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Abstract

We study the band structure of self-adjoint elliptic operators Ag = −∇ · σg∇, where σg has the
symmetries of a honeycomb tiling of R2. We focus on the case where σg is a real-valued scalar: σg = 1
within identical, disjoint “inclusions”, centered at vertices of a honeycomb lattice, and σg = g � 1
(high contrast) in the complement of the inclusion set (bulk). Such operators govern, e.g. transverse
electric (TE) modes in photonic crystal media consisting of high dielectric constant inclusions (semi-
conductor pillars) within a homogeneous lower contrast bulk (air), a configuration used in many
physical studies. Our approach, which is based on monotonicity properties of the associated energy
form, extends to a class of high contrast elliptic operators that model heterogeneous and anisotropic
honeycomb media.

Our results concern the global behavior of dispersion surfaces, and the existence of conical crossings
(Dirac points) occurring in the lowest two energy bands as well as in bands arbitrarily high in the
spectrum. Dirac points are the source of important phenomena in fundamental and applied physics,
e.g. graphene and its artificial analogues, and topological insulators. The key hypotheses are the non-
vanishing of the Dirac (Fermi) velocity vD(g), verified numerically, and a spectral isolation condition,
verified analytically in many configurations. Asymptotic expansions, to any order in g−1, of Dirac
point eigenpairs and vD(g) are derived with error bounds.

Our study illuminates differences between the high contrast behavior of Ag and the corresponding
strong binding regime for Schroedinger operators.

Keywords: Photonic crystals, High contrast elliptic operators, Honeycomb media, Band structure, Dirac
points.

1 Introduction and summary of the results

1.1 Introduction

This article concerns the spectral properties of the second order divergence form elliptic operator Ag :=
−∇ · σg∇ acting on L2(R2), where σg is defined on R2 and has the symmetries of a honeycomb tiling
of R2. We focus on the case where σg(x) is a strictly positive, real-valued and piecewise constant scalar
function of position, x = (x, y), which is equal to g > 0 on a set of inclusions and equal to 1 on their
complement in R2 (the bulk); see Figure 1.

The interest in elliptic operators with honeycomb symmetry was catalyzed by the discovery of 2D
materials, such as graphene [29, 49, 11, 39], and their role in the field of topological insulators. Graphene’s
remarkable wave propagation properties are directly related to the presence of Dirac points, conical
touchings of neighboring dispersion surfaces in the band structure of the single-electron (Schroedinger)
model of graphene. Dirac points have been shown to occur in generic honeycomb Schroedinger operators
[23]; see also [1, 5, 16, 33, 43]. Their implications for the dynamics of wave-packets were studied in [24].

Analogous wave properties have been observed in many different physical systems with honeycomb
symmetry, where operators of type Ag arise in engineered topological materials, e.g. electromagnetism
for photonic graphene, acoustics, mechanics; see, for example, [8, 48, 51, 57]. Such engineered honeycomb
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media are often called artificial graphene. For a discussion of operators of the type Ag, as they arise in
the context of transverse electric (TE) modes in the 2D Maxwell equations, see Appendix A. Elliptic
operators of type Ag occur as well in models for 2D acoustics [41] and in elasticity [52]. Dirac points and
their dynamical consequences in photonic graphene for the 2D Maxwell equations with smooth coefficients
were studied in [43, 60].

Typically, engineered periodic structures (honeycomb and other) are media which consist of two
or more distinct materials, each characterized by its own constant material parameter, e.g. dielectric
constant. Often the material contrast is taken to be large. The goal of this article is to study the spectral
properties of honeycomb operators Ag where σg is piecewise constant. We focus on the regime of high
material contrast, corresponding to g large.

An analogous study of continuum honeycomb Schroedinger operators in the strong binding regime was
initiated in [22]. Here, the periodic quantum potential consists of deep atomic potential wells centered at
honeycomb lattice sites. It is shown that the low-lying (first two) dispersion surfaces, after a centering
and rescaling, converge uniformly to those of the tight binding (discrete) model of graphene. In contrast,
for Ag we obtain detailed information on the low-lying spectrum and also its higher energy dispersion
surfaces. For example, our results imply in particular for the case of circular inclusions that for each
eigenvalue, δ̃, of the infinite sequence of radial (simple) Dirichlet eigenpairs of −∆ for the single inclusion,
there is a pair of dispersion surfaces of Ag acting in L2(R2), which meet in a Dirac point, and which

converge to the constant function with value equal δ̃, as g ↑ ∞, uniformly on B for the upper one and on
any compact subsets of B \ {0} for the lower one.

Corresponding results for Dirac points at higher energies have not yet been proved for Schroedinger
operators in the strong binding regime. Furthermore, the global character of the dispersion surfaces of Ag
is very different from that of the Schroedinger case. For example, general dispersion surfaces of Ag (and,
in particular, the first dispersion surface) do not converge uniformly with increasing g in any compact
set including k = 0.

The methods we use differ in many key respects from those used in the honeycomb Schroedinger
case. Ag is decomposed as a fiber integral over the subspaces L2

k, on which we use the variational
characterization of eigenvalues of self-adjoint operators. Comparison principles (Dirichlet and Neumann
bracketing) and the monotonicity of the energy form for Ag, with respect to g, enable verification of
a key spectral isolation property, used to study the asymptotics of bands that touch in a Dirac point.
Finally, due to the discontinuity in the coefficients of Ag, we work with a weak formulation of the elliptic
eigenvalue problem, which requires many technical adjustments to aspects of the analysis with parallels
in [22].

v 1
<latexit sha1_base64="MCCQ4exFwTMkb4UplWaxHmFnWUI="></latexit><latexit sha1_base64="MCCQ4exFwTMkb4UplWaxHmFnWUI="></latexit><latexit sha1_base64="MCCQ4exFwTMkb4UplWaxHmFnWUI="></latexit><latexit sha1_base64="G30nvnJkyKBlKcCymNnrqTxJgV4=">AAACtXicjVLLSgMxFD0dX7VWrWs3g0VwVTJudCnowmUF+4BaZCZNa+y8TDJCKf6AWz9O/AP9C2/iCGoRzTAzJ+fec5KbmyiPpTaMvVS8peWV1bXqem2jXtvc2m7UuzorFBcdnsWZ6kehFrFMRcdIE4t+rkSYRLHoRdNTG+/dC6Vlll6aWS6GSThJ5Vjy0BDVvm40WYu54S+CoARNlCNrPOMKI2TgKJBAIIUhHCOEpmeAAAw5cUPMiVOEpIsLPKBG2oKyBGWExE7pO6HZoGRTmltP7dScVonpVaT0sU+ajPIUYbua7+KFc7bsb95z52n3NqN/VHolxBrcEPuX7jPzvzpbi8EYx64GSTXljrHV8dKlcKdid+5/qcqQQ06cxSOKK8LcKT/P2Xca7Wq3Zxu6+KvLtKyd8zK3wJvdJfU3+NnNRdA9bAWsFVwwVLGLPRxQG49wgnO00SHLER7x5J15t97dxz3wKuWF2MG34el34YWM3A==</latexit><latexit sha1_base64="GvSVQk2vwQgwcUxxAWf6530p7Mw=">AAAC9XicjVLLSsNAFD3GV62v6tbN4ANclcSNghvBjcsK9gFWSpJO62BeTCbFErrxT9y5E7/Cra7EP9C/8M6YglpEb0hy5tx7zsydGS8JRKps+3XKmp6ZnZsvLZQXl5ZXVitrS400zqTP634cxLLluSkPRMTrSqiAtxLJ3dALeNO7Otb55oDLVMTRmRom/CJ0+5HoCd9VRHUqh9usrfi1kmHO2oEr+5zlZcbyT9brFUAoNhhRdMbFzmi73Kls2VXbBJsETgG2UEQtrrygjS5i+MgQgiOCIhzARUrPORzYSIi7QE6cJCRMnmOEMmkzquJU4RJ7Rd8+jc4LNqKx9kyN2qdZAnolKRl2SBNTnSSsZ2Mmnxlnzf7mnRtPvbYh/b3CKyRW4ZLYv3Tjyv/qdC8KPRyYHgT1lBhGd+cXLpnZFb1y9qUrRQ4JcRp3KS8J+0Y53mdmNKnpXe+ta/JvplKzeuwXtRne9SrpgJ2fxzkJGntVx646pzZK2MAmdukY93GEE9RQJ8tbPOIJz9aNdWfdf14Fa6q4E+v4FtbDB9jCpZY=</latexit><latexit sha1_base64="GvSVQk2vwQgwcUxxAWf6530p7Mw="></latexit><latexit sha1_base64="L3glYH1+xnA/NeXZsbJvINNJw8I="></latexit><latexit sha1_base64="MCCQ4exFwTMkb4UplWaxHmFnWUI="></latexit><latexit sha1_base64="MCCQ4exFwTMkb4UplWaxHmFnWUI="></latexit><latexit sha1_base64="MCCQ4exFwTMkb4UplWaxHmFnWUI="></latexit><latexit sha1_base64="MCCQ4exFwTMkb4UplWaxHmFnWUI="></latexit><latexit sha1_base64="MCCQ4exFwTMkb4UplWaxHmFnWUI="></latexit><latexit sha1_base64="G30nvnJkyKBlKcCymNnrqTxJgV4=">AAACtXicjVLLSgMxFD0dX7VWrWs3g0VwVTJudCnowmUF+4BaZCZNa+y8TDJCKf6AWz9O/AP9C2/iCGoRzTAzJ+fec5KbmyiPpTaMvVS8peWV1bXqem2jXtvc2m7UuzorFBcdnsWZ6kehFrFMRcdIE4t+rkSYRLHoRdNTG+/dC6Vlll6aWS6GSThJ5Vjy0BDVvm40WYu54S+CoARNlCNrPOMKI2TgKJBAIIUhHCOEpmeAAAw5cUPMiVOEpIsLPKBG2oKyBGWExE7pO6HZoGRTmltP7dScVonpVaT0sU+ajPIUYbua7+KFc7bsb95z52n3NqN/VHolxBrcEPuX7jPzvzpbi8EYx64GSTXljrHV8dKlcKdid+5/qcqQQ06cxSOKK8LcKT/P2Xca7Wq3Zxu6+KvLtKyd8zK3wJvdJfU3+NnNRdA9bAWsFVwwVLGLPRxQG49wgnO00SHLER7x5J15t97dxz3wKuWF2MG34el34YWM3A==</latexit><latexit sha1_base64="GvSVQk2vwQgwcUxxAWf6530p7Mw="></latexit><latexit sha1_base64="GvSVQk2vwQgwcUxxAWf6530p7Mw="></latexit><latexit sha1_base64="L3glYH1+xnA/NeXZsbJvINNJw8I="></latexit><latexit sha1_base64="MCCQ4exFwTMkb4UplWaxHmFnWUI="></latexit><latexit sha1_base64="MCCQ4exFwTMkb4UplWaxHmFnWUI="></latexit><latexit sha1_base64="MCCQ4exFwTMkb4UplWaxHmFnWUI="></latexit><latexit sha1_base64="MCCQ4exFwTMkb4UplWaxHmFnWUI="></latexit><latexit sha1_base64="MCCQ4exFwTMkb4UplWaxHmFnWUI="></latexit><latexit sha1_base64="G30nvnJkyKBlKcCymNnrqTxJgV4=">AAACtXicjVLLSgMxFD0dX7VWrWs3g0VwVTJudCnowmUF+4BaZCZNa+y8TDJCKf6AWz9O/AP9C2/iCGoRzTAzJ+fec5KbmyiPpTaMvVS8peWV1bXqem2jXtvc2m7UuzorFBcdnsWZ6kehFrFMRcdIE4t+rkSYRLHoRdNTG+/dC6Vlll6aWS6GSThJ5Vjy0BDVvm40WYu54S+CoARNlCNrPOMKI2TgKJBAIIUhHCOEpmeAAAw5cUPMiVOEpIsLPKBG2oKyBGWExE7pO6HZoGRTmltP7dScVonpVaT0sU+ajPIUYbua7+KFc7bsb95z52n3NqN/VHolxBrcEPuX7jPzvzpbi8EYx64GSTXljrHV8dKlcKdid+5/qcqQQ06cxSOKK8LcKT/P2Xca7Wq3Zxu6+KvLtKyd8zK3wJvdJfU3+NnNRdA9bAWsFVwwVLGLPRxQG49wgnO00SHLER7x5J15t97dxz3wKuWF2MG34el34YWM3A==</latexit><latexit sha1_base64="GvSVQk2vwQgwcUxxAWf6530p7Mw="></latexit><latexit sha1_base64="GvSVQk2vwQgwcUxxAWf6530p7Mw="></latexit><latexit sha1_base64="L3glYH1+xnA/NeXZsbJvINNJw8I="></latexit><latexit sha1_base64="MCCQ4exFwTMkb4UplWaxHmFnWUI="></latexit><latexit sha1_base64="MCCQ4exFwTMkb4UplWaxHmFnWUI="></latexit><latexit sha1_base64="MCCQ4exFwTMkb4UplWaxHmFnWUI="></latexit><latexit sha1_base64="MCCQ4exFwTMkb4UplWaxHmFnWUI=">AAADAHicjVG7SsRAFD3G9/patbQZXAWrJbFRsBFtLBVcFVxZkji7DubFZLIoYRv/xM5ObP0BW63EP9C/8M44Cz4QvSHJmXPvOTN3bpBFIleu+zLgDA4Nj4yOjVcmJqemZ6qzcwd5WsiQN8I0SuVR4Oc8EglvKKEifpRJ7sdBxA+D822dP+xymYs02VeXGT+J/U4i2iL0FVGt6sYSayp+oWRcsmbkyw5nZYWx8oMN2hYIxbo9ila/2OstVVrVmlt3TbCfwLOgBhu7afUZTZwiRYgCMTgSKMIRfOT0HMODi4y4E5TESULC5Dl6qJC2oCpOFT6x5/Tt0OrYsgmttWdu1CHtEtErScmwTJqU6iRhvRsz+cI4a/Y379J46rNd0j+wXjGxCmfE/qXrV/5Xp3tRaGPd9CCop8wwurvQuhTmVvTJ2aeuFDlkxGl8SnlJODTK/j0zo8lN7/pufZN/NZWa1evQ1hZ406ekAXvfx/kTHKzWPbfu7a3WNrfsqMewgEWs0DzXsIkd7KJB3td4wCOenCvnxrl17j5KnQGrmceXcO7fAQe5pwA=</latexit><latexit sha1_base64="MCCQ4exFwTMkb4UplWaxHmFnWUI="></latexit><latexit sha1_base64="MCCQ4exFwTMkb4UplWaxHmFnWUI="></latexit>

v 2
<latexit sha1_base64="Ufrt5WvnjKRFbecuzb0UB1TictE="></latexit><latexit sha1_base64="Ufrt5WvnjKRFbecuzb0UB1TictE="></latexit><latexit sha1_base64="Ufrt5WvnjKRFbecuzb0UB1TictE="></latexit><latexit sha1_base64="Ufrt5WvnjKRFbecuzb0UB1TictE="></latexit>

vA
<latexit sha1_base64="TNP/by4n3cu0jDY/pljT8QXCqDs="></latexit><latexit sha1_base64="TNP/by4n3cu0jDY/pljT8QXCqDs="></latexit><latexit sha1_base64="TNP/by4n3cu0jDY/pljT8QXCqDs="></latexit><latexit sha1_base64="TNP/by4n3cu0jDY/pljT8QXCqDs="></latexit>

vB
<latexit sha1_base64="ydLhpYGgt5gGD3/s/lP5XNU1NyI="></latexit><latexit sha1_base64="ydLhpYGgt5gGD3/s/lP5XNU1NyI=">AAADBHicjVHLLgRBFD3ae7wGS5uKIbGadNuwI2wsSQwSI5PuVjMq+pXq6gnpzNaf2NmJrR+wJeIP+Au3Sk3iEeF2uvvUufecqls3yCKRK9d9GXAGh4ZHRsfGKxOTU9Mz1dm5gzwtZMgbYRql8ijwcx6JhDeUUBE/yiT34yDih8H5ts4fdrnMRZrsq8uMn8R+JxFtEfqKqFZ1Y4k1Fb9QMi5ZM/Jlh7Oywlj5wQZtC4Ri3R5Fq1/cJGart1RpVWtu3TXBfgLPghps7KbVZzRxihQhCsTgSKAIR/CR03MMDy4y4k5QEicJCZPn6KFC2oKqOFX4xJ7Tt0OrY8smtNaeuVGHtEtEryQlwzJpUqqThPVuzOQL46zZ37xL46nPdkn/wHrFxCqcEfuXrl/5X53uRaGNddODoJ4yw+juQutSmFvRJ2efulLkkBGn8SnlJeHQKPv3zIwmN73ru/VN/tVUalavQ1tb4E2fkgbsfR/nT3CwWvfcure3WtvcsqMewwIWsULzXMMmdrCLBnlf4wGPeHKunBvn1rn7KHUGrGYeX8K5fwdXrqiS</latexit><latexit sha1_base64="ydLhpYGgt5gGD3/s/lP5XNU1NyI="></latexit><latexit sha1_base64="G30nvnJkyKBlKcCymNnrqTxJgV4=">AAACtXicjVLLSgMxFD0dX7VWrWs3g0VwVTJudCnowmUF+4BaZCZNa+y8TDJCKf6AWz9O/AP9C2/iCGoRzTAzJ+fec5KbmyiPpTaMvVS8peWV1bXqem2jXtvc2m7UuzorFBcdnsWZ6kehFrFMRcdIE4t+rkSYRLHoRdNTG+/dC6Vlll6aWS6GSThJ5Vjy0BDVvm40WYu54S+CoARNlCNrPOMKI2TgKJBAIIUhHCOEpmeAAAw5cUPMiVOEpIsLPKBG2oKyBGWExE7pO6HZoGRTmltP7dScVonpVaT0sU+ajPIUYbua7+KFc7bsb95z52n3NqN/VHolxBrcEPuX7jPzvzpbi8EYx64GSTXljrHV8dKlcKdid+5/qcqQQ06cxSOKK8LcKT/P2Xca7Wq3Zxu6+KvLtKyd8zK3wJvdJfU3+NnNRdA9bAWsFVwwVLGLPRxQG49wgnO00SHLER7x5J15t97dxz3wKuWF2MG34el34YWM3A==</latexit><latexit sha1_base64="fxEKIxn5cotoTKB7M2PvVGfleXo="></latexit><latexit sha1_base64="fxEKIxn5cotoTKB7M2PvVGfleXo="></latexit><latexit sha1_base64="0Y2SnrwR5JG4SDb18JDlVHlWvk0="></latexit><latexit sha1_base64="ydLhpYGgt5gGD3/s/lP5XNU1NyI="></latexit><latexit sha1_base64="ydLhpYGgt5gGD3/s/lP5XNU1NyI="></latexit><latexit sha1_base64="ydLhpYGgt5gGD3/s/lP5XNU1NyI="></latexit><latexit sha1_base64="ydLhpYGgt5gGD3/s/lP5XNU1NyI="></latexit><latexit sha1_base64="ydLhpYGgt5gGD3/s/lP5XNU1NyI="></latexit><latexit sha1_base64="G30nvnJkyKBlKcCymNnrqTxJgV4=">AAACtXicjVLLSgMxFD0dX7VWrWs3g0VwVTJudCnowmUF+4BaZCZNa+y8TDJCKf6AWz9O/AP9C2/iCGoRzTAzJ+fec5KbmyiPpTaMvVS8peWV1bXqem2jXtvc2m7UuzorFBcdnsWZ6kehFrFMRcdIE4t+rkSYRLHoRdNTG+/dC6Vlll6aWS6GSThJ5Vjy0BDVvm40WYu54S+CoARNlCNrPOMKI2TgKJBAIIUhHCOEpmeAAAw5cUPMiVOEpIsLPKBG2oKyBGWExE7pO6HZoGRTmltP7dScVonpVaT0sU+ajPIUYbua7+KFc7bsb95z52n3NqN/VHolxBrcEPuX7jPzvzpbi8EYx64GSTXljrHV8dKlcKdid+5/qcqQQ06cxSOKK8LcKT/P2Xca7Wq3Zxu6+KvLtKyd8zK3wJvdJfU3+NnNRdA9bAWsFVwwVLGLPRxQG49wgnO00SHLER7x5J15t97dxz3wKuWF2MG34el34YWM3A==</latexit><latexit sha1_base64="fxEKIxn5cotoTKB7M2PvVGfleXo="></latexit><latexit sha1_base64="fxEKIxn5cotoTKB7M2PvVGfleXo="></latexit><latexit sha1_base64="0Y2SnrwR5JG4SDb18JDlVHlWvk0="></latexit><latexit sha1_base64="ydLhpYGgt5gGD3/s/lP5XNU1NyI="></latexit><latexit sha1_base64="ydLhpYGgt5gGD3/s/lP5XNU1NyI="></latexit><latexit sha1_base64="ydLhpYGgt5gGD3/s/lP5XNU1NyI=">AAADBHicjVHLLgRBFD3ae7wGS5uKIbGadNuwI2wsSQwSI5PuVjMq+pXq6gnpzNaf2NmJrR+wJeIP+Au3Sk3iEeF2uvvUufecqls3yCKRK9d9GXAGh4ZHRsfGKxOTU9Mz1dm5gzwtZMgbYRql8ijwcx6JhDeUUBE/yiT34yDih8H5ts4fdrnMRZrsq8uMn8R+JxFtEfqKqFZ1Y4k1Fb9QMi5ZM/Jlh7Oywlj5wQZtC4Ri3R5Fq1/cJGart1RpVWtu3TXBfgLPghps7KbVZzRxihQhCsTgSKAIR/CR03MMDy4y4k5QEicJCZPn6KFC2oKqOFX4xJ7Tt0OrY8smtNaeuVGHtEtEryQlwzJpUqqThPVuzOQL46zZ37xL46nPdkn/wHrFxCqcEfuXrl/5X53uRaGNddODoJ4yw+juQutSmFvRJ2efulLkkBGn8SnlJeHQKPv3zIwmN73ru/VN/tVUalavQ1tb4E2fkgbsfR/nT3CwWvfcure3WtvcsqMewwIWsULzXMMmdrCLBnlf4wGPeHKunBvn1rn7KHUGrGYeX8K5fwdXrqiS</latexit><latexit sha1_base64="ydLhpYGgt5gGD3/s/lP5XNU1NyI="></latexit><latexit sha1_base64="ydLhpYGgt5gGD3/s/lP5XNU1NyI=">AAADBHicjVHLLgRBFD3ae7wGS5uKIbGadNuwI2wsSQwSI5PuVjMq+pXq6gnpzNaf2NmJrR+wJeIP+Au3Sk3iEeF2uvvUufecqls3yCKRK9d9GXAGh4ZHRsfGKxOTU9Mz1dm5gzwtZMgbYRql8ijwcx6JhDeUUBE/yiT34yDih8H5ts4fdrnMRZrsq8uMn8R+JxFtEfqKqFZ1Y4k1Fb9QMi5ZM/Jlh7Oywlj5wQZtC4Ri3R5Fq1/cJGart1RpVWtu3TXBfgLPghps7KbVZzRxihQhCsTgSKAIR/CR03MMDy4y4k5QEicJCZPn6KFC2oKqOFX4xJ7Tt0OrY8smtNaeuVGHtEtEryQlwzJpUqqThPVuzOQL46zZ37xL46nPdkn/wHrFxCqcEfuXrl/5X53uRaGNddODoJ4yw+juQutSmFvRJ2efulLkkBGn8SnlJeHQKPv3zIwmN73ru/VN/tVUalavQ1tb4E2fkgbsfR/nT3CwWvfcure3WtvcsqMewwIWsULzXMMmdrCLBnlf4wGPeHKunBvn1rn7KHUGrGYeX8K5fwdXrqiS</latexit><latexit sha1_base64="ydLhpYGgt5gGD3/s/lP5XNU1NyI="></latexit>

⌦
<latexit sha1_base64="YsRgNbgC67cIAyppzT7MjKQpE8E="></latexit><latexit sha1_base64="YsRgNbgC67cIAyppzT7MjKQpE8E="></latexit><latexit sha1_base64="YsRgNbgC67cIAyppzT7MjKQpE8E=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdFl0I7iwgm0FW2QyndaxeZlMxFpc+QNu9cfEP9C/8M4YQS2iE5KcOfeeM3Pv9WJfpspxXgrWxOTU9ExxtjQ3v7C4VF5eaaZRlnDR4JEfJaceS4UvQ9FQUvniNE4ECzxftLzBvo63rkWSyig8UcNYdALWD2VPcqaIaraPAtFn5+WKU3XMsseBm4MK8lWPys9oo4sIHBkCCIRQhH0wpPScwYWDmLgORsQlhKSJC9yhRNqMsgRlMGIH9O3T7ixnQ9prz9SoOZ3i05uQ0sYGaSLKSwjr02wTz4yzZn/zHhlPfbch/b3cKyBW4YLYv3Sfmf/V6VoUetg1NUiqKTaMro7nLpnpir65/aUqRQ4xcRp3KZ4Q5kb52WfbaFJTu+4tM/FXk6lZved5boY3fUsasPtznOOguVV1nap7vF2p7eWjLmIN69ikee6ghgPU0SDvSzzgEU/WoXVl3Vi3H6lWIdes4tuy7t8BdJuRfA==</latexit><latexit sha1_base64="G30nvnJkyKBlKcCymNnrqTxJgV4=">AAACtXicjVLLSgMxFD0dX7VWrWs3g0VwVTJudCnowmUF+4BaZCZNa+y8TDJCKf6AWz9O/AP9C2/iCGoRzTAzJ+fec5KbmyiPpTaMvVS8peWV1bXqem2jXtvc2m7UuzorFBcdnsWZ6kehFrFMRcdIE4t+rkSYRLHoRdNTG+/dC6Vlll6aWS6GSThJ5Vjy0BDVvm40WYu54S+CoARNlCNrPOMKI2TgKJBAIIUhHCOEpmeAAAw5cUPMiVOEpIsLPKBG2oKyBGWExE7pO6HZoGRTmltP7dScVonpVaT0sU+ajPIUYbua7+KFc7bsb95z52n3NqN/VHolxBrcEPuX7jPzvzpbi8EYx64GSTXljrHV8dKlcKdid+5/qcqQQ06cxSOKK8LcKT/P2Xca7Wq3Zxu6+KvLtKyd8zK3wJvdJfU3+NnNRdA9bAWsFVwwVLGLPRxQG49wgnO00SHLER7x5J15t97dxz3wKuWF2MG34el34YWM3A==</latexit><latexit sha1_base64="4scrXfCRyv569EyAuk8YmBOXtdM="></latexit><latexit sha1_base64="4scrXfCRyv569EyAuk8YmBOXtdM=">AAACvnicjVLLTsMwEJyGVykFClcuEQiJU5VwgSMSFyQOFIk+pBYhx3WLIS8cB1Eq/oEr/BjiD+AvWJtUAioEjpKMZ3fGXq+DNJSZ9rzXkjMzOze/UF6sLFWXV1Zra9VWluSKiyZPwkR1ApaJUMaiqaUORSdVgkVBKNrB9aGJt2+FymQSn+lRKs4jNozlQHKmiWr1TiIxZBe1La/u2eFOA78AWyhGI6m9oIc+EnDkiCAQQxMOwZDR04UPDylx5xgTpwhJGxd4QIW0OWUJymDEXtN3SLNuwcY0N56ZVXNaJaRXkdLFNmkSylOEzWqujefW2bC/eY+tp9nbiP5B4RURq3FJ7F+6SeZ/daYWjQH2bQ2SakotY6rjhUtuT8Xs3P1SlSaHlDiD+xRXhLlVTs7ZtZrM1m7Oltn4m800rJnzIjfHu9klNdj/2c5p0Nqt+17dP/VQxgY2sUNt3MMBjtBAkyyv8IgnPDvHzo1z93kVnFJxJ9bxbTj3HygCkEc=</latexit><latexit sha1_base64="NISTtYiBh9/d7zELwMFJHTSodQg=">AAACyXicjVHLTsMwEBzCq5RXgSOXiAqJU5VwgWMFFyQOFIk+pFIhx3VLaF4kDqJUnPgBrvBjiD+Av2BtXAmoEDhKMp7dGXt3vSTwM+k4r1PW9Mzs3Hxhobi4tLyyWlpbb2RxnnJR53EQpy2PZSLwI1GXvgxEK0kFC71ANL3BoYo3b0Sa+XF0JoeJ6ISsH/k9nzNJVOP8JBR9dlEqOxVHL3sSuAaUYVYtLr3gHF3E4MgRQiCCJByAIaOnDRcOEuI6GBGXEvJ1XOAeRdLmlCUogxE7oG+fdm3DRrRXnplWczoloDclpY1t0sSUlxJWp9k6nmtnxf7mPdKe6m5D+nvGKyRW4pLYv3TjzP/qVC0SPezrGnyqKdGMqo4bl1x3Rd3c/lKVJIeEOIW7FE8Jc60c99nWmkzXrnrLdPxNZypW7bnJzfGubkkDdn+OcxI0diuuU3FPnXL1wIy6gE1sYYfmuYcqjlBDnbyv8IgnPFvH1rV1a919plpTRrOBb8t6+ABzW5F4</latexit><latexit sha1_base64="YsRgNbgC67cIAyppzT7MjKQpE8E="></latexit><latexit sha1_base64="YsRgNbgC67cIAyppzT7MjKQpE8E="></latexit><latexit sha1_base64="YsRgNbgC67cIAyppzT7MjKQpE8E="></latexit><latexit sha1_base64="YsRgNbgC67cIAyppzT7MjKQpE8E=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdFl0I7iwgm0FW2QyndaxeZlMxFpc+QNu9cfEP9C/8M4YQS2iE5KcOfeeM3Pv9WJfpspxXgrWxOTU9ExxtjQ3v7C4VF5eaaZRlnDR4JEfJaceS4UvQ9FQUvniNE4ECzxftLzBvo63rkWSyig8UcNYdALWD2VPcqaIaraPAtFn5+WKU3XMsseBm4MK8lWPys9oo4sIHBkCCIRQhH0wpPScwYWDmLgORsQlhKSJC9yhRNqMsgRlMGIH9O3T7ixnQ9prz9SoOZ3i05uQ0sYGaSLKSwjr02wTz4yzZn/zHhlPfbch/b3cKyBW4YLYv3Sfmf/V6VoUetg1NUiqKTaMro7nLpnpir65/aUqRQ4xcRp3KZ4Q5kb52WfbaFJTu+4tM/FXk6lZved5boY3fUsasPtznOOguVV1nap7vF2p7eWjLmIN69ikee6ghgPU0SDvSzzgEU/WoXVl3Vi3H6lWIdes4tuy7t8BdJuRfA==</latexit><latexit sha1_base64="YsRgNbgC67cIAyppzT7MjKQpE8E="></latexit><latexit sha1_base64="YsRgNbgC67cIAyppzT7MjKQpE8E="></latexit>

ex

ey B
<latexit sha1_base64="7PpwzJfkbcUDWZCFZJx8YguMQF4="></latexit><latexit sha1_base64="7PpwzJfkbcUDWZCFZJx8YguMQF4="></latexit><latexit sha1_base64="7PpwzJfkbcUDWZCFZJx8YguMQF4="></latexit><latexit sha1_base64="7PpwzJfkbcUDWZCFZJx8YguMQF4="></latexit>

K<latexit sha1_base64="YipargR26BFv9iti68oAU+UbbxM="></latexit><latexit sha1_base64="YipargR26BFv9iti68oAU+UbbxM="></latexit><latexit sha1_base64="YipargR26BFv9iti68oAU+UbbxM="></latexit><latexit sha1_base64="YipargR26BFv9iti68oAU+UbbxM="></latexit>

K0
<latexit sha1_base64="HWq9/kqoNd4LstS9IBjO2OqDeA4="></latexit><latexit sha1_base64="pTSM527OcasrIwD8EQ/+eqC15AM="></latexit><latexit sha1_base64="pTSM527OcasrIwD8EQ/+eqC15AM="></latexit><latexit sha1_base64="tRMhV6p0vuNbHlEPjVUEOO7GlPM=">AAACy3icjVHLSsNAFD2Nr1pfVZdugkV0VRI3uiy6EUSoYB/QFkmm0xqaJiEzEWrt0h9wq/8l/oH+hXfGKahFdEKSM+eec2fuvX4SBkI6zmvOmptfWFzKLxdWVtfWN4qbW3URZynjNRaHcdr0PcHDIOI1GciQN5OUe0M/5A1/cKrijVueiiCOruQo4Z2h14+CXsA8SVRz3PZ79vn+5LpYcsqOXvYscA0owaxqXHxBG13EYMgwBEcESTiEB0FPCy4cJMR1MCYuJRToOMcEBfJmpOKk8Igd0LdPu5ZhI9qrnEK7GZ0S0puS08YeeWLSpYTVabaOZzqzYn/LPdY51d1G9PdNriGxEjfE/uWbKv/rU7VI9HCsawiopkQzqjpmsmS6K+rm9peqJGVIiFO4S/GUMNPOaZ9t7RG6dtVbT8fftFKxas+MNsO7uiUN2P05zllQPyy7Ttm9dEqVEzPqPHawiwOa5xEqOEMVNT3HRzzh2bqwhHVn3X9KrZzxbOPbsh4+AL0EkfU=</latexit>

0ek2

ek1

x c
<latexit sha1_base64="UsZT4DJHqsJeAGpmQoBwYpSY18Q="></latexit><latexit sha1_base64="UsZT4DJHqsJeAGpmQoBwYpSY18Q="></latexit><latexit sha1_base64="UsZT4DJHqsJeAGpmQoBwYpSY18Q="></latexit><latexit sha1_base64="UsZT4DJHqsJeAGpmQoBwYpSY18Q=">AAAC23icjVHLSsNAFD2Nr1pfVcGNm2ARXJVEBF0W3bisYB/QlpJMp3VomoRkIi21K3fi1h9wq/8j/oH+hXfGFNQiOiEzZ86958zcuW7oiVha1mvGmJtfWFzKLudWVtfWN/KbW9U4SCLGKyzwgqjuOjH3hM8rUkiP18OIOwPX4zW3f6bitWsexSLwL+Uo5K2B0/NFVzBHEtXO7zQlH0q3O9arkGNzOJm0WTtfsIqWHuYssFNQQDrKQf4FTXQQgCHBABw+JGEPDmL6GrBhISSuhTFxESGh4xwT5EibUBanDIfYPs092jVS1qe98oy1mtEpHv0RKU3skyagvIiwOs3U8UQ7K/Y377H2VHcb0eqmXgNiJa6I/Us3zfyvTtUi0cWJrkFQTaFmVHUsdUn0q6ibm1+qkuQQEqdwh+IRYaaV03c2tSbWtau3dXT8TWcqVu1ZmpvgXd2SGmz/bOcsqB4WbatoXxwVSqdpq7PYxR4OqJ/HKOEcZVTI+waPeMKz0TJujTvj/jPVyKSabXwbxsMHMnmZOQ==</latexit>

∙

Figure 1: Left panel: Honeycomb arrangement of inclusions. Centers of inclusions are located at vertices
of the honeycomb: (vA + Λ) ∪ (vB + Λ), where Λ = Zv1 ⊕ Zv2 is the equilateral triangular lattice. The
unit cell Ω is a diamond-shaped region containing inclusions: ΩA centered at vA and ΩB centered at vB .
σg(x) = 1 for x ∈ ΩA ∪ ΩB and σg = g for x outside the inclusions. σg(x+ v) = σ(x) for all v ∈ Λ and
all x ∈ R2. Right panel: Dual lattice Λ∗ = Zk1 ⊕ Zk2. Brillouin zone, B, with its two independent high
symmetry quasimomenta at vertices: K and K′.
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1.2 A brief description of the mathematical problem

Figure 1 (left panel) displays a portion of the structure defined by σg. The plane is partitioned into
diamond-shaped period cells with fundamental cell Ω. Each period cell has two disjoint identical inclu-
sions, ΩA and ΩB , centered at vertices of a honeycomb structure. The inclusion shape is required to
be: 2π/3 rotationally invariant and inversion symmetric about its center. The function σg takes on two
values

σg(x) =

{
1 for x in the inclusions

g > 1 for x in the bulk (outside the set of inclusions).

