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1. INTRODUCTION 

The variation and evolution of craniofacial skeletal morphology in hominids is the result of a 

complex interplay between genetic factors (e.g., Adhikari et al. 2016; Pickrell et al. 2016; 

Shaffer et al. 2016; Zaidi et al. 2017; Claes et al. 2018) and biomechanical pressures related 

to brain growth, mastication, and respiration (e.g., Moss and Young 1960; Enlow 1990; 

Richtsmeier et al. 2006; Lieberman 2011; Bastir and Rosas 2013), as well as multiple 

environmental factors including diet, activity level, and ecogeographic variables such as 

temperature (e.g., Steegmann and Platner 1968; Roseman 2004; Rae et al. 2006; Evteev et 

al. 2014; Menendez et al. 2014; Sardi 2018; Wroe et al. 2018; Martin et al. 2021). Although 

developmental shifts in brain ontogeny and selective pressures in response to the 

biomechanical forces related to mastication and respiration appear to be predominant in 

human skull evolution (for a recent comprehensive review, see Lesciotto and Richtsmeier 

2019), environmental factors might still have a significant influence, though possibly more 

challenging to disentangle from other processes. 

The influence of these environmental factors, particularly temperature, has been addressed 

in prior research, mainly focusing on their impact on infra- or post-crania morphology and body 

proportions (e.g., Holliday 1997; Ruff 2002; Holliday and Hilton 2010). The pioneering work of 

Bergmann (1847, translated in James 1970) states that homoeothermic organisms maintain 

stable internal body temperature by balancing the production of warmth within the volume of 

their body and the loss of warmth from its surface. In this thermoregulation process, the surface 

area-to-volume ratio of the body is therefore a predominant factor. According to Bergmann’s 

rule, within a broadly distributed genus, species of larger size are found in colder environments, 

while species of smaller size are found in warmer environments. This rule, though still debated 

(e.g., Scholander 1955; Mayr 1963; McNab 1971, 2010, 2012; Crognier 1981a; Ruff 1994; 

Katzmarzyk and Leonard 1998; Ashton et al. 2000; Meiri and Dayan 2003; Ochocinska and 

Taylor 2003; Blackburn and Hawkins 2004; Meiri et al. 2004; Rodriguez et al. 2006; Clauss et 
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al. 2013; Foster and Collard 2013; Alhajeri and Steppan 2015; Gohli and Voje 2016; Brown et 

al. 2017; Nunes et al. 2017; Sargis et al. 2018), also applies to the genus Homo. Allen’s rule, 

based on another foundational work concerning the infl uence of environmental temperature 

on the morphology of homoeothermic organisms (Allen 1877), states that in colder climates 

individuals tend to possess shorter limbs and extremities, thus reducing the surface area-to-

volume ratio and the associated heat dissipation. In warm climates, the opposite phenomenon 

is observed. However, Bergmann’s and Allen’s rules were based on observed variation of the 

postcranial skeleton and may not apply to the craniofacial skeleton. The impact of 

environmental temperature on the variation and evolution of skull phenotypes remains less 

clear, for example, in Neanderthals (e.g., Steegmann et al. 2002, but see Weaver 2009). 

Moreover, attempts to provide mechanistic hypotheses to explain craniofacial morphological 

variation attributed to environmental temperature remain scarce. Hence, in the present 

chapter, we will review research relevant to two critical questions, which, from our perspective, 

are related and need to be addressed together to increase our comprehension of the role of 

climate in the evolution of craniofacial morphology: 

• What anatomical and functional units of the skull exhibit temperature associated patterns 

of morphological variation? 

• What developmental processes (genetic, molecular, and cellular) involved in craniofacial 

growth and development are sensitive to temperature and could contribute to the explanation 

of such variation? 

 

Among the different anatomical and functional units of the skull, the facial skeleton shows 

clear signs of morphological variation related to environmental temperature. In particular, 

temperature-related variation of the shape and size of the nasal cavity has been a focus of 

research in paleoanthropology and physical anthropology for many years. The nasal cavity 

forms the gateway to the respiratory system (Enlow 1990). As such, the morphology of this 

interface region has long been considered a reliable proxy for studying the link between 

hominins and their environment (e.g., Davies 1932; Weiner 1954; Carey and Steegmann 1981; 

Yokley 2009; Noback et al. 2011). Two main hypotheses have been put forward to interpret 

how adaptive pressures impact nasal cavity morphology. These hypotheses are not mutually 

exclusive and relate to two factors that might simultaneously influence nasal morphology. The 

fi rst hypothesis considers the morphology of the nasal cavity in relation to its air conditioning 

function and climatic adaptation (Charles 1930; Shea 1977; Cole 1982b; Churchill et al. 2004; 

Yokley 2009; Butaric et al. 2010; de Azevedo et al. 2017; Butaric and Klocke 2018; Evteev and 

Grosheva 2019; Heuzé 2019). The air conditioning function of the nasal cavity is the process 

by which the inspired air reaches body core temperature and a full saturation with water vapor 

to protect the alveolar lining in the lower airway (Elad et al. 2008; Wolf et al. 2004). The second 
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hypothesis emphasizes the role of the nasal cavity as the upper part of the respiratory system 

regulating the amount of air inhaled and is thus closely related to the energetic demands of the 

body (Hall 2005; Froehle et al. 2013; Holton et al. 2014, 2016; Wroe et al. 2018). 

