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aUniversité Bretagne Sud, LMBA UMR CNRS 6205, F-56000 Vannes, France
bCEA, DAM, DIF, F-91297 Arpajon, France

Abstract

The accurate and rapid reconstruction of a pollution source represents an
important but challenging problem. Several strategies have been proposed to
tackle this issue among which we find the Bayesian solutions that have the inter-
esting ability to provide a complete characterization of the source parameters
through their posterior probability density function. However, these existing
techniques have certain limitations such as their computational complexity, the
required model assumptions, their difficulty to converge, the sensitive choice of
model/algorithm parameters which clearly limit their easy use in practical sce-
narios. In this paper, to overcome these limitations, we propose a novel Bayesian
solution based on a general and flexible population-based Monte Carlo algo-
rithm, namely the sequential Monte Carlo sampler. Owing to its full adaptivity
through the learning process, the main advantage of such an algorithm lies in
its capability to be used without requiring any specific assumptions on the un-
derlying statistical model and also without requiring from the user any difficult
choices of certain parameter values. The performance of the proposed inference
strategy is assessed using twin experiments in complex built-up environments.

Keywords: Source term estimation, Bayesian approach, dispersion model,
adaptivity, sequential importance sampling, synthetic example.

1. Introduction

The threat of chemical, radiological, biological, and nuclear (CRBN) releases
raises some complex and challenging scientific issues. In the event of a CBRN
incident, it is of great importance to have as soon as possible an accurate assess-
ment of the damage likely to be caused by the release which is usually undertaken5

using an atmospheric dispersion model of the contaminant. However, such spa-
tial and temporal forecast, especially in complex built-up environments, is only
possible by providing the source term parameters to the dispersion model. As a
consequence, the main objective consists in rapidly obtaining an accurate esti-
mation of the source parameters from noisy measurements of the concentration10

levels observed by several sensors deployed in a specific surveillance area.

∗Corresponding author
Email address: francois.septier@univ-ubs.fr (François Septier)

Preprint submitted to Atmospheric Environment October 8, 2021

© 2021 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S1352231021006440
Manuscript_27ceb0b87f0ec0ea36b4a295224808b2

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S1352231021006440
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S1352231021006440


Due to its ill-posed nature, this challenging inverse problem has been tackled
using the proposition of different algorithms which can be grouped into two cat-
egories. The first one aims at obtaining a single point estimate of the unknown
parameters by solving an optimization problem where a cost function has to be15

minimized using least squares or genetic algorithms, e.g (Winiarek et al., 2012).
Unfortunately, such approaches do not allow us to quantify the uncertainty

associated to the unknowns, which could be really problematic in such an im-
portant context. To overcome this limitation, Bayesian algorithms have been
designed to solve an inference problem by providing the complete probability20

density function of the parameters of interest given the measurements observed
by a network of sensors. Owing to the complex and nonlinear nature of the
source term estimation (STE) model, the exact computation of such a distri-
bution is not feasible analytically, and one has to resort to some approximation
techniques such as stochastic simulation algorithms.25

More specifically, these techniques consists in obtaining samples from the dis-
tribution of interest by using either some Markov Chain Monte Carlo (MCMC)
kernel (Delle Monache et al., 2008; Chow et al., 2008; Keats et al., 2007a; Yee et al.,
2014) or using the principle of importance sampling (Septier, 2019; Septier et al.,
2020). As recently discussed in (Septier et al., 2020), the application of an Adap-30

tive Multiple Importance Sampling (AMIS) technique on the challenging STE
problem allows us to obtain significant gain compared to state-of-the-art MCMC
algorithms in both synthetic and real data experiments.

Unfortunately, this AMIS algorithm has been designed for a specific obser-
vation model and in particular, it is assumed that both the measurement errors35

and the emission rate levels follow a normal distribution which is not fully ap-
propriate to real situations since negative values can appear in the concentration
levels and have to be removed to keep the physical meaning of the data. How-
ever, relaxing these model assumptions will result in an increasing dimension of
the state to estimate, thus leading generally to poorer estimation results as the40

performance of this AMIS algorithm is quite sensitive to the dimension related
to the unknown parameters. Moreover, the parameters of these normal distri-
butions have to be set a priori by the user which could clearly be difficult in
practice.