In this article we present results on spectral properties of

Ag := −∇ · σg∇ acting on L2(R2) . (1.1)

Since Ag commutes with (triangular) lattice translations, its spectrum can be obtained via the family of
quasi-periodic Floquet-Bloch eigenvalue problems; see Section 2.3. For each k ∈ B ⊂ (R2

x)∗ (B ' T2), the
Brillouin zone (Figure 1, right panel), let λ1(g;k) ≤ λ2(g;k) ≤ . . . λn(g;k) ≤ . . . denote the eigenvalues,
with multiplicities listed, for the eigenvalue problem:

Agψ = λψ subject to k−quasi-periodic boundary conditions; see (2.2).

The functions k 7→ λn(g;k), n ≥ 1, are Lipschitz continuous and their graphs are the dispersion surfaces
of Ag. The L2(R2) spectrum of Ag is the union of closed real intervals, that are swept out by the maps
k 7→ λn(g;k) as k varies over B ' T2. The collection of all Floquet-Bloch eigenvalue / eigenfunction
pairs is called the band structure of Ag. Section 2.3 provides a more detailed discussion.

1.3 Summary of main results

We summarize our main results on the band structure of Ag acting in L2(R2) for g � 1. To keep
the presentation of this introduction short, we outline results as they apply to the low-lying (first two)
dispersion surfaces. Our results extend to higher energy bands whose high contrast limit satisfies a band
spectral isolation condition (S); see Definition 4.2. Precise formulations of results for low-lying and higher
energy dispersion surfaces are stated in Sections 3 to 9.

1. Theorem 4.4 and Corollary 4.5: Convergence of dispersion maps as g ↑ : Hempel and Lienau
[35] developed a variational approach for studying the convergence of the band dispersion func-
tions as g ↑ ∞; see also [28]. It is based on the monotonicity of the energy form, ag,k(u, u) =∫

Ω
σg(x)|∇u(x)|2 dx, with respect to the parameter g and the min-max characterization of eigen-

values of self-adjoint operators. In Section 4 we apply their approach to a study of the band
structure of Ag for g � 1. Note that the results of Sections 3 and 4 do not require honeycomb
symmetry; see Remark 4.7

To explain these results, in the context of the first two bands, note first that Ag annihilates constant
functions, which satisfy periodic boundary conditions (k−quasi-periodicity with k = 0). Therefore,
λ1(g; 0) = 0 for all g. We prove, on the other hand, that as g tends to infinity:

(a) the first dispersion map, k 7→ λ1(g;k) converges, uniformly on compact subsets of B \ {0} (but
not on all B), to the constant function of k with value equal to the (strictly positive) 1st Dirichlet
eigenvalue of a single inclusion, ΩA , and

(b) the second dispersion map, k 7→ λ2(g;k) converges, uniformly on all of B to the constant
function in k with value equal to the (positive) 1st Dirichlet eigenvalue of a single inclusion, ΩA .

(c) For g sufficiently large, there is a gap in the spectrum of Ag between the 2nd and 3rd spectral
bands.

Figure 2 illustrates assertions (a), (b) and (c). In each panel, the 3 displayed curves are obtained
by tracking the dispersion surfaces k 7→ λj(g;k), j = 1, 2, 3, along the boundary of a symmetry-
reduced Brillouin zone for the indicated value of g. While in all panels λ1(g, 0) = 0, we see
that in the complement of any neighborhood of k = 0, λ1(g;k) converges uniformly to the first
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Dirichlet eigenvalue, δ̃1 > 0, of the single inclusion. This eigenvalue is a doubly degenerate Dirichlet
eigenvalue, δ1 = δ2 = δ̃1, for the union of two identical disjoint inclusions ΩA ∪ ΩB . On the other
hand, λ2(g;k) is seen to converge uniformly on all B. Finally, as asserted in (c), a spectral gap
opens between the first two bands and the third band for larger values of g.
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Figure 2: Dispersion maps k 7→ λ1(g;k), λ2(g;k) and λ3(g;k) plotted along the boundary, M → 0 →
K→M, of the symmetry-reduced Brillouin zone for the indicated values of the contrast g. For all g > 0,
λ1(g; 0) = 0. However, as g ↑ ∞, λ1(g;k) converges, uniformly on any compact subset of B \ {0}, to the
two-fold degenerate smallest eigenvalue δ1 = δ2 > 0 of the Dirichlet Laplacian (horizontal dashed line)
for the domain ΩA∪ΩB , the union of two disc inclusions of radius R0 = 0.2. The second dispersion map,
λ2(g;k), converges uniformly on the full Brillouin zone B to δ1 = δ2 > 0 . Here, λ = δ1 = δ2 = (z0,1/R0)

2
,

where z0,1 denotes the first zero of the Bessel function J0(z). For typical values of g, there is a Dirac
point (conical intersection of bands) over the high-symmetry quasi-momentum K (and K′, not shown).
For the simulated structure, this Dirac point is situated between the second and third bands for g = 8.9
and between the first and second bands for g = 25, 40, 100, 250; see Theorem 5.12. A (transitional) triple
degeneracy occurs at K (resp. K′) for g = 13.1. Furthermore, for large g there is a gap between the 2nd

and 3rd spectral bands; see Theorem 4.4 .

2. Theorem 5.12 and Corollary 5.13, Existence of Dirac points for g sufficiently large: In Section 5
we prove, under a non-degeneracy condition (non-zero Dirac velocity, vD(g)), that for g sufficiently
large, Ag has Dirac points (λD(g),kD). These occur at intersections of the first two dispersion
surfaces at an energy λD(g), for kD equal to any of the 6 vertices of B (K and K′, high symmetry
quasi-momenta and their images by rotations of 2π/3 and 4π/3 centered at 0, see section 5.1
and Remark 5.5). By Theorem 4.4, since K? = K,K′ are non-zero, it follows that λ1(g; K?) =
λ2(g; K?) = λD(g) tends to the (multiplicity 2) Dirichlet eigenvalue δ1 = δ2 of the inclusion subset
ΩA ∪ ΩB of the fundamental domain Ω.

In Figure 2, Dirac points appear as linear (transverse) crossings of two curves. For Schroedinger
operators [23], and divergence form elliptic operators with smooth coefficients [43]) we have that:
for all but a discrete set of values of the well-depth parameter (respectively, contrast parameter),
Dirac points occur at least at one energy over the 6 vertices of B. In the setting of this article,
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Figure 2 shows the emergence of Dirac points for sufficiently large g between the first two bands.
For a detailed discussion of the observed transfer of the Dirac point from the second and third bands
to the first and second bands as g increases, see Section 7, specifically the discussion of Figure 6.

Let kD = K. The eigenvalue λD(g) has a corresponding eigenspace of dimension two with as-
sociated orthonormal basis {Φ1(g, ·),Φ2(g, ·)} where Φ1(g, ·) = PA1,K + O(1/g) and Φ2(g, ·) =

±e−2iπ/3PB1,K + O(1/g) for large g. Here, PA1,K and PB1,K are K−quasi-periodic superpositions

of single inclusion Dirichlet states. PA1,K is supported on the A− inclusions and PB1,K is supported
on the B− inclusions. Hence, these Dirichlet states play a role analogous to atomic orbitals in the
strong-binding Schroedinger analysis [22]. Numerical simulations demonstrating this behavior are
presented in Sections 7 and 8.

The disjointness of the supports of the leading order terms of Φj(·, g) implies, for the Dirac velocity:

vD(g) = v
(1)
D g−1 +O(g−2).

Hence, the Dirac velocity tends to zero when g ↑ ∞ and the Dirac cone becomes increasing flat as
g increases; see Figure 2 for g = 250. This is consistent with the uniform convergence of dispersion

surfaces away from k = 0. We conjecture that v
(1)
D 6= 0. Numerical computations show this to be

the case (see Section 7) and hence for g � 1, (λD,kD) is a Dirac (conical) point in the sense of
Definition 5.3.

Our proof of Theorem 5.12 and its Corollary 5.13, is based on the set of sufficient conditions
proved in Theorem 5.4. Analogous conditions were proved in [23] using a Schur complement /
Lyapunov-Schmidt reduction strategy, for Schroedinger operators and for elliptic operators with
smooth coefficients [43] by the same overall strategy. But since Ag has discontinuous coefficients
the proof of Theorem 5.4 proceeds via the weak formulation of the elliptic eigenvalue problem.
Furthermore, since we also study Dirac points arising in higher energy bands, the natural energy
form is not coercive; indeed it is infinite dimensionally indefinite. We use the notion of T -coercivity
to transfer the problem to a coercive setting, enabling bounded invertibility of the relevant operator
to obtain the reduction; see Section 9.
A precise formulation of the above results with extensions to Dirac points in higher energy spectral
bands appears in Sections 4 through 9.

3. Theorem 6.3, Corollaries 6.6 and 6.7, and Theorem 6.8 Asymptotic expansions of Bloch eigenmodes
and Dirac velocity at K∗ = K, K′: In Section 6 we construct asymptotic expansions to any order
in g−1 of a) the Dirac energy λD(g), and b) an associated orthonormal basis, {Φ1(g, ·),Φ2(g, ·)},
of Bloch eigenfunctions. Such approximate eigenpairs are called quasi-modes. By general self-
adjointness principles, presented in Appendix C in the weak formulation, the existence of Dirac
quasi-modes with small residual implies that the actual Dirac eigenpairs (established earlier) are
within a neighborhood whose size is set by the size of this residual. Thus, this justifies the ex-
pansions. These mode expansions are then used to obtain an asymptotic expansion of the Dirac
velocity, vD(g), to any order in g−1.

1.4 Connection to previous analytical works on high contrast media

High contrast elliptic operators have been studied in media where the contrast and the geometrical
structure (e.g. inclusion length scale) are coupled. For example, the articles [12, 27, 58, 61] concern the
high contrast homogenization regime, in which the size of the unit cell depends on the material contrast,
and the articles [26, 31] concern media which contain asymptotically thin structures. In this article,
inclusions defined by σg have fixed geometry and we take the contrast, g, between the two material
parameters to be large. We can make use of the variational methods of Hempel and Lienau [35], who
studied the limiting behavior of the band spectrum and obtained criteria for the opening of gaps in the
spectrum of Ag for g � 1. Further developments along these lines concerning the density of states of
such media were obtained in [28]. The main focus in [35] is the use of high contrast to open gaps in the
energy spectrum. In this paper we apply these methods together the symmetries of novel structures to

5



study important band structure properties such as Dirac points. We believe our approach can be used
to study other classes spectral degeneracies; see, e.g., [40].

An alternative potential theoretic formulation of the spectral problem for operators with piecewise
constant coefficients, in terms of boundary integral equations, is developed in [2]. But unlike, the methods
of this paper, this formulation is not easily adapted if the media has strong heterogeneities or anisotropy,
i.e. if the medium is not piecewise constant. In a square lattice geometry, using such a potential theoretic
approach, the authors of [45] study the question of the existence and width of spectral gaps for sufficiently
large contrast. They provide, in particular for disc-shaped inclusions, a sufficient condition with a lower
bound on the contrast (in terms of inclusions radii and inclusions relative distances) to open a gap between
consecutive energy bands. Recently, high contrast elliptic operators in honeycomb structures have been
studied via a potential theoretic approach for the “inverted” case of a honeycomb-lattice of acoustic
“Minnaert bubbles”, in which σg is large within the honeycomb inclusion set and bounded outside the
inclusion set [1]. Their results apply to the two lowest bands and, so far, have no equivalent for higher
energy bands.

Concerning asymptotic expansion of eigenpairs in high contrast media, we mention the works [2, 17,
37, 44]. In [37] the case of a bounded domain with Dirichlet boundary conditions and high contrast coef-
ficient within the inclusions is studied. Using approximation by quasi-modes, they provide an asymptotic
expansion of the eigenvalues and spectral projectors to any order. In [2], using Riesz homomorphic func-
tional calculus and a potential theory, the authors give the leading order term of a Bloch simple eigenvalue
in a square lattice at any non-zero quasimomentum. By a similar technique and in the same geometry,
the authors of [44] prove the analyticity of simple Bloch eigenvalues or of the eigenvalue group, for the
case of degenerate eigenvalues. The coefficients involved in their series expansion are defined implicitly
via the Riesz holomorphic functional calculus. Finally, recently in [17], the first terms of the asymptotic
expansion of Bloch eigenvalues were derived for the limiting case of a single disc-shaped inclusion whose
closure touches the boundary of a square unit cell.

We conclude by mentioning a number of interesting natural questions to consider going forward:
(1) Are there results on the scaled limiting shape of dispersion surfaces which intersect in a Dirac point?
Such a result was proved for the first two bands of Schroedinger operators in the strong binding regime
in [22].
(2) Dirac points are known to occur in generic honeycomb Schroedinger operators [23]. The methods of
[23] were used to prove the analogous result for divergence form operators with smooth coefficients [43].
It would be of interest to develop a method, which through the weak formulation, can handle divergence
form operators with non-smooth coefficients, Ag.
(3) And finally, it would be of great interest to consider the propagation of edge modes in the current
context. For honeycomb media, these have been studied (a) for the Schroedinger equation with a sharply
(zigzag-) terminated honeycomb structure [25], and domain wall line-defects [21, 20, 22], and for (b)
Maxwell’s equations in a honeycomb structure with a domain wall [43]. It would be interesting to use
the techniques of the present paper to study edge states for line-defect perturbations of Ag.

1.5 Outline of the paper

In Section 2, we give a precise formulation of the mathematical problem and review the spectral theory
of elliptic operators in periodic structures.
In Section 3, we summarize the variational theory developed by Hempel and Lineau in [35]. We provide
some extensions of their theory concerning strict monotonicity Bloch eigenvalues as functions in the con-
trast parameter g, and regarding uniform convergence of band dispersion functions on the Brillouin zone
as g ↑ ∞.
In Section 4, building on [35], we introduce a spectral isolation condition (S) (Definition 4.2), expressed
in terms of eigenvalues of the Dirichlet Laplacian for a single inclusion. We then establish a relation
between this Dirichlet spectrum and the L2

k-spectrum (for k 6= 0) of Ag for large g. Furthermore, we
characterize the high contrast global behavior of dispersion surfaces and show the existence of a spectral
gap for dispersion surfaces whose high contrast limit is given in terms of Dirichlet eigenvalues that satisfy
the condition (S). Condition (S) always holds for the first Dirichlet eigenvalue. Hence, these results hold
for the lowest-lying (first) dispersion surface.
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In Section 5 we embark on the study of honeycomb operators Ag, using general results of the previous
sections. Section 5.1 discusses the symmetries of honeycomb operators, operators which commute with
Ag, and important consequences for the spectral analysis. In connection with this, the Appendix B, deals
with technical questions arising due to the discontinuities of the elliptic coefficient σg. The notion of a
Dirac point is defined in Section 5.2, and sufficient conditions for their existence are given in Theorem 5.4.
In Section 5.3 we construct states which capture the limiting behavior of the Floquet Bloch eigenspace
of Dirac points; these states are K∗−quasi-periodic superpositions of translates of the Dirichlet eigen-
states of the single isolated inclusion. In Section 5.4 we prove Theorem 5.12 on the existence of Dirac
points, associated with Dirichlet spectrum of −∆ satisfying (S), under the non-degeneracy condition
that the Dirac velocity, vD(g), is non-zero. Condition (S) always holds for the first Dirichlet eigenvalue
and hence Theorem 5.12 applies to give Dirac points within the two first dispersion surfaces, modulo the
non-degeneracy assumption, which we address numerically.
In Section 6, we prove asymptotic expansions to any order in g−1 for: the Dirac eigenvalue, λD(g), a
natural choice of orthonormal of its corresponding 2− dimensional eigenspace, and for the Dirac velocity
vD(g). We use the weak formulation of the quasi-mode principle, discussed in Appendix C.
In Section 7 we present the results of numerical simulations which illustrate our rigorous results for the
first 2 spectral bands of Ag.
In Section 8 we show, for the case of disc-shaped inclusions, that the spectral isolation condition (S) is
satisfied for all radial Dirichlet eigenpairs, i.e. those whose eigenvalues derive from zeros of the Bessel
function J0(z). Hence, for this special geometry, the results of Sections 4-6 apply to give Dirac points
at intersections of an infinite sequence of energy band pairs. As an illustration, we present numerical
simulations for the 11th and 12th spectral bands.
In Section 9, we prove Theorem 5.4 on sufficient conditions for the existence of Dirac points. The proof
uses a weak formulation of Lyapunov-Schmidt / Schur complement reduction scheme of previous work
and makes use of T−coercivity to define an appropriate resolvent for the reduction, which applies when
Dirac points sit among spectral bands above the first two.
Finally, in the Appendix D, we extend our approach and results to a class of divergence form elliptic op-
erators which, in electromagnetism, model inhomogeneous and anisotropic inclusions in an heterogeneous
and anisotropic bulk.

1.6 Notations, definitions and conventions

• We denote by N0 and N respectively the set of non-negative integers and positive integers.
• For two Banach spaces E and F , B(E,F ) is the Banach algebra of bounded linear operators from E
into F . We write B(E) = B(E,E) .
• 〈·, ·〉

E∗,E
denotes the duality product between the Banach space E and its dual E∗.

• In this paper, all the considered Hilbert spaces H are endowed with a complex inner product. This
inner product and all the considered sesquilinear forms, defined on H×H, are antilinear with respect to
the second variable.
• Except in the context of our definition of lattice, the symbol ⊕ refers to both the direct sum of two
closed spaces in a Banach space and the orthogonal direct sum between two closed spaces in a Hilbert
space. Unless explicitly specified otherwise, the symbol ⊕ refers to an orthogonal direct sum.
• If A : D(A) ⊂ H → H is a selfadjoint (resp. normal) operator on a Hilbert space H, one denotes by
EA(·) its associated spectral measure defined from the Borel sets of R (resp. C) into the projection of
B(H) (see [15, 54, 55]).
• Let H be a Hilbert space, A : D(A) ⊂ H → H a unbounded linear operator and B : H → H a bounded
linear (or bounded anti-linear) operator. One says that A commutes with B, if D(A) is stable under B
(i.e. B(D(A)) ⊂ D(A)) and if the commutator [A,B] = AB− BA vanishes on D(A).
For the particular case where A is a self-adjoint and B is linear, this definition is equivalent to the
commutation of B with the spectral measure EA(·) of A in the sense that the commutator [B,EA(I)]
vanishes on H for any Borel sets I of R (see Proposition 5 p. 145 of [15]).
Furthermore if B is a normal operator, it is equivalent to the commutation of the spectral measures of B
with A, i.e EB(J)D(A) ⊂ D(A) and [A,EB(J)] vanish on D(A) for any Borel sets J of C (by combining
Proposition 5.27 p. 107–108 of [55] and Proposition 5 p. 145 of [15]). Finally, this turns out to be also
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equivalent to the commutation of the two spectral measures, namely [EA(I),EB(J)] = 0 on H, for any
Borel sets I of R and any Borel sets J of C (see Proposition 5.27 p. 107–108 of [55]).
• Let R denote the matrix which rotates a vector in R2 clockwise by 2π/3:

R =

 −1

2

√
3

2

−
√

3

2
−1

2

 . (1.2)

Its eigenvalues and a choice of normalized eigenvectors are given by:

Rξ = τ ξ and Rξ = τ ξ, where τ = e2iπ3 and ξ =
1√
2

(1 , i)>. (1.3)

• Triangular lattice, Λ = Zv1 ⊕ Zv2, where

v1 =
(√3

2
,

1

2

)>
and v2 =

(√3

2
, −1

2

)>
.

• Honeycomb, H = ΛA ∪ ΛB , where ΛJ = vJ + Λ with base points:

vA = (0, 0)> and vB =
( 1√

3
, 0
)>
.

• Dual lattice Λ∗ = Zk1 ⊕ Zk2, where

k1 = 2π
(√3

3
, 1
)>

and k2 = 2π
(√3

3
, −1

)>
.

• A choice of hexagonal tile center is given by xc = 1
2

(
1√
3
,−1

)>
. It is located at a vertex of the

fundamental cell Ω; see Figure 1). Note that Rxc = −vB .

• K and K′ are the 2 independent high-symmetry quasi-momenta, at vertices of the Brillouin zone B
depicted in Figure 1:

K =
1

3
(k1 − k2) =

(
0,

4π

3

)>
and K′ = −K. (1.4)
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supported in part by Simons Foundation Math + X Investigator Award #376319. M.I.W. was also
supported by US National Science Foundation grants DMS-1412560, DMS-1620418 and DMS-1908657.

2 Analytical preliminaries

In this section we first introduce the equilateral triangular lattice and honeycomb structure. We then
define the honeycomb medium through the piecewise constant coefficient σg of the operator Ag. We
employ notations and conventions similar to those in [23].

2.1 Triangular lattice, honeycomb structure and the periodic medium

The equilateral triangular lattice in R2 is given by:

Λ = Zv1 ⊕ Zv2 = {m1v1 +m2v2, (m1,m2) ∈ Z2}.

Given base points vA and vB , we consider equilateral triangular sub-lattices: ΛA = vA + Λ and ΛB =
vB + Λ. The honeycomb structure, H, is the union of these two interpenetrating sub-lattices:

H = ΛA ∪ ΛB .
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As a fundamental domain in R2
x, we choose the diamond-shaped region, which contains vA and vB :

Ω =
(
− 1√

3
, 0
)>

+
{
θ1v1 + θ2v2, 0 < θi < 1, i = 1, 2

}
;

see Figure 1. Denote the discrete translates of Ω by lattice vectors by:

Ωmn = Ω +mv1 + nv2,

where Ω = Ω00. The family of regions Ωmn, (m,n) ∈ Z2 is a tiling of R2.

2.2 The honeycomb coefficient σg(x)

In this section we define σg(x) to be piecewise constant on the fundamental cell, Ω, and extend it to be
Λ− periodic on R2. We begin with a discussion of constraints on the subset of Ω consisting of inclusions.

Throughout this article we assume:

(Ω.i) The inclusion ΩA is a non-empty simply connected open subset of Ω with a Lipschitz boundary
∂ΩA, and with vA ∈ ΩA.

(Ω.ii) The inclusion ΩB is the translate of ΩA by vB .

We denote the inclusion subset of Ω by Ω+ := ΩA ∪ ΩB .

(Ω.iii) The inclusions are disjoint; ΩA ∩ ΩB = ∅.
(Ω.iv) The inclusion set is uniformly bounded away from the boundary, ∂Ω, of the fundamental cell;

dist
(
Ω+, ∂Ω

)
> 0 .

Next we impose conditions, used in the construction of a honeycomb symmetric medium, σg(x), and
the associated operator Ag. We further require the following assumptions on ΩA and ΩB linked to the
honeycomb symmetries:

(Ω.v) ΩA is invariant under the 2π/3− rotation about origin vA = 0. That is,

R(ΩA) = ΩA, where R is the clockwise 2π/3− rotation matrix;

we say that ΩA is centered at vA.

(Ω.vi) ΩA is invariant under inversion with respect to vA = 0. That is,

ΩA = −ΩA = {−x : x ∈ ΩA}.

Note that (Ω.v) and (Ω.vi) together imply that ΩA is also π/3 rotationally invariant about vA.
Let Ω− denote the part of Ω, which is outside the inclusion set:

Ω− = Ω \ Ω+

and thus
Ω = Ω+ ∪ ∂Ω+ ∪ Ω− ; see Figure 3.

Our periodic partial differential operator, Ag, is specified by a piecewise constant constitutive law,
σg = σg(x). We first define σg on Ω by

σg(x) =

{
1, x ∈ Ω+ = ΩA ∪ ΩB

g, x ∈ Ω−,
(2.1)

and then extend σg to be defined on all R2 as a Λ− periodic function. This extension is smooth across cell
interfaces but has discontinuous jumps across inclusion boundaries. Referring to Figure 3, an admissible
choice of σg is obtained by taking σg ≡ 1 on all inclusions and σg ≡ g in their complement with respect
to R2.
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ΩA ΩB

Ω− Ω−

Ω+ = ΩA ∪ ΩB  and  Ω = Ω+ ∪ Ω−

vA
<latexit sha1_base64="b3MJRzuntv0rPfQPGPVlrdHxrF8=">AAAC13icjVHLSsNAFD2Nr1pftS7dBIvgqiQi6LLqxmUF+5C2lCSdtkPzIpkUSynuxK0/4Fb/SPwD/QvvjCmoRXRCkjPn3nNm7r126PJYGMZrRltYXFpeya7m1tY3Nrfy24VaHCSRw6pO4AZRw7Zi5nKfVQUXLmuEEbM822V1e3gu4/URi2Ie+FdiHLK2Z/V93uOOJYjq5AstzxIDuzfRW1zo+qhzOu3ki0bJUEufB2YKikhXJci/oIUuAjhI4IHBhyDswkJMTxMmDITEtTEhLiLEVZxhihxpE8pilGERO6Rvn3bNlPVpLz1jpXboFJfeiJQ69kkTUF5EWJ6mq3iinCX7m/dEecq7jelvp14esQIDYv/SzTL/q5O1CPRwomrgVFOoGFmdk7okqivy5vqXqgQ5hMRJ3KV4RNhRylmfdaWJVe2yt5aKv6lMycq9k+YmeJe3pAGbP8c5D2qHJdMomZdHxfJZOuosdrGHA5rnMcq4QAVV8r7BI57wrF1rt9qddv+ZqmVSzQ6+Le3hA/OcllU=</latexit><latexit sha1_base64="b3MJRzuntv0rPfQPGPVlrdHxrF8="></latexit><latexit sha1_base64="b3MJRzuntv0rPfQPGPVlrdHxrF8="></latexit><latexit sha1_base64="b3MJRzuntv0rPfQPGPVlrdHxrF8=">AAAC13icjVHLSsNAFD2Nr1pftS7dBIvgqiQi6LLqxmUF+5C2lCSdtkPzIpkUSynuxK0/4Fb/SPwD/QvvjCmoRXRCkjPn3nNm7r126PJYGMZrRltYXFpeya7m1tY3Nrfy24VaHCSRw6pO4AZRw7Zi5nKfVQUXLmuEEbM822V1e3gu4/URi2Ie+FdiHLK2Z/V93uOOJYjq5AstzxIDuzfRW1zo+qhzOu3ki0bJUEufB2YKikhXJci/oIUuAjhI4IHBhyDswkJMTxMmDITEtTEhLiLEVZxhihxpE8pilGERO6Rvn3bNlPVpLz1jpXboFJfeiJQ69kkTUF5EWJ6mq3iinCX7m/dEecq7jelvp14esQIDYv/SzTL/q5O1CPRwomrgVFOoGFmdk7okqivy5vqXqgQ5hMRJ3KV4RNhRylmfdaWJVe2yt5aKv6lMycq9k+YmeJe3pAGbP8c5D2qHJdMomZdHxfJZOuosdrGHA5rnMcq4QAVV8r7BI57wrF1rt9qddv+ZqmVSzQ6+Le3hA/OcllU=</latexit>

vB
<latexit sha1_base64="lcvIpEQo9y8hbaEXI7JaHkG+nkg="></latexit><latexit sha1_base64="lcvIpEQo9y8hbaEXI7JaHkG+nkg="></latexit><latexit sha1_base64="lcvIpEQo9y8hbaEXI7JaHkG+nkg="></latexit><latexit sha1_base64="lcvIpEQo9y8hbaEXI7JaHkG+nkg="></latexit>

ΩA

vA
<latexit sha1_base64="b3MJRzuntv0rPfQPGPVlrdHxrF8="></latexit><latexit sha1_base64="b3MJRzuntv0rPfQPGPVlrdHxrF8="></latexit><latexit sha1_base64="b3MJRzuntv0rPfQPGPVlrdHxrF8="></latexit><latexit sha1_base64="b3MJRzuntv0rPfQPGPVlrdHxrF8="></latexit>

ΩB

vB
<latexit sha1_base64="VFExpUQ5hqkfswGyIFOmzNe/Zl8="></latexit><latexit sha1_base64="VFExpUQ5hqkfswGyIFOmzNe/Zl8="></latexit><latexit sha1_base64="VFExpUQ5hqkfswGyIFOmzNe/Zl8=">AAAC13icjVHLSsNAFD2Nr1pftS7dBIvgqiQi6LLUjcsK9iFtKUk6bYfmRTIpllLciVt/wK3+kfgH+hfeGVNQi+iEJGfOvefM3Hvt0OWxMIzXjLa0vLK6ll3PbWxube/kdwv1OEgih9WcwA2ipm3FzOU+qwkuXNYMI2Z5tssa9uhcxhtjFsU88K/EJGQdzxr4vM8dSxDVzRfaniWGdn+qt7nQ9XG3Muvmi0bJUEtfBGYKikhXNci/oI0eAjhI4IHBhyDswkJMTwsmDITEdTAlLiLEVZxhhhxpE8pilGERO6LvgHatlPVpLz1jpXboFJfeiJQ6DkkTUF5EWJ6mq3iinCX7m/dUecq7Tehvp14esQJDYv/SzTP/q5O1CPRxpmrgVFOoGFmdk7okqivy5vqXqgQ5hMRJ3KN4RNhRynmfdaWJVe2yt5aKv6lMycq9k+YmeJe3pAGbP8e5COrHJdMomZcnxXIlHXUW+zjAEc3zFGVcoIoaed/gEU941q61W+1Ou/9M1TKpZg/flvbwAfX9llY=</latexit><latexit sha1_base64="VFExpUQ5hqkfswGyIFOmzNe/Zl8="></latexit>

Figure 3: Examples of inclusion subsets, Ω+, of the fundamental cell, Ω, satisfying conditions (Ω.i)-(Ω.vi).
Note that the boundaries of the inclusions in the right panel are Lipschitz continuous but not C1.

2.3 A quick review of Floquet-Bloch theory

Let Λ∗ ⊂ (R2
x)∗ = R2

k denote the lattice which is dual to Λ:

Λ∗ = Zk1 ⊕ Zk2 = {m1k1 +m2k2, (m1,m2) ∈ Z2}, where kl · vm = 2πδlm.

A choice of fundamental cell in R2
k, the Brillouin zone, is the closed regular hexagon B shown in Figure

1. The family of regions Bmn = B +mk1 + nk2 where (m,n) varies over Z2 tiles R2
k.

For any k ∈ R2, let L2
k = L2

k(R2/Λ) denote the Hilbert space of k− quasi-periodic functions:

L2
k := {f ∈ L2

loc(R2) | f(x+ v) = eik·vf(x), for a.e x ∈ R2 and all v ∈ Λ}, (2.2)

with inner product (f, g)L2
k

=
∫

Ω
f(x)g(x)dx, defined for all f, g ∈ L2

k, and denote by ‖·‖L2
k

the associated

norm. (When the context is clear, we omit the subscript L2
k from the norm notation.) Note that

L2
k=0 = L2(R2/Λ), the space of Λ− periodic functions.

Given a function u in the Schwartz space S(R2), define its Floquet-Bloch transform:

(Fu)(x,k) =
∑
v∈Λ

eik·vu(x− v), for x ∈ R2
x and k ∈ R2

k. (2.3)

For a fixed x ∈ Ω, the expression (2.3) extends k 7→ (Fu)(x,k) to a Λ∗− periodic function on R2
k:

(Fu)(x,k + κ) = (Fu)(x,k) for all κ ∈ Λ∗ .

Thus we may restrict the quasimomentum k to B. Furthermore, for a fixed k ∈ B, the function is
x 7→ (Fu)(x,k) ∈ L2

k:

(Fu) (x+ v,k) = eik·v (Fu) (x,k), for all v ∈ Λ and a.e. x ∈ R2.