Neanderthals, who lived in Eurasia until about 28 kya ago (Finlayson et al. 2006), have 

received much attention on these matters. The morphology of the Neanderthal appendicular 

and facial skeletons has often been interpreted as cold adapted (e.g., Steegmann et al. 2002) 

and/or as the result of genetic drift (Weaver 2009). In the facial region, this variation includes 

a larger nasal cavity in Neanderthal relative to anatomically modern Homo. This larger nasal 

cavity would allow an increased incoming airfl ow, associated with a larger volume of the 

ribcage to meet the high energetic demands of large-brained and heavy-bodied Neanderthals 

(Coon 1962; Franciscus and Churchill 2002; Garcia-Martinez et al. 2018; Wroe et al. 2018) 

while providing an efficient way to condition air in cold climates (de Azevedo et al. 2017, but 

see Bastir 2019). Using computational fluid dynamics methods, one can quantify several 

airflow features characterizing respiration, as well as air conditioning efficiency in extant normal 

and pathological samples (Burgos et al. 2017; Kim et al. 2017). These methods have recently 

been used to study Neanderthals (de Azevedo et al. 2017; Wroe et al. 2018), though the virtual 

reconstruction of nasal mucosa of fossil specimens, achieved by morphing the modern human 

airway to fossil nasal cavities (see also Bourke et al. 2014), might be problematic (Evteev and 

Heuzé 2018). Indeed, based on a relatively small sample (N = 30), Heuzé (2019) reported a 

rather low correlation between the volume of the bony nasal cavity and the negative volume 

defi ned by the nasal mucosa, that is, the functioning nasal airway, thus preventing robust 

direct interpolation of nasal airway volume on the basis of nasal cavity volume. 

In this chapter, we take a step back and address the question of the interaction between 

environmental temperature and facial skeletal morphology from a new perspective. Our 

purpose is to provide an overview of the current knowledge of the temperature-related 

morphological variation of nasal and paranasal structures and to explore the temperature-

sensitive pathways that might have a role in this variation. Genes sensitive to temperature are 

obviously of importance in temperature-related morphological variation, and examples are 

provided in this chapter. However, genes do not directly produce phenotypes (Cohen and 

McLean 2000; Richtsmeier and Lesciotto 2020). Rather, phenotypes are the products of 

complex interactions between the genome and the internal and external environment. A 

concept central to these interactions is developmental plasticity, which is the response of cells, 

tissues, organs, and/or an individual organism to environmental variation that occurs within the 

lifespan of an individual with a single genotype and results in the formation of more than one 

phenotype (Hall and Witten 2018). Acknowledging the key role of cellular processes in the 

making of phenotypes, this review focuses on the cellular response to temperature changes. 

In doing so, our purpose is to pave the way to a better understanding of the mechanisms that 
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explain the relationship between climate variation and the morphology of the structures 

involved in respiration. We believe that such an approach will shed a new light on the role of 

temperature in human evolution. 

 

2. UPPER AIRWAY MORPHOLOGY 

As stated, the nasal cavity forms the gateway to the respiratory system (Enlow 1990). The 

covariation of environmental air temperature and humidity with morphology of the nasal 

structure has consequently been extensively addressed and these ecogeographic factors are 

considered a driving force in the expression of phenotypic variation and adaptation (Thomson 

1913; Thomson and Buxton 1923; Davies 1932; Woo and Morant 1934; Negus 1952; Weiner 

1954; Cottle 1955; Negus 1960; Wolpoff 1968; Hiernaux and Froment 1976; Carey and 

Steegmann 1981; Crognier 1981a, 1981b; Franciscus and Trinkaus 1988; Franciscus and 

Long 1991; Franciscus 1995; Roseman 2004; Roseman and Weaver 2004; Harvati and 

Weaver 2006a, 2006b; Marquez and Laitman 2008; Hubbe et al. 2009; Yokley 2009; Butaric 

et al. 2010; Bastir et al. 2011; Noback et al. 2011; Evteev et al. 2014; Jaskulska 2014; Butaric 

2015; Maddux et al. 2016a; Zaidi et al. 2017; Marks et al. 2019). In the following, we discuss 

nasal anatomy and physiology and summarize what is currently known about climate-related 

phenotypic variation. Finally, we focus on the paranasal sinuses, their role in respiratory 

energetics, and current hypotheses about their covariation with nasal morphology and 

environmental factors. 

 

2.1. Nasal anatomy and physiology 

The nasal cavity is the area of the craniofacial skeleton that contains the nasal airway, the first 

anatomical region of the respiratory system involved in respiratory energetics and air 

conditioning. Conditioning of the inspired air in the nasal airway is achieved through contact 

with the respiratory mucosa producing heat exchange via convection and moisture exchange 

via evaporation (Cole 1982a; Naclerio et al. 2007; Yokley 2009). Skeletally, the nasal cavity is 

bounded and defined by maxillary, nasal, palatal, vomer, sphenoid, frontal, ethmoid, and 

lacrimal bones. The shape, size, and relative position of these bones affect the morphology of 

the nasal cavity that, at least indirectly, conditions the quantity of air that can be inhaled and 

the air conditioning performances. The dimensions of the entry (piriform aperture) and exit 

(choanae) points significantly influence respiratory energetics (Swift and Proctor 1977; Bastir 

and Rosas 2013). Maddux et al. (2016b) argued that nasal cavity height was more likely to be 

associated with energetics, while nasal cavity width and length play an important role in air 

conditioning (Noback et al. 2011). 