In this work, we propose a novel Bayesian STE strategy based on a more45

general and flexible population-based Monte Carlo framework. Originally pro-
posed in (Del Moral et al., 2006; Peters, 2005), this technique called Sequential
Monte-Carlo (SMC) sampler is a class of sampling algorithms which combine
importance sampling and resampling. They have been primarily used as “par-
ticle filter” to solve optimal filtering problems (Doucet et al., 2000). In this50

context, SMC methods/particle filters have benefited from wide-spread use in
various applications (tracking, computer vision, digital communications) due
to the fact that they provide a simple way of approximating complex filtering
distribution sequentially in time. But in (Del Moral et al., 2006), the authors
developed a general framework that allows SMC to be used to simulate from a55

single and static target distribution, thus becoming a promising alternative to
standard MCMC methods. The SMC sampler framework involves the construc-
tion of a sequence of artificial distributions on spaces of increasing dimensions
which admit the distributions of interests as particular marginals. The mecha-
nism is similar to sequential importance sampling (resampling) (Doucet et al.,60

2001; Liu, 2001), with one of the crucial differences being the framework under

2



which the random samples, also called particles, are allowed to move, resulting
in differences in the calculation of the weights of the particles.

These methods have several advantages over traditional and population-
based MCMC methods. Firstly, unlike MCMC, SMC methods do not require65

any burn-in period and do not face the sometimes contentious issue of diagnosing
convergence of a Markov chain. Secondly, as discussed in (Jasra et al., 2007),
compared to population-based MCMC, SMC sampler is a richer method since
there is substantially more freedom in specifying the mutation kernels in SMC:
kernels do not need to be reversible or even Markov. As a consequence, adaptive70

proposal distributions can be easily used, thus giving a lot more of opportuni-
ties to improve its efficiency. Moreover, unlike MCMC, SMC samplers provide
an unbiased estimate of the normalizing constant of the posterior distribution
which can be one quantity of interest in the inference problem to deal with.
Indeed, this normalizing constant is the marginal likelihood and therefore could75

be used for selecting some model assumptions (e.g. choice of distribution for the
measurement noise or for the prior of parameters). Let us finally denote that
many other inference technique based on importance sampling such as Annealed
Importance sampling (Neal, 2001), population Monte Carlo (Cappé et al., 2004)
and its more advanced variants like the Adaptive Multiple Importance Sampling80

(AMIS) (Cornuet et al., 2012) can all be considered as special cases of the SMC
sampler.

Although this approach presents many advantages over traditional MCMC
methods, the potential of these emergent techniques is however largely underex-
ploited in practice. In (Nguyen et al., 2016), some strategies have been described85

and proposed in order to make easier its efficient implementation in practical
problems. In this work, we propose to design an STE algorithm based on this
sequential Monte Carlo sampler. The rest of this paper is organized as follows.
Section 2 describes the statistical model and describes the Bayesian framework
used for this STE problem. In Section 3, the general principle of the SMC sam-90

pler is firstly presented, then we describe the proposed SMC sampler applied to
the STE problem. Numerical simulations are performed in Section 4 to assess
the performances of the proposed approach. Conclusions are finally given in
Section 5.

2. Statistical Model of the STE Problem95

This section firstly describes the statistical model of the source term estima-
tion problem, and then the Bayesian framework for estimating the characteris-
tics of the source is discussed.

2.1. Atmospheric dispersion model

In this paper, a point-wise and static source fully characterized by the param-100

eter β = [xs, q] is considered where xs = [xs, ys] stands for the spatial position
of the source and q is the release rate vector resulting from the discretization of
the plausible emission time window into Ts time intervals.