For all u ∈ S(R2), one can show the following Plancherel-type identity:∫
R
|u(x)|2dx =

1

|B|

∫
B

∫
Ω

|Fu(x,k)|2dx dk, (2.4)

where |B| = |k1 ∧ k2| = 2 ∗ (2π2)/
√

3 is the area of the Brillouin zone B. The identity (2.4) extends
by density F/

√
|B| as a linear isometry from L2(R2) to L2(B, L2

k). Moreover, this isometry is unitary
(since surjective) and we have the following inversion formula; all u ∈ L2(R2) have the following L2

k

decomposition:

u(x) =
1

|B|
(
F∗Fu

)
(x) =

1

|B|

∫
k∈B
F(u)(x,k) dk, for a.e. x ∈ R2.

In analogy with (2.2) we introduce, for any k ∈ R2, the Sobolev spaces H1
k = H1

k(R2/Λ):

H1
k := {f ∈ H1

loc(R2) | f(x+ v) = eik·vf(x), for a.e. x ∈ R2 and all v ∈ Λ},
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endowed with the following inner product,

(f, g)H1
k

=

∫
Ω

f(x)g(x)dx+

∫
Ω

∇f(x) · ∇g(x) dx

and denote by ‖ · ‖H1
k

the associated norm.

Remark 2.1. We emphasize that functions u ∈ H1
k, are such that the trace of the map x 7→ e−ik·xu(x)

has no jump across boundaries between period cells and is Λ− periodic. For the definition of traces
(restriction operators) in terms of Sobolev spaces, we refer for e.g. to [30, 32, 47].

2.4 The operator Ag and its spectral theory: general properties

Let σg denote the piecewise constant function and Λ− periodic (L2
k=0 = L2(R2/Λ)) function introduced

in Section 2.2. The operator

Ag = −∇ · σg∇ : D(Ag) ⊂ L2(R2)→ L2(R2)

with domain
D(Ag) = {u ∈ H1(R2) | −∇ · σg∇u ∈ L2(R2)},

is a positive self-adjoint operator. Furthermore, Ag is unitarily equivalent to a direct fiber integral over
self-adjoint positive operators Ag,k (see for e.g. [42]):

Ag =
1

|B|F
∗
(∫ ⊕

k∈B
Ag,k dk

)
F meaning F

(
Agu

)
(·,k) = Ag,k Fu(·,k) for a.e. k ∈ B, (2.5)

where F denotes the Floquet-Bloch transform defined in Section 2.3. For any k ∈ R2

Ag,k : D(Ag,k)→ L2
k

denotes the operator −∇ · σg∇ with domain given by:

D(Ag,k) :=
{
u ∈ H1

k | −∇ · σg∇u ∈ L2
k

}
.

Remark 2.2. Let u ∈ D(Ag,k). Then, the trace of the function x 7→ e−ik·xu(x) and its Neumann trace
∂(e−ik·xu)/∂n are Λ− periodic, and have no jump across the boundaries between periodic cells. Here,
the orientation of the unit normal vector n on ∪m,n∈Z∂Ωmn is chosen so that n is constant on the sides
of the periodic cells that are obtained from each other by translation of lattice vectors, except of course at
the lattice vertices where it is not defined.

For k ∈ R2, Ag,k has a compact resolvent; see e.g. [53, 42]. Its spectrum consists of a sequence of
non-negative eigenvalues:

0 ≤ λ1(g;k) ≤ λ2(g;k) ≤ · · · ≤ λb(g;k) ≤ · · · ,

listed with multiplicity, and tending to positive infinity. For any κ ∈ Λ∗, one has L2
k+κ = L2

k, H1
k+κ = H1

k,
D(Ag,k+κ) = D(Ag,k) and thus Ag,k+κ = Ag,k. The maps

k ∈ R2 7→ λn(g;k) are real-valued, Lipschitz continuous and Λ∗-periodic functions; (2.6)

see, for example, [4, 14, 24]. The maps k 7→ λj(g;k) are called band dispersion maps. Since the band
dispersion maps are Λ∗-periodic, one can restrict their study to the Brillouin zone B ' T2. Their graphs
over B are called the dispersion surfaces of Ag. By (2.5) and (2.6), the spectrum of Ag, σ(Ag), can be
obtained from the spectra of the fiber operators:

σ(Ag) =

∞⋃
n=1

λn(g;B) . (2.7)

The band structure of Ag refers to the collection of dispersion (eigenvalue) maps and their associated
eigenmodes.

11



2.5 Eigenvalue bracketing

To estimate the location of σ(Ag), we make use of the Dirichlet and Neumann spectra Ag on Ω. Introduce
the operators:

ADir,Ωg := −∇ · σg∇, where D(ADir,Ωg ) = {u ∈ H1
0 (Ω) | −∇ · σg∇u ∈ L2(Ω)}, (2.8)

ANeu,Ωg := −∇ · σg∇, where D(ANeu,Ωg ) =
{
u ∈ H1(Ω) | −∇ · σg∇u ∈ L2(Ω) and

∂u

∂n
= 0
}
, (2.9)

where n denotes unit normal vector on ∂Ω, which points exterior to Ω. The operators ADir,Ωg and ANeu,Ωg

are self-adjoint, positive and have compact resolvent. Moreover, ADir,Ωg is positive definite. Their spectra
consist of a sequence of real eigenvalues of finite multiplicity and tending to infinity. We list them (with
multiplicity) as:

0 < λDir,Ω1 (g) ≤ λDir,Ω2 (g) ≤ . . . λDir,Ωn (g) ≤ . . .
0 = λNeu,Ω1 (g) ≤ λNeu,Ω2 (g) ≤ . . . ≤ λNeu,Ωn (g) ≤ . . . .

The following lemma provides useful upper and lower bounds on the maps of the Floquet-Bloch dispersion
maps: λn(k; g) in terms of λDir,Ωn (g) and λNeu,Ωn (g).

Lemma 2.3. For any fixed g > 0, one has for all n ≥ 1 and all k ∈ B:

λNeu,Ωn (g) ≤ λn(k; g) ≤ λDir,Ωn (g) . (2.10)

Hence, by (2.10) and (2.7):

σ(Ag) ⊂
∞⋃
n=1

[λNeu,Ωn (g), λDir,Ωn (g)].

Proof. The proof is based on the application of the min-max principle to the quadratic (sesquilinear)
form associated with the operator −∇ · σg∇u

ag(u, v) =

∫
Ω

σg(x)∇u(x) · ∇v(x) dx,

with the form domains: H1
0 (Ω), H1

k and H1(Ω), associated with, respectively, Dirichlet, k−quasi-periodic
and Neumann boundary conditions. By the min-max characterization of eigenvalues [15, 36, 53] of
selfadjoint positive operators with compact resolvent:

1. Neumann boundary conditions:

λNeu,Ωn (g) = min
V⊂H1(Ω)
dimV=n

max
u∈V

‖u‖L2(Ω)=1

ag(u, u) ; (2.11)

2. k− quasi-periodic boundary conditions:

λn(g;k) = min
V⊂H1

k
dimV=n

max
u∈V

‖u‖L2(Ω)=1

ag(u, u) ; (2.12)

3. Dirichlet boundary conditions:

λDir,Ωn (g) = min
V⊂H1

0 (Ω)
dimV=n

max
u∈V

‖u‖L2(Ω)=1

ag(u, u) . (2.13)

The inequality (2.10) follows immediately from the relations: H1
0 (Ω) ⊂ H1

k ⊂ H1(Ω), where we regard
H1
k as the subspace H1(Ω) consisting of H1

k functions restricted to Ω.
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3 High-contrast (g � 1) behavior of dispersion maps

The article [35] contains general results on the large g behavior of the band dispersion functions, k 7→
λn(g;k); see also [28]. In this section we review and extend their results and in later sections apply them
honeycomb operators Ag,k. For the results of this section we do not require honeycomb symmetry.

3.1 Limit of the fiber operators Ag,k

Recall that Ω+ denotes the inclusion subset within the fundamental cell, Ω; see Figure 1. For each
(m,n) ∈ Z2 define

Translates of Ω+: For (m,n) ∈ Z2, Ω+
mn = Ω+ + mv1 + nv2 ⊂ Ωmn,

Union over all translates of inclusions: Ω+ = ∪(m,n)∈Z2 Ω+
mn ⊂ R2,

The bulk: Ω− = R2 \Ω+. (3.1)

We introduce the closed subspaces of L2
k and H1

k consisting of functions that vanish outside Ω+:

L̃2
k = {u ∈ L2

k | u(x) = 0 a.e. on Ω−} and H̃1
k = {u ∈ H1

k | u(x) = 0 a.e. on Ω−}. (3.2)

Let k ∈ B be fixed. In [35] it is proved that the positive operator Ag,k converges in the norm-resolvent
sense as g → +∞ via a study of the convergence of the associated sesqulinear form:

ag,k(u, v) = (A
1
2

g,ku,A
1
2

g,kv)L2
k

=

∫
Ω

σg∇u · ∇v dx, for all u, v ∈ D(A
1
2

g,k) = H1
k. (3.3)

We present a short outline of their reasoning, which uses a result of [56] on monotone quadratic forms.
For any fixed u ∈ H1

k, the function g 7→ ag,k(u, u) is increasing for positive g. Hence, we may define:

a∞,k(u, u) = sup
g>0

ag,k(u, u) = lim
g→∞

ag,k(u, u),

with domain
dom(a∞,k) =

{
u ∈ H1

k | sup
g>0

ag,k(u, u) <∞
}
.

Let us now characterize dom(a∞,k). A function u ∈ H1
k belongs to dom(a∞,k) if and only for some

constant C > 0:

ag,k(u, u) =

∫
Ω

σg,k|∇u|2 dx ≤ C, for all g > 0.

The latter condition implies that:

g

∫
Ω−
|∇u|2dx ≤ C, for all g > 0, and hence ∇u = 0 a.e. in Ω−. (3.4)

Since Ω− is open and connected (recall ΩA is simply connected), it follows that u(x) = a constant a.e.
in Ω−. Furthermore, since H1

k functions are k quasi-periodic and belong to H1
loc(R2) (their trace is

continuous across the boundary of the cells and the boundary of the inclusions), we conclude that u(x)
is a.e. equal to a constant on Ω−. There are now two cases: k 6= 0 and k = 0.

3.1.1 The limiting operator A∞,k for k 6= 0

For k ∈ B \ {0}, non-zero constant functions on Ω− do not belongs to H1
k. Since u is a.e. constant on

Ω−, it follows that u(x) = 0 for a.e. x in Ω−. Hence, dom(a∞,k) = H̃1
k; see (3.2).

Thus, for all k ∈ B, the limiting sesqulininear form is given by:

a∞,k(u, u) = lim
g→∞

ag,k(u, u) =

∫
Ω+

|∇u|2 dx , for all u ∈ dom(a∞,k) = H̃1
k.
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For all k 6= 0 we may now associate, to the limiting form a∞,k, the self-adjoint positive definite operator

A∞,k : dom(A∞,k) ⊂ L̃2
k → L̃2

k:

( A∞,ku ) (x) =

{
−∆u(x), for a. e. x ∈ Ω+

0 for a. e. x ∈ Ω− = R2 \Ω+,
(3.5)

with domain:
dom(A∞,k) = {u ∈ dom(a∞,k) = H̃1

k | A∞,ku ∈ L̃2
k}.

The operator A∞,k is a positive definite self-adjoint operator with a compact resolvent. It has a discrete
set of real and strictly positive eigenvalues:

0 < δ1 ≤ δ2 . . . ≤ δn ≤ . . . ,

listed with multiplicity and tending to +∞. By (3.5), the sequence (δn)n≥1 is independent of k since it
coincides with the sequence of eigenvalues (counted also with multiplicity) of the Dirichlet Laplacian:

−∆Dir,Ω+ := −∆ : dom(−∆Dir,Ω+) ⊂ L2(Ω+)→ L2(Ω+) (3.6)

where its domain D(−∆Dir,Ω+) := {u ∈ H1
0 (Ω+) | ∆u ∈ L2(Ω+)} with Ω+ = ΩA ∪ ΩB . The following

result on norm-resolvent convergence of Ag,k as g → +∞ is proved in [35]:

Theorem 3.1 (Norm resolvent convergence of Ag,k to A∞,k). Let k ∈ B \ {0}. Then, for all ζ ∈ C \R:

RAg,k(ζ) = (Ag,k − ζ)
−1 −→ RA∞,k(ζ) = (A∞,k − ζ)

−1
, as g →∞, in B(L2

k). (3.7)

It follows that the eigenvalues of Ag,k converge to those of A∞,k: Fix k 6= 0,

for any n > 0, λn(g;k)→ δn as g → +∞.

Remark 3.2. The resolvent RA∞,k(ζ) acts on a closed proper subspace L̃2
k of L2

k. Thus, to discuss
norm resolvent convergence in (3.7), one needs to extend the resolvent RA∞,k(ζ) to the whole space

L2
k = L̃2

k⊕(L̃2
k)⊥. This is done (see [35, 56]) by setting RA∞,k(ζ)u = 0 for u ∈ (L̃2

k)⊥ = {u ∈ L2
k | u =

0 a.e. on Ω+}.

3.1.2 The limiting operator A∞,k for k = 0

For k = 0 (periodic-case), the constant functions belong to H1
0 = H1(R2/Λ). Thus, in contrast to the

case when k 6= 0, we can only conclude from (3.4) that u is constant a.e. on Ω−. Thus, dom(a∞,0) =

H̃1
0 ⊕ span(1) where 1 is the constant function equal to one on all R2. Hence, for k = 0 the limiting form

a∞,0 is given by:

a∞,0(u, u) = lim
g→∞

ag,k(u, v) =

∫
Ω+

|∇u|2 dx , ∀u ∈ dom(a∞,0) = H̃1
0 ⊕ span(1).

We note that the latter direct sum is not orthogonal. There exists a unique limiting positive self-adjoint
operator A∞,0 associated with a∞,0. It acts on the closed subspace L̃2

0⊕ span(1) of L2
0 and its domain is

given by dom(A∞,0) := {u ∈ H̃1
0 | Ã0u ∈ L̃2

0} ⊕ span(1) where Ã0u is defined by Ã0u = −∆u a.e on Ω+

and Ã0u = 0 a.e on Ω−. The description of the limiting operator requires much more technical study
than for the case k 6= 0. This is carried out in [35]. We do not provide the details here. A∞,0 has a
compact resolvent and its spectrum consists of a non-negative sequence (νn) of eigenvalues:

0 ≤ ν1 ≤ ν2 ≤ . . . ≤ νn ≤ . . . ,

listed with multiplicity and tending to +∞. The following result is proved in [35].
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Theorem 3.3 (Ag,0 → A∞,0 in the norm resolvent sense). Let k = 0. Then we have for all ζ ∈ C \ R:

RAg,0(ζ) = (Ag,0 − ζ)
−1 −→ RA∞,0(ζ) = (A∞,0 − ζ)

−1
, as g →∞, in B(L2

0). (3.8)

Hence,
For all n > 0, λn(g; 0)→ νn as g → +∞.

Remark 3.2 applies to Theorem 3.3; one defines resolvent norm convergence (3.8) by extending the

resolvent RA∞,0(ζ) by 0 on the orthogonal complement of
(
L̃2

0 ⊕ span(1)
)

in L2
0.

We conclude this section by recalling a further result of [35], proved by similar techniques to those
above, showing that limiting eigenvalues of A∞,k, for k 6= 0, and A∞,0 also arise as limits of the eigenvalues
of the operators ADir,Ωg and ANeu,Ωg , introduced in (2.8)-(2.9). By the min-max characterization of

eigenvalues, (2.13) and (2.11), for any n ≥ 1, g 7→ λDir,Ωn (g) and g 7→ λNeu,Ωn (g) are increasing functions.
Hence they either converge or diverge to +∞ as g → +∞. In [35] the following is proved:

Theorem 3.4. The spectrum of the operators ADir,Ωg and ANeu,Ωg converge respectively to the spectra of
A∞,k for k ∈ B \ {0} and A∞,0 in the sense that for all n > 0:

λDir,Ωn (g)→ δn and λNeu,Ωn (g)→ νn, as g →∞.

3.2 Limiting behavior of dispersion surfaces and the opening of spectral gaps

We study the uniform convergence of the dispersions surfaces k 7→ λn(g;k) defined on the Brillouin-zone
B and also on the existence of a criterion for the existence of gaps between these surfaces. Although
not explicitly stated in [35], a direct consequence is the uniform convergence of the dispersion surfaces
k 7→ λn(g;k) on any compact subset of the Brillouin zone B which does not contain 0. We precede the
formulation of this result with a lemma on the strict monotonicty of the dispersion maps with respect to
the contrast parameter g. This property is not discussed in [35].

Lemma 3.5. 1. Let n = 1. For all g > 0, λ1(g; 0) = 0. Furthermore, for fixed k 6= 0, g ∈ R+ 7→
λ1(g;k) is strictly increasing.

2. Let n ≥ 2 and fix k ∈ B. Then, the function g ∈ R+ 7→ λn(g;k) is strictly increasing.

Proof. Note that for any fixed u ∈ H1
k, g 7→ ag(u, u) defined for g > 0 is increasing. Hence, by the

min-max characterization (2.12), for any fixed n ≥ 1 and k ∈ B, g 7→ λn(g;k) are increasing. For the
particular case n = 1 and k = 0, Ag,0u = 0 implies u is equal to a constant on Ω. Thus, λ1(g; 0) = 0 for
all g > 0 and furthermore this eigenvalue is simple.

We prove now by contradiction, that λn(·;k) is strictly increasing for n ≥ 2 or for n = 1 if k 6= 0. This
strict monotonicity of the dispersion maps is not mentioned in [35]. Assume that there exist g1, g2 > 0
such that g1 < g2 and λn(g1;k) = λn(g2;k). Then by the min-max theory, there exists a subspace Vj ,
for j = 1, 2, of dimension n with Vj = span(u1,j , . . . un,j) where um,j ∈ D(Agj ,k), ‖um,j‖L2(Ω) = 1 and
Agj ,kum,j = λm(gj ;k)um,j for m = 1, . . . , n such that:

λn(gj ;k) = agj (un,j , un,j)

= max
u∈Vj , ‖u‖L2(Ω)=1

agj (u, u) = min
V⊂H1

k ,dimV=n
max

u∈V, ‖u‖L2(Ω)=1
agj (u, u). (3.9)

Thus, it follows that:

ag1(un,1, un,1) ≤ max
u∈V2, ‖u‖L2(Ω)=1

ag1(u, u)

≤ max
u∈V2, ‖u‖L2(Ω)=1

ag2
(u, u) = ag2

(un,2, un,2) = ag1
(un,1, un,1)

(where the first inequality is due to the min-max formula (3.9) for j = 1 and the second to the increasing
of the functions g 7→ ag(u, u) defined for g > 0). Hence V2 is a subspace of dimension n for which the
minimum is reached in (3.9) for both j = 1 and j = 2. Thus, by min-max theory, the set V2 consists of the
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linear combination of eigenfunctions associated to the n−th first eigenvalues of the operator Ag1,k and the
function un,2 ∈ V2 which reaches the maximum over V2 is an eigenfunction associated to the eigenvalue
λn(g1;k)(= λn(g2;k)). Thus, one has Ak,g1

un,2 = λn(g1;k)un,2 and Ak,g2
un,2 = λn(g1;k)un,2. This

leads immediately to −∆u = (λn(g1;k)/g1)un,2 = (λn(g1;k)/g2)un,2 on Ω− and thus to un,2 = 0 on Ω−

because λn(g1;k) 6= 0 for n ≥ 2 or k 6= 0. Using the continuity of the traces of un,2 and of σg2
∂un,2/∂n

across ∂Ω+, it implies that un,2 and ∂un,2/∂n are also continuous and thus they both vanish on ∂Ω+.
Hence, one has ∆un,2 = λn(g1;k)un,2 on Ω and un,2 = 0 on Ω− which leads by the unique continuation
principle (see e.g. Lemma 2.2 of [7]) to the contradiction un,2 = 0 on Ω.

Proposition 3.6. Let n ≥ 1. (a) For k ∈ B \ {0}, the dispersion map k 7→ λn(g;k) converges to the
constant function with value δn as g → ∞. This convergence is uniform on compact subsets of B \ {0}.
(b) The convergence in (a) is uniform on all of B if and only if νn = δn.

Proof. Choose J , a compact subset of B \ {0}. For g > 0, the functions k 7→ λn(g;k) are continuous and
converge pointwise to the constant function δn; see Theorem 3.1. Furthermore, for all fixed k ∈ J , the
functions g 7→ λn(g;k) are increasing by Lemma 3.5. Therefore, by Dini’s theorem, the convergence is
uniform on J . If νn 6= δn, then λn(g; 0)→ νn 6= δn = limg→∞ λn(g,k 6= 0). In this case the convergence
is not uniform on B since k 7→ λn(g;k) is continuous and the limiting function is discontinuous. On the
other hand, if νn = δn, take J = B and then Dini’s theorem implies uniform convergence on B.

Proposition 3.7 (Interlacing of limiting Dirichlet and Neumann eigenvalues). The eigenvalues νn and
δn interlace in the following sense:

νn ≤ δn ≤ νn+1, for n ≥ 1. (3.10)

Proof. The first inequality νn ≤ δn in (3.10) follows from the limit g → ∞ of the inequality (2.10):
λNeu,Ωn (g) ≤ λDir,Ωn (g) and Theorem 3.4. The second inequality δn ≤ νn+1 is much more delicate; it is
proved by a min-max argument in [35, Proposition 3.3].

That the dispersion surfaces “collapse” onto asymptotic sets determined by the limiting Dirichlet and
Neumann spectra {νn, n ∈ N} and {δn, n ∈ N} provides a means for identifying gaps in the spectrum
of Ag acting in L2(R2) . The following result of [35] gives a condition for the opening of a gap, for g
sufficiently large, between the nth and (n+ 1)st dispersion surfaces.

Proposition 3.8 (Condition for gap opening and location of spectral bands for g � 1).

1. Suppose δn < νn+1. Then, for sufficiently large g, there is a gap in the spectrum of the periodic
operator Ag. More precisely, for all η sufficiently small (η ∈ (0, νn+1 − δn)), there exists gη > 0
such that if g > gη, then

σ(Ag) ∩ [δn, νn+1 − η] = ∅. (3.11)

Hence, there is spectral gap located between the nth and (n+ 1)st spectral bands, which contains the
interval [δn, νn+1 − η].

2. Suppose νn < δn. Then, for any sufficiently small η (i.e. η ∈ (0, δn − νn)), and g > gη sufficiently
large, the nth spectral band, λn(B; g), contains the interval [νn, δn−η]. Hence, the n−th band “does
not get flat” for large contrast.

Proof. Figure 4 (resp. figure 5) serves as a clarifying schematic of the point 1 of Proposition 3.8 (resp.
of the point 2).

We first prove part (1). Let η ∈ (0, νn+1 − δn) be fixed. One has by Theorem 3.4 that λNeu,Ωn+1 (g) →
νn+1, as g → +∞. Therefore, there exists gη > 0 such that if g > gη , then νn+1 − η < λNeu,Ωn+1 (g).

Therefore, by the eigenvalue bracketing inequality (2.10), one has for g > gη and all k ∈ B, νn+1−η <
λNeu,Ωn+1 (g) ≤ λn+1(g;k). Hence the (n+1)st- spectral band “is above” the energy νn+1−η. Furthermore,
λn(·;k) is a strictly increasing function for g > 0 for k 6= 0 or n > 1 (see lemma 3.5) and it tends to δn
(by Theorem 3.4), as g → +∞. Therefore one has λn(g;k) < δn. For the particular case, n = 1 and
k = 0, λ1(g; 0) = 0 < δ1 for g > 0. Thus, the n−th dispersion curve is always “strictly below” δn which
yields to (3.11).
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νn+ 1 − ηδn νn+ 1

λNeu,Ω
n+ 1 (g)

[δn, νn+ 1 − η] ⊂ Gap

             “ -th and -th  bands’’n n + 1

Figure 4: Bands and gaps of Ag for g large when δn < νn+1 (case 1 of Proposition 3.8).

λn(g; 0)

νn

λn(g; k0)

δnδn − η

[νn, δn − η] ⊂ “ -th band’’n

Figure 5: n-th bands for Ag for g large when νn < δn (case 2 of Proposition 3.8).

We now prove part (2). Let η ∈ (0, δn−νn) be fixed. By Lemma 3.5, λn(·; 0) is an increasing function
for g > 0 and, by Theorem 3.3, it tends to νn, as g → ∞. Thus, one has λn(g; 0) ≤ νn for all g > 0.
Let k0 ∈ B \ {0}, as λn(g;k0) → δn, as g → +∞. One obtains that it exists gη > 0 such that if
g > gη , δn − η < λn(g;k0). One deduces from the convexity of B and the continuity of λn(g; ·) over B
that h : t → λn(g; tk0) is well-defined and continuous on [0, 1] and therefore by the intermediate value
theorem [νn, δn − η] ⊂ h([0, 1]) ⊂ λn(g;B) for all g > gη. Hence it implies with (2.7) that for all g > gη,
[νn, δn − η] ⊂ λn(g;B) ⊂ σ(Ag).

Thus, when the strict inequality νn < δn < νn+1 is satisfied, one gets information on the large contrast
asymptotics of the nth and (n+ 1)st− spectral bands. In particular when δn < νn+1, there is a spectral
gap between these two bands.

In [35], the authors provide the following useful condition on the eigenfunctions of −∆Dir,Ω+ (defined
by (3.6)) to ensure that δn < νn+1, and hence the existence of a spectral gap for g � 1.

Proposition 3.9. (Conditions for a gap in the spectrum for large g)
Let (δn)n≥1 be the limiting Dirichlet eigenvalues (Theorem 3.4), and formally set δ0 = −∞. Assume
dim ker(−∆Dir,Ω+ − δ? Id) = m+ 1, with δ? = δj = · · · = δj+m so that

δj−1 < δ? < δj+m+1.

Then, we have the following two distinct scenarios:

(A) (Band separation) there exists u ∈ ker(−∆Dir,Ω+ − δ?Id) such that

∫
Ω+

u(x) dx 6= 0,

and in this case, νj < δj and δj+m < νj+m+1.

(B) for all u ∈ ker(−∆Dir,Ω+ − δ∗Id), one has

∫
Ω+

u(x) dx = 0,

and then either νj = δj or δj+m = νj+m+1.

4 Isolation and limit behavior of two degenerate spectral bands

Our strategy to prove the existence of Dirac points in the band structure of honeycomb operators, involves
an asymptotic reduction of the full spectral problem for Ag to a problem localized about two degenerate
(touching) bands. This (Lyapunov-Schmidt / Schur complement) reduction scheme requires that for
g � 1 the two bands that touch in a Dirac point are separated from the remainder of the spectrum. Since,
the dispersion maps collapse onto asymptotic Dirichlet or asymptotic Neumann eigenvalues (Proposition
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3.6), the condition in part (A) of Proposition 3.9 may be used to obtain such band separation. Indeed,
suppose the scenario of part (A) holds, i.e. u ∈ ker(−∆Dir,Ω+ − δ?Id) and

∫
Ω+ u(x) dx 6= 0. Then,

δj−1 ≤ νj < δj = δ∗ = · · · = δj+m < νj+m+1 ≤ δj+m+1. (4.1)

Hence, for sufficiently large g: bands r, with r ≤ j − 1 and r ≥ j + m + 1 are uniformly bounded away
from the m+ 1 bands with indices: r = j, . . . , j +m.

For the construction of Dirac points we require two spectral bands which touch to be isolated from
other bands of spectrum; hence we require (4.1) with m = 1. Since Ω+ = ΩA∪ΩB is the union of disjoint
translates of a connected set, we may express this condition in terms of the Dirichlet eigenvalues of a
single inclusion, ΩA.

We introduce the eigenvalues (listed with multiplicity)

0 < δ̃1 < δ̃2 . . . ≤ δ̃n ≤ . . .

of the single inclusion Dirichlet Laplacian −∆Dir,ΩA and recall that (δn)n≥1 is the sequence of eigenvalues
(listed also with multiplicity) of −∆Dir,Ω+ (and of A∞,k, for k ∈ B \ {0}). Since the single inclusion ΩA

is connected, δ̃1 is simple [36, Theorems 1.2.5 and 1.3.2]. The following proposition relates the spectra of
−∆Dir,Ω+ and −∆Dir,ΩA . We omit its elementary proof, which uses [53, Proposition 3 p. 269].

Proposition 4.1. The spectra of −∆Dir,Ω+ and −∆Dir,ΩA satisfy the following relations:

1. σ(−∆Dir,Ω+) = σ(−∆Dir,ΩA),

2. for all n ≥ 1: δ2n−1 = δ2n = δ̃n,

3. for all n ≥ 1:
dim ker(−∆Dir,Ω+ − δ2n Id) = 2× dim ker(−∆Dir,Ω+ − δ̃n Id).

4. for all n ≥ 1:

there exists u ∈ ker(−∆Dir,Ω+ − δn Id) such that

∫
Ω+

u(x)dx 6= 0

⇐⇒

there exists v ∈ ker(−∆Dir,ΩA − δ̃n Id) such that

∫
ΩA

v(x)dx 6= 0.

The band separation scenario (A) of Proposition 3.9 with m = 1 and Proposition 4.1 lead naturally
to the following definition on the eigenvalues of −∆Dir,ΩA referred as a spectral isolation condition.

Definition 4.2. (Spectral isolation condition, (S)) Let n ≥ 1 and δ̃n be an eigenvalue of the single
inclusion Dirichlet Laplacian, −∆Dir,ΩA . We say that δ̃n, for some n ≥ 1, satisfies the spectral separation
condition (S) if the two following properties hold:

(a) δ̃n is a simple eigenvalue of −∆Dir,ΩA , i.e. dim ker(−∆Dir,ΩA − δ̃nId) = 1, and

(b) There exists an eigenfunction v ∈ ker(−∆Dir,ΩA − δ̃nId) such that∫
ΩA

v(x)dx 6= 0.

Propositions 3.9 and 4.1 imply

Proposition 4.3. If the the condition (S) holds for δ̃n with n ≥ 1 then Dirichlet and Neumann eigen-
values satisfy the following inequalities

ν2n−1 < δ2n−1 = ν2n = δ2n < ν2n+1 ≤ δ2n+1.
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Proof. Since δ̃n is a simple eigenvalue of −∆Dir,ΩA , Proposition 4.1 implies that δ2n−1 is an eigenvalue

of multiplicity 2 with δ2n−1 = δ2n = δ̃n < δ2n+1. Furthermore, the point (b) of Definition 4.2 implies,
via part 4 of Proposition 4.1, that δ? = δ2n−1 satisfies the band separation condition (A) of Proposition
3.9 with m = 1. Thus it follows that: ν2n−1 < δ2n−1 = δ2n < ν2n+1. Finally, the interlacing inequality
(3.10) yields: ν2n−1 < δ2n−1 = ν2n = δ2n < ν2n+1 ≤ δ2n+1.

From the isolation of two degenerate asymptotic Dirichlet eigenvalues we next conclude properties of
the corresponding dispersion surfaces of Ag for sufficiently large g.

Theorem 4.4. If δ̃n satisfies the spectral separation condition (S), then the dispersion maps λ2n−1(g; ·)
and λ2n(g; ·) satisfy the following (global) properties:

1. The dispersion map λ2n−1(g; ·) converges uniformly to the constant function δ2n = δ̃n as g → +∞
on any compact set of B \ {0} whereas λ2n−1(g; 0) → ν2n−1 6= δ2n as g → +∞. In this case, the
band (dispersion surface) does not flatten as g ↑ ∞.

2. λ2n(g; ·) converges uniformly to δ2n as g → +∞ on the whole Brillouin zone B. In this case, the
band “becomes increasingly flat” as g becomes large.

3. For g sufficiently large, there exists a gap between the (2n)th and the (2n + 1)st dispersion maps.
More precisely, one has λ2n(g;B) ⊂ [0, δ2n) for all g > 0 and for any 0 < η < ν2n+1 − δ2n, there
exists gη > 0, such that ∀g > gη, λ2n+1(g;B) ⊂ (δ2n + η,+∞).

Proof. By Proposition 4.3, the limit Dirichlet and Neumann eigenvalues satisfy ν2n−1 < δ2n−1 = ν2n =
δ2n < ν2n+1 ≤ δ2n+1. First note that λ2n−1(g; 0) → ν2n−1 6= δ2n, as g → +∞ (see Theorem 3.3).
By Proposition 3.6 and the inequality ν2n−1 < δ2n−1 = δ2n, λ2n−1(g;k) converges uniformly to δ2n on
compact sets of B \ {0}. Furthermore, since ν2n = δ2n, part (b) of Proposition 3.6 implies that λ2n(g;k)
converges uniformly to δ2n on all of B. Finally, as δ2n < ν2n+1, the third point is a direct application
of (3.11) (with 2n replacing n and ν2n+1 − δ2n − η replacing η) in Proposition 3.8. This yields a gap
between the 2n-th and the 2n+ 1-th band. More precisely, one has λ2n(g;B) ⊂ [0, δ2n) for all g > 0. On
the other hand, by Proposition 3.8, for any 0 < η < ν2n+1 − δ2n, there exists gη > 0, such that ∀g > gη,
λ2n+1(g;B) ∈ (δ2n + η,+∞).

Note, in particular, that the spectral isolation condition (S) of Definition 4.2 applies to to the smallest
eigenvalue of −∆Dir,ΩA . Indeed, the smallest eigenvalue of the Dirichlet Laplacian −∆Dir,ΩA is simple
and admits an eigenfunction v that is almost everywhere positive (see, [36, Theorems 1.2.5 and 1.3.2] or
[3, Theorem 4.1]). Thus, the assumptions of Theorem 4.4 hold for n = 1 since δ̃1 satisfies the condition
(S).

Corollary 4.5. Points 1, 2 and 3 of Theorem 4.4 hold for n = 1, where for point 1, we have λ1(g; 0) =
ν1 = 0 for all g > 0.