The mucous membrane lining the nasal cavity delimits the nasal airway that can be divided 

into three different units (Figure 1) (Mlynski et al. 2001; Bastir et al. 2020). The first part, the 
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inflow tract, directs and diffuses the airflow, and contains the vestibulum, isthmus, and anterior 

cavum. The second part, the functional tract, includes the nasal turbinates. The third part, the 

outflow tract, directs warmed and humidified air toward the lower respiratory tract and is 

composed of the posterior cavum, choanae, and nasopharynx. 

The thickness of the highly vascularized mucous membrane of the nasal airway fluctuates 

by contraction and expansion, depending on physiological factors such as blood pressure, 

nasal cycle, and nasal function (Cauna 1982; Elad et al. 2008; Yokley 2009; White et al. 2015). 

The variation in mucosa thickness causes congestion and decongestion of the nasal airway 

and affects its size and shape. Consequently, the speed, volume, and direction of airflow are 

also affected (Cauna 1982), as well as the efficiency of air conditioning processes (Churchill 

et al. 2004; Naftali et al. 2005; Zhao and Jiang 2014; Ma et al. 2018). Indeed, the nasal airway 

is the place where air conditioning takes place, which is necessary to optimize gas exchanges 

in the pulmonary alveoli and thus participate in global homeostatic thermoregulation (Havenith 

2005; White 2006) while protecting the lungs from thermal damage, desiccation, and infection 

(Proetz 1951, 1953; Walker and Wells 1961; Cole 1982b; Proctor 1982; Keyhani et al. 1995; 

Williams 1998; Keck et al. 2000; Eccles 2002; Wolf et al. 2004; Yokley 2006; Doorly et al. 2008; 

Elad et al. 2008; Yokley 2009; Hildebrandt et al. 2013). A large mucosal surface and a narrow 

channel generally facilitate heat and moisture exchange (Schmidt-Nielsen et al. 1970; Collins 

et al. 1971; Hanna and Scherer 1986; Schroter and Watkins 1989; Lindemann et al. 2009). 

The nasal turbinates (or conchae) are complex, curled structures that extend from the side 

and upper walls of each nostril and play a major role in respiratory processes. These structures 

are divided into lower, intermediate, and upper turbinates (Moore 1981; Smith et al. 2006; 

Maier and Ruf 2014). They are covered with an epithelium that is olfactory for the upper 

turbinate (Zhao 2004; Sahin-Yilmaz and Naclerio 2011) and respiratory for the intermediate 

and lower turbinates (Doorly et al. 2008; Wen et al. 2008; Xiong et al. 2008; Sommer et al. 

2012; Kim et al. 2017; Marks et al. 2019). Beneath the turbinates lie the superior, middle, and 

inferior meatuses that communicate posteriorly with the outflow tract; the middle meatus also 

holds the opening of the maxillary sinus (ostium maxillare). Ontogenetically, the turbinates and 

the associated meatuses develop from the six furrows, resembling ethmoturbinals, appearing 

on each lateral branch of the cartilaginous nasal capsule during weeks 9 to 10 of human fetal 

development (Jankowski 2013). Postnatally, lower turbinates include numerous seromucous 

cells, providing a significant input of water vapor required in the air humidification process (Cole 

1982b; Tos 1982; Keyhani et al. 1995; Naftali et al. 2005; Na et al. 2012). Studies using 

computational fluid dynamics methods have demonstrated the role of the two lower turbinates 

in mediating the velocity and direction of airflow (Keyhani et al. 1995; Wang et al. 2005; 

Inthavong et al. 2007; Doorly et al. 2008; Zhu et al. 2011; Na et al. 2012; Li et al. 2017; 

Inthavong et al. 2018). 
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2.2. Climate-related variation of nasal structures 

Numerous studies focusing on the nasal area have shown an association between its 

morphology and environmental factors (e.g., air temperature, humidity, altitude). Two main 

proxies for nasal morphology have been used to study this relationship: the negative volume 

defined by bone (i.e., nasal cavity) and the negative volume defined by soft tissue (i.e., nasal 

airway). 

The first studies that accurately demonstrated a relationship between nasal morphology and 

eco-geographical factors were conducted using dry skulls and based on measurements of the 

facial skeleton and nasal aperture (Thomson 1913; Thomson and Buxton 1923; Davies 1932; 

Weiner 1954; Hoyme 1965; Wolpoff 1968; Hiernaux and Froment 1976; Carey and Steegmann 

1981; Crognier 1981a, 1981b; St. Hoyme and Işcan 1989; Franciscus and Long 1991; 

Roseman 2004; Hubbe et al. 2009; Leong and Eccles 2009). Later studies addressed the 

morphology of the entire nasal cavity and confirmed this relationship (Yokley 2009; Noback et 

al. 2011; Evteev et al. 2014; Fukase et al. 2016). Comparative inter-population studies have 

demonstrated that the only area of the nasal complex affected by variation related to eco-

geographic factors is the internal nasal cavity (Maddux et al. 2016b). This area is also the main 

site of heat and moisture exchange within the nasal complex (Ingelstedt 1956; Cole 1982b; 

Keck et al. 2000; Naftali et al. 2005; Elad et al. 2008). 

