ∣Ul
surjects onto Ga for some

l ∈ {1, . . . , k}. The effective Ga-action on the base P1
C of Λ has a unique fixed point. Let this

point be the point ∞ ∈ P1. If the corresponding member γ∞ of the pencil Λ is a nonzero
effective divisor then it is G-invariant. Replacing X by X ∖ supp(γ∞) we may suppose that
Λ is parameterized by A1

C = P1
C ∖ {∞}. The base point free pencil Λ defines a morphism

π∶X → A1
C which is G-equivariant with respect to the G-action on X and the ϕ(G)-action

on A1
C. The ϕ(Ul)-action on A1

C being free the Ul-action on X is as well free. The general
member γ of Λ is a smooth affine curve. The free Ul-action on X yields a trivialization of the
fibration π∶X → A1

C via the Ul-equivariant isomorphism

A1
C × γ

≅Ð→X, (τ,P )↦ Ul(τ)(P ), τ ∈ C,
where Ul acts on A1

C × γ via translations on the first factor. If the affine curve γ is not
isomorphic to the affine line then any morphism A1

C → γ is constant. Hence there is a unique
A1-fibration on X, namely, the one coming from pr2∶A1

C × γ → γ via the above isomorphism
X ≅ A1

C×γ. It follows that for any i = 1, . . . , k the general orbits of the Ui-action on X are the
general fibers of the latter A1

C-fibration. In this case Ui and Uj commute for any i, j, hence

G is abelian and a quotient of ∏k
i=1Ui ≅ Gk

a.
Suppose G is not abelian. Then γ ≅ A1

C and so X ≅ A2
C. Now Proposition 2.1 applies and

gives the result. �

Remarks 4.2. 1. Alternatively, one can use a detailed description of the subgroup of auto-
morphisms of an A1-ruled affine surface which preserve the ruling, see [KPZ17, Theorems 8.13
and 8.25].

2. As a curiosity, let us observe that any group G generated by a finite collection of
Ga-subgroups and acting on an affine surface X with a non-closed orbit must contain a
nonabelian free subgroup. Indeed, otherwise by Theorem 0.2 G is unipotent and then any
G-orbit is closed in X according to a theorem of Rosenlicht. As a simple example consider
the group G = SL2(C) acting on the affine plane. It is generated by the Ga-subgroups

U1 = {(x, y)↦ (x + sy, y)} and U2 = {(x, y)↦ (x, y + tx)}, s, t ∈ C.
The origin of A2

C is a unique closed G-orbit and its complement is an open orbit of G.
However, the above condition is not necessary in order that G contains a nonabelian free

subgroup. Indeed, adding a third Ga-subgroup of shifts U3 = {(x, y) ↦ (x + r, y), r ∈ C} one
gets a group ⟨U1, U2, U3⟩ acting transitively on the plane and containing a nonabelian free
subgroup.

5. Unipotent group actions and Gizatullin surfaces

5.1. Unipotent group actions on affine surfaces.

Proposition 5.1. Let X be an affine surface over k and U be a unipotent algebraic subgroup
of Aut(X). Then one of the following holds:

(i) U has an open orbit in X. In this case X ≅ A2
k, U is transitive on A2

k and is conjugate
to a subgroup of the unipotent de Jonquières subgroup jonq+(A2

k).
10



(ii) The general orbits of U on X are one-dimensional. In this case U is abelian.

For any natural number n ≥ 2 there exists a unipotent subgroup U ⊂ Aut(X) of dimension
dimU = n satisfying (i), respectively, (ii).

Proof. In case (i) the open orbit of the unipotent algebraic group U is closed in X, hence
coincides with X and is isomorphic to the affine plane A2

k. By Serre’s theorem [Ser80, Theo-
rem 8] the algebraic group U is conjugate to a subgroup of either Aff(A2

k) or Jonq+(A2
k). In

any case, being unipotent U is conjugate to a subgroup of jonq+(A2
k). It remains to notice

that the unipotent algebraic group G = ⟨U1, U2⟩ in Remark 1.13 has dimension n+ 2 and acts
transitively on the plane A2

k.
In case (ii) consider a Ga-subgroup U0 of U , and let ∂0 ∈ lie(U0) be the locally nilpotent

derivation generating U0. The Lie algebra lie(U) consists of regular vector fields on X tangent
to the orbits of U . Any such derivation has the form f∂0 where f is a U -invariant rational
function on X. It follows that lie(U) is abelian, and then U is.