Proof. As δ̃1 satisfies (S), the points 1, 2 and 3 of Theorem 4.4 hold for n = 1. The fact that λ1(g; 0) =
ν1 = 0 for all g > 0 follows from Lemma 3.5 and Theorem 3.3 applied for n = 1.

Remark 4.6. For honeycomb Schroedinger operators in the strong binding regime, the lowest two dis-
persion surfaces (after centering and rescaling) converge uniformly on the whole Brillouin zone to a tight
binding model; [22]. Here uniform convergence of the surface to the first Dirichlet eigenvalue δ1 holds
only away from a neighborhood of k = 0.

Remark 4.7. We point out that untill now we have not required the honeycomb symmetry of σg. Thus
so far we have only used that Ω = Ω+ ∪Ω− ∪ ∂Ω contains two identical open simply connected inclusions
ΩA and ΩB with Lipschitz boundary that are disjoint and have a positive distance from ∂Ω.

5 High contrast honeycomb structures and Dirac points

In the present and subsequent sections, we use extensively the symmetries of the honeycomb structure.
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5.1 Symmetries of Honeycomb structures and their implications

We begin by recalling here symmetry properties of honeycomb media; see [23]. Let K and K′ be the two
vertices of B defined by (1.4) (see also figure 1). Then, the six vertices of B are generated from K and
K′ by applying the 2π/3 clockwise rotation matrix R (defined in (1.2)). Thus, the six vertices fall into
two groups:

• K type-points: K, RK = K + k2, R2 K = K− k1,

• K′ type-points: K′, RK′ = K′ − k2, R2 K′ = K′ + k1.

For any vertices K∗ of the Brillouin zone, one introduces also the rotation operator R[f ] : L2
K∗
→ L2

K∗
with respect to the reference point xc (see section 1.6 for the definition of xc) given by

R[f ](x) = f(xc +R∗(x− xc)), f ∈ L2
K∗ . (5.1)

One first checks easily that R is well-defined. Indeed, for any f ∈ L2
K∗

and a.e. x ∈ R2, one has for
v ∈ Λ: R[f ](x+ v) = f(xc +R∗(x− xc) +R∗v) and since R∗v ∈ Λ, we obtain

R[f ](x+ v) = eiK∗·R
∗vf(xc +R∗(x− xc))

= eiRK∗·vf(xc +R∗(x− xc))
= eiK∗·vR[f ](x) (since RK∗ −K∗ ∈ Λ∗). (5.2)

Moreover, R is a unitary operator and one can check that its (essential) spectrum consists of three
eigenvalues 1, τ, τ with τ = exp(2πi/3) with associated eigenspaces:

L2
K∗,ν = {g ∈ L2

K∗ | Rg = νg}, (5.3)

for ν = 1, τ, τ . Since R acting in L2
K∗

is a normal operator, the spectral theorem implies that L2
K∗

has
the orthogonal decomposition:

L2
K∗ = L2

K∗,1 ⊕ L2
K∗,τ ⊕ L2

K∗,τ . (5.4)

Introduce, P, the inversion operator with respect to xc, and complex conjugation, C:

P[f ](x) = f(2xc − x), C[f ](x) = f(x).

Their composition operator PC : L2
K∗
→ L2

K∗
is given by

PC[f ](x) = C[f ](2xc − x) = f(2xc − x). (5.5)

Furthermore, it is easily verified (see Proposition 7.2 of [22]) that PC is well-defined and is an anti-linear
involution that satisfies

PC(L2
K∗,τ ) = L2

K∗,τ .

The vertices of B are high symmetry quasi-momenta in the following sense:

Proposition 5.1. For any vertex K∗ of the Brillouin zone B, [R,Ag,K∗ ] = 0 and [PC,Ag,K∗ ] = 0; see
Section 1.6.

Proof. The proof is given in Proposition B.5.

One denotes by kerν(Ag,K∗ − λId) for λ ∈ R and ν = 1, τ, τ the space defined by

kerν(Ag,K∗ − λId) := ker(Ag,K∗ − λId) ∩ L2
K∗,ν (5.6)

and by mg,K∗,ν = dim(kerν(Ag,K∗−λId)). Finally, we denote by σν(Ag,K∗) the L2
K∗,ν

spectrum of Ag,K∗ :

σν(Ag,K∗) := {λ ∈ R | mg,K∗,ν(λ) > 0} for ν = 1 , τ, τ . (5.7)

The commutation relations with the symmetry operators imply:
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Corollary 5.2. Let λ ∈ R and K∗ be a vertex of B. Then, one has

σ(Ag,K∗) =
⋃

ν=1,τ,τ

σν(Ag,K∗) , (5.8)

ker
(
Ag,K∗ − λId

)
=

⊕
ν=1,τ,τ

kerν
(
Ag,K∗ − λId

)
. (5.9)

Thus, solving the eigenvalue problem: Ag,K∗u = λu is equivalent to solving the three eigenvalue problems:
Ag,K∗u = λu in L2

K∗,ν
for ν = 1, τ, τ . Moreover,

PC
(

kerν
(
Ag,K∗ − λId

))
= kerν

(
Ag,K∗ − λId

)
for ν = 1, τ, τ . (5.10)

Finally, we have the following relations on the dimension of eigenspaces:

mg,K∗,τ (λ) = mg,K∗,τ (λ) and dim ker(Ag,K∗ − λId) = 2mg,K∗,τ (λ) +mg,K∗,1(λ), (5.11)

and on the spectra: στ (Ag,K∗) = στ (Ag,K∗) and σ(Ag,K∗) = σ1(Ag,K∗) ∪ στ (Ag,K∗).

Proof. We prove only (5.8) and (5.9) since the other relations are proved in a similar way. By (5.4) and
(5.6), the spaces kerν(Ag,K∗−λId) are orthogonal and their orthogonal sum is included in ker(Ag,K∗−λId).
We show now the other inclusion. Let u ∈ ker(Ag,K∗ − λId). By virtue of (5.3) and (5.4), u admits the
following orthogonal decomposition

u = u1 + uτ + uτ , with uν = ER({ν})u ∈ L2
K∗,ν for ν = 1, τ, τ , (5.12)

where ER({ν}) is the spectral projector of R associated to the eigenvalue ν. As R is a bounded normal
operator which commutes with the self-adjoint operator Ag,K∗ (see Proposition 5.1), it implies that its
spectral measure: ER(·) commutes also with Ag,K∗ (see section 1.6). Hence, one has uν = ER({ν})u ∈
D(Ag,K∗) (since u ∈ ker(Ag,K∗ − λId) ⊂ D(Ag,K∗) and D(Ag,K∗) is stable by ER({ν})) and

Ag,K∗uν = ER({ν})Ag,K∗u = λER({ν})u = λuν for ν = 1, τ, τ .

Thus, uν ∈ kerν(Ag,K∗ − λId) and with (5.12), u belongs to the orthogonal sum of the three spaces:
kerν

(
Ag,K∗ − λId

)
for ν = 1, τ, τ . This proves (5.9). (5.8) follows immediately from (5.7) and (5.9).

5.2 Dirac points

We recall the precise definition of a Dirac point for a divergence form elliptic operator Ag; see [23, 43].

Definition 5.3 (Dirac Points). Fix g > 0. The “energy / quasimomentum” pair (λD(g),kD) ∈ R+ × B
is called a Dirac point of the operator Ag if there exists n ≥ 1 such that:

1. λn(g;kD) = λn+1(g;kD) = λD(g) is an eigenvalue of multiplicity 2 of the operator Ag,kD ;

2. The dispersion maps λn(g; ·) and λn+1(g; ·) touch in isotropic cones at kD, i. e. for some vD(g) > 0:

λn+1(g;k) = λD(g) + vD(g) |k − kD|+ o(|k − kD|);
λn(g;k) = λD(g)− vD(g) |k − kD|+ o(|k − kD|).

The following theorem gives sufficient conditions for the existence of a Dirac points at any vertex
K∗ of the Brillouin zone B. Its analogue was proved for Schroedinger operators in [23] and for elliptic
operators with smooth coefficients [43]. Our proof is given in Section 9. Since the coefficient of the
operator Ag, σg, is discontinuous, the proof is significantly different from that in previous works.

Theorem 5.4 (Sufficient condition for the existence of Dirac points). Let g the positive contrast parameter
be fixed, K∗ be any vertex of the Brillouin zone B and λD(g) ∈ R+. Assume that:
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1. mK∗,g,τ (λD(g)) = dim kerτ (Ag,K∗ − λD(g) Id) = 1 (i.e. the L2
τ eigenvalue problem Ag,K∗u =

λD(g)u has a one dimensional space of solutions u). Let Φ1(g, ·) be a normalized eigenfunction of
kerτ (Ag,K∗ − λD(g) Id) and Φ2(g, ·) = PCΦ1(g, ·) ∈ kerτ (Ag,K∗ − λD(g) Id) (by (5.10)).

2. mK∗,g,1(λD(g)) = 0 (i.e the L2
K∗,1

eigenvalue Ag,K∗u = λD(g)u admits only u = 0 as solution).

3. (Non-vanishing of the Dirac velocity)

vD(g) =
∣∣∣ ∫
D

σgΦ1(g,x)∇Φ2(g,x) dx · (1,−i)>
∣∣∣ 6= 0 . (5.13)

Then, (K∗, λD(g)) is a Dirac point in the sense of Definition 5.3.

Remark 5.5. By symmetry, it is sufficient to prove Theorem 5.4 for one of the 6 vertices of the Brillouin
zone B [22, 43]. This relies on the following symmetry properties:

1. If K∗ is a K type-points then L2
K = L2

K∗
and Ag,K = Ag,K∗ for all g > 0 since K and K∗ yields to

the same quasi-periodic conditions (as their quasimomenta differ from a dual lattice vector). Thus,
Ag,K and Ag,K∗ have the same eigenelements. Hence, conditions of Theorem 5.4 are satisfied for

(K∗, λD(g)) if and only if they are satisfied for (K, λD(g)) and in particular one has vK∗
F (g) = vK

F (g).
If K∗ is a K′ type-points, the same property holds (by replacing K by K′) since Ag,K′ = Ag,K∗ .

2. As K′ = −K, one checks easily that (λ,Φ) is an eigenpair of Ag,K if and only if (λ, CΦ = φ) is an
eigenpair of Ag,K′ . Furthermore, one shows easily that for real λ and σ = 1, τ, τ :

C(L2
±K,σ) = L2

∓K,σ and C(kerσ
(
Ag,±K − λId

)
) = kerσ

(
Ag,∓K − λId

)
). (5.14)

Since C (an anti-linear involution) does not change the subspace dimensionality, we have by (5.11)
and (5.14):

mg,K,σ(λ) = mg,K′,σ(λ) = mg,K′,σ(λ) for σ = 1, τ, τ and λ ∈ R.
Thus, Theorem 5.4 holds for (K, λD(g)) with associated ΦK

1 (g, ·), ΦK
2 (g, ·) = PCΦK

1 (g, ·) and vK
F (g)

if and only if it is satisfied for (K′, λD(g)) with associated ΦK′

1 (g, ·) = C ΦK
2 (g, ·), ΦK′

2 (g, ·) =
P CΦK′

1 (g, ·) = PΦK
2 (g, ·) = (P2 ◦ C)ΦK

1 (g, ·) = CΦK
1 (g, ·) and vK′

F (g) = vK
F (g).

Remark 5.6. In Theorem 5.4, the normalized vector Φ1(g) is uniquely defined up to a complex phase.
However, the Dirac velocity vD(g), defined by (5.13), is independent of this choice of phase.

5.3 Construction of limiting eigenstates at high symmetry quasi-momenta

In this section we build up approximations for a basis of the degenerate eigenspace associated to a Dirac
point. The idea is that as g ↑ ∞, the L2

K?
eigenstates of Ag,K?

converge to eigenstates of the Dirichlet
Laplacian for an isolated inclusion. It is therefore natural, when g is large, to seek Floquet-Bloch states
which are quasi-periodic superpositions of translates of Dirichlet eigenstates. In the context of quantum
chemistry, this idea is known as LCAO: the linear combination of atomic orbitals. By analogy we refer
to the translated Dirichlet eigenstates Dirichlet orbitals.

5.3.1 Dirichlet orbitals

Introduce the operators associate with inversion, complex conjugation and 2π/3 rotation on the single
inclusion ΩA:

PΩA f(x) = f(−x), Cf(x) = f(x), RΩA f(x) = f(R∗ x). (5.15)

Here, R denotes the 2× 2 matrix, which rotates a vector in the plane about vA = 0 by 2π/3 clockwise.
Since R(ΩA) = ΩA and P(ΩA) = ΩA (assumptions (Ω.v) and (Ω.vi) of Section 2.2), the operators
PΩA ,RΩA and C map L2(ΩA) to itself. PΩA and RΩA are unitary and C is anti-unitary. Furthermore,

[PΩA ,−∆Dir,ΩA ] = 0, [RΩA ,−∆Dir,ΩA ] = 0, [C,−∆Dir,ΩA ] = 0]. (5.16)

The commutation with the conjugation operator is obvious, for the two other commutation relations, see
1.6, in particular, Proposition B.1 for more details.
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Proposition 5.7. Let δ̃n, n ≥ 1 be an eigenvalue of −∆Dir,ΩA satisfying the spectral isolation condition

(S) of Definition 4.2. Let v ∈ ker(−∆Dir,ΩA − δ̃nId), then one has

RΩA [v](x) = R∗ΩA [v](x) = v(x). (5.17)

Moreover, there exists a unique (up to a factor of −1) normalized eigenfunction pn ∈ ker(−∆Dir,ΩA−δ̃nId)
such that for almost all x ∈ ΩA:

C[pn](x) = pn(x), and (5.18)

either PΩA [pn](x) = pn(x) or PΩA [pn](x) = −pn(x) .

Proof. Let v be an eigenfunction associated with δ̃n. Since −∆Dir,ΩA commutes with CΩA , v is also an

eigenfunction of −∆Dir,ΩA associated with δ̃n. Therefore, Re(v) = (v + v)/2 and Im(v) = (v − v)/(2i) ∈
ker(−∆Dir,ΩA − δ̃nId) and these two functions cannot be simultaneously equal to the zero function since

v = Re(v) + i Im(v) 6= 0. Thus, there exists a real-valued eigenfunction associated to δ̃n. Moreover, since
δ̃n is a simple eigenvalue, there exists a unique (up to a multiplication by −1) real-valued normalized
eigenfunction, which we denote pn ∈ ker(−∆Dir,ΩA− δ̃nId). By the commutation relations (5.16), the one

dimensional space ker(−∆Dir,ΩA−δ̃nId) = span{pn} is invariant underRΩA and PΩA . In addition,RΩA pn
and PΩA pn are real-valued, thus there exist α, β ∈ R such that (RΩA pn)(x) = pn(R∗x) = αpn(x) and
PΩApn(x) = β pn(x) for x ∈ ΩA. But as RΩA pn and PΩA pn are normalized (since pn is normalized), and
sinceRΩA is unitary and PΩA is anti-unitary, we have α = ±1 and β = ±1. Furthermore, since R3

ΩA = Id,

we have α3 = 1 and thus α = 1. Finally, since ker(−∆Dir,ΩA − δ̃nId) = span{pn} and RΩApn = pn, it

follows that any v ∈ ker(−∆Dir,ΩA − δ̃nId) satisfies (5.17).

Let δ̃n, n ≥ 1 be an eigenvalue of −∆Dir,ΩA satisfying the band separation condition (S) and let

pn ∈ ker(−∆Dir,ΩA− δ̃nId) denote the normalized eigenfunction (unique up to a factor of −1), guaranteed
by Proposition 5.7 which satisfies the symmetry relations (5.17) and (5.18). We extend pn to be defined
on all R2 by setting it equal to zero on R2 \ΩA. We continue to denote this extension by pn and observe
that for a.e. x ∈ R2 we have:

pn(x) = pn(R∗x) = pn(Rx) (5.19)

pn(x) = pn(x), and (5.20)

either pn(−x) = pn(x) or pn(−x) = −pn(x). (5.21)

The following proposition is an immediate consequence of Proposition 4.1.

Proposition 5.8. Assume that δ̃n is an eigenvalue of −∆Dir,ΩA for which the spectral isolation condition
(S) of Definition 4.2 holds, with corresponding normalized eigenfunction pn that satisfies (5.19), (5.20)
and (5.21). Then, δ2n−1 = δ2n = δ̃n is an eigenvalue of −∆Dir,Ω+ of multiplicity 2, i. e.

δ2n−1 = δ2n = δ̃n < δ2n+1 = δ̃n+1 for n ≥ 1 and δ̃n−1 = δ2n−2 < δ2n−1 for n > 1.

Furthermore, {pn(x− vA), pn(x− vB)} is an orthonormal basis for ker(−∆Dir,Ω+ − δ2nId).

Example 5.1 (ΩA and ΩB , circular inclusions). If ΩA and ΩB are two discs of radius R0, the three

first eigenvalues of −∆Dir,Ω+ are given by δ1 = δ2 = δ̃1 = (z0,1/R0)
2
< δ3 = δ̃2 = (z1,1/R0)

2
where zp,q

denotes the qth positive zero of the Bessel function Jp (p ∈ N0). Moreover, the normalized eigenfunction

p1 associated to δ̃1 is (up to −1 factor) given by

p1(x) =
1|x|≤R0

(x)
√
π

J0

(√
δ̃1|x|

)
|J ′0(z0,1)|R0

;

note that |J ′0(z0,1)| 6= 0 as the zeros of J0 are simple; see [59]. For the normalization of p1, we use the

identity
∫ R0

0
J2

0 (
√
δ̃1r) r dr = R2

0 J
′
0(z0,1)2/2 (see chapter 5, formula 11 page 135 of [59]). Finally, note

that in this particular case p1 is an even function.
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5.3.2 Pseudo-periodic superposition of Dirichlet orbitals

In this section, we prove the existence of Dirac points over the Brillouin zone vertices for g sufficiently
large. By Remark 5.5, it suffices to work at the single vertex K of B. First, one construct the eigenstates
of the limit problem as g → +∞. We assume that the Dirichlet eigenvalue δ̃n, n ≥ 1 satisfies the
spectral isolation condition (S) of Definition 4.2. Let pn be the unique (up to a factor −1) normalized
eigenfunction associated to δ̃n that satisfies (5.19), (5.20) and (5.21). For each of the two triangular
sublattices, Λ + vJ , J = A,B which comprise the honeycomb, we associate the function

P Jn,K(x) :=
∑
v∈Λ

eiK·vpn(x− v − vJ), for a. e. x ∈ R2, J = A,B. (5.22)

The supports of each summand are disjoint, so the above series is trivially convergent; for each x ∈ R2,
at most one of its term is nonzero. Furthermore, note that P Jn,K(·) is the Floquet-Bloch transform at

quasi-momentum K of pn(· − vJ) (see (2.3)) and is therefore K−quasi-periodic. Hence, P Jn,K ∈ L2
K.

Lemma 5.9. Assume that the eigenvalue δ̃n of −∆Dir,ΩA satisfies the condition (S) of Definition 4.2.
Then,

1.
PAn,K ∈ L2

K,τ and PBn,K ∈ L2
K,τ , PCPAn,K = ±e−i 2π

3 PBn,K, (5.23)

where the choice of sign, ±, is + (resp. −) if the single inclusion Dirichlet eigenfunction pn with
corresponding eigenvalue δ̃n is even (resp. odd).

2. the two-dimensional eigenspace of A∞,K associated with the eigenvalue δ̃n = δ2n−1 = δ2n admits
{PAn,K, PBn,K} as an orthonormal basis.

Proof. Definitions (3.5) and (3.6) imply that A∞,K and −∆Dir,Ω+ have the same eigenvalues (with multi-
plicity). Furthermore, the eigenfunctions of A∞,K are obtained from those of −∆Dir,Ω+ by first extending
them to be identically zero on Ω \ Ω+, and then extending this function on Ω to be k−quasi-periodic
on R2. Thus, by Proposition 5.8, {PAn,K, PBn,K} is an orthonormal basis of the 2-dimensional space
ker(A∞,K − δ2nId).

We next prove that PAn,K ∈ L2
K,τ . This proof is similar to the one of [43, Lemma 10.4]. We recall that

vA = (0, 0). For almost all x ∈ R2:

R[PAn,K](x) =
∑
v∈Λ

eiK·vpn(xc +R∗(x− xc)− v)

=
∑
v∈Λ

eiK·vpn(Rxc + (x− xc)−R v) ,

where the last equality holds since pn(Ry) = pn(y) for all y ∈ R2 (Proposition 5.7). Using that
v2 = xc −Rxc (since xc = v2 − vB and Rxc = −vB) and that R is unitary we have

R[PAn,K](x) =
∑
v∈Λ

eiRK·Rvpn
(
x− (R v + v2)

)
= e−iRK·v2

∑
v∈Λ

eiRK·(Rv+v2)pn
(
x− (R v + v2)

)
,

= e−iK·v2

∑
v∈Λ

eiK·(Rv+v2)pn
(
x− (R v + v2)

)
( since RK = k2 + K),

= τ
∑
w∈Λ

eiK·wpn
(
x−w

)
.

The last equality follows since v 7→ Rv + v2 maps Λ to itself and and e−iK·v2 = e−
i
3 (k1−k2)·v2 =

e−
i
3 (−2π) = τ . Thus, R[PAn,K](x) = τ PAn,K(x) and PAn,K ∈ L2

K,τ .
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Finally, we prove the equality in (5.23). This will imply that PK,B is in L2
K,τ since PK,A ∈ L2

K,τ and

PC maps L2
K,τ into L2

K,τ . By definition of PC, one has

PC[PAn,K](x) = PAn,K(2xc − x)

=
∑
v∈Λ

e−iK·vpn(2xc − x− v) (since pn is real-valued),

= ±
∑
v∈Λ

e−iK·vpn(x+ v − 2xc) (since pn is even (+) resp. odd (−)),

= ±
∑
v∈Λ

e−iK·vpn(x+ v − v2 + v1 − vB) (since 2xc = v2 − v1 + vB),

= ±eiK·(v1−v2)
∑
w∈Λ

eiK·wpn(x−w − vB) (w = −v + v2 − v1),

= ±e−i 2π
3 PBn,K(x) (since eiK·(v1−v2) = e−i 2π

3 ).

5.4 Existence of Dirac points for high contrast

In this section, building upon the sufficient conditions of Theorem 5.4, we prove that for g sufficiently
large, the existence of Dirac points is reduced to the non-vanishing of the Dirac velocity vD(g). For this
result we require the following classical result of spectral theory on spectral measures and norm resolvent
convergence. Its proof can be found in [54, Theorem VIII.23 p. 289-290].

Lemma 5.10. Let (An)n∈N be a sequence of unbounded self-adjoint operators on a Hilbert space H that
converges to a self-adjoint operator A on H in the norm resolvent sense. That is, for any ζ ∈ C \ R,
‖RAn(ζ) − RA(ζ)‖B(H) → 0, as n → +∞. Then, for any real a, b /∈ σ(A), one has the following norm
convergence of the spectral projectors onto the real interval (a, b):

‖EAn
(
(a, b)

)
− EA

(
(a, b)

)
‖B(H) → 0 as n→ +∞.

Let EAg,K(·) and EA∞,K(·) denote the spectral measures associated with the self-adjoint operators
Ag,K and A∞,K.

Remark 5.11. From Theorem 3.1, one knows that Ag,K tends to A∞,K in the norm resolvent. But

A∞,K acts on a strict closed subspace L̃2
K of L2

K, the Hilbert space associated to A∞,K. Thus, to give a
meaning to Lemma 5.10 in our setting, one needs as in Remark 3.2 for the resolvent operator RA∞,K(ζ)

to extend the definition of the spectral measure of EA∞,K(·) to the space L2
K = L̃2

K ⊕ (L̃2
K)⊥ by setting

EA∞,K(I)u = 0 for any u ∈ (L̃2
K)⊥ and any Borel sets I of R, for more details (see [35, 56]).

Theorem 5.12 ((S) and vD(g) 6= 0 =⇒ existence of Dirac points). Assume that the eigenvalue δ̃n of
−∆Dir,ΩA satisfies the spectral isolation condition (S) of Definition 4.2. Let {PAn,K, PBn,K} be as in (5.22).
Then, there exists g∗ > 0 such that for all g > g∗ the following conditions hold:

1. λ2n−1(g; K) = λ2n(g; K) = λD(g) is a multiplicity 2 eigenvalue of Ag,K.

2. mg,K,τ (λD(g) = 1 and a normalized eigenfunction of kerτ (Ag,K − λD(g) Id) is given by

Φ1(g, ·) :=
EAg,K({λD(g)})PAn,K

‖EAg,K({λD(g)})PAn,K‖L2
K

, (5.24)

In addition, one has Φ1(g, ·)→ PAn,K as g → +∞ in the L2
K−norm.

3. mK∗,g,τ (λD(g)) = 1 and a normalized eigenfunction in kerτ (Ag,K−λD(g) Id) is given by Φ2(g, ·) =
PCΦ1(g, ·). Moreover, this eigenfunction satisfies

Φ2(g, ·) = ±e−i
2π
3

EAg,K({λD(g)})PBn,K
‖EAg,K({λD(g)})PBn,K‖L2

K

. (5.25)
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Equation (5.25) holds with the + sign (resp. −) if the eigenfunction pn is even (resp. odd) in

Definition (5.22). Furthermore, Φ2(g, ·)→ ±e−i
2π
3 PBn,K as g → +∞ in the L2

K−norm.

4. mK∗,g,1(λD(g)) = 0. Thus, Ag,K u = λD(g)u admits only zero as solution in L2
K,1.

5. {Φ1(g, ·),Φ2(g, ·)} is an orthonormal basis of ker(Ag,K − λD(g) Id) in L2
K.

Finally, if the Dirac velocity vD(g) satisfies the non degeneracy condition:

vD(g) ≡
∣∣∣ ∫
D

σgΦ1(g,x)∇Φ2(g,x) dx · (1, i)>
∣∣∣ 6= 0, (5.26)

then (K, λD(g)) is a Dirac point in the sense of Definition 5.3. It follows (see Remark 5.5) that
(K∗, λD(g)) is a Dirac point for any vertex K∗ of the Brillouin zone B.

Since the first eigenvalue δ̃1 of −∆Dir,ΩA (with corresponding positive eigenfunction) satisfies the
spectral isolation condition (S) of Definition 4.2, we have:

Corollary 5.13. Let g ≥ g? be sufficiently large. Assume the non-degeneracy condition (5.26) on vD(g).
Then, there exists are Dirac points between the two first dispersion surfaces of Ag, at each vertex of the
Brillouin zone B.

Proof. We prove now Theorem 5.12. As we work at a fixed quasimomentum K, we omit in the proof the
K dependence of the eigenvalues and write for e.g. λ2n−1(g) for λ2n−1(g; K).

Step 1: Localization of the eigenvalue for high contrast. δ̃n satisfies the spectral isolation condition (S)
of Definition 4.2. Therefore, by Theorem 4.4, one has on one hand that λ2n−1(g) and λ2n(g) tend to δ2n
as g → +∞ and on the other that there exists a gap between the 2nth and the (2n+1)st bands. More pre-
cisely, by virtue of Theorem 4.4, for a fixed η satisfying 0 < η < min(δ2n, ν2n+1− δ2n), there exists g∗ > 0
such that for g > g∗, λ2n−1(g), λ2n(g) ∈ (δ2n − η, δ2n + η) and λ2n+1(g) /∈ [δ2n − η, δ2n + η]. If n > 1, we
also need that λ2n−2(g) /∈ [δ2n− η, δ2n + η]. Indeed, one knows from Theorem 3.1 that λ2n−2(g)→ δ2n−2

as g → +∞ and g 7→ λ2n−2(g) is strictly increasing by Lemma 3.5. Hence, λ2n−2(g) < δ2n−2. Further-
more, by the condition (S), δ̃n is simple and thus δ2n−2 = δ̃n−1 < δ2n = δ̃n. Thus, if n > 1 for any
fixed η satisfying 0 < η < min(δ2n − δ2n−2, ν2n+1 − δ2n), there exists g∗ > 0 such that g > g∗ implies
λ2n−2(g), λ2n+1(g) /∈ [δ2n − η, δ2n + η] and λ2n−1(g), λ2n(g) ∈ (δ2n − η, δ2n + η). Hence, for n ≥ 1, the
eigenvalue λ2n−1(g) is of multiplicity at most 2 for g > g∗.

Step 2: Proof of point 1. of Theorem 5.12. We prove this by contradiction. Suppose λ2n−1(g) =
λ2n−2(g) does not hold for g large enough. Then, there is a sequence (gm) with gm → +∞ as m→∞ such
that λ2n−1(gm) 6= λ2n(gm). Step 1 enables us to localize and isolate these eigenvalues to an interval about
δ2n; for any fixed η, satisfying 0 < η < min(δ2, ν3 − δ2) if n = 1 or 0 < η < min(δ2n − δ2n−2, ν2n+1 − δ2n)
if n > 1, there exists g∗ > 0 such that for gm > g∗:

σ(Agm,K) ∩ (δ2n − η, δ2n + η) = {λ2n−1(gm), λ2n(gm)}. (5.27)

This yields the following relation on the spectral projectors of Agm,K:

EAgm,K
(
(δ2n − η, δ2n + η)

)
= EAgm,K({λ2n−1(gm), λ2n(gm)}). (5.28)

We define
ugm = EAgm,K({λ2n−1(gm), λ2n(gm)})PAn,K, (5.29)

and we prove that ugm 6= 0 for all m large enough. The resolvent norm convergence of Agm,K to A∞,K
(see Lemma 5.10) implies the strong norm convergence of the spectral projectors associated to an open
interval whose endpoints are not in σ(A∞,K). Thus, using (5.28) and the fact δ2n ± η /∈ σ(A∞,K), one
has the following limit in the L2

K norm:

ugm = EAgm,K
(
(δ2n − η, δ2n + η)

)
PAn,K −→ EA∞,K

(
(δ2n − η, δ2n + η)

)
PAn,K
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as m→∞ with

EA∞,K
(
(δ2n − η, δ2n + η)

)
PAn,K = EA∞,K({δ2n})PAn,K = PAn,K 6= 0. (5.30)

The first equality in (5.30) and the property δ2n±η /∈ σ(A∞,K) rely on the following point. One has δ2n =
δ2n−1, δ2n+1 /∈ (δ2n − η, δ2n + η) (since ν2n+1 ≤ δ2n+1 by Proposition 3.8) and δ2n−2 /∈ (δ2n − η, δ2n + η)
for n > 1. Hence, EA∞,K

(
(δ2n − η, δ2n + η)

)
= EA∞,K({δ2n}). Further, since PAn,K is a normalized

eigenfunction of A∞,K associated to δ2n (Lemma 5.9), the second equality of (5.30) holds.
Consider now the orthogonal decomposition of the non-zero vector ugm defined by (5.29):

ugm = EAgm,K({λ2n−1(gm)})PAn,K + EAgm,K({λ2n(gm)})PAn,K. (5.31)

By (5.30) at least one term of the right hand side of (5.31) does not vanish for m large enough. Up
to a subsequence extraction on the sequence (gm), one can assume without a loss of generality that
EAgm,K({λ2n−1(gm)})PAn,K 6= 0 for m large enough. Thus, we can define the normalized vector Φ1(gm, ·)
as in (5.24) (by replacing λD(g) by λ2n−1(gm) in (5.24)). Recall by Lemma 5.9, that PAn,K ∈ LK,τ . Since
R commutes with Agm,K (see Proposition 5.1), R commutes with its associated spectral measure (see Sec-
tion 1.6). Therefore, EAgm,K({λ2n−1(gm)}) L2

K,τ ⊂ L2
K,τ and thus Φ1(gm, ·) ∈ kerτ (Agm,K−λ2n−1(gm) Id)

is a L2
K,τ normalized eigenfunction for the eigenvalue λ2n−1(gm). We now define Φ2(gm, ·) = PCΦ1(gm, ·)

(which is normalized since PC is anti-unitary). By Corollary 5.2, Φ2(gm, ·) ∈ kerτ (Agm,K−λ2n−1(gm) Id)
is a normalized L2

K,τ eigenfunction associated to λ2n−1(gm). Moreover, as L2
K,τ is orthogonal to L2

K,τ ,
{Φ1(gm, ·),Φ2(gm, ·)} is an orthonormal set of two eigenfunctions associated to the eigenvalue λ2n−1(gm).
But λ2n−1(gm) is a simple eigenvalue. Indeed, by assumption λ2n−1(gm) 6= λ2n(gm), and from Step 1,
one has λ2n−2(gm) < λ2n−1(gm) for m large enough if n > 1. (Of course the same contradiction is
reached if we were to assume that, up to a subsequence extraction, EAgm,K({λ2n(gm)})PAn,K 6= 0 for m
large enough.) Hence, for g large enough , one has λ2n−1(g) = λ2n(g) =: λD(g). Step 1 implies λD(g) is
of multiplicity at most 2. Hence, λD(g) is of multiplicity 2. This completes the proof of point 1.

Step 3: Proof of points 2-5 in Theorem 5.12: The reasoning of Step 2 applied to EAg;K

(
{λD(g; K)}

)
shows that the normalized eigenfunction Φ1(g, ·) defined by (5.24) belongs to kerτ (Ag,K − λD(g) Id) and
thus mK∗,g,τ (λD(g) ≥ 1 . Moreover the strong convergence of the spectral projector implies:

Φ1(g, ·)→ PAn,K as g →∞ since EA∞,K({δn})PAn,K = PAn,K and ‖PAn,K‖L2
K

= 1.

In the same way, we have that Φ2(g, ·) = PCΦ1(g, ·) ∈ kerτ (Ag,K−λD(g) Id) is a normalized eigenfunction
associated to λD(g) and thus mK∗,g,τ (λD(g)) ≥ 1. Hence, {Φ1(g, ·),Φ2(g, ·)} is an orthonormal set of
eigenfunctions associated to λD(g). Since λD(g) is of multiplicity 2, it follows from the relation (5.11)
that

mK∗,g,τ (λD(g)) = mK∗,g,τ (λD(g)) = 1 and mK∗,g,1(λD(g)) = 0.