The results of these studies show that, when humans live in cold environments, they appear 

to possess a nasal cavity that is reduced mediolaterally and increased anteroposteriorly and 

superoinferiorly (Churchill et al. 2004; Doorly et al. 2008; Yokley 2009; Holton et al. 2011, 2013; 

Maddux et al. 2016b). Narrow nasal passages facilitate heat and moisture exchange by 

increasing the mucosal surface area relative to air volume (SA/V) ratio. This confi guration 

increases nasal resistance for conditioning incoming airflow but also increases the amount of 

heat and water recovered during exhalation, thereby improving the conditioning capacity of the 

inner nasal cavity (Schmidt-Nielsen et al. 1970; Collins et al. 1971; Hanna and Scherer 1986; 

Schroter and Watkins 1989; Lindemann et al. 2009). In addition, when the anteroposterior 

dimension of the nasal cavity increases, so does the time that airfl ow occurs in the nasal 

cavity, which also contains a larger volume of mucous membrane along this dimension, 

increasing effi ciency of air conditioning (Inthavong et al. 2007; Noback et al. 2011). Last, the 

variation in nasal cavity height might be related to another aspect of climatic adaptation: energy 

demands. Several studies have shown that individuals with higher metabolic demands for 

oxygen consumption, which is generally the case in colder and/or drier environments, tend to 

have taller nasal cavities (Froehle 2008; 

Bastir and Rosas 2013, 2016; Holton et al. 2016). Furthermore, the increase in nasal height of 

individuals living in cold climates might also compensate for the reduction of nasal breadth that 
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is also observed in these environmental conditions, thus maintaining a sufficient volumetric 

intake capacity (Maddux et al. 2016b). 

While the nasal cavity has often been studied, the nasal airway has only become the focus 

of studies in the last few years. An in vivo study (Yokley 2009) measured the SA/V ratio of 

individuals from European and African ancestry and observed that this SA/V ratio was only 

higher in European individuals when the nasal airway was fully decongested (i.e., nasal 

mucosa fully contracted). When the nasal mucosa was not fully contracted, the SA/V ratio 

showed no significant differences between the individuals from European and African ancestry. 

This study underlines the importance of focusing not only on the nasal cavity but also on the 

volume delimited by the mucosa (i.e., nasal airway) and its morphology. An important issue 

when addressing nasal airway morphology is to take into consideration the nasal cycle, which 

consists of the alternative partial congestion and decongestion of the right and left sides of the 

nasal airway during breathing, thus optimizing respiratory air conditioning (Hasegawa and Kern 

1977; Cauna 1982; Eccles 1982, 1996; Watelet and Cauwenberge 1999; White et al. 2015; 

Pendolino et al. 2018). The influence of the periodicity of these nasal cycles on airway 

morphology needs to be addressed by studying larger samples and measuring the right and 

left sides separately (Heuzé 2019). 

 

2.3. Function of the paranasal sinuses 

The paranasal sinuses are mucous membrane-lined cavities within bones that surround the 

nasal area (Figure 2). These include: the frontal sinuses, communicating with the nasal region 

through the meatus; the maxillary sinuses, communicating with the nasal region through the 

semilunar hiatus; and the sphenoid sinus. Ethmoidal air cells, which are thin-walled cavities 

located in and defined by the ethmoidal labyrinth, are also often considered paranasal sinuses. 

However, ethmoid bone development in humans starts during the first trimester of gestation, 

while the other paranasal sinuses develop entirely after birth in aerial conditions, which could 

ontogenetically grant them another status (Jankowski 2013). Furthermore, the mechanisms of 

paranasal sinus formation differ from those of the ethmoidal complex. One theory explaining 

paranasal sinus development -the epithelial theory- states that the maxillary, frontal, and 

sphenoid sinuses are produced via epithelial diverticula 

overflowing from the ethmoid labyrinth and causing a pneumatization of the surrounding bones 

(Zuckerkandl 1893; Zollikofer and Weissmann 2008). 

Several functions have been assigned to paranasal sinuses without real consensus. One 

theory is that these structures were involved in reducing the weight and increasing 

pneumatization of the skull (O’Malley 1923; Tillier 1977). Another theory raised the hypothesis 

of a potential role in thermal insulation of the brain and the eyes or in voice resonance (Masuda 

1992). A third hypothesis, the mechanistic theory, sees the paranasal sinuses as simple 
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residual cavities that result from morphological changes in the surrounding structures that are 

constrained by biomechanical forces during craniofacial development (Rae et al. 2003; Holton 

et al. 2013; Jankowski 2013; Butaric 2015; Butaric and Maddux 2016; Noback et al. 2016; 

Maddux and Butaric 2017; Buck et al. 2019; Evteev and Grosheva 2019). An additional 

hypothesis focuses on the role of the paranasal sinuses in the warming and humidification of 

inspired air (Gannon et al. 1997). 

Another function attributed to the paranasal sinuses is the production of nitric oxide by the 

inner membranes of the sinuses, under the action of the enzyme I-NOS (NOS-2) (Lundberg et 

al. 1995, 1996). Nitric oxide is a powerful vasodilator, particularly involved in the cellular 

functions of the respiratory, nervous, and immune systems (Lundberg 2008; Keir 2009; 

Marquez et al. 2014). It is produced by the endothelial cells of sinus blood vessels and relaxes 

the muscle fibers of the vascular nasal wall when pumped into incoming airflow, thus regulating 

the intranasal temperature (Lundberg et al. 1995; Holden et al. 1999). In addition, nitric oxide 

may help maintain a sterile environment in the respiratory tract through two mechanisms: (1) 

nitric oxide is toxic to many viruses and bacteria and may therefore play a role in protection 

against infections (Mancinelli and McKay 1983; Croen 1993), and (2) the level of nitric oxide 

affects the beat frequency of the cilia of airway epithelial cells that propel mucus-trapped debris 

and particles out of the lungs (Jain et al. 1993). 

