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Bounds on Herglotz functions and physical limits to broadband
passive cloaking in the quasitatic regime

Maxence Cassier (speaker)
(joint work with Graeme W. Milton)

Introduction: Cloaks are specific structures placed near or around an object
that render the electromagnetic response of cloak plus object equal or almost
equal to that of free space. Ideally passive cloaks should work for waves in a
broadband frequency range, giving rise to the challenging question: Is it pos-
sible to perform broadband passive cloaking over a finite frequency band? In
the context of the quasistatic approximation of Maxwell’s equations we prove
that it is impossible and give quantitative limitations to cloaking over a finite
frequency range. Our results, published in [2], hold for a cloak or object of any
geometrical shape and do not depend on the cloaking methods: transformation
optics, anomalous resonance, complementary media.

1) The passive cloaking problem

Let O be a bounded simply-connected dielectric inclusion with Lipschitz bound-
ary that one wants to cloak. O is characterized by its permittivity ε(x, ω) = ε I,
where ε > ε0 is constant on the frequency range of interest [ω−, ω+] and strictly
larger than the permittivity of the vacuum ε0. The passive cloak is made of an
anisotropic material of any shape characterized by its dielectric tensor ε(x, ω)
which depends both on the spatial variable x and the frequency ω. The whole
device, the inclusion and the cloak, occupies an open bounded set Ω ⊂ B(0, R0)
of characteristic size R0 and the remainder of space R3 \ Ω is vacuum of per-
mittivity ε(x, ω) = ε0 I. The observer is assumed to be at a distance R� R0.

We send a plane wave towards the device and assume that its wavelength
is considerably larger than R in the frequency range of interest ω ∈ [ω−, ω+] ⊂
R+,∗ so that we can use the quasistatic approximation in this frequency band.
In this approximation, the curl-free electrical field E(x, ω) is given in terms of
the gradient of some potential V (x, ω), i.e. E(x, ω) = −∇V (x, ω), the incident
plane wave in the vicinity of a closed ball B(0, R) corresponds to a uniform field
E0 ∈ C3 so that the potential ∇V (x, ω) satisfies the following elliptic equation

∇ ·
(
ε(x, ω)∇V (x, ω)

)
= 0 on R3, (1)

and admits the asymptotic expansion as |x| → ∞:

V (x, ω) = −E0 · x+
p(ω) · x
4πε0|x|3

+O
( 1

|x|3
)
, with p(ω) = α(ω)E0. (2)

Thus, the main contribution of the scattered far field is a dipolar term p(ω) ∈
C3 which depends linearly on E0 via the polarizability tensor α(ω) ∈ M3(C).
Hence, to cloak the device Ω at a sufficient large distance R to any incident field
E0 ∈ C3 at a frequency ω ∈ [ω−, ω+], one needs that α(ω) vanishes at ω.

The electric induction D is given within the cloak Ω \O by the constitutive
law (CL):D = ε0E+ε0χE?tE, where ?t stands for the time convolution product
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between the real-valued susceptibility tensor χE(x, t) and the electrical field E.
To define this convolution, one assumes for simplicity that χE ∈ L1(Rt, L∞(Ω\
O)9) and that E, ∂tE ∈ L2(Rt, L2(Ω \ O)3). The cloak is a passive material
since it is causal: χE is supported in (Ω \ O) × R+

t and passive, i.e. for any
real fields (E,D) satisfying the (CL) (and the regularity assumptions for E):∫ t

−∞

∫
Ω\O

∂tD(x, t) ·E(x, t)dxdt ≥ 0, ∀t ∈ R.

Let C+ := {ω ∈ C | Imω > 0} and clC+ := C+∪R. For any causal f ∈ L1(Rt),
one defines the Fourier-Laplace transform as f̂(ω) :=

∫
R+ f(t)eiωtdt, ∀ω ∈ clC+

so that it coincides with the Fourier transform for real frequency. The (CL)

in the frequency domain becomes: D̂(x, ω) = ε(x, ω) Ê(x, ω) with ε(x, ω) =
ε0(1 + χ̂E(x, ω)), ∀ω ∈ R. Thus, one shows that the passivity of the cloak is
equivalent in the frequency domain to

(H̃1): for a.e. x ∈ Ω \ O, ε(x, ·) is analytic on C+ and continuous on clC+,

(H̃2): for a.e. x ∈ Ω \ O, ∀ω ∈ clC+, ε(x,−ω) = ε(x, ω),

(H̃3): for a.e. x ∈ Ω \ O, ∀ω ∈ R+, Im ε(x, ω) ≥ 0 (passivity),

(H̃4): for a.e. x ∈ Ω \ O, ε(x, ω)→ ε0 I as |ω| → ∞ in clC+.