This proves points 2, 4 and 5.
To prove relation (5.25) of the point 3, apply PC to (5.24) and use the identity (5.23) and the facts

that PC commutes with E
(
{λD(g)}

)
and preserves the norm.

Finally, if the non-degeneracy condition (5.26) on vD(g) holds, all assumptions of Theorem 5.4 hold
and we conclude that (K, λD(g)) is a Dirac point in the sense of Definition 5.3.

6 High contrast asymptotic analysis of Bloch eigenelements

6.1 Expansion in powers of g−1 and hierarchy of PDEs in L2
K,τ ∩H1

K

In this section, we derive asymptotic expansions for a large contrast parameter, g, of Bloch eigenvalues,
eigenfunctions at vertices of B, and the Dirac velocity vD(g). The validity of these asymptotic expansions
is proved in Section 6.5. These expansions hold for eigenvalues whose limiting behavior is given by a
Dirichlet eigenvalue δ̃n for n ≥ 1 that satisfies the spectral isolation condition (S) of Definition 4.2 (e.g.
for the two first bands when n = 1, or higher energy bands as it is illustrated in section 8). We focus on
the vertex K of B, all results apply by symmetry to the other vertices; see Remark 5.5.
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If δ̃n satisfies the condition (S) of Definition 4.2, the conclusions of Theorem 5.12 hold. In particular,
for g large enough, the eigenvalue λ2n−1(g; K) = λ2n(g; K) = λD(g) is of multiplicity 2 and there exists
an orthonormal basis {Φ1(g, ·),Φ2(g, ·)} of ker(Ag,K − λD(g)Id), where Φ1(g, ·) ∈ L2

K,τ and Φ2(g, ·) =

PCΦ1(g, ·) ∈ L2
K,τ .

We expand the eigenelements λD(g) and Φ1(·, g) in powers of g−1 for g large. By Theorems 4.4 and

5.12 we have λD(g)→ δ̃n and we can choose a normalized eigenfunction Φ1(g, ·)→ Φ
(0)
1 = PAn,K in L2

K,τ ,

as g → +∞. Here, PAn,K is defined by (5.24). Thus, we formally expand, for any M ≥ 1:

λD(g) =

M∑
m=0

g−mλ(m)
D +O(g−(M+1)) (6.1)

Φ1(g, ·) =

M∑
m=0

g−mΦ
(m)
1 +O(g−(M+1)) with Φ

(m)
1 ∈ L2

K,τ ∩H1
K

with λ
(0)
D = δ̃n and Φ

(0)
1 = PAn,K. We remark that if H1

K convergence holds for (6.1), then

Φ2(g, ·) = PCΦ1(g, ·) =

M∑
m=0

g−m PCΦ(m)
1 +O

(
g−(M+1)

)
with PCΦ(m)

1 ∈ L2
K,τ ∩H1

K.

We next derive recursion relations for Φ
(m)
1 (x) and λ

(m)
D , m ≥ 1. We substitute the expansion (6.1)

into the eigenvalue problem:

Ag,KΦ1(g, ·) = λD(g)Φ1(g, ·) with Φ1(g, ·) ∈ D(Ag,K). (6.2)

Thus Φ1(g, ·) is the solution of the following cell problem on Ω:

−∆Φ1(g, ·) = λD(g)Φ1(g, ·) in Ω+,

[Φ1(g, ·)] = 0 and
[
σg
∂Φ1(g, ·)
∂n

]
= 0 on ∂Ω+,

−g∆Φ1(g, ·) = λD(g)Φ1(g, ·) in Ω−,

Φ1(g, ·) and
∂Φ1(g, ·)
∂n

K−quasi-periodic on ∂Ω.

The jump of traces on ∂Ω+ is here defined by [f ] = f− − f+ where f± is the trace of f on ∂Ω+ from
the domain Ω±. n is the outward unit normal vector oriented from Ω+ to Ω− so that with the same
convention the jump of Neumann traces on ∂Ω+ is defined by [∂f/∂n] = [∂f/∂n]−− [∂f/∂n]+. Inserting
the expansions (6.1) in (6.2) gives, for all M ≥ 0:

M∑
m=0

−g−m∆Φ
(m)
1 +O(g−(M+1)) =

( M∑
m=0

g−mλ
(m)
D +O(g−(M+1))

)( M∑
m=0

g−mΦ
(m)
1 +O(g−(M+1))

)
in Ω+,

[ M∑
m=0

g−m Φ
(m)
1 +O(g−(M+1))

]−
=
[ M∑
m=0

g−mΦ
(m)
1 +O(g−(M+1))

]+
on ∂Ω+,

[ M∑
m=0

g−m+1 ∂Φ
(m)
1

∂n
+O(g−M )

]−
=
[ M∑
m=0

g−m ∂Φ
(m)
1

∂n
+O(g−(M+1))

]+
on ∂Ω+,

M∑
m=0

−g−m+1∆ Φ
(m)
1 +O(g−M ) =

( M∑
m=0

g−m λ
(m)
D +O(g−(M+1)

)( M∑
m=0

g−m Φ
(m)
1 +O

(
g−(M+1))) in Ω−,

Φ
(m)
1 and

∂Φ
(m)
1

∂n
K−quasi-periodic for m = 0, 1, . . .M on ∂Ω.

.

(6.3)

To simplify the notation, in the following we write ∂f±/∂n for the Neumann trace of f on ∂Ω+ from the
domain Ω±.
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6.2 Determination of Φ
(0)
1 ∈ L2

K,τ ∩H1
K and λ

(0)
D ∈ R

In (6.3), the order g0 term in Ω+ and the order g term in Ω− yield the following equations:

−∆Φ
(0)
1 = λ

(0)
D Φ

(0)
1 in Ω+,

Φ
(0),+
1 = Φ

(0),−
1 and

∂Φ
(0),−
1

∂n
= 0 on ∂Ω+

−∆Φ
(0)
1 = 0 in Ω−,

Φ
(0)
1 and

∂Φ
(0)
1

∂n
K−quasi-periodic on ∂Ω.

(6.4)

We first solve for Φ
(0)
1 on Ω−. By the Lax-Milgram theorem, Φ

(0)
1 = 0 is the unique solution of the cor-

responding PDE problem in H1
K(Ω−) (see Appendix B for the definition of the Sobolev space H1

K(Ω−)).

By the boundary conditions along ∂Ω+, we have that Φ
(0),+
1 = Φ

(0),−
1 = 0. Thus taking λ

(0)
D = δ̃n and

Φ
(0)
1 on Ω+ = ΩA∪ΩB to be a Dirichlet eigenfunction on ΩA vanishing on ΩB solves the PDE problem in

Ω+. Hence, the K-quasi-periodic extension to all R2, Φ
(0)
1 = PAn,K ∈ L2

K,τ ∩H1
K , satisfies all conditions

of (6.4) (Lemma 5.9).

Starting with this choice of λ
(0)
D and Φ

(0)
1 , we next define λ

(m)
D and Φ

(m)
1 recursively for all m ≥ 1.

The Sobolev spaces used in the following discussion are defined in Appendix B. The symmetry operators
RΩ± , PCΩ± and R∂Ω+ and PC∂Ω+ which are the operators R and PC but defined on the sets Ω± and
∂Ω+ are also defined in this section.

6.3 Determination of Φ
(1)
1 ∈ L2

K,τ ∩H1
K and λ

(1)
D ∈ R

In (6.3) the order g−1 term in Ω+ and the order g0 term in Ω− yield:

−∆Φ
(1)
1 = λ

(0)
D Φ

(1)
1 + λ

(1)
D Φ

(0)
1 in Ω+,

Φ
(1),−
1 = Φ

(1),+
1 and

∂Φ
(1),−
1

∂n
=
∂PA,+n,K

∂n
on ∂Ω+,

−∆Φ
(1)
1 = λ

(0)
D Φ

(0)
1 = 0 in Ω−,

Φ
(1)
1 and

∂Φ
(1)
1

∂n
K−quasi-periodic on ∂Ω.

(6.5)

The latter two equations of (6.5) imply that Φ
(1)
1 on the domain Ω− is determined by the boundary value

problem:

−∆Φ
(1)
1 = 0 on Ω− and

∂Φ
(1),−
1

∂n
=
∂PA,+n,K

∂n
on ∂Ω+, (6.6)

with K−quasi-periodic boundary conditions for Φ
(1)
1 and ∂Φ

(1)
1 /∂n on ∂Ω. By the Lax-Milgram theorem,

this problem admits a unique solution in H1
K(Ω−) that belongs to H1

K,∆(Ω−).

To eventually establish that Φ
(1)
1 ∈ L2

K,τ , we first verify that Φ
(1)
1 on Ω− inherits that symmetries

of PAn,K. Since PAn,K ∈ H1
K,∆(Ω+), using Lemma B.4 and the fact PAn,K ∈ L2

K,τ yields that RΩ−Φ
(1)
1 ∈

H1
K(Ω−) satisfies

−∆RΩ−Φ
(1)
1 = 0 on Ω− and

[∂RΩ−Φ
(1)
1

∂n

]−
= τ

∂PA,+n,K

∂n
,

with K−quasi-periodic boundary conditions forRΩ−Φ
(1)
1 and ∂RΩ−Φ

(1)
1 /∂n on ∂Ω. Therefore,RΩ−Φ

(1)
1

and τΦ
(1)
1 satisfies the same boundary value problem which admits a unique solution in H1

K(Ω−) and it
follows that

RΩ−Φ
(1)
1 = τ Φ

(1)
1 on Ω− and [RΩ−Φ

(1)
1 ]− = τ Φ

(1),−
1 on ∂Ω−. (6.7)
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We next construct Φ
(1)
1 ∈ H1

K(Ω+) and λ
(1)
D satisfying

−∆Φ
(1)
1 = λ

(0)
D Φ

(1)
1 + λ

(1)
D Φ

(0)
1 in Ω+ and Φ

(1),+
1 = Φ

(1),−
1 on ∂Ω+, (6.8)

and compatible with the goal of obtaining Φ
(1)
1 ∈ L2

K,τ ∩H1
K.

We claim that λ
(1)
D can be chosen so that Φ

(1)
1 is unique in the space

W1 =
{
u ∈ H1

K(Ω+) |
(
u, PAn,K

)
L2

K(Ω+)
= 0 and

(
u, PBn,K

)
L2

K(Ω+)
= 0
}
. (6.9)

Seek Φ
(1)
1 ∈ W1, such that Φ

(1)
1 = u1 + v1 where u1 ∈ W1 is an extension, to the region Ω+ of the

boundary values: Φ
(1),−
1 ∈ H

1
2

K(∂Ω+). Let us construct this extension. By standard elliptic theory, there

exists a unique ũ1 ∈ H1
K(Ω+) such that ∆ũ1 = 0 on Ω+ and ũ1 = Φ

(1),−
1 on ∂Ω+. Furthermore, (B.7) and

(6.7) imply R∂Ω+Φ
(1),−
1 = [RΩ−Φ

(1)
1 ]− = τΦ

(1),−
1 . Thus, it follows from Lemma B.3 that RΩ+ ũ1 = τ ũ1

since RΩ+ ũ1 and τ ũ1 are both solutions of the elliptic boundary value problem:

∆u = 0 on Ω+ and u = τ Φ
(1),−
1 on ∂Ω+,

which admits a unique solution in H1
K(Ω+). Now, we set

u1 = ũ1 − (ũ1, P
A
n,K)L2

K(Ω+) P
A
n,K.

Note that RΩ+u1 = τu1 and RΩ+PBn,K = τPBn,K. Therefore, (u1, PK,B)L2
K(Ω+) = 0, and thus u1 ∈ W1.

On the other hand, u1 = Φ
(1),−
1 on ∂Ω+ since PAn,K = 0 on ∂Ω+. Furthermore, one has u1 ∈ H1

K,∆(Ω+)

(since ∆ũ1 = 0 and PAn,K ∈ H1
K,∆(Ω+)).

We now construct v1. Since Φ
(1)
1 = u1 + v1, equation (6.8) can be rewritten as(

−∆− λ(0)
D

)
v1 =

(
∆ + λ

(0)
D

)
u1 + λ

(1)
D Φ

(0)
1 in Ω+ and v1 = 0 on ∂Ω+. (6.10)

By the Fredholm alternative (see e.g. [46]), (6.10) admits a unique solution v1 ∈ W1 if and only if the

right hand side is orthogonal Ker(A∞,K − λ(0)
D Id) = span{PAn,K, PBn,K} restricted to Ω+. Moreover, such

a solution v1 will satisfy the additional regularity v1 ∈ H1
K,∆(Ω+) inherited from the equation (6.10).

We first impose orthogonality to PAn,K. Using Green’s identity, relations (6.4) and (6.5) and the

relations λ
(0)
D = δ̃n, Φ

(0)
1 = PAn,K and u1 = Φ

(1),+
1 = Φ

(1),−
1 on ∂Ω+ we have:

0 =

∫
Ω+

[(∆ + λ
(0)
D )u1 + λ

(1)
D Φ

(0)
1 ] · PAn,K dx

=
〈∂u1

∂n
, PAn,K

〉
H
−1/2
K ,H

1/2
K

−
〈∂PA,+n,K

∂n
, u1

〉
H
−1/2
K ,H

1/2
K

+ λ
(1)
D

= −
〈∂PA,+n,K

∂n
,Φ

(1),−
1

〉
H
−1/2
K ,H

1/2
K

+ λ
(1)
D ,

where 〈·, ·〉
H
−1/2
K ,H

1/2
K

stands for the duality product between the Sobolev spacesH
−1/2
K (∂Ω+) andH

1/2
K (∂Ω+)

(see Appendix B for more details). Therefore, it yields

λ
(1)
D =

〈∂PA,+n,K

∂n
,Φ

(1),−
1

〉
H
−1/2
K ,H

1/2
K

.

Note that since the eigenvalue g 7→ λD(g) = λ2n(g;k) is increasing and approaches δ̃n (see Lemma

3.5 and Theorem 4.4), we must have that λ
(1)
D ≤ 0. Indeed, this can be explicitly displayed. Using the
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equation (6.6) and applying the Green’s identity in Ω−, one obtains that

λ
(1)
D =

〈∂Φ(1),−

∂n
,Φ(1),−

〉
H
−1/2
K ,H

1/2
K

(where −n is here the outward normal to Ω−),

=

∫
Ω−
−Φ

(1)
1 ∆Φ

(1)
1 − |∇Φ(1)|2 dx

= −
∫

Ω−
|∇Φ(1)|2 dx < 0. (6.11)

This previous expression of λ
(1)
D was obtained with a different approach by [2] for the case of a simple

Bloch eigenvalue and a square lattice at any non-zero quasimomentum.

We now verify orthogonality of the right hand side of (6.10) to PBn,K. Since PAn,K = Φ
(0)
1 and PBn,K

are orthogonal in L2
K(Ω+):

∫
Ω+

[(∆ + λ
(0)
D )u1 + λ

(1)
D Φ

(0)
1 ] · PBn,K dx =

〈∂u1

∂n
, PBn,K

〉
H
−1/2
K ,H

1/2
K

−
〈∂PB,+n,K

∂n
, u1

〉
H
−1/2
K ,H

1/2
K

= −
〈∂PB,+n,K

∂n
,Φ

(1),−
1

〉
H
−1/2
K ,H

1/2
K

.

As R∂Ω+ is unitary in H
1/2
k (∂Ω+), one deduces from the definition (B.9) of the operator R∂Ω+ in

H
−1/2
k (∂Ω+) that

〈∂PB,+n,K

∂n
,Φ

(1),−
1

〉
H
−1/2
K ,H

1/2
K

=
〈
R∂Ω+

∂PB,+n,K

∂n
,R∂Ω+Φ

(1),−
1

〉
H
−1/2
K ,H

1/2
K

.

Hence, from the relations (6.7), (B.7), (B.11), and the fact that PBn,K ∈ LK,τ , it follows that

〈∂PB,+n,K

∂n
,Φ

(1),−
1

〉
H
−1/2
K ,H

1/2
K

=
〈[∂RΩ+PBn,K

∂n

]+
,R∂Ω+Φ

(1),−
1

〉
H
−1/2
K ,H

1/2
K

= τ2
〈∂PB,+n,K

∂n
,Φ

(1),−
1

〉
H
−1/2
K ,H

1/2
K

.

As τ2 = τ 6= 1, one concludes that:

〈∂PB,+n,K

∂n
,Φ

(1),−
1

〉
H
−1/2
K ,H

1/2
K

=
〈∂PB,+n,K

∂n
,Φ

(1),−
1

〉
H
−1/2
K ,H

1/2
K

= 0.

Thus, the second compatibility condition holds automatically by symmetry arguments.

Hence if λ
(1)
D is given by (6.11), then there is a unique solution v1 ∈ W1 of (6.10) and one concludes

that Φ
(1)
1 = u1 +v1 is the unique solution of (6.8) inW1 (with the additional regularity Φ

(1)
1 ∈ H1

K,∆(Ω+)

inherited from the equation (6.8)). Moreover, using that R∆u1 = ∆Ru1, RΩ+u1 = τu1, RΩ+PAn,K =

τPAn,K on Ω+, one easily checks that

RΩ+ [(∆ + δ1)u1 + λ
(1)
D PAn,K] = τ

(
(∆ + δ1)u1 + λ

(1)
D PAn,K

)
on Ω+.

Furthermore, from the definition (6.9) ofW1, one deduces immediately with Lemma B.3 thatW1 is stable
by RΩ+ and thus RΩ+v1 ∈ W1. Thus, from (6.10), one obtains that RΩ+v1 and τv1 satisfies the same
boundary value problem which admits a unique solution in W1. Hence, one has RΩ+v1 = τv1 on Ω+

and therefore RΩ+Φ
(1)
1 = τΦ

(1)
1 on Ω+. One concludes finally with (6.7) that Φ

(1)
1 ∈ L2

K,τ .

To sum up, Φ
(1)
1 ∈ L2

K,τ is the unique solution of (6.5) in H1
K orthogonal to PAn,K and PBn,K in L2

K,

with the additional regularity Φ
(1)
1 ∈ H1

K,∆(Ω±) inherited from the equation (6.5).
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6.4 Determination of Φ
(m)
1 ∈ L2

K,τ ∩H1
K and λ

(m)
D , for m > 1

We now generalize our construction at order g−1 to all orders g−m, for m > 1. Identifying in (6.3) the
order g−m terms in Ω+ and the order g−m+1 terms in Ω− leads to:

−∆Φ
(m)
1 =

m∑
p=0

λ
(m−p)
D Φ

(p)
1 in Ω+,

Φ
(m),−
1 = Φ

(m),+
1 and

∂Φ
(m),−
1

∂n
=
∂Φ

(m−1),+
1

∂n
on ∂Ω+,

−∆Φ
(m)
1 =

m−1∑
p=0

λ
(m−1−p)
D Φ

(p)
1 in Ω−,

Φ
(m)
1 and

∂Φ
(m)
1

∂n
K−quasi-periodic on ∂Ω.

(6.12)

The system (6.12) reduces to (6.5) when m = 1. For m > 1, the functions Φ
(m)
1 and the scalars λ

(m)
D

for m > 1 are defined recursively. Assume for p = 1, 2, . . . ,m − 1, that Φ
(p)
1 ∈ L2

K,τ ∩H1
K and λ

(p)
D ∈ C

are defined to uniquely solve (6.12) in H1
K ×C and such that Φ

(p)
1 is L2

K− orthogonal to PAn,K and PBn,K,

and such that Φ
(p)
1 ∈ L2

K,τ , with the additional regularity Φ
(p)
1 ∈ H1

K,∆(Ω±) inherited from the equations

(6.12). We proceed to construct λ
(m)
D and Φ

(m)
1 satisfying these same properties.

Consider (6.12) on Ω−, which states

−∆Φ
(m)
1 =

m−1∑
p=0

λ
(m−1−p)
D Φ

(p)
1 in Ω− and

∂Φ
(m),−
1

∂n
=
∂Φ

(m−1),+
1

∂n
on ∂Ω+,

where Φ
(m)
1 and ∂Φ

(m)
1 /∂n are required to satisfy K−quasi-periodic boundary conditions on ∂Ω. As in

our analysis for m = 1, by the Lax-Milgram theorem, this problem admits a unique solution in H1
K(Ω−)

(that is also in H1
K,∆(Ω−)). Furthermore, as for m = 1, by applying Lemma B.4 with the fact that∑m−1

p=0 λ
(m−1−p)
D Φ

(p)
1 ∈ L2

K,τ (since Φ
(p)
1 ∈ L2

K,τ for m = 0, . . . ,m− 1) leads to RΩ−Φ
(m)
1 = τΦ

(m)
1 in Ω−.

Therefore, one deduces that [RΩ−Φ
(m)
1 ]− = τΦ

(m),−
1 on ∂Ω+.

Turning to Φ
(m)
1 on Ω+, we seek λ

(m)
D ∈ C, and Φ

(m)
1 ∈ H1

K(Ω+) such that

(−∆− λ(0)
D ) Φ

(m)
1 =

m−1∑
p=0

λ
(m−p)
D Φ

(p)
1 in Ω+ and Φ

(m),+
1 = Φ

(m),−
1 on ∂Ω+. (6.13)

For the construction we again use the decomposition: Φ(m) = um + vm, where um ∈ W1 is an extension

to Ω+ of Φ
(m),−
1 ∈ H

1
2

K(∂Ω+). The function um ∈ W1 is constructed in a manner analogous to that for
orders g−p, p = 1, . . . ,m − 1. Thus, the resulting um satisfies the symmetry and regularity properties:
RΩ+um = τum (with um also in H1

K,∆(Ω+)).

Setting Φ(m) = um + vm in (6.13) leads to

(−∆− λ(0)
D ) vm = (∆ + λ

(0)
D )um + λ

(m)
D Φ

(0)
1 +

m−1∑
p=1

λ
(m−p)
D Φ

(p)
1 in Ω+ and vm = 0 on ∂Ω+. (6.14)

As for the case m = 1, we determine λ
(m)
D from the compatibility conditions for solvability for Φ(m) ∈

W1, i.e. that Φ(m) is orthogonal to PAn,K and PBn,K. By induction hypothesis, Φ
(p)
1 is orthogonal to PAn,K

for p = 1, . . . ,m− 1 and Φ
(0)
1 = PAn,K. Therefore, using (6.14)) we have that

λ
(m)
D =

∫
Ω+

(
−∆− λ(0)

D

)
um PAn,K dx.
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Applying Green’s identity yields:

λ
(m)
D =

〈∂PA,+n,K

∂n
,Φ

(m),−
1

〉
H
−1/2
K ,H

1/2
K

.

Continuing, as in the case m = 1, by Green’s identity applied in Ω− and equation (6.6), one obtains:

λ
(m)
D = −

∫
Ω+

∇Φ
(m)
1 ∇Φ

(1)
1 dx. (6.15)

Together with (6.11), for the case m = 1, we have (6.15) for m ≥ 1.
The other compatibility condition, orthogonality of the right hand side of (6.14) to PBn,K, follows

using that Φ
(m)
1 is orthogonal in L2

K(Ω+) to PBn,K for p = 0, . . . ,m − 1 and then by reproducing the

reasoning done for m = 1, using symmetry relation RΦ
(m),−
1 = τΦ

(m),−
1 on ∂Ω+ and Lemmas B.3 and

B.4. Hence, for λ
(m)
D given by (6.15), equation (6.14) admits a unique solution vm ∈ W1 (and also in

H1
K,∆(Ω+)). Therefore, Φ

(m)
1 = um + vm is the unique solution of (6.13) in W1 (with the additional

regularity Φ
(m)
1 ∈ H1

K,∆(Ω+)). Furthermore, using that Φ
(p)
1 ∈ L2

K,τ for p = 0, . . . ,m − 1, one proves

easily by mimicking the reasoning done for m = 1 that RΦ
(m)
1 = τΦ

(m)
1 in Ω+.

Thus, one concludes that Φ
(m)
1 ∈ L2

K,τ and that with λ
(m)
D ∈ C as defined, Φ

(m)
1 is the unique

solution of (6.12) in H1
K such that Φ

(m)
1 is orthogonal to PAn,K and PBn,K (with the additional regularity

Φ
(m)
1 ∈ H1

K,∆(Ω±) inherited from the equation (6.12)).

6.5 Asymptotic expansions

In the previous section we developed a formal procedure for computing approximate L2
K,τ eigenpairs of

Ag,K to any order in g−1. Such approximations are often called quasi-modes. Our goal in this section is
to prove that these approximate eigenpairs approximate genuine eigenpairs of Ag,K. To show this we use
general principles of self-adjoint operators described in Appendix C.

Remark 6.1. Since the operator Ag,K has discontinuous coefficients, its domain D(Ag,K) depends on
the asymptotic parameter g. Therefore, we use here a weak formulation of the quasi-modes approach
outlined in Appendix C, which permits the extension of the notion of quasi-mode to functions with less

regularity (in particular, functions that do not belong to D(Ag,K) but belong rather to D(A1/2
g,K) = H1

K;
the latter is independent of g). Furthermore, this approach yields an asymptotic expansion of the Bloch
eigenfunctions Φj(g, ·) in a norm which is stronger than the H1-norm which, in particular, allows us
to obtain an asymptotic expansion of the Dirac velocity vD(g). Note that the expression for vD(g), see
(5.13), depends both on Φj(g, ·) and ∇Φj(g, ·). Results related to this weak formulation of quasi-modes
expansions are summarized in Appendix C.

Introduce the inner product defined on H1
K by

(u, v)ag,K = ag,K(u, v), for all u, v ∈ H1
K.

Here, ag,K is the sesqulinear form defined in (3.3). We denote by ‖·‖ag,K the norm associated to (·, ·)ag,K .
By a Poincaré type inequality, this norm dominates the norm ‖ · ‖H1

K
with a constant C independent of

g for g ≥ 1.
For M ≥ 0, introduce λMD (g) and ΦM1 (g), the formal approximations of the previous section:

λMD (g) =

M∑
m=0

λ
(m)
D g−m and ΦM1 (g, ·) =

M∑
m=0

Φ
(m)
1 g−m. (6.16)

Here, λ
(0)
D = δ̃n, Φ

(0)
1 = PAn,K and for m ≥ 1, λ

(m)
D is defined by (6.15), and Φ

(m)
1 ∈ H1

K ∩ L2
K,τ is the

unique solution of (6.12) for m ≥ 1 in H1
K, which is orthogonal to span{PAn,K, PBn,K}.

We shall use the following proposition to justify the asymptotic expansion (6.1) of the eigenvalue
λD(g) = λ2n−1(g; K) = λ2n(g; K) for g sufficiently large.

33



Proposition 6.2. For any M ∈ N0, there exists C > 0 such that for all v ∈ H1
K and all g > 1:∣∣∣ag,K(ΦM+1

1 (g, ·), v
)
− λMD (g)

(
ΦM+1

1 (g, ·), v
)∣∣∣ ≤ C‖v‖ag,K g−(M+1), (6.17)

where λMD (g) and ΦM1 (g, ·) are defined by (6.16).

Proof. Let v ∈ H1
K. We begin by splitting the difference on the left hand side of (6.17) into two parts,

terms of order g−m with m ≤M and terms of order g−(M+1):

ag,K
(
ΦM+1

1 (g, ·), v
)
− λMD (g)

(
ΦM+1

1 (g, ·), v
)

= sg(v) + rg(v) (6.18)

with

sg(v) =

M∑
m=0

1

gm

∫
Ω−
∇Φ

(m+1)
1 ∇v dx+

M∑
m=0

1

gm

∫
Ω+

∇Φ(m)∇v dx−
M∑
m=0

1

gm

m∑
p=0

λ
(p)
D (Φ

(m−p)
1 , v) (6.19)

and

rg(v) =
1

gM+1

∫
Ω+

∇Φ
(M+1)
1 ∇v dx−

2M+1∑
m=M+1

1

gm

M∑
p=0

λ
(p)
D (Φ

(m−p)
1 , v),

(we used here in particular that Φ
(0)
1 = PAn,K = 0 on Ω−). By the Cauchy-Schwarz inequality rg(v)

satisfies the bound:

|rg(v)| ≤ g−(M+1)‖∇Φ
(M+1)
1 ‖L2(Ω+) ‖∇v‖L2(Ω+) +

( 2M+1∑
m=M+1

g−m
M∑
p=0

|λ(p)
D | ‖Φ

(m−p)
1 ‖

)
‖v‖.

By a Poincaré type inequality, it follows that there exists C > 0, independent of g ≥ 1, such that

|rg(v)| ≤ C g−(M+1)‖v‖ag,K . (6.20)

To complete the proof, we claim that sg(v) = 0 by the definitions of λ
(m)
D and Φ

(m)
1 . Using the Green

identity in Ω± and the fact that ±n is the outward normal of Ω± leads to

M∑
m=0

1

gm

∫
Ω−
∇Φ

(m+1)
1 ∇v dx =

M∑
m=0

1

gm

[ ∫
Ω−
−∆ Φ

(m+1)
1 v dx−

〈∂Φ
(m+1),−
1

∂n
, v
〉
H
−1/2
K ,H

1/2
K

]
and

M∑
m=0

1

gm

∫
Ω+

∇Φ
(m)
1 ∇v dx =

M∑
m=0

1

gm

[ ∫
Ω+

−∆ Φ
(m)
1 v dx+

〈∂Φ
(m),+
1

∂n
, v
〉
H
−1/2
K ,H

1/2
K

]
.

Adding the last expressions and using that ∂Φ
(m+1),−
1 /∂n = ∂Φ

(m),+
1 /∂n on ∂Ω+ (by (6.5) and (6.12)),

we have that the duality products on ∂Ω+ cancel and sg defined by (6.19) can be rewritten as

sg(v) =

M∑
m=0

1

gm

[ ∫
Ω−

(
−∆ Φ

(m+1)
1 −

m∑
p=0

λ
(p)
D Φ

(m−p)
1

)
v dx+

∫
Ω+

(
−∆ Φ

(m)
1 −

m∑
p=0

λ
(p)
D Φ

(m−p)
1

)
v dx

]
.

Hence, sg(v) = 0, since Φ
(0)
1 and Φ

(m)
1 for m ≥ 1 satisfy respectively (6.4) and (6.12) in Ω±. Therefore,

with (6.18) and (6.20), one obtains immediately the inequality (6.17).

Using the preceding Lemma, we can now prove the asymptotic expansion (6.1).

Theorem 6.3. (Asymptotic expansion of the Dirac eigenvalue, λD(g), for large g)
Assume δ̃n satisfies condition (S) of Definition 4.2 for a fixed n ≥ 1. Then, for M ≥ 0 and g large
enough, the Dirac eigenvalues: λ2n−1(g; K) = λ2n(g; K) = λD(g) admit the asymptotic expansion

λD(g) = λMD (g) +O
(
g−(M+1)

)
=

M∑
m=0

λ
(m)
D g−m +O

(
g−(M+1)

)
, (6.21)

where λMD (g) is defined by the M− term expansion (6.16).
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Remark 6.4. A consequence of (6.21) is that λ
(m)
D and λMD (g) are real for all m,M ∈ N0 and g > 0.

Proof. Let M ∈ N0. First, by Theorem 5.12 we have for g sufficiently large that λD(g) = λ2n−1(g; K) =
λ2n(g; K), and is of multiplicity 2. We will show (6.21), by applying the Corollary C.2 to the approximate
eigenpair (quasi-mode): λ = λMD (g) and u = ΦM+1

1 (g, ·) defined in (6.16), using the bound (6.17) of
Proposition 6.2.

We next verify the assumptions of Corollary C.2. By (6.16), we have λMD (g) → δ̃n > 0 as g → +∞
which implies that Re(λMD (g)) > 0 for g large enough. Moreover, as Φ

(0)
1 = PAn,K vanishes on Ω− and

PAn,K 6= 0, one gets

‖ΦM+1
1 (g, ·)‖ag,K → ‖∇PAn,K‖L2(Ω+) > 0, as g → +∞. (6.22)

Thus, it follows that

(|λMD (g)|+ 1)−1‖ΦM+1
1 (g, ·)‖ag,K → (δ̃n + 1)−1‖∇PAn,K‖L2(Ω+) > 0.

We deduce that for g large enough, C/gM+1 < (|λMD (g)|+ 1)−1‖ΦM+1
1 (g, ·)‖ag,K , wherer C > 0 (indepen-

dent of g) is the constant in the estimate (6.17). Therefore, the bound (6.17) and Corollary C.2 imply
that for g large enough, there exists λ̃(g,K) ∈ σ(A(g,K)) such that:

|λMD (g)− λ̃(g,K)| ≤ C

‖ΦM+1
1 (g, ·)‖ag,K gM+1

(|λMD (g)|+ 1).

Therefore, there is a constant C̃ > 0, independent of g, such that for g large enough:

|λMD (g,K)− λ̃(g,K)| ≤ C̃g−(M+1). (6.23)

Since λMD (g,K)→ δ̃n = δ2n as g → +∞, it follows form (6.23) that λ̃(g,K)→ δ2n. Moreover, by Theorem
3.1 and Proposition 5.8, one has λ2n−1(g; K) = λ2n(g; K) = λD(g)→ δ2n, λ2n+1(g; K)→ δ2n+1 > δ2n if
n ≥ 1 and if n > 1, λ2n−2(g; K)→ δ2n−2 < δ2n for g → +∞. Thus, one has necessarily λ̃(g,K) = λD(g)
for all g sufficiently large.