The last assertion in this case can be confirmed as follows. Starting with a Ga-subgroup U0

of Aut(X) and a nonconstant U0-invariant function f ∈ O(X) and adding the Ga-subgroups
Ui = exp(f i∂0), i = 1, . . . , n − 1 one obtains an n-dimensional abelian unipotent subgroup
U ⊂ Aut(X) where

U =
n−1

∏
i=0

Ui = {exp(p(f)∂0) ∣p ∈ k[t], deg(p) ≤ n − 1}.

�

5.2. Gizatullin surfaces. We recall a classification of normal affine surfaces with respect to
the ‘size’ of the collection of Ga-subgroups of their automorphism groups, see e.g. [KPZ17,
Section 5]. Given such a surface X over k we let SAut(X) be the subgroup of Aut(X)
generated by all the Ga-subgroups. The Makar-Limanov invariant ML(X) measures the
complexity of the action of the group SAut(X) on X. More precisely, we say that X is of
class MLi where i ∈ {0,1,2} if the codimension in X of the general SAut(X)-orbit is equal to
i. The surface X is said to be rigid if it is of class ML2, that is, does not admit any nontrivial
Ga-action. If X is of class ML1 then all the effective Ga-actions on X have the same general
orbits contained in the fibers of an A1

k-fibration X → B over a smooth affine curve B. In this
case, under a mild addition assumption, SAut(X) is an abelian nested ind-group [KPZ17,
Section 6]. A simple example is provided by the surface X = (A1

k ∖ {0}) × A1
k. Indeed, this

surfaces carries the unique A1
k-fibration pr1∶X → A1

k ∖ {0}.
The most interesting class is the class ML0. It consists of the Gizatullin surfaces. A

normal affine surface X over k non-isomorphic to (A1
k ∖ {0}) × A1

k is called a Gizatullin
surface if X can be embedded into a complete surface X̄ by adding a reduced boundary
divisor D = X̄ ∖X which is a chain of smooth rational curves with simple normal crossings.
By the Gizatullin theorem [Giz71, Theorems 2 and 3] a normal affine surface X is Gizatullin
if and only if Aut(X) contains two Ga-subgroups U1, U2 whose general orbits are different,
in other words, if the group SAut(X) acts on X with an open orbit, that is, ML(X) = 0.
Given a Gizatullin surface X the group SAut(X) acts infinitely transitively on its open
orbit [AFKKZ13, Example 2.3]. For any natural number n > 1 there exists a smooth Gizatullin
surface X carrying an n-parameter family of A1

k-fibrations over A1
k such that any two of them

are not equivalent under the Aut(X)-action on X [FKZ11, Example 6.3.21]. Such a surface
11



X also carries an n-parameter family of Ga-subgroups acting along these A1
k-fibrations and

pairwise non-conjugate in Aut(X). Notice that for X = A2
k any two A1

k-fibrations over A1
k

are equivalent upon the Aut(A2
k)-action due e.g. to Rentchler’s theorem 1.1.

Using Theorem 0.2 and Proposition 5.1 we deduce the following result.

Proposition 5.2. Let X be a Gizatullin surface over C non-isomorphic to A2
C and let G be a

subgroup of Aut(X) generated by a collection of Ga-subgroups. Then the following Tits-type
alternative holds: either G is abelian and acts on X with one-dimensional general orbits, or
G contains a nonabelian free subgroup and acts with an open orbit on X.

Proof. If G acts on X with one-dimensional general orbits than it preserves fiberwise an
A1

C-fibration X → A1
C. Hence any two Ga-subgroups of G commute and so G is abelian.

Otherwise G contains two non-commuting Ga-subgroups U1 and U2 which act on X with
different general orbits. The subgroup U = ⟨U1, U2⟩ of G acts on X with an open orbit. If
U is unipotent then by Proposition 5.1 X ≅ A2

C contrary to our assumption. Therefore, by
Theorem 0.2 U contains a nonabelian free subgroup. �
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