The proximity of the paranasal sinuses to the nasal structures and their role in respiratory 

processes has led researchers to study the relationship between the paranasal sinuses and 

climatic factors (e.g., Rae et al. 2011; Butaric 2015; Evteev and Grosheva 2019). While the 

sinuses show a high level of within- and between-group variation (Evteev and Grosheva 2019) 

and are strongly correlated with craniofacial size (Rae et al. 2011; Butaric 2015), a covariation 

has been measured between the maxillary sinus and nasal structures (Butaric 2015). Indeed, 

individuals from cold-dry climates tend to have a larger maxillary sinus volume associated with 

a medial displacement of the lateral nasal walls, thus causing a reduction of the internal nasal 

breadth (Holton et al. 2013; Butaric 2015; Butaric and Maddux 2016; Evteev and Grosheva 

2019). Nevertheless, some confusion remains about the exact function of each of these 

sinuses, their relationship with neighboring structures, and how variation in paranasal sinuses 

relates to skeletal morphology of the entire face, not just the nasal aperture, and environmental 

factors. 

 

3. EFFECTS OF ENVIRONMENTAL TEMPERATURE ON BONE FORMATION 

The studies summarized previously focus on the correlation or covariation between 

ecogeographic factors (mainly temperature) and morphology of the nasal region and the 

hypothesized advantages of these phenotypes in cold or warm environments. Though it is 

widely acknowledged that the morphology of the nasal region depends in large part on the 
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articulation of bones that surround it, the processes that contribute to bone formation that 

underlie this variation and generate its expression are rarely addressed. For instance, we do 

not yet understand the relative roles of heredity and developmental plasticity in the production 

of craniofacial phenotypes (Lovejoy et al. 2003). Here we present an overview of the 

manifestation of thermoregulation in extreme climatic environments and propose hypotheses 

on how stress caused by extreme temperature could modify bone formation processes and 

the resulting morphology of the nasal region. We then address the interaction between genes 

and the environment in the production of a phenotype through the identification of pathways or 

temperature-sensitive genes that could have an effect on the nasal and paranasal structures 

via cellular processes involved in bone and cartilage development. 

We emphasize that trying to explain a phenotype as the direct result of temperature 

influence is unrealistic, as many other factors must be considered to explain craniofacial 

skeletal morphology. Diet, nutrition, and activity levels are examples of environmental inputs 

that can influence bone metabolism (e.g., Kiliaridis et al. 1985; Paschetta et al. 2010; 

Menendez et al. 2014). Furthermore, temperature is not the only parameter defining ambient 

air, which also depends on the less acknowledged factor of humidity. Another major 

consideration is the integration among structures constituting the craniofacial skeleton that can 

induce a secondary variation in some specific area that is a response to the variation of its 

surrounding bony environment (Sardi et al. 2018; Scott et al. 2018). Age can also affect 

craniofacial morphology. Tooth loss and subsequent bone resorption in the maxillary area 

would induce a modification of palate morphology that could also affect the nasal and 

paranasal structures (Albert et al. 2007; Joganic and Heuzé 2019). Though not meant to be 

exhaustive, we present some temperature-sensitive genes, pathways, and cellular processes 

involved in bone and cartilage formation and that could influence aspects of craniofacial 

morphology. 

 

3.1. Thermoregulation in extreme climatic environments 

Thermoregulation includes all the mechanisms used by an organism to control its body 

temperature and ensure optimal regulation of all metabolic processes (Iwen et al. 2018; 

Romanovsky 2018). In homeothermic species, the production of internal body heat must 

always be balanced with body surface heat loss in order to maintain homeostasis. To this end, 

various mechanisms have evolved, including skin vasodilatation, sweating, behavioral 

adaptations, insulation of the body by fur, clothing, and/ or intradermal fat accumulation 

(Cannon and Nedergaard 2004; Kasza et al. 2014; Alexander et al. 2015; Fischer et al. 2016; 

Kasza et al. 2016). Biological responses such as vasoconstriction and vasodilatation also allow 

heat to be retained or lost by the extremities. For instance, cold temperature leads to 

vasoconstriction that directs the blood flow towards the trunk and vital organs to reduce the 
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dispersion of blood heat in the extremities (Tansey and Johnson 2015). Indeed, the extremities 

of homeothermic species are characterized by their regional heterothermy, that is, the ability 

to drop temperature of the limbs while maintaining that of the trunk (Harrison and Clegg 1969; 

Ponganis et al. 2003; Serrat et al. 2008). 

Experimental studies have measured an interaction between temperature, cell proliferation, 

and bone matrix production, which may affect cartilage growth and thus modify the morphology 

of endochondral bone (Serrat et al. 2008, 2010, 2015; Serrat 2014). Hence, temperature can 

affect vertebral number in ectothermic and homoeothermic vertebrates (Hall 2015), as well as 

limb and extremity length, which tend to shorten in response to a decrease in temperature 

(Allen 1877; Feldhamer 2007). One of the explanations of limb shortening proposed by Serrat 

(2014) is that the vasoconstriction induced by cold stress leads to a decreased blood flow in 

the extremities, altering the transport of important nutrients, oxygen, and hormones, and 

ultimately affecting endochondral ossification. Indeed, growth plates, though avascular, benefit 

from the nutritional support of the surrounding vasculature that transports solutes diffusing 

through the extracellular matrix to reach the cartilaginous cells (Brookes and Revell 1998). An 

alteration in blood flow might therefore affect this nutrient supply, thus affecting normal growth. 