Finally, we show that λ
(n)
D and λND(g,K) are real-valued. Indeed, we know that λ0

D(g) = λ
(0)
D = δ̃n ∈ R

and also from (6.11) that λ
(1)
D < 0. Therefore, λ1

D(g) = λ
(0)
D + g−1λ

(1)
D ∈ R for all g > 0. Unfortunately,

that λ
(m)
D and λMD (g) are real-valued is not easily deduced from formula (6.15) for m,M > 1. However,

we can straightforwardly verify this from (6.21) by induction. Indeed, assume that for all 0 ≤ m ≤ M ,

λ
(m)
D and λmD(g) are real-valued for any g > 0. Using the relation (6.21) at the order M + 1 leads to

lim
g→∞

gM+1
(
λD(g)− λMD (g)

)
= λ

(M+1)
D

where λD(g) ∈ σ(Ag,K) ⊂ R and λMD (g) is real-valued by induction. Hence, taking the latter limit, one

deduced that λ
(M+1)
D ∈ R. Thus λM+1

D (g) = λMD (g) + λ(M+1)/gM+1 is also real-valued for any g > 0.

We next address bounds on the truncation error for our asymptotic expansions of the eigenfunctions.

Theorem 6.5. (Asymptotic expansion of the eigenfunction in the ‖ · ‖ag norm)

Assume that δ̃n satisfies the condition (S) for a fixed n ≥ 1 and let M ∈ N0. Then, for g large enough,
there exists an eigenfunction Ψ(1)(g, ·) ∈ ker(Ag,K − λD(g)Id) (with λD(g) = λ2n(g; K) = λ2n−1(g; K))
which satisfies ‖Ψ(1)(g, ·)‖ = 1 (where ‖ · ‖ is the L2

K-norm) and C > 0 such that:∥∥∥Ψ(1)(g, ·)− ΦM+1
1 (g, ·)

‖ΦM+1
1 (g, ·)‖

∥∥∥
ag,K
≤ C

gM+1
. (6.24)

Proof. To prove this result, we apply the Corollary C.3 to ug = ΦM+1
1 (g, ·)/‖ΦM+1

1 (g, ·)‖. We first
establish an estimate of the form (C.3) for ug and the eigenvalue λD(g) of Ag,K. For all v ∈ H1

K, one has∣∣∣ag,K(ug, v)− λD(g)
(
ug, v

)∣∣∣
≤ ‖ΦM+1

1 (g, ·)‖−1
(
|ag,K

(
ΦM+1

1 (g, ·), v
)
− λMD (g) (ΦM+1

1 (g, ·), v)|
)

+|λD(g)− λMD (g)| ‖v‖ag,K .
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By estimate (6.17), the asymptotic relation (6.21) and the fact that ‖ΦM+1
1 (g, ·)‖ → ‖PAn,K‖ = 1 as

g → +∞, there exists C1 > 0 such that for all g sufficiently large:∣∣∣ag,K(ug, v)− λD(g)
(
ug, v

)∣∣∣ ≤ C1‖v‖ag,K g−(M+1), for all v ∈ H1
K.

This is precisely an estimate of the form (C.3).
We next need require, for large g, a lower bound on dis(λD(g)−1, σ(A−1

g,K) \ {λD(g)−1}); see Corollary
C.3 . By Theorem 5.12, for g large: λ2n−1(g; K) = λ2n(g; K) = λD(g) is of multiplicity 2. Thus,

dis(λD(g)−1, σ(A−1
g,K)\{λD(g)−1}) =

λD(g)−1 − λ3(g; K)−1 if n = 1

min
(
λ2n−2(g; K)−1 − λD(g)−1, λD(g)−1 − λ2n+1(g; K)−1

)
if n > 1.

(6.25)
We deduce, using Theorem 3.1, (6.22), λD(g)→ δ2n and ‖ΦM+1

1 (g, ·)‖ → 1, that

b(g) = 1/2λD(g) ‖ug‖ag,K dis(λD(g)−1, σ(A−1
g,K) \ {λD(g)−1})→ C2 > 0, as g → +∞,

with

C2 =


δ2
2
‖∇PAn,K‖L2(Ω+)(δ

−1
2 − δ−1

3 ) for n = 1

δ2n
2
‖∇PAn,K‖L2(Ω+) min(δ−1

2n−2 − δ−1
2n , δ

−1
2n − δ−1

2n+1) for n > 1.

Therefore, for g sufficiently large, 0 < C1 g
−(M+1) < min(b(g), 1). It follows using Corollary C.3 that for

g large, there exists Ψ(1)(g, ·) ∈ L2
K an eigenfunction of Ag,K associated to the eigenvalue λD(g) which

satisfies and ‖Ψ(1)(g, ·)‖ = 1, and such that∥∥∥Ψ(1)(g, ·)− ΦM+1
1 (g, ·)

‖ΦM+1
1 (g, ·)‖

∥∥∥
ag,K
≤ C̃(g)C1

gM+1
(6.26)

where

C̃(g) = C̃1(g) + λD(g)−
1
2 + λD(g)

1
2λ1(g; K)−

1
2 , with C̃1(g) =

4λD(g)−1

dis(λD(g)−1, σ(A−1
g,K \ {λD(g)−1}) .

The expression of C̃(g) comes from (C.4). Using (6.25), (6.26) and Theorem 3.1, one gets that C̃(g) →
C3 > 0, as g → +∞ where the constant C3 can be easily made explicit. We conclude with (6.26) that
for g large enough, there exists C4 > 0 (independent of g) such that∥∥∥Ψ(1)(g, ·)− ΦM+1

1 (g, ·)
‖ΦM+1

1 (g, ·)‖

∥∥∥
ag,K
≤ C4

gM+1
.

In the following corollary we construct (more explicitly than in Theorem 6.5) an eigenfunction of
ker(Ag,K − λD(g)Id) that is approximated by ΦM+1

1 (g, ·)/‖ΦM+1
1 (g, ·)‖.

Corollary 6.6. Assume that δ̃n satisfies the condition (S) for a fixed n ≥ 1 and let M ∈ N0. Then, for
g sufficiently large, {Φ1(g, ·),Φ2(g, ·)}, defined by

Φ1(g, ·) =
EAg,K({λD(g)}) ΦM+1

1 (g, ·)
‖EAg,K({λD(g)}) ΦM+1

1 (g, ·)‖
∈ L2

K,τ and Φ2(g, ·) = PCΦ1(g, ·) ∈ L2
K,τ , (6.27)

is an orthonormal basis of ker(Ag,K − λD(g)Id) with λD(g) = λ2n(g; K) = λ2n−1(g; K) and there exists
C > 0 such that:∥∥∥Φ1(g, ·)− ΦM+1

1 (g, ·)
‖ΦM+1

1 (g, ·)‖

∥∥∥
ag,K
≤ C

gM+1
and

∥∥∥Φ2(g, ·)− PC ΦM+1
1 (g, ·)

‖ΦM+1
1 (g, ·)‖

∥∥∥
ag,K
≤ C

gM+1
. (6.28)
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Proof. We first prove that (6.27) is well-defined for g large enough. By Theorem 5.12, λ2n(g; K) =
λ2n−1(g; K) = λD(g) is an eigenvalue of multiplicity 2 of Ag,K. Thus, from steps 1 and 2 of the proof
of Theorem 5.12, we know that for any fixed η satisfying 0 < η < min(δ2, ν3 − δ2) if n = 1 or 0 <
η < min(δ2n − δ2n−2, ν2n+1 − δ2n) if n > 1, the relations (5.27) and (5.28) hold (for g large enough)
with {λ2n(g; K), λ2n−1(g; K)} = {λD(g)} (and Ag,K instead of Agm,K) and EA∞,K((δ2n − η, δ2n + η)) =
EA∞,K({δ2n}). Hence, by Lemma 5.10, one has:

EAg,K((δ2n − η, δ2n + η)) = EAg,K({λD(g)})→ EAg,K(δ2n − η, δ2n + η) = EA∞,K({δ2n}), as g → +∞.

Furthermore, as ΦM+1
1 (g, ·)→ PAn,K in L2

K with PAn,K ∈ ker(A∞,K − δ2nId), it follows that

EAg,K({λD(g)}) ΦM+1
1 (g, ·)→ EA∞,K({δ2n})PAn,K = PAn,K 6= 0, g → +∞.

Hence, ‖EAg,K({λD(g)})ΦM+1
1 (g, ·)‖ 6= 0 for g large enough and thus Φ1(g, ·) is well-defined by (6.27) as a

normalized function of ker(Ag,K−λD(g)Id). Moreover, as EAg,K commutes with R (since EAg,K commutes

with Ag,K) and L2
K,τ is an eigenspace of R, L2

K,τ is stable under EAg,K . Hence, as ΦM+1
1 (g, ·) ∈ L2

K,τ ,

one deduces that Φ1(g, ·) ∈ L2
K,τ . Thus, (5.10) and ‖PCΦ1(g, ·)‖ = ‖Φ1(g, ·)‖ = 1 give that Φ2(g, ·) =

PCΦ1(g, ·) is a normalized function of kerτ (Ag,K−λD(g)Id). Since λD(g) is of multiplicity 2, we conclude
using (5.9) that {Φ1(g, ·),Φ2(g, ·)} is an orthonormal basis of ker(Ag,K − λD(g)Id).

We now prove the estimate (6.28). For the remainder of the proof we use the compressed notation Eg
for the projection EAg,K({λD(g)}) and ‖ · ‖ag for the norm ‖ · ‖ag,K . First, one has:∥∥∥Φ1(g, ·)− ΦM+1

1 (g, ·)
‖ΦM+1

1 (g, ·)‖

∥∥∥
ag
≤
∥∥∥Φ1(g, ·)− EgΦM+1

1 (g, ·)
‖ΦM+1

1 (g, ·)‖

∥∥∥
ag

+
∥∥∥EgΦM+1

1 (g, ·)
‖ΦM+1

1 (g, ·)‖
− ΦM+1

1 (g, ·)
‖ΦM+1

1 (g, ·)‖

∥∥∥
ag
. (6.29)

Concerning the first term of the right hand side of (6.29), one observes with (6.27) that:∥∥∥Φ1(g, ·)− EgΦM+1
1 (g, ·)

‖ΦM+1
1 (g, ·)‖

∥∥∥
ag

= ‖EgΦM+1
1 (g, ·)‖ag

∣∣∣ ‖EgΦM+1
1 (g, ·)‖−1 − ‖ΦM+1

1 (g, ·)‖−1
∣∣∣. (6.30)

By (6.22),
‖Eg ΦM+1

1 (g, ·)‖ag ≤ ‖ΦM+1
1 (g, ·)‖ag → ‖∇PAn,K‖ > 0, (6.31)

where the inequality holds since the spectral projector Eg is an orthogonal projection on ker(Ag,K −
λD(g)Id) when one considers H1

K endowed here with the Hilbert norm ‖ · ‖ag and thus in this functional
framework its operator norm in B(H1

K, H
1
K) is 1. This last point is easily shown by using that for any

u ∈ H1
K = D(A1/2

g,K): ‖u‖2ag = ‖A1/2
g,Ku‖2 (see relation (3.3)) and by decomposing u via the spectral

Theorem on an orthornormal basis of eigenfunctions of Ag,K. Moreover, one has∣∣∣ ‖ΦM+1
1 (g, ·)‖−1 − ‖EgΦM+1

1 (g, ·)‖−1
∣∣∣ ≤ ‖EgΦM+1

1 (g, ·)‖−1 ‖ΦM+1
1 (g, ·)− EgΦM+1

1 (g, ·)‖
‖ΦM+1

1 (g, ·)‖
, (6.32)

with ‖EgΦM+1
1 (g, ·)‖−1 → ‖PAn,K‖−1 = 1 as g → +∞. Now, using the Theorem 6.5, one knows that for g

large enough, there exists a normalized eigenfunction Ψ(1)(g, ·) of Ag,K associated to the eigenvalue λD(g)
such that (6.24) holds. Furthermore, Eg is the orthogonal projection on the subspace ker(Ag,K−λD(g) Id)
and the L2

K- norm is dominated by the ‖ · ‖ag (with a constant independent of g for g ≥ 1). Thus, it
follows from (6.24) that for g large enough:∥∥∥ ΦM+1

1 (g, ·)
‖ΦM+1

1 (g, ·)‖
− EgΦM+1

1 (g, ·)
‖ΦM+1

1 (g, ·)‖

∥∥∥ ≤ ∥∥∥ ΦM+1
1 (g, ·)

‖ΦM+1
1 (g, ·)‖

−Ψ1(g, ·)
∥∥∥ ≤ C

gM+1
, (6.33)

for some C > 0. Hence, combining (6.30), (6.31), (6.32) and (6.33), one concludes that there exists C > 0
such that for g large enough: ∥∥∥Φ1(g, ·)− EgΦM+1

1 (g, ·)
‖ΦM+1

1 (g, ·)‖

∥∥∥
ag
≤ C

gM+1
. (6.34)
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We now bound the second term of the right hand side of (6.29). One uses that the first inequality (6.33)
holds with the L2

K-norm, ‖ · ‖, replaced by the ‖ · ‖ag (since the spectral projector Eg ∈ B(H1
K, H

1
K) is an

orthogonal projection on ker(Ag,K − λD(g)Id) when one considers H1
K endowed with ‖ · ‖ag ). Moreover,

the second inequality of (6.33) holds in the norm ‖ · ‖ag by Theorem 6.5. Hence, one gets that:

∥∥∥EgΦM+1
1 (g, ·)

‖ΦM+1
1 (g, ·)‖

− ΦM+1
1 (g, ·)

‖ΦM+1
1 (g, ·)‖

∥∥∥
ag
≤ C

gM+1
. (6.35)

Combining (6.29), (6.34) and (6.35) leads to the first estimate of (6.28). Finally, using (B.6), one gets
that PC preserves the norm ‖ · ‖ag and thus the second estimate of (6.28) follows from the first one.

The following Corollary gives an approximation of the eigenstates in the H1
K-norm. The difference

with Corollary 6.6 relies on the fact that for ‖ · ‖ag,K−norm, we require a quasi-mode function of order
M + 1 to obtain a remainder of order M + 1. Here, the quasi-mode function of order M is sufficient.
Indeed, one requires an approximation of order M + 1 (at least in the domain Ω−, see Proposition 6.2)
for the norm ‖ · ‖ag,K because of the coefficient σg that appears as a weight in this norm and induced a
multiplication by g of the asymptotic expansion in the domain Ω−.

Corollary 6.7. (Asymptotic expansion of the eigenfunction in the ‖·‖H1
K

norm) Assume that δ̃n satisfies

the condition (S) for a fixed n ≥ 1 and let M ∈ N0. For g large enough, we define an orthonormal basis
{Φ1(g, ·),Φ2(g, ·)} of ker(Ag,K − λD(g)Id) (with λD(g) = λ2n(g; K) = λ2n−1(g; K)) by:

Φ1(g, ·) =
EAg,K({λD(g)}) ΦM1 (g, ·)
‖EAg,K({λD(g)}) ΦM1 (g, ·)‖ ∈ L

2
K,τ and Φ2(g, ·) = PCΦ1(g, ·) ∈ L2

K,τ . (6.36)

Then, there exists C > 0 such that for g large enough:∥∥∥Φ1(g, ·)− ΦM1 (g, ·)
‖ΦM1 (g, ·)‖

∥∥∥
H1

K

≤ C

gM+1
and

∥∥∥Φ2(g, ·)− PC ΦM1 (g, ·)
‖ΦM1 (g, ·)‖

∥∥∥
H1

K

≤ C

gM+1
. (6.37)

Proof. The existence of the orthonormal basis {Φ1(g, ·),Φ2(g, ·)} of ker(Ag,K − λD(g)Id) for g large
enough has been proved in Corollary 6.6 for M ≥ 1 and in Theorem 5.12 for M = 0. We proceed with
the notations: Eg for EAg,K({λD(g)}), ‖ · ‖H1 for ‖ · ‖H1

K
and f(g) for a function of the form f(g, ·).

Let Φ̃1(g) = EgΦM+1
1 /‖EgΦM+1

1 (g)‖ and Φ̃2(g) = PCΦ̃1(g). The functions Φ̃j(g) for j = 1, 2 are
defined as Φj(g, ·) but with the index M + 1 ≥ 1 replacing M . For g large enough:∥∥∥Φ1(g)− ΦM1 (g)

‖ΦM1 (g)‖
∥∥∥
H1
≤
∥∥Φ1(g)− Φ̃1(g)

∥∥
H1 +

∥∥∥Φ̃1(g)− ΦM1 (g)

‖ΦM1 (g)‖
∥∥∥
H1
. (6.38)

We deal first with the second term of the right hand side of (6.38):∥∥∥Φ̃1(g)− ΦM1 (g)

‖ΦM1 (g)‖
∥∥∥
H1
≤
∥∥∥Φ̃1(g)− ΦM+1

1 (g)

‖ΦM+1
1 (g)‖

∥∥∥
H1

+
∥∥∥ ΦM+1

1 (g)

‖ΦM+1
1 (g)‖

− ΦM1 (g)

‖ΦM1 (g)‖
∥∥∥
H1
. (6.39)

By virtue of Corollary 6.6, the first term of the right hand side of (6.39) is bounded by C/gM+1 (since
the H1

K-norm is dominated by the norm ‖ · ‖ag,K with a constant independent of g for g ≥ 1).
We estimate now the second term of the right hand side of (6.39). From the definition (6.16) of

ΦM1 (g), the fact that ‖ΦM1 (g)‖H1
K

tends to ‖PAn,K‖H1
K
> 0 and both ‖ΦM1 (g)‖ and ‖ΦM+1

1 (g)‖ tend to

‖PAn,K‖ = 1 (as g → +∞), one has for g large enough

∥∥∥ ΦM+1
1 (g)

‖ΦM+1
1 (g)‖

− ΦM1 (g)

‖ΦM1 (g)‖
∥∥∥
H1

≤ ‖ΦM+1
1 (g)− ΦM1 (g)‖H1

‖ΦM+1
1 (g)‖

+ ‖ΦM1 (g)‖H1

( | ‖ΦM+1
1 (g)‖ − ‖ΦM1 (g)‖ |
‖ΦM1 (g)‖ ‖ΦM+1

1 (g)‖
)

≤ C‖Φ(M+1)
1 ‖H1 g−(M+1) + C ‖Φ(M+1)

1 ‖ g−(M+1)

≤ C g−(M+1).
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Thus, the second term of the right hand side of (6.38) satisfies:∥∥∥Φ̃1(g)− ΦM1 (g)

‖ΦM1 (g)‖
∥∥∥
H1
≤ C g−(M+1). (6.40)

We estimate now the first term of the right hand side of (6.38). To this aim, we first bound the norm of Eg
in B(H1

K, H
1
K) (with H1

K is endowed with the standard H1
K−norm). For g large enough, {Φ̃1(g), Φ̃2(g)}

is an orthonormal basis of ker(Ag,K − λD(g)Id). Therefore, one has for all u ∈ H1
K:

‖Egu‖H1 = ‖(u, Φ̃1(g))Φ̃1(g) + (u, Φ̃2(g))Φ̃2‖H1

≤ 2‖Φ̃1(g)‖ ‖u‖ ‖Φ̃1(g)‖H1

≤ 2‖Φ̃1(g)‖2H1‖u‖H1 , (6.41)

(where we used for the first inequality that ‖Φ̃1‖H1 = ‖Φ̃2‖H1 since by virtue of (B.6), the ‖ · ‖H1 norm
is preserved by PC). From (6.40), the definition (6.16) of ΦM1 (g) and the fact that ‖PAn,K‖ = 1, one

obtains: ‖Φ̃1(g)‖H1 → ‖PAn,K‖H1
as g → +∞. Thus, it leads with (6.41) that ‖Eg‖B(H1

K,H
1
K) is bounded

by a constant independent of g for large g. Therefore, there exists C > 0 such that for g large enough:

∥∥Φ1(g)− Φ̃1(g)
∥∥
H1 ≤ C

∥∥∥ ΦM+1
1

‖EgΦM+1
1 (g)‖

− ΦM1
‖EgΦM1 (g)‖

∥∥∥
H1
.

Hence, it yields:

∥∥Φ1(g)− Φ̃1(g)
∥∥
H1 ≤ C

(‖ΦM+1
1 − ΦM1 ‖H1

‖EgΦM+1
1 (g)‖

+ ‖ΦM1 ‖H1

∣∣‖EgΦM+1
1 (g)‖−1 − ‖EgΦM1 (g)‖−1

∣∣)

≤ C1 g
−(M+1) + C2

∣∣∣‖EgΦM+1
1 (g)‖ − ‖EgΦM1 (g)‖

∣∣∣
‖EgΦM+1

1 (g)‖ ‖EgΦM1 (g)‖

≤ C1 g
−(M+1) + C3‖ΦM+1

1 (g)− ΦM1 (g)‖
≤ C4 g

−(M+1), (6.42)

(where we use that ‖Eg‖ = 1 in B(L2
K, L

2
K) and that ‖EgΦM+1

1 (g)‖, ‖EgΦM1 (g)‖ → ‖PAn,K‖ = 1 as
g → +∞). Combining (6.38), (6.40) and (6.42) yields immediately the first estimate of (6.37). Finally,
as PC preserves the norm ‖ · ‖H1

K
, the second estimate of (6.37) follows from the first one.

6.6 Asymptotic expansion of the Dirac velocity , vD(g), for g � 1

We now present an asymptotic expansion of the Dirac velocity, vD(g), for g large. In contrast to the case
of honeycomb Schroedinger operators in the strong binding regime [22], where the asymptotic parameter
is an emergent hopping coefficient, which is exponentially small in the well-depth parameter, here the
asymptotic expansion is in powers of 1/g; the convergence is therefore slower. Comparing further, the
Bloch functions Φj(·, g) for j = 1, 2 (defined formula (5.24)) have the following limit behavior (see
Corollary 6.7) in the H1−norm: Φ1(g, ·) = PAn,K + O(1/g) and Φ2(g, ·) = ±e−2πi/3PBn,K + O(1/g). PAn,K
and PBn,K are K−quasi-periodic superpositions of single inclusion Dirichlet states; PAn,K is supported on

the A− inclusions and PBn,K is supported on the B− inclusions and, very roughly speaking, play the
role of the atomic orbitals of the Schroedinger analysis; see [22]. In contrast to ground state quantum
atomic orbitals, these approximations are compactly and disjointly supported, rather than exponentially
localized in the well-depth parameter. The disjointness of the supports of Φj(·, g), j = 1, 2 at leading

order implies, via (5.13), that vD(g) = v
(1)
D g−1 + O(g−2). Hence, order zero term, v

(0)
D , vanishes. A

rigorous proof that v
(1)
D 6= 0 is an open question. In section 7, we numerically observe that v

(1)
D 6= 0 for

n = 1. Thus, for g large enough, (λD(g),K) is a (non-degenerate) conical / Dirac point for the two first
dispersion surfaces.
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Theorem 6.8. Assume that δ̃n satisfies the condition (S) for a fixed n ≥ 1 and let M ∈ N0. Then, for g
sufficiently large, the Dirac velocity vD(g), defined by (5.13), in terms of the eigenstates Φj(g, ·), j = 1, 2
(given by (6.36)) , associated with the eigenvalue λD(g) = λ2n−1(g; K) = λ2n(g; K), has the following
asymptotic expansion:

vD(g) =

M∑
m=1

v
(m)
D g−m +O(g−(M+1)) with v

(m)
D ∈ R for m = 1, . . . ,M. (6.43)

Furthermore, the two first coefficients are explicitly given by:

v
(0)
D = 0 and v

(1)
D = |2

∫
ΩB

Φ
(1)
1 ∇PCPAn,K dx+

∫
Ω−

Φ
(1)
1 ∇PCΦ

(1)
1 dx

]
· (1,−i)>|.

Proof. The proof is a straightforward application of the formula for vD(g), (5.13), and the asymptotic
expansions of Φj(g, ·) for j = 1, 2 in the H1−norm given by Corollary 6.7. We omit the detailed calcula-
tions.

7 Transfer of Dirac points from the 2nd and 3rd bands to the 1st

and 2nd bands as g ↑; numerical results

In this section we corroborate the results of Sections 4 through 6 with numerical simulations. The
computations are implemented with Free Fem++ [34] and displayed either with Matlab or with ParaView.
For these numerical experiments the fundamental periodic cell Ω contains two disc-shaped inclusions ΩA

and ΩB of radius R0 = 0.2. The results displayed in Figures 2, 6, 7 and 8 are obtained using P2 periodic
Lagrange finite elements on the same mesh of Ω.

Figure 6: Transfer of Dirac cone with vertex at Dirac point, (K, λD(g)), from 2nd and 3rd bands for
1 < g < gc ≈ 13.1, to the 1st and 2nd bands for g > 1. Solid curve: Dirac point energy, g 7→ λD(g), a
double eigenvalue with corresponding eigenspace ⊂ L2

K,τ ⊕ L2
K,τ . Dashed curve: simple eigenvalue with

1− dimensional eigenspace ⊂ L2
K,1. As g ↑, λD(g) converges from below to the lowest Dirichlet eigenvalue

of the domain ΩA ∪ ΩB .

The behavior of the first 3 dispersion surfaces as the contrast parameter, g, is varied is described in
Figure 2 of Section 1.3. Numerically illustrated are: the global behavior on B of these dispersion surfaces:
uniform convergence, existence of a gap, ... (Corollary 4.5), and their local behavior in a neighborhood
of the vertices of B: degeneracy, existence of Dirac points (Corollary 5.13).

Figure 6 displays a transfer of Dirac points from the 2nd and 3rd bands to the 1st and 2nd bands as the
contrast parameter g is increased by tracking the Dirac cone vertex at (K, λD(g)) as g varies; see Definition
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Figure 7: |Φ1(g, ·)| (left) and |Φ2(g, ·)| (right) computed with formula (5.24) and (5.25) for λD(g) =
λ2(g; K) = λ3(g; K) in the case of disc-shaped inclusions of radius R0 = 0.2 and for g = 8.9 (first row)
and 13 (second row).

Figure 8: |Φ1(g, ·)| (left) and |Φ2(g, ·)| (right) computed with formula (5.24) and (5.25) for λD(g) =
λ1(g; K) = λ2(g; K) in the case of disc-shaped inclusions of radius R0 = 0.2 and for g = 13.2 (first row)
and 100 (second row).

5.3. For g = 1, the operator A1,K coincides with minus Laplacian (since σg = 1) with K−quasi-periodic
conditions. As shown in [23], λ1(1; K) = λ2(1; K) = λ3(1; K) is a triple eigenvalue. For 1 < g < gc ≈ 13.1
(in particular, g = 8.9, g = 13), a Dirac point occurs between the 2nd and 3rd bands and we observe:
λ1(g; K) < λ2(g; K) = λ3(g; K) ≡ λD(g); the (solid curve) graphs of g 7→ λ2(g; K) and g 7→ λ3(g; K)
coincide in Figure 6. It follows from the second relation in (5.11) (a consequence of symmetry) that for
g < gc, g 7→ λ1(g; K) is (dashed) curve of simple L2

K− eigenvalues of σ(Ag,K). Thus, by Corollary 5.2,
λ1(K, g) belongs to σ1(AK) for 1 < g < gc. That the Dirac point is located between the 2nd and the 3rd

bands indicates that g in the parameter range g < gc is not sufficiently large for our theorems to apply;
indeed for g sufficiently large we know from Corollary 5.13 and Corollary 4.5 that a Dirac point appears
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between the first and second bands and that there exists a gap between the second and the third band.
Increasing g, we find for g = gc ≈ 13.1, the first 3 dispersion surfaces touch over K (and, by symmetry, over
all other vertices of B) at a triple eigenvalue λ1(gc; K) = λ2(gc; K) = λ3(gc; K), and that for g > gc the
Dirac point transfers to an intersection of the first two bands: λD(g) ≡ λ1(g; K) = λ2(g; K) < λ3(g; K)
(since the graphs of g 7→ λ1(g; K) and g 7→ λ2(g; K) coincide on Figure 6).

Figure 7 depicts, for g = 8.9, 13, the Bloch eigenfunctions Φ1(g, ·) and Φ2(g, ·) = PCΦ1(g, ·), which are
associated with the degenerate (multiplicity 2) Dirac eigenvalue λD(g) = λ2(g; K) = λ3(g; K). Φ1(g, ·)
and Φ2(g, ·)), given by formulae (5.24) and (5.25)), are the “normalized projections” of PA1,K (resp.

PCPA1,K = e−2πi/3PB1,K) on the 2− dimensional kernel of A(g,K)− λD(g)I.
The contrast g = 8.9 and the inclusion radius R0 = 0.2 were chosen equal to parameters used in

simulations of Floquet-Bloch modes in [38, Figure 4 page 71] for the first 2 TE bands for a square lattice
of circular allumina inclusions at a non-zero quasimomentum. Consistent with observations in [38] we
find, for this range of g, that Φ1 and Φ2 are not well approximated by superposition of our Dirichlet
orbitals. However, once g is increased to around 13 or beyond, the modes Φ1 (resp. Φ2) become localized
on the sublattice, ΛA (resp. ΛB) and begin to look like superpositions of Dirichlet orbitals.

Figure 8, which depicts the behavior of the Bloch eigenfunctions for higher contrasts: g = 13.2, 100 >
gc, demonstrates the behavior predicted by Theorem 5.12 and its Corollary 5.13. In particular, λD(g) is
now situated between the two first bands, and Φ1 given by by formula (5.24) (resp. Φ2 given by (5.25))
are spatially localized around the A−sites (resp. the B−sites). This localization is more pronounced for
g = 100 as predicted by Corollary 5.13; Φ1(g, ·) → PA1,K and Φ2(g, ·) → e−2πi/3 PB1,K as g → ∞, where

the function PAK,1 (resp. PB1,K), defined by (5.22), has support equal to the A- inclusions (resp. on the
B-inclusions).

Figure 9: All graphs are represented in a logarithmic scale. In the left figure, one represents in blue
g 7→ |λD(g)− δ̃1|/δ̃1. In the center, one plots in blue g 7→ ‖Φ1(g, ·)−PK,A‖L2

K
and in red g 7→ ‖Φ1(g, ·)−

PK,A‖H1
K
/‖PK,A‖H1

K
. At the right, one plots in blue g 7→ ‖Φ2(g, ·) − e− 2πi/3 PB1,K‖L2

K
and in red

g 7→ ‖Φ2(g, ·)−e−i 2π/3 PB1,K‖H1
K
/‖PB1,K‖H1

K
. In each figure, g 7→ g−1 is plot in black as a reference graph.

Figures 9 and 10 are produced using a very fine mesh with P2 periodic Lagrange finite elements to
simulate very large values of the contrast g. These figures concern the first two bands and are performed
for g varying from g = 102 to 104 with a constant step size ∆g = 100. Here, g is large enough to be
in the regime of validity of Corollary 5.13; λD(g) = λ1(g; K) = λ2(g; K) is of multiplicity 2 and Φ1(g, ·)
and Φ2(g, ·) are given by formulae (5.24) and (5.25)). The 1/g rate of convergence of the eigenpairs
(λD(g),Φj(g, ·)), j = 1, 2 at K, predicted by the asymptotic analysis of the Section 6 (Corollary 6.7
and Theorem 6.3), is displayed in Figure 9. In the left figure, one observes that the relative error:
g 7→ |λD(g) − δ̃1|/δ̃1 converges to zero, linearly in 1/g. The center and right figures make clear the 1/g
convergence of the relative error of Φ1(g, ·)− PA1,K and Φ2(g, ·)− e−2iπ/3PB1,K in the L2 and H1 norms.

The left panel of Figure 10 illustrates that the Dirac velocity vD(g) (defined by (5.13)) tends to 0 at
the rate 1/g. The right panel displays g 7→ g vD(g), which indicates convergence to a positive constant
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Figure 10: The left graph sketches g 7→ vD(g) (in blue) g 7→ g−1 (in black, as a reference curve) both in
a logarithmic scale whereas the right graph represents g 7→ g vD(g).

≈ 27.1. The asymptotic expansion (6.43) of Theorem 6.8 implies vD(g) = v
(1)
D g−1 + O(g−2) for g � 1.

Thus, numerically we observe v
(1)
D > 0. This provides, for g sufficiently large, a numerical verification

of the non-degeneracy condition (5.26) on the Dirac velocity, vD(g), associated with the energy quasi-
momentum pair (K, λD); see Corollary 5.13 and Theorem 5.12. With this verification, Corollary 5.13
ensures, for g sufficiently large, the existence of Dirac points at a touching of the first two bands over the
6 vertices of the Brillouin zone.

8 Higher energy bands for disc-shaped inclusions

8.1 Eigenelements of the limiting operator (A∞,k) for disc-shaped inclusions

Sections 4 through 6 discuss results on the convergence, as g → ∞, of band dispersion functions, the
existence of Dirac points, asymptotic expansions of the Floquet-Bloch eigenelements and the Dirac ve-
locity. These results require that δ̃n, the nth Dirichlet eigenvalue of −∆Dir,ΩA for the single inclusion
ΩA, satisfies the spectral isolation condition (S) of Definition 4.2. As we have seen, condition (S) holds
for the first eigenvalue, δ̃1, for any inclusion shape ΩA satisfying the assumptions of Section 2.2. In this
section we demonstrate that condition (S) can be verified in many cases for n > 1. This enables us,
for disc-shaped inclusions, to obtain results on Dirac points occurring at energies deep within the band
spectrum, infinitely many such.

In this section, we take ΩA = B(vA, R0) where B(vA, R0) is the open ball of radius R0 > 0 centered at

vA. The radius R0 is chosen so that the geometrical assumptions of Section 2.2 hold, namely ΩA∩ΩB = ∅
and Ω+ ∩ ∂Ω = ∅; in other words, the 2 disc-shaped inclusions do not overlap and do not intersect the
boundary of the unit cell. For this geometry, the spectrum σ(−∆Dir,ΩA) is expressible in terms of zeros
of the Bessel functions Jp(z) for p ∈ N0. We first recall some properties of these zeros; see [59, chapter
XV] and Figure 11:

• For each p ∈ N0, the zeros of the Bessel functions Jp(z) are real. Moreover, Jp(z) has an infinite
number of positive zeros zp,q arranged in an ascending order of magnitude and indexed by q ≥ 1.
These zeros are simple, i.e. J ′p(zp,q) 6= 0 for q ≥ 1.