2) Bounds on Herglotz functions and passive systems

Herglotz functions are analytic functions of the upper-half plane with non-
negative imaginary part. In [2], we derive bounds on Herglotz functions which
apply to a wide class of linear passive systems and generalize those provided in
[1]. To this aim, we consider a passive linear system characterized by a function
f : clC+ → C in the frequency domain which satisfies the assumptions

(H1) f is analytic on C+, continuous on clC+, (H2) f(−ω) = f(ω), ∀ω ∈ clC+,

(H3) Im f(ω) ≥ 0, ∀ω ∈ R+, (H4) f(ω)→ f∞ > 0, when |ω| → ∞ in clC+,

i.e. (H̃1 − H̃4) but for a scalar function. We define the square root by
√
ω =

|ω| 12 ei argω/2 if argω ∈ (0, 2π) and by
√
x = |x| 12 for x ∈ R+. In [2], we show

that v defined by v(ω) := ωf(
√
ω), ∀ω ∈ C is a Herglotz function that is analytic

in C \R+, negative on R−,∗ and satisfies by (H2): v(ω) = v(ω),∀ω ∈ C+ ∪R−,∗
and by (H4): v(ω) = f∞ω + o(ω) when |ω| → ∞ in C+.

Then, we introduce the Herglotz functions hm and vm defined by:

hm(ω) =

∫
R

dm(ξ)

ξ − ω
and vm(ω) = hm(v(ω)), ∀ω ∈ C+,

where m ∈ M with M is the set of probability measures on R. Using a sum
rule derived in [1], we show (see [2]) the following theorem.

Theorem 1. Let [x−, x+] be a compact interval of R+∗, then one has:

lim
y→0+

1

π

∫ x+

x−

Im vm(x+ iy) dx ≤ 1

f∞
∀m ∈M, (3)

and Dirac measures (δξ)ξ∈R optimize the inequality (3) since

sup
m∈M

1

π
lim
y→0+

∫ x+

x−

Im vm(x+ iy) dx = sup
ξ∈R

1

π
lim
y→0+

∫ x+

x−

Im vδξ(x+ iy) dx.
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We prove this result in [2] for compactly supported measures m ∈ M but it
can be shown exactly in the same way for any m ∈ M. If Im f(ω) = 0 for
ω ∈ [ω−, ω+], we show by using Dirac measures (δξ)ξ∈R in inequality (3) that

ω2
0(f(ω0)− f∞) ≤ ω2(f(ω)− f∞), ∀ω, ω0 ∈ [ω−, ω+] such that ω0 ≤ ω. (4)

Without such assumption on Im f , by using the uniform probability measure on
[−∆,∆] with ∆ = max[ω2

−,ω
2
+] |v(x)| in the bound (3) it follows that:

1

4
(ω2

+ − ω2
−)f∞ ≤ max

ω∈[ω−,ω+]
|ω2f(ω)|. (5)

.3) Fundamentals limits to broadband cloaking

We apply now the above bounds to cloaking. We give in [2] a functional frame-
work to equations (1) and (2) (which are physically relevant in [ω−, ω+] where
the quasistatic approximation is valid but holds for any ω ∈ clC+ by using
the analytic extension of the permittivity in the inclusion and in the vacuum).
Then, we show (with a coercivity assumption, see [2]) that for a passive cloak
satisfying (H̃1 − H̃4) and a reciprocity principle, the function fE0 given by

fE0
(ω) := α(ω)E0 ·E0 =

∫
Ω

(ε(x, ω)− ε0I)E(x, ω) ·E0 dx, ∀ω ∈ clC+

is well-defined for E0 ∈ C3 and satisfies (H̃1− H̃4) with fE0,∞ := α(∞)E0 ·E0

where α(∞) := lim|ω|→+∞α(ω) is the positive definite polarizability tensor of
the inclusion O depending only on its geometry and contrast in permittivity. If
the cloak is a lossless (i.e if Im ε(x, ω) = 0 inside the cloak on [ω−, ω+]), one
shows that Im fE0

(ω) = 0 on [ω−, ω+]. Thus, using (4) on functions fE0
gives

ω2
0 (α(ω0)−α(∞)) ≤ ω2 (α(ω)−α(∞)), ∀ω, ω0 ∈ [ω−, ω+] such that ω0 ≤ ω,

which turns to be an optimal bound (see [2]). Now assume that one can cloak
at a frequency ω0. Thus α(ω0) = 0 and it yields to

α(ω) ≤ −α(∞)
ω2

0 − ω2

ω2
, ω ∈ [ω−, ω0] and α(∞)

ω2 − ω2
0

ω2
≤ α(ω), ω ∈ [ω0, ω+]

which obviously forces α(ω) to be non-zero away from the frequency ω0 on
[ω−, ω+] and makes cloaking impossible on [ω−, ω+]. If the cloak is not lossless,
one applies the bound (5) on the functions fE0

to get:
1
4 (ω2

+ − ω2
−)α(∞)E0 ·E0 ≤ max

ω∈[ω−,ω+]
|ω2α(ω)E0 ·E0|, ∀E0 ∈ C3.

This positive lower bound also gives a limitation to cloaking on [ω−, ω+].
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