Interestingly, the effects of temperature on limb length can be observed within a single 

generation of outbred mice reared at warm and cold temperatures during the postnatal growth 

period (Serrat et al. 2008). These observations underscore the potential role of phenotypic 

plasticity. When driven by environmental factors, phenotypic plasticity is considered a greater 

evolutionary force than random mutation (West-Eberhard 2005), but few studies have 

addressed the potential effect of phenotypic plasticity on morphological variation of the upper 

airway. Rae et al. (2006) contributed to this question in their study of the dry crania of cold- 

and warm-reared rats. Their results show that cold stress causes subtle but significant changes 

in facial shape as well as maxillary sinus and nasal cavity volumes, suggesting developmental 

plasticity of the craniofacial skeleton in response to climatic variation. 

 

3.2. Mechanisms of temperature influence on upper airway bone and cartilage 

Potential responses of the craniofacial skeleton to cold stress are not well understood, but 

some authors have proposed hypotheses that might explain how temperature influences 

craniofacial variation. For example, a recent study on nasal turbinate morphology (Marks et al. 

2019) hypothesized that the modification of cartilage development in cold environments could 

also apply to nasal turbinate cartilage and all cartilages of the nasal capsule of the forming 

chondrocranium. If this change occurred, the morphology of the surrounding non-cartilaginous 

skeletal structures developed through intramembranous ossification (e.g., the maxillary, 

premaxillary and nasal bones) would also likely be affected (Chae et al. 2003; Egeli et al. 2004; 

Opperman et al. 2005; Wealthall and Herring 2006; Al Dayeh et al. 2013; Hall and Precious 
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2013; Hartman et al. 2016; Holton et al. 2018). By altering the expression of genes and 

pathways that affect cellular processes involved in cartilage metabolism, temperature could 

then have an indirect effect on growth of the facial bones. 

Selective brain cooling (SBC) is the mechanism that keeps the brain at a cooler temperature 

than the rest of the body through the precooling of the blood supplying the brain and provides 

an example of complex interaction between blood flow intensity and morphological variation. 

This mechanism is achieved by dilation or constriction of the veins. For example, constriction 

of the veins returning blood from the nose and face precools that blood that will then be 

supplied arteriorly to the brain (Caputa 2004). Regulation of the evaporation of water at the 

mucosal surfaces of nasal turbinates also contributes to SBC (Irmak et al. 2004). Furthermore, 

ethmoidal air cells and the sphenoid sinus could potentially help cool the adjacent brain lobes 

and vessels by thermal conduction. Part of the morphological variation of craniofacial 

structures might reflect adaptive changes in growth patterns that produce morphology ensuring 

a more effective SBC specific to the environment. Finally, we know that cold stress implies 

greater oxygen consumption, due to the sympathetic activity associated with brown adipose 

tissue production and muscle activation during nonshivering thermogenesis (Lowell and 

Spiegelman 2000). The increase of incoming airflow, which is closely related to the energetic 

demands of the body, could also play a role in the morphological variation of nasal structures 

(see also Maddux et al. 2016b). 

 

3.3. Temperature-sensitive developmental pathways 

Temperature not only affects the skeleton but almost every system in the body, causing many 

interactions among tissues that may experience different consequences of thermal stress 

(Tattersall et al. 2012). Although the number of genome-wide studies on the molecular basis 

of craniofacial morphology have been expanding in the last few years (e.g., Adhikari et al. 

2016; Weinberg et al. 2018; Xiong et al. 2019), our understanding of the genetic basis for 

craniofacial variation is incomplete. It is therefore not an easy task to identify the temperature-

sensitive genes that might directly and/or indirectly affect craniofacial morphology. Here, we 

highlight a few of these genes and associated pathways that were identified through in vivo 

and in vitro studies and which may explain some of the temperature-related variation of nasal 

and paranasal morphology (Figure 3). We begin by noting that the production of a “cold 

phenotype” or a “warm phenotype” does not necessarily imply mechanisms that would be 

opposites. Note that variation is expected in the phenotypic response to the temperature-

sensitive genes and associated pathways. Some of these phenotypic responses might be 

continuous and proportional to the temperature variation, while others might be expressed only 

when a threshold is reached. Additionally, temperature variation at certain developmental 
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stages can have different phenotypic outcomes varying both in pattern and intensity (e.g., Hall 

2015). 

Some researchers have demonstrated that temperature can have a direct effect on bone 

formation and growth by altering the activity of bone-forming osteoblasts and bone-resorbing 

osteoclasts. An in vitro study using cells derived from rat trabecular bone (Patel et al. 2012) 

has shown that, after 14–16 days of culture, the activity of calvarial osteoblasts was reduced 

by 75% in mild hypothermia and by 95% in severe hypothermia. A reciprocal effect of 

hypothermia was also observed on osteoclastogenesis, that showed a 1.5- to 2-fold 

stimulation, thus increasing bone resorption. 