• The zeros of any 2 different Bessel functions, Jp1
(z) and Jp2

(z) where p1 6= p2 are distinct. Moreover,
for consecutive Bessel functions: Jp(z) and Jp+1(z), they interlace:

0 < zp,1 < zp+1,1 < zp,2 < zp+1,2 < zp,3 < . . .
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0
z1,1 z2,1

z0,2
z3,1

10
z1,2 z4,1 z2,2

z0,3

z5,1 z3,2

z0,1

Figure 11: Positive zeros zp,q whose magnitude are below 10.

Using the above properties, one obtains that the discrete spectrum of −∆Dir,ΩA is given by

σ(−∆Dir,ΩA) =

{(
zp,q
R0

)2

: (p, q) ∈ N0 × N

}
= {δ̃n, for n ∈ N},

where the listing of δ̃n is with multiplicity. The corresponding eigenfunctions are given in terms of
Bessel functions. Indeed, if the nth Dirichlet eigenvalue of ΩA, δ̃n = (z0,q/R)

2
for some q ∈ N, then

ker(−∆Dir,ΩA − δ̃nId) is 1-dimensional and spanned by the normalized function pn with

pn(x) =
J0

(
z0,q |x|R−1

0

)
√
π |J ′0(z0,q)|R0

, x ∈ ΩA. (8.1)

However, if δ̃n = z2
p,q/R

2
0 for some p, q ≥ 1, then ker(−∆Dir,ΩA − δ̃nId) is 2-dimensional and spanned by

the orthonormal set consisting of the functions:

pn,s(x) =

√
2 Jp

(
zp,q|x|R−1

0

)
√
π|J ′p(zp,q)|R0

sin(p θ) and pn,c(x) =

√
2 Jp

(
zp,q|x|R−1

0

)
√
π|J ′p(zp,q)|R0

cos(p θ), x ∈ ΩA. (8.2)

To obtain the normalization in (8.1) and (8.2), we use [59, formula (11) page 135, chapter 5]:∫ R0

0

J2
p (zp,q r/R0) r dr = R2

0 J
′
p(zp,q)

2/2.

This normalization is well-defined since J ′p(zp,q) 6= 0.

The next proposition states that the (infinitely many) Dirichlet eigenvalues of ΩA, δ̃n, which arise
from zeros of the zeroth order Bessel function, J0(z), satisfy the spectral isolation condition (S).

Proposition 8.1. Let δ̃n = (z0,q/R0)
2

for some n, q ∈ N. Then, δ̃n satisfies condition (S) of Definition
4.2. Furthermore, the corresponding normalized eigenfunction pn, defined by (8.1) (and extended by 0
on R2 \ ΩA), satisfies the symmetry relations (5.19) and (5.20) and is even. Thus all the results from
Sections 4 to 6 hold for such values of n.

Proof. If δ̃n = (z0,q/R0)
2

for some q ∈ N, then by (8.1) we have that δ̃n is a simple eigenvalue with pn,
defined by (8.1), as an associated normalized eigenfunction. Moreover, by the identities: (xJ1(x))′ =
xJ0(x) and J1(x) = −J ′0(x) for x ∈ R (see [59], equations (5) and (7) page 18), it follows that∫

ΩA
pn(x)dx =

−2
√
π R0 J

′
0(z0,q)

z0,q|J ′0(z0,q)|
= −2

√
π
R0

z0,q
sgn(J ′0(z0,q)) 6= 0,

where sgn stands for the sign function. Thus, δ̃n satisfies the condition (S). Morever, it is clear that pn
satisfies the symmetry relations (5.19) and (5.20) and is even.

Remark 8.2. The eigenvalues δ̃n = (zp,q/R0)
2

with p, q ≥ 1 satisfy neither of the two properties

of the condition (S). Specifically, (a) δ̃n is of multiplicity 2, and (b) (pn,s, pn,c) is an orthonormal

basis of ker(−∆Dir,ΩA − δ̃nId) and both functions have zero mean. Hence,
∫

ΩA
u(x)dx = 0 for all

u ∈ ker(−∆Dir,ΩA − δ̃nId). Hence, the results of Sections 4 to 6 do not hold in such cases. The questions
of the existence of Dirac points and the asymptotic expansions of the Bloch eigenelements at the quasi-
momenta K∗ in the high contrast regime are not treated in this paper; only our general results on the
convergence of the band functions of Section 3 apply in this setting.
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Figure 12: Dispersion maps k 7→ λ10(k; g), λ11(k; g), λ12(k; g), λ13(k; g) for the case of two disks ΩA

and ΩB of radius R0 = 0.2 per cell. The four maps are plotted along the contour of M-0-K-M of the
symmetry-reduced Brillouin zone in red (right) for the indicated values of the contrast g.

8.2 Numerical results for high energy bands

We continue our numerical investigations with the medium described in Section 7 with the mesh of P2

periodic finite elements, used to obtain the results of Figure 2. We are interested here in the energy
bands associated with the Dirichlet eigenvalue δ̃6 = (z0,2/R0)

2
where z0,2 is the second positive zero of

the Bessel function J0(z); using relation 8.1, the index n = 6 can be read off Figure 11 since the zeros
represented by green crosses (resp. red crosses) are associated with eigenvalues of the operator −∆Dir,ΩA

of multiplicity 1 (resp. 2). By Proposition 8.1, since δ̃6 is associated with a positive zero of J0(z), it
satisfies the spectral isolation condition (S). Hence, all the results from Sections 4 to 6 apply to the case
n = 6, and thus to the associated dispersion surfaces k 7→ λ11(g;k) and k 7→ λ12(g;k).

Figure 12 displays the dispersion surfaces k 7→ λj(g;k), j = 10, 11, 12, 13 over the boundary contour
of a symmetry-reduced Brillouin zone. The Dirac point is situated at K between the 12−th and 13−th
bands for g = 60 and between the 11th and 12th bands for g = 20 and for the large contrast values g = 100
and 300, as predicted by Theorem 5.12. A (transitional) triple degeneracy occurs at K for g ≈ 37.3 and
g ≈ 84.7. Moreover, for large g, as predicted by Theorem 4.4 (applied with n = 6), one observes that:

(a) the 11th band does not “become flat”. Indeed, it converges away from k = 0 to δ̃6 = δ11 = δ12 and
at k = 0, numerically, one notes that it converges to δ̃4 = δ7 = δ̃5 = δ10 < δ11. Thus, one can conjecture
that ν11 = δ10 in Theorem 4.4.

(b) the 12th band converges uniformly to δ̃6 = δ11 = δ12 and this band “becomes flat”.

(c) there exists a gap between the the 12thth and 13th bands.

Furthermore, since δ7 = δ8 = δ9 = δ10 (see Figure 11), one has by the interlacing property (3.10):
ν10 = δ10. Thus, as predicted by Proposition 3.6, the 10th band converges uniformly to δ̃5 = δ10.

In figure 13, the contrast values g = 84.8 and 300 are above the occurrence of the last triple (transition-
ing) point: g ≈ 84.7 (see Figure 12). Thus, we are here in the high contrast regime predicted by Theorem
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Figure 13: |Φ1(g, ·)| (left) and |Φ2(g, ·)| (right) computed respectively with formula (5.24) and (5.25) for
λD(g) = λ11(g; K) = λ12(g; K) in the case of disk-shaped inclusions of radius R0 = 0.2 and for g = 84.8
(first row) and g = 300 (second row).

5.12: λD(g) = λ11(g; K) = λ12(g; K) is of multiplicity 2 and the Dirac points are situated between these
two energy bands. Here, we display |Φ1(g, ·)| and |Φ2(g, ·)|, computed with formula (5.24) and (5.25).
One observes a localization of Φ1 (resp. Φ2) selectively in the A−inclusions (resp. on the B−inclusions).
Again, as predicted by Theorem 5.12, this localization is more pronounced as the contrast, g, increases.

9 Proof of Theorem 5.4 on conditions for the existence of Dirac points

9.1 Weak form of the Lyapunov-Schmidt / Schur complement reduction

By symmetry arguments (Remark 5.5) it suffices to prove Theorem 5.4 for K∗ = K. Furthermore,
relations (5.11) of Corollary 5.2, and assumptions 1 and 2 of Theorem 5.4 imply that λD(g) is an eigenvalue
of multiplicity equal to 2 of Ag,K. Thus, there exists n ≥ 1 such that λn(g; K) = λn+1(g; K) = λD(g).
Hence, part 1 of Definition 5.3 of Dirac points has been proved for (K, λD(g)). It remains to prove part
2 of this definition, concerning the conical character of the dispersion surfaces near (K, λD).

We follow the framework developed in [23, 24] for the Schroedinger equation and in [43] for divergence
form elliptic operators with smooth coefficients to derive the asymptotic behavior of the two (Lipschitz)
dispersion surfaces λn+1(g; K+κ) and λn(g; K+κ) for κ small, which touch at λD(g) for κ = 0. Since Ag
has discontinuous coefficients, we require a weak formulation of the Lyapunov-Schmidt / Schur reduction
of previous works [23, 24] that necessitates many technical adjustments.

We seek a non-trivial solution of the eigenvalue problem:

Ag,K+κΦ = λΦ, D(Ag,K+κ) = {u ∈ H1
K+κ | Ag,K+κu ∈ L2

K+κ} , (9.1)

where λ is near λD and κ is small perturbation of K. Such solutions (λ,Φ) depend on the asymptotic
parameter g but since g is fixed in this section, suppress this dependence. In particular, as Φ ∈ D(Ag,K+κ),
we have the transmission conditions at the boundary of the inclusions: [Φ] = 0 and [σg∇φ ·n] = 0 . We
can reformulate the eigenvalue problem in the space of periodic functions (independent of k) by setting
Φ(x) = ei(κ+K)·xφ(x). Then, the eigenvalue problem (9.1) can be expressed in terms of the operator:

Ãg,K+κ = e−i(K+κ)·xAg,K+κ ei(K+κ)·x := −∇K+κ · σg∇K+κ, (∇κ = ∇+ iκ)

acting on the domain:

D(Ãg,K+κ) = {u ∈ H1
0 = H1(R2/Λ) | Ãg,K+κ u ∈ L2

0 = L2(R2/Λ)} .
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As the operator Ãg,K+κ is unitarily equivalent to Ag,K+κ, it is self-adjoint, has a compact resolvent
on L2(R2/Λ) and the same sequence of eigenvalues (counted with multiplicity) as Ag,K+κ. For φ ∈
D(Ãg,K+κ), the transmission boundary conditions are:

[φ] = 0 and [σg∇K+κ φ · n] = 0. (9.2)

The eigenvalue problem (9.1) is equivalent to

Ãg,K+κ φ = λφ , φ ∈ D(Ãg,K+κ). (9.3)

In contrast to the previous studies [23, 24, 43], here Ãg,K+κ has discontinuous coefficients, σg. In

particular, one can not expand the operator Ãg,K+κ as in [23, 24, 43] since Ãg,K+κ and Ãg,K do not

have the same domain. Indeed, at the boundary of the inclusions, the functions in D(Ãg,K+κ) satisfy the

jump conditions (9.2) whereas functions φ in D(Ãg,K) satisfy [φ] = 0 and [σg∇K φ ·n] = 0. Nevertheless,
this expansion will be possible via a weak formulation of the Lyapunov-Schmidt / Schur complement
reduction.

Multiplication by a test function ψ ∈ H1(R2/Λ), integrating over Ω, and applying the divergence
theorem, one can show that the eigenvalue problem (9.3) is equivalent to the following weak formulation:
Find a function φ ∈ H1(R2/Λ) such that:∫

Ω

σg∇K+κφ · ∇K+κψ dx = λ

∫
Ω

φ ψ dx, for all ψ ∈ H1(R2/Λ). (9.4)

For |κ| small, we seek (λ, φ) with λ = λD + E1, |E1| � 1, expecting that E1(κ) = o(1) as κ → 0. We
rewrite the problem (9.4) as:

sK(φ, ψ) = eE1
(φ, ψ) + bK,κ(φ, ψ) + ck(φ, ψ), ∀ψ ∈ H1(R2/Λ), (9.5)

where for all u, v ∈ H1(R2/Λ), the continuous sesquilinear forms sK, bK,κ, cκ and eE1 are defined by:

sK(u, v) = 〈SKu, v〉 =

∫
Ω

σg∇Ku · ∇Kv − λD u · v dx,

eE1(u, v) = 〈EE1u, v〉 = E1

∫
Ω

u · v dx,

bK,κ(u, v) = 〈BK,κu, v〉 = −
∫

Ω

σg
[
iκu · ∇Kv +∇Ku · iκ v

]
dx,

cκ(u, v) = 〈Cκu, v〉 = −|κ|2
∫

Ω

σgu · v dx,

(9.6)

and 〈·, ·〉 denotes the duality product between H1(R2/Λ) and its dual H1(R2/Λ)∗. The bounded operators
SK, EE1 , BK,κ and Cκ ∈ B(H1(R2/Λ), H1(R2/Λ)∗) are associated to the different continuous sesqulinear
forms by the relation (9.6). Since g is fixed, we omit the dependence on g of these operators and their
associated continuous sesquilinear forms. So the weak formualtion (9.5) is equivalent to the following
linear equation:

SKφ = BK,κφ+ Cκφ+ EE1φ (9.7)

valued in H1(R2/Λ)∗ with unknown φ ∈ H1(R2/Λ).
Let

φi = e−iK·xΦi, i = 1, 2,

where {Φ1,Φ2} is the orthnormal basis for the L2
K eigenspace for the eigenvalue λD in Theorem 5.4.

Thus {φ1, φ2} is an orthonormal basis for the L2(R2/Λ) of ker(Ãg,K−λDId), i.e. the eigenspace for (9.3)
with κ = 0. Let P‖ denote the orthogonal projection of L2(R2/Λ) onto V0 = span{φ1, φ2}:

P‖f = (f, φ1)L2(R2/Λ)φ1 + (f, φ2)L2(R2/Λ) φ2, for any f ∈ L2(R2/Λ)

and P⊥ = I− P‖. We seek a solution (E1, φ) of (9.7) with

φ = φ(0) + φ(1)

47



where
φ(0) = P‖φ = αφ1 + β φ2 ∈ H1(R2/Λ) and φ(1) = P⊥φ ∈ H1(R2/Λ). (9.8)

Thus our eventual goal is to construct, for all κ small: α = (φ, φ1)L2(R2/Λ), β = (φ, φ2)L2(R2/Λ), φ
(1) and

E1 such that (9.7) holds.
We first remark that the restriction to H1(R2/Λ) of P‖ and P⊥: P‖ : H1(R2/Λ) → V0 ⊂ H1(R2/Λ)

and P⊥ : H1(R2/Λ) → V1 := P⊥H1(R2/Λ) ⊂ H1(R2/Λ) belong to B(H1(R2/Λ)). Therefore, V0 and V1

are closed subspaces of H1(R2/Λ) and we have the (non-orthogonal) decomposition H1(R2/Λ) = V0⊕V1.
Thus, for test functions ψ ∈ H1(R2/Λ) we write: ψ = ψ(0) + ψ(1) where ψ(0) = P‖ψ and ψ(1) = P⊥ψ.
Furthermore, any operator M : H1(R2/Λ) → H1(R2/Λ)∗ is equivalent to an operator M : V0 ⊕ V1 →
V∗0 ⊕ V∗1 , expressed in the equivalent block form:

M
(
φ(0)

φ(1)

)
≡
(
M00 M01

M10 M11

)(
φ(0)

φ(1)

)
,

where Mij ∈ B(Vj ,V∗i ) for i, j = 0, 1. We next express (9.7) in the block form M(E1,κ)φ = 0.
First, since φ(0) ∈ D(AK), one can apply the divergence theorem and use that φ(0) is an eigenfunction

of ÃK for the eigenvalue ED to obtain:

sK(φ(0), ψ(1)) = 〈SKφ(0), ψ(1)〉 =

∫
Ω

[∇K · σg∇K φ(0) − ED φ(0)] · ψ(1) dx = 0.

It implies that S01 = 0. In the same way, we find S10 = 0 and S00 = 0. It is also straightforward to
see that: EE1

01 = 0 and EE1
10 = 0 since V0 and V1 are orthogonal subspaces in L2(R2/Λ). Hence the weak

formulation (9.7) of the eigenvalue problem for Ag,K+κ is equivalent to the system:(
EE1

00 + BK,κ
00 + Cκ00 BK,κ

01 + Cκ01

BK,κ
10 + Cκ10 −SK

11 + EE1
11 + BK,κ

11 + Cκ11

)(
φ(0)

φ(1)

)
=

(
0
0

)
. (9.9)

The linear eigenvalue problem (9.9) is to be solved, for κ small, for φ(0), φ(1) and E1. We shall solve
(9.9) by a Schur complement / Lyapunov-Schmidt reduction strategy. Namely, we first solve the second
equation in (9.9) for φ(1) as a function of the two parameters α and β, which specify φ(0) = αφ1+βφ2 ∈ V0.
We then substitute φ(1)[α, β] into the first equation in (9.9) to obtain a two-dimensional homogeneous

system of equationsM(E1, κ; g)

(
α
β

)
=

(
0
0

)
, whose 2× 2 matrix depends nonlinearly on E1 and κ. The

equation detM(E1, κ; g) = 0 defines the two dispersion surfaces touching at (K, λD) since it corresponds
to solution E1 = 0 and κ = 0. We will show that there exists κ0 6= 0 such that for all |κ| < κ0 (and
g > 0), we can solve for E1(κ; g).

9.2 T-coercivity and inversion of the operator SK
11

We now proceed with the reduction step. The key is to show that the (2, 2) entry of the operator in (9.9) is
invertible. The main step is to prove the invertiblity of SK

11. One approach is to apply a weak formulation
of the Fredholm alternative [46]. Here, we present an alternative approach based on the notion of T-
coercivity, an explicit reformulation of the inf-sup theory which generalizes coercivity [6, 13], and can
be applied in cases where the standard Fredholm theory cannot be applied, e.g. to invert divergence
form elliptic operators with sign-changing coefficients in their principal part [6]. T-coercivity has the
additional appeal of simplicity; it reduces the invertibility of indefinite / non-coercive problems, e.g. for
bands n ≥ 2 where the sesqulinear form is not coercive, to an application of the Lax-Milgram theorem.
The T-coercivity approach adopt here has been applied in the context of well-posdness and discretization
of Helmholtz operator problems in bounded domains [13].

We begin with a brief discussion of the T-coercivity approach. Let H be a Hilbert space for which the
complex conjugation is an antiunitary involution. Consider the general problem of finding u ∈ H such
that

a(u, v) = l(v), for all v ∈ H, (9.10)
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where a and l are respectively a continuous sesquilinear form H × H and a continuous linear form on
H. If the form a is not coercive on H, one can not directly apply the Lax-Milgram theorem to produce
a unique solution u ∈ H. In such cases, the idea of T-coercivity is to construct (if possible) a bounded
isomorphism T of H such that the sesquilinear form: aT (u, v) = a(u,Tv) for u, v ∈ H is coercive. One
then applies the Lax-Milgram theorem to find a unique solution u ∈ H of

aT (u, v) = l(Tv), for all v ∈ H. (9.11)

This solution depends continuously on l ∈ H∗, since T is bounded. Furthermore since T : H → H is
an isomorphism, (9.11) is equivalent to (9.10), and thus (9.10) has a unique solution. This is further
equivalent to the bounded operator A from H to its dual H∗ defined by 〈Au, v〉 = a(u, v) for all u, v ∈ H
(where 〈·, ·〉 stands for the duality product between H∗ and H) being invertible.

To apply the T-coercivity in the present setting, decompose L2(R2) as the orthogonal sum:

L2(R2 \ Λ) =
(
V1,− ⊕ V0

)
⊕
(
V1,− ⊕ V0

)⊥
, (9.12)

where

V0 = span{φ1, φ2} and

V1,− = span of a basis of eigenfunctions of the n− 1 first eigenvalues of Ã(g,K).

For n = 1, we set V1,− = {0}. Associated with the orthogonal decomposition (9.12) are 3 projection
operators: P⊥,− : L2(R2/Λ) → V1,−, P‖ : L2(R2/Λ) → V0 and P⊥,+ : L2(R2/Λ) → (V1,− ⊕ V0)⊥

satisfying: P⊥,−+P‖+P⊥,+ = I and P⊥,−+P⊥,+ = P⊥. The restriction of P⊥,−, P‖, P⊥,+ to H1(R2 \Λ)
belongs the B(H1(R2 \Λ)). We define V1,+ = P⊥,+H1(R2/Λ), a subspace of P⊥,+L2(R2/Λ). This yields
the following decomposition of V1:

V1 = V1,− ⊕ V1,+,

as a non-orthogonal sum of closed subspaces endowed with the H1− inner product and associated norm.
On the Hilbert space V1, we define a bounded isomorphism (an involution) T as follows. For any u ∈ V1,
we write the unique decomposition u = u+ + u−, where u+ ∈ V1,+ and u− ∈ V1,−. Then we define

Tu := u+ − u−.

Lemma 9.1. The operator SK
11 ∈ B

(
V1, (V1)∗

)
has a bounded inverse (SK

11)−1 ∈ B
(
(V1)∗,V1

)
.

Proof. We show that the invertibility of SK
11 follows from the T-coercivity of the sesquilinear form sK on

V1. For the norm and inner product on L2(R2/Λ) we omit the subscript indicating the function space.
For all u = u+ + u− ∈ V1 with u± ∈ V1,± we have

(sK u,Tu) = (Ã
1
2

Ku, Ã
1
2

KTu)− λD(u,Tu)

=
(
Ã

1
2

K(u+ + u−), Ã
1
2

K(u+ − u−)
)
− λD

(
u+ + u−, u+ − u−

)
=

(
Ã

1
2

Ku+, Ã
1
2

Ku+

)
− λD‖u+‖2 + λD‖u−‖2 −

(
Ã

1
2

Ku−, Ã
1
2

Ku−
)
. (9.13)

The last equality follows from the orthogonality of u+ and u− in L2(R2 \ Λ) and that Ã
1
2

Ku− and Ã
1
2

Ku+

are also orthogonal in L2(R2 \ Λ) (as an immediate consequence of the spectral theorem).
Since λD(g) = λn+1(g; K) = λn(g; K) has multiplicity 2, one can choose η > 0 such that (1 −

η)λn+2(g; K)− λD > 0 for n ≥ 1 and λD − (1 + η)λn−1(g; K) > 0 if n > 1. Thus, one gets:(
Ã

1
2

Ku+, Ã
1
2

Ku+

)
− λD‖u+‖2 = η

(
Ã

1
2

Ku+, Ã
1
2

Ku+

)
+ (1− η)

(
Ã

1
2

Ku+, Ã
1
2

Ku+

)
− λD‖u+‖2

≥ η
(
Ã

1
2

Ku+, Ã
1
2

Ku+

)
+ [(1− η)λn+2(g; K)− λD] ‖u+‖2

≥ η
(
Ã

1
2

Ku+, Ã
1
2

Ku+

)
, (9.14)
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where, in the last inequality, we used that (Ã
1
2

Ku+, Ã
1
2

Ku+) ≥ λn+2(g; K)‖u+‖2. This is an immediate

consequence of the definition of the orthogonal projector P⊥,+, and the expression for Ã
1
2

Ku+ in an

orthonormal basis L2(R2 \ Λ) with respect to which ÃK is diagonal. Similarly, for the case n > 1:

λD‖u−‖2 −
(
Ã

1
2

Ku−, Ã
1
2

Ku−
)

= λD‖u−‖2 − (1 + η)
(
Ã

1
2

Ku−, Ã
1
2

Ku−
)

+ η
(
Ã

1
2

Ku−, Ã
1
2

Ku−
)

≥ [λD − (1 + η)λn−1(g; K)] ‖u−‖2 + η
(
Ã

1
2

Ku−, Ã
1
2

Ku−
)

≥ η
(
Ã

1
2

Ku−, Ã
1
2

Ku−
)
. (9.15)

In the last inequality, we used that (Ã
1
2

Ku−, Ã
1
2

Ku−) ≤ λn−1(g; K)] ‖u−‖2, a consequence of the definition
of P⊥,−. Combining (9.13), (9.14) and (9.15) (using that u = u+ and u− = 0 for the particular case
n = 1), we have:

(sKu,Tu) ≥ η
[(
Ã

1
2

Ku+, Ã
1
2

Ku+

)
+
(
Ã

1
2

Ku−, Ã
1
2

Ku−
)]

≥ η
(
Ã

1
2

Ku, Ã
1
2

Ku
)

≥ ηmin(1, g) ‖∇Ku‖2
≥ C(K) ηmin(1, g) ‖u‖2H1(R2\Λ).

Therefore, the continuous sesqulinear form sK is T-coercive on V1. Hence, by the Lax Milgram lemma
SK

11 ∈ B
(
V1, (V1)∗

)
has a bounded inverse (SK

11)−1 ∈ B
(
(V1)∗,V1

)
.

9.3 Reduction to the determinant of a 2× 2 matrix

Using the invertibility of SK
11 (Lemma 9.1), we rewrite the second equation in (9.9) as

(I− Ξ(κ, E1))φ(1) = (SK
11)−1[BK,κ

10 + Cκ10]φ(0), (9.16)

where Ξ(κ, E1) := (SK
11)−1 [EE1

11 + BK,κ
11 + Cκ11] ∈ B(V1). From the expression of the sesquilinear forms

eE1 , bK,κ and cκ, we see that EE1 , BK,κ and Cκ depend respectively linearly in E1, linearly in κ and
quadratically in κ. Since (SK

11)−1 is bounded and independent of κ, it follows that Ξ(κ, E1) = O(|κ|+|E1|)
tends to zero as (κ, E1) → 0 ∈ R3. Thus, for |κ| + |E1| sufficiently small, one has ‖Ξ(κ, E1)‖ < 1 and
therefore that I− Ξ(κ, E1) is invertible. Hence,

c[k, E1] =
(
I− Ξ(κ, E1)

)−1
(SK

11)−1[BK,κ
10 + Cκ10] ∈ B(V0,V1) (9.17)

is well-defined for |κ| + |E1| sufficiently small. Relations (9.16), (9.17) and (9.8) imply, for |κ| + |E1|
sufficiently small:

φ(1) = c[κ, E1]φ1 α+ c[κ, E1]φ2 β. (9.18)

The expression (9.17) can be expanded in a Neumann series. Moreover, EE1 , BK,κ and Cκ depend,
respectively, linearly in E1, linearly in κ and quadratically in κ. Thus, for (E1,κ) in a neighborhood,
U , of the origin: (E1,κ) → c[κ, E1] φj , for j = 1, 2, are analytic as a mapping from (E1,κ) ∈ U into
V1 endowed with the H1−norm (for a discussion of the composition and product of analytic functions
defined and valued on a Banach space, see e.g. [9]). We also have

‖c[κ, E1] φj‖H1(R2/Λ) ≤ C|κ| for j = 1, 2, (E1,κ) ∈ U and some C > 0. (9.19)

Now substituting the expression of φ(1) given by (9.18) into the first equation of (9.9) yields a closed
equation for α, β, depending on (E1,κ):

0 = [EE1
00 + BK,κ

00 + Cκ00] (φ1 α+ β φ2) + [BK,κ
01 + Cκ01]

(
c[κ, E1]φ1 α+ c[κ, E1]φ2 β

)
valued in (V0)∗. Using that {φ1, φ2} is an orthonormal basis of V0, the latter equation may be expressed
equivalently as a system of two homogeneous linear equations for α and β:

M(κ, E1)

(
α
β

)
= 0, (9.20)
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where

M(κ, E1) = E1I2 +MA(κ) +MB(κ, E1), (9.21)

MA(κ) :=

(
〈BK,κ

00 φ1, φ1〉 〈BK,κ
00 φ2, φ1〉

〈BK,κ
00 φ1, φ2〉 〈BK,κ

00 φ2, φ2〉

)
, and (9.22)

MB(κ, E1) :=

(
〈
[
Cκ00 + (BK,κ

01 + Cκ01)c[κ, E1]
]
φ1, φ1〉 〈

[
Cκ00 + (BK,κ

01 + Cκ01)c[κ, E1]
]
φ2, φ1〉

〈
[
Cκ00 + (BK,κ

01 + Cκ01)c[κ, E1]
]
φ1, φ2〉 〈

[
Cκ00 + (BK,κ

01 + Cκ01)c[κ, E1]
]
φ2, φ2〉

)
. (9.23)

From (9.21), the analyticity of (E1,κ) 7→ c[κ, E1] φj for j = 1, 2 and the fact that EE1 , BK,κ and Cκ
depend respectively linearly in E1, linearly in κ and quadratically in κ, it follows that (E1,κ) 7→ M(κ, E1)
is analytic in a neighborhood U of the origin in R3. Furthermore from (9.21), we have that E1 7→ E1I2
is linear in E1, κ 7→ MA(κ) is linear in κ and from (9.19) and (9.23), the matrix entries of (MB(·, ·))ij
satisfy, for i, j = 1, 2 and all (E1,κ) ∈ U :

MB(κ, E1)ij = gij(E1,κ) + hij(κ) with |gij(E1,κ)| ≤ C|κ|2 and |hij(κ)| ≤ C|κ|2 .

Here, C > 0 and gij and hij are analytic functions of (E1,κ) and κ. The preceding arguments imply a
characterization of the dispersion surfaces in a neighborhood of (K, λD).

Proposition 9.2. For (E1,κ) ∈ U , a sufficiently small neighborhood of the origin in R3, λ(g; K + κ) =
λD + E1 is an eigenvalue of the eigenvalue problem (9.1) if and only if

detM(κ, E1) = 0. (9.24)

Here, the 2×2 complex-valued matrixM(κ, E1) is given by (9.20), (9.21), (9.22) and (9.23). Furthermore,
(κ, E1) 7→ detM(κ, E1) is analytic on U .

9.4 Simplifications of the determinant using symmetries

We expect that for |E1| + |κ| small, the leading behavior of E1(κ, g) is given by the eigenvalues of the
matrix MA(κ). We now use honeycomb symmetry to simplify MA(κ).

Lemma 9.3. 1. For κ ∈ R2:

• 〈BK,κ
00 φi, φi〉 = 0 for i = 1, 2.

• 〈BK,κ
00 φj , φi〉 = 〈BK,κ

00 φi, φj〉 = −2iκ ·
∫

Ω
σgΦj ∇Φi dx for i, j = 1, 2 and i 6= j.

2. Let

ṽD = −i

∫
Ω

σgΦ1∇Φ2 dx · (1, i)>. (9.25)

Then, vD = |ṽD|, with vD defined in (5.13) and one rewrites MA(κ) defined by (9.22) as

MA(κ) =

(
0 ṽD (κ1 + iκ2)

ṽD (κ1 − iκ2) 0

)
.

Proof. Using (9.6), one has for i, j = 1, 2:

〈BK,κ
00 φj , φi〉 = −

∫
Ω

σg[iκφj · ∇Kφi +∇Kφj · iκφi] dx = 〈BK,κ
00 φi, φj〉. (9.26)

Since φi = Φie
−iK·x and ∇Kφi = ∇Φie

−iK·x for i, j = 1, 2 we have:

〈BK,κ
00 φj , φi〉 = −

∫
Ω

σg[iκΦj · ∇Φi +∇Φj · iκΦi] dx. (9.27)
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When i = j ∈ {1, 2}, this latter expression simplifies to:

〈BK,κ
00 φi, φi〉 = 2 Im

(
σgΦi,κ · ∇Φi

)
= 2 Im

(
κ ·
∫

Ω

σgΦi∇Φi dx
)
. (9.28)

Following the ideas developed in the proof of Proposition 4.8 of [43], we show that 〈BK,κ
00 φi, φi〉 for i = 1, 2

vanish. We set that ν = τ if i = 1 and ν = τ if i = 2. Then, one has∫
Ω

σgΦi∇Φi dx =

∫
Ω

R(σgΦi)R∇Φi dx.

Since R(σgΦi) = σgRΦi, Φi ∈ L2
K,ν , R∇ = R∗∇R by (B.6) and |ν| = 1, it follows that∫

Ω

σgΦi∇Φi dx = ν

∫
Ω

σgΦiR∗∇RΦi dx = ν ν

∫
Ω

σgΦiR∗∇Φidx = R>
∫

Ω

σgΦi∇Φidx,

where R> denotes the transpose of R. Multiplying by R> on both sides yields:

R

∫
Ω

σgΦi∇Φi dx =

∫
Ω

σgΦi∇Φidx = 0. (9.29)

The last equality holds since 1 is not an eigenvalue of R. By (9.28), 〈BK,κ
00 φi, φi〉 = 0 for i = 1, 2.

We next simplify the expression (9.27) using that Φj = PC Φi for i 6= j. One has

〈BK,κ
00 φj , φi〉 = −

∫
Ω

σg[iκΦj · ∇Φi +∇PC[Φi] · iκPCΦj ] dx,

= −
∫

Ω

σg[iκΦj · ∇Φi dx−
∫

Ω

∇PC[Φi] · PC[−iκσgΦj ] dx (as PC(σgΦj) = σgP CΦj),

= −
∫

Ω

σg[iκΦj · ∇Φi dx−
∫

Ω

PC[−∇Φi] · PC[−iκσgΦj ] dx (as ∇PC = −PC∇, see (B.6)),

= −
∫

Ω

σg[iκΦj · ∇Φi dx−
∫

Ω

∇Φi · iκσgΦj dx (since PC is anti-unitary),

= −2iκ ·
∫

Ω

σgΦj ∇Φi dx . (9.30)

Applying the reasoning for the case i = j, but now for j = 2 and i = 1, we have that equation (9.29) is
replaced by:

R

∫
Ω

σgΦ2∇Φ1 dx = τ

∫
Ω

σgΦ2∇Φ1dx.

It follows that for some a ∈ C: ∫
Ω

σgΦ2∇Φ1dx = a ξ, (9.31)

where ξ ∈ ker(R− τ Id) is displayed in (1.3). One deduces that

a = a ξ · ξ =

∫
Ω

σgΦ2∇Φ1dx · ξ. (9.32)

Setting ṽD = −
√

2 i a and using (9.26), (9.30), (9.31) and (1.3) we have:

〈BK,κ
00 φ2, φ1〉 = 〈BK,κ

00 φ1, φ2〉 = −2iκ · a ξ = −
√

2 i a (κ1 + iκ2) = ṽD (κ1 + iκ2).

Finally, by (9.32) and (1.3), we have ṽD = −
√

2 i a is given by (9.25).
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9.5 Conical behavior of the dispersion curves

Under the condition vD 6= 0, we conclude the locally conical behavior of the dispersion curves near the
Dirac point (K, λD).

Proposition 9.4. Let g > 0 and vD(g) be defined by (5.13). Under the non-degeneracy condition:
vD(g) 6= 0, there exists κ0 such that for all |κ| < κ0 the equation (9.24): detM(κ, E1) = 0 has two
solutions κ 7→ E±1 (κ) given by:

E±1 (κ) = ±vD(g) |κ| (1 + E±1,res(κ)), |κ| < κ0,

where κ 7→ E±1,res(κ) are Lipschitz continuous functions which vanish at κ = 0.

Proof. The proof is the same as for honeycomb Schroedinger operators. We refer to [23] for the details.

A Ag and transverse electric (TE) modes

In this section we explain how the elliptic operator Ag arises in the study of transverse electric (TE)
waves in electromagnetism. Let ε0 and µ0 denote the vacuum dielectric constant and vacuum magnetic
permeability. Introduce Cartesian coordinates (x, y, z) ∈ R3. Consider a dielectric (non-conducting)
medium with macroscopic permeability, µ = µ0, macroscopic dielectric parameter ε(x, y, z) and current
source density J(x, y, z). Let E and H denote, respectively, the electric and magnetic fields. Time
harmonic solutions of frequency ω of Maxwell’s equations, (E,H) e−iωt, are governed by the system:

iω εE +∇∧H = J and − iω µ0H +∇∧E = 0 in R3.

We further restrict to the case of a medium, where the current density J and all medium coefficients
depend on the transverse variables x and y, but not on the longitudinal variables, z:

J = J(x) = J(x, y), ε = ε(x) = ε(x, y), µ = µ0, where x = (x, y).

We seek modal solutions (i.e for J = 0), which are in a transverse electric (TE) polarization state:

E(x, z) =
(
E⊥(x), 0

)>
= (Ex(x), Ey(x), 0)> and H(x, z) = Hz(x) ez = (0, 0, Hz(x))>.

Introduce the 2− dimensional scalar and vector operators:

∇⊥v(x, y) := (∂yv,−∂xv)> and curlv := ∂xvy − ∂yvx where v = (vx, vy)>.

For any vector u(x) = (u⊥(x), 0) + uz(x)ez, which is independent of z, we have identity: (∇∧ u) (x) =
curlu⊥(x)ez + (∇⊥uz(x), 0)>. Hence, transverse electric (TE) modes are obtained from solutions of

−∇ · ε−1∇Hz = ω2µ0Hz, (A.1)

where E⊥ can be computed (for frequencies ω 6= 0) from Hz:

E⊥ = i(εω)−1 ∇⊥Hz .

We take ε(x, y) = ε(x) to be of the form:

ε(x) =

{
ε0 for x in the bulk,

ε0g for x in the inclusions ,

a piecewise constant medium with contrast parameter g. Multiplication of (A.1) by ε0g yields:

AgHz = λHz , where λ = g
(ω
c

)2

and Ag is defined by (1.1) and (2.1) and c = (µ0ε0)−1/2 is vacuum speed of light. Thus, one observes
that one easily translates the key results on the bands λn(g;k) for Ag into the original electro-magnetic
setting by “using the change of variable”:

ωn,±(k, g) = ±c
√
λn(k, g)

g
, ∀n ∈ N and any k ∈ B.
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B Commutation of symmetry operators

In this section we present results on the commutation properties of the operators: rotation, inversion and
PC. Consider first the Dirichlet Laplacian for a single inclusion.

Proposition B.1. Let ΩA be a non-empty simply connected bounded open set of R2 with Lipschitz
boundary ∂ΩA. Assume further that R(ΩA) = ΩA and −ΩA = ΩA. Let RΩA : L2(ΩA) → L2(ΩA) and
PΩA : L2(ΩA)→ L2(ΩA) be the (unitary) rotation operator and (anti-unitary) inversion operator defined
by (5.15), and denote using the same notation: RΩA : L2(ΩA)2 → L2(ΩA)2 and PΩA : L2(ΩA)2 →
L2(ΩA)2 these operators acting on 2-dimensional vector fields. Then, RΩAH

1
0 (ΩA) ⊂ H1

0 (ΩA) and
PΩAH

1
0 (ΩA) ⊂ H1

0 (ΩA) and we have the commutation relations:

∇(RΩAu) = RRΩA(∇u) and ∇(PΩAu) = −PΩA(∇u), ∀u ∈ H1
0 (ΩA), (B.1)

∆RΩAu = RΩA ∆u and ∆PΩAu = PΩA ∆u, ∀u ∈ H1
∆,A = {v ∈ H1(ΩA) | ∆v ∈ L2(ΩA)}. (B.2)

Finally, −∆Dir,ΩA commutes with RΩA and PΩA . That is, D(−∆Dir,ΩA) = H1
∆,A ∩ H1

0 (ΩA) is stable
under RΩA and PΩA , and [−∆Dir,ΩA ,RΩA ] = [−∆Dir,ΩA ,PΩA ] = 0 on D(−∆Dir,ΩA).

Proof. We summarize the ideas of the proof. Relations (B.1) and (B.2) are first proved for all x ∈ ΩA

and smooth functions u in D(ΩA) (the space of C∞ functions compactly supported in ΩA) by using the
chain rule as in [43, Lemma 3.3 and Theorem 3.2]. Then, using the density of D(ΩA) in H1

0 (ΩA) (for
the H1-norm) and distribution theory, one extends (B.1) to any functions in H1

0 (ΩA) and proves the
stability of H1

0 (ΩA) by PΩA and RΩA . Afterwards, one extends (B.2) to any functions in H1
∆,A by using

distribution theory. Finally, from the stability of H1
0 (ΩA) by RΩA and PΩA and relation (B.2), one gets

that D(−∆Dir,ΩA) = H1
0 (ΩA)∩H1

∆,A is stable under RΩA and PΩA . This last point and (B.2) imply that
−∆Dir,ΩA commutes with RΩA and PΩA .

To deal with the case of elliptic operators with quasi-periodic conditions, we introduce for any k ∈ B
the following Hilbert spaces on the open sets Ω± (defined in (3.1)):

L2
k(Ω±) := {u | u ∈ L2(O), for all bounded open sets O ⊂ Ω±, u is k−quasi-periodic on Ω±},

H1
k(Ω±) := {u ∈ L2

k(Ω±) | u ∈ H1(O), ∀ bounded open sets O ⊂ Ω±}.

These spaces are endowed with their standard inner products:

(u, v)L2
k(Ω±) =

∫
Ω±

u v dx and (f, g)H1
k(Ω±) =

∫
Ω±

f g dx+

∫
Ω±
∇f · ∇g dx. (B.3)

Remark B.2. The functions of H1
k(Ω−) are k-quasi periodic functions that are H1 on each periodic copy

of Ω− and satisfy a k−quasi-periodic boundary condition, i. e. the Dirichlet trace has no jump across
the border of the periodic cells: ∪(m,n)∈Z2 ∂Ωmn and is k−quasi-periodic. This last condition relies on
the fact that these functions have to be H1 on all bounded open subsets of Ω−. Thus their Dirichlet trace
has to match at the boundary of the periodic cells. However, as the inclusions are disjoint, no condition
(except k−quasi-periodicity) is imposed on the Dirichlet trace on ∂Ω+ for functions of H1

k(Ω±).

We then introduce the space

L2
k(∂Ω+) = {f ∈ L2

loc(∂Ω+) | f(x+ v) = eik·vf(x), for a.e x ∈ ∂Ω+ and all v ∈ Λ}.

Its inner product is defined by replacing Ω± by ∂Ω+ and dx by dγx in the left formula of (B.3). The
Dirichlet trace operator γ±D : C1

k(Ω±) ⊂ H1
k(Ω±) → L2

k(∂Ω+) (where Cmk (Ω±), m ∈ N0 stands for the
space of Cm smooth k−quasi-periodic functions f on Ω± such that f and all its partial derivatives
of order less than m or equal to m admits a continuous extension on Ω±) defined by γ±D(u) = u|∂Ω+

extends by density to a continuous operator on H1
k(Ω±). Furthermore, its range is the Sobolev space

(see [30, 32, 47]):

H
1/2
k (∂Ω+) := {f ∈ L2

k(∂Ω+) |
∫
∂Ω+×∂Ω+

|f(x)− f(y)|2
|x− y|2 dγxdγy <∞} (B.4)
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endowed with its standard norm defined for all f ∈ H1/2
k (∂Ω+) by:

‖f‖2
H

1/2
k (∂Ω+)

= ‖f‖2L2
k(∂Ω+) +

∫
∂Ω+×∂Ω+

|f(x)− f(y)|2
|x− y|2 dγxdγy. (B.5)

The mapping γ±D : H1
k(Ω±)→ H

1/2
k (∂Ω+) is also continuous (for the H

1/2
k (∂Ω+) norm).

For K∗ a vertex of B, one denotes by RΩ± : L2
K∗

(Ω±) → L2
K∗

(Ω±) and PCΩ± : L2
K∗

(Ω±) →
L2

K∗
(Ω±), the rotation and PC operators defined as (5.1) and (5.5) but on the sets Ω±. We also use

the notation RΩ± : L2
K∗

(Ω±)2 → L2
K∗

(Ω±)2 and PCΩ± : L2
K∗

(Ω±)2 → L2
K∗

(Ω±)2 for the equivalent
of these operators acting on 2D vector fields. Finally, R∂Ω+ : L2

K∗
(∂Ω+) → L2

K∗
(∂Ω+) and PC∂Ω+ :

L2
K∗

(∂Ω+)→ L2
K∗

(∂Ω+) denote the same rotation and PC operators, but for scalar functions defined on
∂Ω+. The justification for these definitions is similar to the ones of the operator R and PC (see (5.2)
and (5.5)). It relies, on one hand, on Ω± and ∂Ω+ being invariant under 2π/3 clockwise rotation and
inversion with respect to the center, xc and, on the other hand, on the stability of K∗−quasi-periodic
boundary conditions under these operators. Finally, to see that the adjoint of the unitary operators R∗Ω±
and R∗∂Ω+ are defined, interchange the rotation matrix R with its inverse R∗ in the definition of RΩ±

and R∂Ω+ .

Lemma B.3. Let K∗ be any vertex of B. Then, the space H1
K∗

(Ω±) is stable by RΩ± and PCΩ± and
one has the following commutation relations:

∇(RΩ±u) = RRΩ±(∇u) and ∇(PCΩ±u) = −PCΩ±(∇u), ∀u ∈ H1
K∗(Ω

±). (B.6)

Moreover, the trace operators γ±D commute with RΩ± and PCΩ± in the following sense:

γ±D(RΩ±u) = R∂Ω+(γ±Du) and γ±D(PCΩ±u) = PC∂Ω+(γ±Du), ∀u ∈ H1
K∗(Ω

±). (B.7)

Proof. We summarize the idea of the proof of (B.6). The relations (B.6) are first proved for functions
in C1

K∗
(Ω±) using the chain rule as in [43, Lemma 3.3, Theorem 3.2]. Thus, it follows that C1

K∗
(Ω±) is

stable by the operators RΩ± and PCΩ± . The extension of the relations (B.6) to all functions of H1
K∗

(Ω±)
and the stability of the space H1

K∗
(Ω±) under RΩ± and PCΩ± are then proved by distribution theory

and density of C1
K∗

(Ω±) in H1
K∗

(Ω±) for the H1
K∗

-norm.

Let u ∈ H1
K∗

(Ω±). To prove (B.7) for the rotation operator, we use that C1
K∗

(Ω±) = H1
K∗

(Ω±) in

the H1
K∗

-norm. Thus, there exists a sequence (un)n∈N of C1
K∗

(Ω±) functions that converge to u for the
H1

K∗
-norm. By (B.6), RΩ±un → RΩ±u in H1

K∗
. By continuity of the Dirichlet trace operator, one has

γ±D(RΩ±un) → γ±D(RΩ±u) and γ±Dun → γ±Du in H
1/2
K∗

(∂Ω+) (and thus also in L2
K∗

(∂Ω+)). Moreover,

by continuity of R∂Ω± , one has γ±D(RΩ±un) = R∂Ω±(γ±Dun) → R∂Ω±(γ±Du) in L2
K∗

(∂Ω+). Therefore,

we conclude that γ±D(RΩ±u) = R∂Ω±(γ±Du) in L2
K∗

(∂Ω+) and also in H
1/2
K∗

(∂Ω+). The same reasoning
applies to the PC operator.

The dual of H
1/2
k (∂Ω+) is denoted H

−1/2
k (∂Ω+) and is equipped with the norm:

‖g‖
H

1/2
k (∂Ω+)

= sup
‖f‖

H
1/2
k

(∂Ω+)
=1

| 〈g, f〉
H
−1/2
k ,H

1/2
k

|.

Here, 〈·, ·〉
H
−1/2
k ,H

1/2
k

denotes the duality product between H
−1/2
k (∂Ω+) and H

1/2
k (∂Ω+) (see [30, 47]) for

which 〈u, v〉
H
−1/2
k ,H

1/2
k

:= 〈u, v〉
H
−1/2
k ,H

1/2
k

for all u ∈ H−1/2
k and all v ∈ H1/2

k .

Let n denote the unit outward normal vector to Ω+. The Neumann trace (see e.g. Corollary 2.6 of

[30]) [∂u/∂n]± ∈ H−1/2
k (∂Ω+) is defined for a function

u ∈ H1
k,∆(Ω±) := {w ∈ H1

k(Ω±) | ∆w ∈ L2
k(Ω±)}

via the Green identity as the following continuous linear functional:〈[ ∂u
∂n

]±
, γ±D(v)

〉
H
−1/2
k ,H

1/2
k

:= ±
∫

Ω±
∆u · v +∇u · ∇v dx, ∀v ∈ H1

k(Ω±), (B.8)
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which is well-defined as a linear form since γ±D : H1
k(Ω±) → H

1/2
k (∂Ω+) is surjective. It is continuous

since u ∈ H1
k,∆(Ω±) and γD admits a continuous right inverse E± : H

1/2
k (∂Ω+) → H1

k(Ω±) (i.e. a

continuous lift operator) such that γd(E±w) = w for all w ∈ H1/2
k (∂Ω+) (see Proposition 1.1 of [30]).

If u ∈ H2
k(Ω±) (see [30, 32]) then [∂u/∂n]± ∈ L2

k(∂Ω+) and the duality bracket is nothing but the
integral

∫
∂Ω+ [∂u/∂n]± v dγx.

One now defines R∂Ω+ and PC∂Ω+ as bounded operators from H
−1/2
K∗

(∂Ω+) to H
−1/2
K∗

(∂Ω+) by:

〈R∂Ω+w, v〉
H
−1/2
K∗ ,H

1/2
K∗

=
〈
w,R∗∂Ω+v

〉
H
−1/2
K∗ ,H

1/2
K∗

, (B.9)

〈PC∂Ω+w, v〉
H
−1/2
K∗ ,H

1/2
K∗

= 〈w,PC∂Ω+v〉
H
−1/2
K∗ ,H

1/2
K∗

,

for all w ∈ H
−1/2
K∗

(∂Ω+) and all v ∈ H
1/2
K∗

(∂Ω+). These operators are well-defined since by virtue of

(B.4) and (B.5), it is clear that R∗∂Ω+ (resp. PC∂Ω+) is unitary (resp. anti-unitary) on H
1/2
K∗

(∂Ω+).

Lemma B.4. Let K∗ be one vertex of B. Then the space H1
K∗,∆

(Ω±) is stable by the operators RΩ±

and PCΩ± and one has the following commutation relations:

∆RΩ±u = RΩ± ∆u and ∆PCΩ±u = PCΩ± ∆u, ∀u ∈ H1
K∗,∆(Ω±). (B.10)

Moreover, the Neumann trace commutes with the rotation and PC operators in the following way:[∂RΩ±u

∂n

]±
= R∂Ω+

[ ∂u
∂n

]±
and

[∂PCΩ±u
∂n

]±
= PC∂Ω+

[ ∂u
∂n

]±
, ∀u ∈ H1

K∗,∆(Ω±). (B.11)

Proof. We only summarize the idea of the proof of (B.10). The relations (B.10) are first proved for
functions in C2

K∗
(Ω±) using the chain rule as in [43, Lemma 3.3, Theorem 3.2]. The extension of the

relation (B.10) to all functions of H1
K∗,∆

(Ω±) and the stability of H1
K∗,∆

(Ω±) by RΩ± and PCΩ± are

proved by using distribution theory and density of C2
K∗

(Ω±) in the Hilbert space H1
K∗,∆

(Ω±) endowed

with the norm ‖ · ‖H1
K∗,∆(Ω±): ‖u‖2H1

K∗,∆(Ω±)
= ‖u‖2

H1
K∗ (Ω±)

+ ‖∆u‖2
L2

K∗ (Ω±)
, for all u ∈ H1

K∗,∆
(Ω±).

We show now the relation (B.11). Let u ∈ H1
K∗,∆

(Ω±) be fixed and v be any functions in H1
K∗

(Ω±).

First, as the spaces H1
K∗

(Ω±) and H1
K∗,∆

(Ω±) are stable by RΩ± , one has RΩ±v ∈ H1
K∗

(Ω±) and

RΩ±u ∈ H1
K∗,∆

(Ω±). Thus, using the Green identity (B.8), one has on one hand:〈[∂RΩ±u

∂n

]±
, γ±D(v)

〉
H
−1/2
K∗ ,H

1/2
K∗

= ±(∆RΩ±u, v)L2
K∗ (Ω±) ± (∇RΩ±u,∇v)L2

K∗ (Ω±) (B.12)

and on the other hand:〈
R∂Ω+

[ ∂u
∂n

]±
, γ±D(v)

〉
H
−1/2
K∗ ,H

1/2
K∗

=
〈[ ∂u
∂n

]±
,R∗∂Ω+γ

±
D(v)

〉
H
−1/2
K∗ ,H

1/2
K∗

(B.13)

= ±(∆u,R∗Ω±v)L2
K∗ (Ω±) ± (∇u,∇R∗Ω±v)L2

K∗ (Ω±)

(we use here that H1
K∗

(Ω±) is stable by the rotation operator R∗Ω± and that γ±D(R∗Ω±v) = R∗∂Ω+γ
±
D(v),

these properties can be shown in the same way as in the proof of Lemma B.3 for the rotation operator
RΩ± since R∗Ω± and R∗∂Ω+ are defined by changing the rotation matrix R by its inverse R∗ in the
definition of RΩ± and R∂Ω+).

Using (B.10) on the first term of the right hand side of (B.12), one obtains:

(∆RΩ±u, v)L2
K(Ω±) = (RΩ±∆u, v)L2

K(Ω±) = (∆u,R∗Ω±v)L2
K(Ω±). (B.14)

Then, for the second term, one has

(∇RΩ±u,∇v)L2
K∗ (Ω±) = (R∗∇(RΩ±u), R∗∇v)L2

K∗ (Ω±)

= (RΩ±∇u,R∗∇v)L2
K∗ (Ω±) (since by (B.6), R∗∇(RΩ±u) = RΩ± (∇u)),

= (∇u,R∗Ω± R∗∇RΩ± R∗Ω±v)L2
K∗ (Ω±).
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Using again that R∗∇RΩ± = RΩ±∇ on H1
K∗

(Ω±) and that R∗Ω±v ∈ H1
K∗

(Ω±) since H1
K∗

(Ω±) is stable
by R∗Ω± leads to

(∇RΩ±u,∇v)L2
K∗ (Ω±) = (∇u,R∗Ω±RΩ±∇R∗Ω±v)L2

K∗ (Ω±)

= (∇u,∇R∗Ω±v)L2
K∗ (Ω±) (since RΩ± is unitary). (B.15)

Thus, one concludes by (B.12) , (B.13), (B.14) and (B.15) that〈[∂RΩ±u

∂n

]±
, γ±D(v)

〉
H
−1/2
K∗ ,H

1/2
K∗

=
〈
R∂Ω+

[ ∂u
∂n

]±
, γ±D(v)

〉
H
−1/2
K∗ ,H

1/2
K∗

,

which yields the second relation (B.11) (since γ±D is surjective). Finally, the equivalent property holds for
the PC operator by the same reasoning.

Proposition B.5. Let K∗ be one vertex of B and g be a positive real number. The operator AK∗,g

commutes with the operators R and PC, i.e. its domain D(AK∗,g) is stable under R and PC and the
commutators [AK∗,g,R] and [AK∗,g,P] vanish on D(AK∗,g).

Proof. We will show that R and AK∗,g commute. The proof that PC and AK∗,g commute is similar.
One has D(AK∗,g) =

{
u ∈ H1

K∗
| −∇ · σg∇u ∈ L2

K∗

}
. Therefore, u ∈ D(AK∗,g) is equivalent to u ∈

H1
K∗,∆

(Ω+), u ∈ H1
K∗,∆

(Ω−) and u satisfies the following transmission conditions on ∂Ω+: γ+
Du = γ−Du

and g [∂u/∂n]− = [∂u/∂n]+.
Let u ∈ D(AK∗,g). From Lemma B.4, H1

K∗,∆
(Ω±) is stable by RΩ± . Thus, the restriction of

Ru to Ω± belongs to H1
K∗,∆

(Ω±). The continuity on the Dirichlet trace of u and (B.7) implies that

γ+
D(RΩ+u) = γ−D(RΩ−u). For the Neumann trace, as g[∂u/∂n]− = [∂u/∂n]+, the relation (B.11) implies

that g[∂RΩ−u/∂n]− = [∂RΩ+u/∂n]+. Hence, Ru ∈ D(AK∗,g) and thus D(AK∗,g) is stable by R.
Finally, let us prove that AK∗,gRu = RAK∗,gu. Using the Green identity and the definition of σg, we

have for all v ∈ H1
K∗

:

(AK∗,gRu, v)L2
K∗

= (σg∇Ru,∇v)L2
K∗

= (g∇Ru,∇v)L2
K∗ (Ω−) + (∇Ru,∇v)L2

K∗ (Ω+). (B.16)

On the other hand, for all v ∈ H1
K∗

:

(RAK∗,gu, v)L2
K∗

= (AK∗,gu,R∗v)L2
K∗

= (σg∇u,∇R∗v)L2
K∗

= (g∇u,∇R∗Ω−v)L2
K∗ (Ω−) + (∇u,∇R∗Ω+v)L2

K∗ (Ω+). (B.17)

Therefore, by (B.16), (B.17) and (B.15), we have (AK∗,gRu, v)L2
K∗

= (RAK∗,gu, v)L2
K∗

for all v ∈ H1
K∗

.

Since H1
K∗

is dense in L2
K∗

, we have AK∗,gRu = RAK∗,gu and thus [AK∗,g,R] vanishes on D(AK∗,g).

C From quasi-modes to genuine modes

To prove the asymptotic expansions of the Floquet-Bloch eigenpairs in Section 6, we use a corollary of
the following theorem on quasi-modes.

Theorem C.1. Let A : H → H be a linear compact self-adjoint positive operator on a Hilbert space H.
Let u ∈ H with ‖u‖H = 1, λ ∈ C with Re(λ) > 0 and η > 0 such that

‖Au− λu‖H ≤ η,
(such a pair (u, λ) is usually referred to as a quasi-mode of accuracy η of A). Then, there exists an
eigenvalue λn ∈ σ(A) satisfying

|λn − λ| ≤ η.
Furthermore, if there exists η∗ > η such that B(λ, η∗) ∩ σ(A) = {λn}, there exists un an eigenfunction,
associated with λn, such that ‖un‖H = 1 and

‖u− un‖H ≤
2 η

η∗
.
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The proof of Theorem C.1 can be found for λ > 0 in [50] (Lemma 1.1 p age 264), but it is easy to
check that their proof holds also for Re(λ) > 0. We now reformulate this result for unbounded self-adjoint
operators A : D(A) ⊂ H → H that are positive definite and have a compact resolvent. In such setting,
one can introduce the closed sesquilinear form a associated to the operator A defined by:

a(u, v) = (A
1
2u,A

1
2 v)H, ∀u, v ∈ D(a) = D(A

1
2 ).

As A is positive definite, one can introduce the inner product (·, ·)a defined on the Hilbert space D(a) by

(u, v)a = a(u, v), ∀u, v ∈ D(a),

and ‖ · ‖a its associated norm. Furthermore, as A is a self-adjoint operator with a compact resolvent,

D(a) = D(A 1
2 ) is compactly embedded in H and dense in H. Then, using the Riesz representation

theorem, one defines a bounded injective operator V : D(a)→ D(a) by

(Vu, v)a = (u, v)H, ∀u, v ∈ D(a). (C.1)

One shows easily that the operator V is self-adjoint, positive and compact. Moreover, using (C.1), it is
straightforward to prove that: (λn, en) is an eigenpair for A if and only if (λ−1

n , en) is an eigenpair for
V. Hence, σ(V) = σ(A−1). The following two corollaries reformulate Theorem C.1 in this current setting
and provide eigenvalue and eigenfunction estimates. One one hand, they extend the notion of quasi-mode
for functions with less regularity (namely, functions that do not belong to D(A) but to the domain of

D(A 1
2 )). On the other hand, they allow for estimation of the error in the quasi-mode approximation of

eigenfunctions of A in a stronger norm: ‖ · ‖a than the norm ‖ · ‖H. See, for example, [18, 19] for the
eigenvalue estimate and [10] for the eigenfunction estimate in the context of a Dirichlet Laplacian. We
present the details of the eigenfunction estimate in a more general setting adapted to our problem.

Corollary C.2. (Eigenvalue estimate) Assume that there exists u ∈ D(a) \ {0}, λ ∈ C with Re(λ) > 0
and 0 < η < (|λ|+ 1)−1‖u‖a such that

|a(u, v)− λ(u, v)H| ≤ η ‖v‖a; ∀v ∈ D(a) . (C.2)

Then there exists λn ∈ σ(A) such that:

|λ− λn| ≤ (|λ|+ 1)
η

‖u‖a
.

Proof. The proof consists of rewriting the weak “quasimode estimate” (C.2) with the identity (C.1).
Then, one concludes by applying Theorem C.1 to the operator V and the quasimode (u/‖u‖a, λ−1) (since
Re(λ−1) > 0) by using the fact that (λn, en) is an eigenpair of A if and only if (λ−1

n , en) is an eigenpair
of V. The details are presented in the proof of Proposition 15 in [18].

With a good estimate of the eigenvalues, one can use the following result to estimate the eigenfunctions.
Let dis(·,O) denote the distance function to a set O, and let λ1 > 0 denote the smallest eigenvalue of A.

Corollary C.3. (Eigenfunction estimate) Let λn ∈ σ(A). Assume that there exists u ∈ D(a) \ {0} with
‖u‖H = 1 and η ∈ (0, 1) satisfying

0 < η <
1

2
λn ‖u‖a dis(λ−1

n , σ(A−1) \ {λ−1
n })

such that
|a(u, v)− λn(u, v)H| ≤ η ‖v‖a , ∀v ∈ D(a). (C.3)

Then, there exists un, an eigenfunction of A associated to λn, such that ‖un‖H = 1 and

‖u− un‖a ≤ C̃η.

The positive constant C̃ is given explicitly by:

C̃ = C1 + λ
− 1

2
n + λ

1
2
nλ
− 1

2
1 with C1 = 4

(
λn dis(λ−1

n , σ(A−1) \ {λ−1
n })

)−1
. (C.4)
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Proof. Using the definition (C.1) of the operator V, one can rewrite the inequality (C.3) as:

|(u− λnVu, v)a| ≤ η‖v‖a, ∀v ∈ D(a).

As, λn > 0 and u 6= 0, it leads to ∥∥∥V u

‖u‖a
− 1

λn

u

‖u‖a

∥∥∥
a
≤ η

λn ‖u‖a
.

Furthermore, as σ(V) = σ(A−1), by choosing η∗ = 1/2 dis(λ−1
n , σ(A−1) \ {λ−1

n }), one has σ(V) ∩
B(λ−1

n , η∗) = {λ−1
n } and by assumption η (λn ‖u‖a)−1 < η∗. Therefore, the Theorem C.1 applied to

the operator V (using η (λn ‖u‖a)−1 for η in this Theorem) implies that there exists an eigenfunction ũn
associated to λn for A (and to 1/λn for V) such that ‖ũn‖a = 1 and∥∥∥ u

‖u‖a
− ũn

∥∥∥
a
≤ C1η

‖u‖a
. (C.5)

with C1 > 0 defined by (C.4). It remains now to renormalize this last inequality with respect to the norm
‖ · ‖H. To this aim, we introduce the vector un defined by un = ũn/‖ũn‖H. Then, one has:

‖u− un‖a ≤ ‖u− ‖u‖aũn‖a + ‖‖u‖aũn − un‖a
≤ C1η + ‖‖u‖aũn − un‖a (using (C.5)). (C.6)

Then, we estimate the second term of the right hand side of (C.6). To this aim, one uses that

‖ũn‖2H = (Vũn, ũn)a = λ−1
n (ũn, ũn)a = λ−1

n

and it follows that

‖‖u‖aũn − un‖a =
∥∥(‖u‖a − ‖ũn‖−1

H )ũn
∥∥
a

=
∣∣∣‖u‖a − λ 1

2
n

∣∣∣ ≤ λ− 1
2

n

∣∣‖u‖2a − λn∣∣ . (C.7)

Using the estimate (C.3) for v = u and the fact that ‖u‖H = 1 yields∣∣‖u‖2a − λn∣∣ ≤ η‖u‖a. (C.8)

The last point is to dominate ‖u‖a. Using the estimate (C.8), the “Poincaré type inequality”: ‖u‖H/‖u‖a ≤
1/
√
λ1, ‖u‖H = 1 and that η < 1 leads to:

‖u‖a =
‖u‖2a
‖u‖a

≤ η +
λn
‖u‖a

≤ η + λn
‖u‖H
‖u‖a

≤ 1 +
λn√
λ1

. (C.9)

Finally, one concludes from (C.6), (C.7), (C.8) and (C.9) that:

‖u− un‖a ≤ C̃η with C̃ = C1 + λ
− 1

2
n + λ

1
2
nλ
− 1

2
1 .

D Extensions to a larger class of elliptic operators

We mention here that our approach and results extend easily to a more general class of honeycomb
self-adjoint elliptic divergence form operators with anisotropic and spatially heterogeneous coefficients.
Our more general class of honeycomb operators is the operator Ag, where σg in (1.1) is now the matrix
valued-function σ̃g given by

σ̃g(x) =

{
a1(x)I2 + b1(x)σ2 for x in the inclusions

g (a2(x)I2 + b2(x)σ2), g > 1 for x in the bulk,
(D.1)
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with σ2 the Pauli matrix:

σ2 :=

(
0 −i

i 0

)
.

Here, ai and bi, i = 1, 2 are assumed to be Λ-periodic bounded, scalar real-valued functions with a1 and
b1 (restricted to Ω+ = ΩA ∪ ΩB) invariant under translation by vB − vA (from the inclusion ΩA to the
inclusion ΩB). Thus, σ̃g, given by (D.1), extends to give a Hermitian periodic matrix-valued function:
σ̃g ∈ L∞(R2/Λ). The scalar functions ai and bi are required to satisfy the symmetry relations:

ai(xc +R (x− xc)) = ai(x), ai(2xc − x) = ai(x), for i = 1, 2 (D.2)

bi(xc +R (x− xc)) = bi(x), bi(2xc − x) = −bi(x), for i = 1, 2,

where R is the 2π/3− clockwise rotation matrix , vA the center of the inclusion A is the origin and xc is
the reference point indicated in Figure 1 and defined in Section 1.6. Finally, the matrix-valued functions
ai(x)I2 + bi(x)σ2 for i = 1, 2 are required to be uniformly positive definite. This more general class
of honeycomb operators, Ag, which models a class of magneto-optic materials and bi-anisotropic meta-
materials, commutes with the required symmetry operators: R and PC; see [43]. We can also apply the
variational approach of [35] to study its high contrast behavior of dispersion surfaces. Furthermore, the
asymptotic expansions of the L2

K− Floquet-Bloch eigenpairs, their justification via the weak formulation
of the quasi-mode approach (Section 6), and the Lyapunov-Schmidt / Schur complement reduction scheme
of Section 9 all extend easily to this setting. Hence, all the results and proofs of this paper (except for
those in Section 8) can be adapted to this context.

In particular, one replaces the Dirichlet Laplacian: −∆ on the inclusions ΩA∪ΩB by the strictly elliptic
operator −∇ · (a1(x)I2 + b1(x)σ2)∇ with Dirichlet boundary conditions on ΩA ∪ΩB . One introduces the
spectral isolation condition (S) (see Definition 4.2) relative to this operator and (S) holds at least in this
more general setting for the first eigenvalue if b1 = 0 (see e.g. [36] pages 14-15). Finally, we point out that
the Λ−periodicity of a1 and b1, their invariance by translation by vB − vA and the symmetry relations
(D.2) imply that a1(Rx) = a1(x), a1(−x) = a1(x) on ΩA and b1(Rx) = b1(x), b1(−x) = −b1(x) on
ΩA. These latter relations are used to prove the commutation −∇· (a1(x)I2 + b1(x)σ2)∇ (equipped with
Dirichlet boundary condition on ∂ΩA) with the symmetries operators RΩA and PΩAC defined on the
single inclusion ΩA (which corresponds in this more general setting to the relation (5.16) for the Dirichlet
Laplacian).
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