Temperature was also shown to affect preosteoblast activity in vitro, including mesenchymal 

stem cell differentiation (Shui and Scutt 2001; Chung and Rylander 2012). When subject to 

heat stress, preosteoblast cells can promote expression of osteocalcin and osteopontin, two 

proteins involved in bone mineral density and metabolic regulation. However, the combination 

of heating and osteoinductive growth factors leads to the expression of heat shock proteins 

(HSPs), osteoprotegerin, and vascular endothelial growth factor (VEGF). Osteoprotegerin is 

involved in bone resorption through its role as a decoy receptor in the RANKL/RANK pathway 

(Aubin and Bonnelye 2000), and VEGF stimulates angiogenesis and controls bone formation 

(Dai and Rabie 2007). HSPs are multifunctional proteins that can be induced by heat stress or 

cold stress (Rylander 2005; Barna et al. 2012; Patil and Paul 2014; Hang et al. 2018). HSP70, 

for example, increases the proliferation and differentiation of osteoprogenitor cells, which are 

bone marrow-derived stromal cells (Shui and Scutt 2001), and regulates both the resorption 

activity of osteoclasts via the RANKL/RANK pathway and the bone production activity within 

osteoblasts by activating the ERK and Wnt/β-catenin pathway (Hang et al. 2018). The 

temperature of the cell culture also influences HSP27, which is particularly involved in the 

regulation of bone cell physiology through upregulation of TGF-β (Hatakeyama et al. 2002), 

estrogen (Cooper and Uoshima 1994), endothelin-1 (Tokuda et al. 2003), and prostaglandins 

(Kozawa and Tokuda 2002). These results point to HSP27 as a potentially important factor in 

the modulation of cellular events in bone and cartilage. 

Clock genes are also involved in cell proliferation in cartilage. Clock genes are 

transcriptional activators that play a central role in the regulation of circadian rhythms, the 24-

hour cycles in physiology that precisely regulate organ function (Reppert and Weaver 2001). 

The expression of clock genes is directly dependent on temperature, and their mutation can 

lead to an altered regulation of bone volume or deficiencies in long bone growth because of 

their control of chondrocyte differentiation (Gossan et al. 2013; Marks 2018; Steindal and 

Whitmore 2019). Circadian clocks might also have a potentially important role in bone growth 

and maintenance and the production of morphology (Takarada et al. 2012). 
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Temperature can also affect global human DNA methylation and RNA editing (Garrett and 

Rosenthal 2012; Shi et al. 2020), as well as telomere length (e.g., Romano et al. 2013). Genes 

with methylation status have been shown to be affected by temperature changes. For example, 

low temperature induces the hypermethylation of ZKSCAN4, expressed by an increase of 

blood pressure (Xu et al. 2020), an indirect pathway that could affect bone growth. Another 

study addressed the contribution of cold-inducible RNA-binding protein (CIRP) to tissue 

remodeling in chronic rhinosinusitis (Shi et al. 2020). This cold shock protein is a chaperone 

that is upregulated under mild hypothermia and facilitates mRNA translation. CIRP seems to 

be involved in cold-induced suppression of cell proliferation, but its precise role is still poorly 

understood. 

Finally, temperature can alter the endocrine system, which has a fundamental role in 

homeostasis. By affecting extracellular matrix proteins, cold stress can modify the diffusion 

rates of endocrine and paracrine growth regulators affecting the diffusion and transport of 

hormones and ultimately skeletal morphology. Among the endocrine hormones that could 

affect the skeleton (Massaro and Rogers 2004), thyroid hormones and leptin are probably the 

best studied. 

It has been shown that thyroid hormones play a very important role in the regulation of 

homeostasis (Iwen et al. 2018). These hormones modify the transcription rate of uncoupling 

protein 1, localized in brown adipose tissue and involved in nonshivering thermogenesis (see 

Chapter 6 by Devlin; Enerback et al. 1997; Golozoubova et al. 2001), increase metabolic rate, 

and can directly influence the sodium/potassium and calcium pumps in skeletal muscle (Silva 

2006), as well as the vasoconstriction and vasodilatation of blood vessels (Warner et al. 2013). 

Thyroid hormone levels also influence intramembranous and endochondral ossification and, 

consequently, craniofacial development (Bassett and Williams 2016). Indeed, skeletal 

hypothyroidism is expressed in a delayed ossification of the skull, which can cause defects 

such as wider and/or persistent cranial sutures and fontanelles. Conversely, skeletal 

hyperthyroidism causes advanced ossification that can manifest as malformations including 

craniosynostosis. Interestingly, the phenotypes produced by an altered thyroid status display 

similarities with loss-of-function or gain-of-function mutations affecting FGF (fibroblast growth 

factor), IGF (insulin-like growth factor) and WNT (Wingless-related integration site) signaling 

pathways, which are key pathways in craniofacial development. Since thyroid hormone T3 

induces FGF, FGFR, IGF1, and IGF1R expression and enhances MAPK signaling in 

chondrocytes and osteoblasts but also enhances WNT signaling and RUNX2 (runt related 

transcription factor 2) expression in chondrocytes and inhibits WNT signaling in osteoblasts, it 

is possible that these signaling pathways interact in the regulation of craniofacial development 

together with thyroid hormones (see for review Leitch et al. 2020). 
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Leptin, a pleiotropic adipocyte derived hormone, is also known to increase with cold 

exposure and plays an important role in cold acclimatization and thermogenesis (Korhonen et 

al. 2008; Zhao 2011; Robbins et al. 2018). For example, studies have identified leptin target 

neurons that are involved in the sympathetic control of brown adipose tissue (e.g., Cannon and 

Nedergaard 2004). Brown adipose tissue is prevalent in newborns and hibernating mammals 

but is also metabolically active in human adults for nonshivering thermogenesis (Shum et al. 

1991; Nedergaard et al. 2007; Saito et al. 2009; Devlin 2015; Oreskovich et al. 2019). Leptin 

is also involved in the regulation of bone growth (Kishida et al. 2005) and can regulate 

angiogenesis (new vessel formation) (Rezai-Zadeh and Munzberg 2013), which would 

permanently modify the blood flow and directly affect intramembranous ossification (Percival 

and Richtsmeier 2013). 

 

4. IMPLICATIONS FOR HUMAN CRANIOFACIAL EVOLUTION 

To improve our understanding of climate-related patterns of craniofacial morphological 

variation in human evolution and the developmental processes underlying this variation, 

several paths could be explored. 

First, to refine our understanding of the phenotypic expression of climate-related 

craniofacial variation, additional quantitative studies are needed to evaluate morphological 

differences between populations living in regions with recorded differences in temperature 

and/or humidity. Medical images of modern individuals living in different climates would enable 

measures of bone and nasal mucosa morphology that are crucial to obtain valid estimates 

used in the evaluation of the covariation between these two anatomical structures (Heuzé 

2019). Studying the covariation between nasal cavity and nasal airway will help with the 

interpretation of the results obtained on dry skulls in terms of respiratory energetics and air 

conditioning. 

Second, studies of the influence of ambient temperature on growth and development of 

rodents (e.g., Rae et al. 2006; Serrat 2014) have shown that experimental studies of animals 

could be used to better understand the effects of temperature on the morphology of nasal 

structures. The use of laboratory animals can help sort genetic causes from other variables, 

like temperature, that potentially affect morphology. Experiments on inbred mice could enable 

quantitative comparison of the volume and morphology of upper airway structures between 

groups of animals exposed to either cold or warm environments. These studies could help 

determine the extent to which morphological variation can be explained by a genetically driven 

adaptation and/or by a physiological response to environmental factors, that is, by phenotypic 

plasticity. Animal models would also allow exploration of the cellular processes involved in the 

morphological response to temperature. An in vitro study on hyperthermia effects on the 

proliferation of bone and cartilage cells (Flour et al. 1992) showed that chondrocytes might be 
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thermoresistant and osteogenic cells thermosensitive. To our knowledge, such results still 

need to be tested in vivo. Future studies based on animal models could investigate the effects 

of temperature (both hypo- and hyperthermia) on the differentiation of osteochondroprogenic 

cells into osteoblasts and chondrocytes (Hall 2015) and on the proliferation of bone and 

cartilage cells. Laboratory mice could serve as a useful model system for this purpose, which 

would then help us discuss the effects of temperature on nasal morphology for other mammals 

such as primates. 

Finally, the use of computational fluid dynamics offers great opportunities to achieve a better 

understanding of respiratory energetics. The complex structures of the nasal airway tend to 

restrict in vivo studies of nasal airflow, but computational fluid dynamics enables a valid and 

accurate numerical simulation of airflow patterns within the nasal cavity (e.g., Inthavong et al. 

2007; Chen et al. 2010; Keck and Lindemann 2010; de Gabory et al. 2020). Thoughtful use of 

this technique applied on modern samples of healthy or pathological individuals could 

contribute greatly to the discussion about how thermoregulation, respiratory energetics, and 

climate interact to produce differential phenotypes in humans. Integrating these three 

approaches would allow a more precise definition of the anatomical and functional units of the 

craniofacial skeleton showing climate-related patterns of morphological variation, which would 

in turn expand our knowledge of developmental processes that are sensitive to temperature, 

providing potential explanations at the cellular, organ, and organismal levels of this observed 

morphological variation. 

 

5. CONCLUSION 

Previous research has shown that human morphological variation can correspond with 

differences in climate. We provided a review of the temperature-related morphological variation 

of nasal and paranasal structures and a discussion of genetic, cellular, and systemic 

temperature-sensitive pathways that might have a role in the production of morphological 

variation of the nasal cavity. We observe that temperature both directly and indirectly affect 

bone formation, either by altering the activity of preosteoblast cells, bone-forming osteoblasts, 

and bone-resorbing osteoclasts or by affecting proteins or hormones (e.g., heat shock proteins, 

clock genes, thyroid hormones, leptin) involved in the activity of bone cells. Beyond providing 

a review on ecogeographic patterns of morphological variation in upper airway and cellular 

processes that potentially influence this morphology, our purpose in this chapter is to highlight 

the need for studies integrating these two areas of research. Such research could ultimately 

improve our understanding of the role of climate in the evolution of craniofacial morphology. 
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FIGURE 7.1 Sagittal cross-section from a CT scan showing the structural elements of the 
incoming nasal airflow pathway in lateral view. The inflow tract consists of the vestibulum (1) 
and the anterior cavum (2), which are separated by the isthmus. The functional tract is the area 
of the turbinates (3). The outflow tract is composed of the posterior cavum (4), choanae, and 
nasopharynx (5). 
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FIGURE 7.2 3D reconstruction of a human adult skull allowing the visualization (transparency) 
and localization of nasal and paranasal structures: nasal airway (blue), ethmoidal air cells 
(orange), frontal sinuses (yellow), sphenoid sinus (red), and maxillary sinuses (green). 
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FIGURE 7.3 Diagram summarizing the major physiological pathways through which 
environmental temperature could influence nasal and paranasal morphology. Solid lines show 
direct temperature influences on bone growth and metabolism. Dashed lines indicate indirect 
ways through which temperature can alter bone cells. Indirect pathways include the endocrine 
system (e.g., thyroid hormones and leptin play a role in thermogenesis and bone growth), the 
circulatory system (temperature variation can induce a vasoconstriction or a vasodilatation, 
thus affecting blood flow and the transport of nutrients, oxygen, and hormones involved in bone 
metabolism), and other temperature-sensitive proteins and genes (e.g., HSP and clock genes 
both influence bone growth and metabolism). 
 