A network of Nc sensors is deployed over a 2-dimensional monitoring region
to measure the concentration levels. By using an atmospheric dispersion model,
the output simulated concentration at the location of the i-th sensor at time tj
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is defined as

ỹi,j =

Ts∑

n=1

qnCi,j(xs,∆tn), (1)

where j = 1, . . . , Tc with Tc the number of time samples collected by each sensor.
Each value results from the superposition of the Ts releases at the different
time steps {∆tn}

Ts

n=1 weighted by their associated emission rates {qn}
Ts

n=1 of
the source. Ci,j(xs,∆tn) corresponds therefore to the simulated concentration
obtained at the i-th sensor at time tj if a unitary release is made during the
time step ∆tn from a source that is located at xs. Let us note that the proposed
method can be used for any specific choice of atmospheric dispersion model as
long as we are able to obtain Ci,j(xs,∆tn). All these simulated concentration
values obtained at the different time samples of all sensors can be written in the
following matrix form:

ỹ = C(xs)q, (2)

where ỹ =
[
ỹ1,1 · · · ỹ1,Tc

· · · ỹNc,1 · · · ỹNc,Tc

]T
is the vector of sim-

ulated concentration values from the used atmospheric dispersion model and
C(xs), generally called source-receptor matrix (Seibert and Frank, 2004), takes
the following matrix form

C(xs) =




C1,1(xs,∆t1) · · · C1,1(xs,∆tTs
)

...
. . .

...
C1,Tc

(xs,∆t1) · · · C1,Tc
(xs,∆tTs

)
...

. . .
...

CNc,1(xs,∆t1) · · · CNc,1(xs,∆tTs
)

...
. . .

...
CNc,Tc

(xs,∆t1) · · · CNc,Tc
(xs,∆tTs

)




. (3)

The computation of this source-receptor matrix is an important part in an
STE procedure as it links the source characteristics with the measurements and105

quantifies the predicted concentration value at some location and time from a
dispersion model for a given source. As a consequence, in stochastic simulation
based inference techniques, this matrix has to be computed for each generated
sample which are quite numerous (at least several thousands) for a satisfactory
estimation accuracy level. The computation of this matrix with a Lagrangian110

particle dispersion model (LPDM) in a forward mode constitutes the most time-
consuming step of the algorithm proposed in (Rajaona et al., 2015). In this
study as proposed in (Keats et al., 2007a; Yee et al., 2008; Septier et al., 2020),
we use an alternative strategy which consists in using instead the backward
mode of a LPDM. Using this backward mode is computationally advantageous115

if the number of receptors is less than the number of sources, which is generally
the case in practice.

2.2. Definition of the observation model

The likelihood function expresses the probability of observing a specific set
of concentrations from the Nc sensors sensors given all the parameters of the
source β. In other words, this likelihood function provides a probabilistic in-
formation about the discrepancy between the measured concentration values,
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denoted by the vector y, and the simulated concentration values, ỹ, obtained
from the dispersion model and defined in Eq. (2). The chosen parametric
distribution for this likelihood should therefore characterize the three classical
types of error: the dispersion modeling error, the observation error and the
representativeness error due to the interpolation in both time and space of the
dispersion model (Koohkan and Bocquet, 2012). Since the ỹ is a complex but
deterministic mapping of the source parameters β, let us denote the likelihood
function by

p(y|ỹ;Ψl) = p(y|β;Ψl), (4)

where Ψl represents all the parameters of the specific parametric likelihood cho-
sen in the study. The parameters Ψl are assumed either known by a calibration120

from historical data or unknown and therefore need to be jointly estimated with
the source parameters β. For the rest of the paper, we will keep this general
formulation of the likelihood since the estimation method we propose in this
work does not depend on the choice of this likelihood - the only assumption we
need is the ability of evaluating this function point-wise.125

As an illustration of a possible plausible choice of likelihood function which
has been used in (Lewellen and Sykes, 1986; Septier et al., 2009) in order to
ensure the positivity of measurements, the noisy concentration of pollutant at
a given location and time can be considered as conditionally independent and
can be modeled by a clipped normal distribution, i.e.

p(y|ỹ;Ψl) =

Nc∏

i=1

Tc∏

n=1

CN
(
yi,n; ỹi,n, σ

2
ǫ

)
, (5)

where

CN
(
y;µ, σ2

ǫ

)
=





0 if y < 0
Φ(− µ

σǫ
) if y = 0

CN
(
yi,n; ỹi,n, σ

2
ǫ

)
otherwise

(6)

where Φ(y) is the cumulative distribution function (CDF) of the standard nor-
mal distribution. The delta function at zero corresponds to the intermittency
(periods of zero concentration) in observed concentrations. With such a choice,
the (possibly unknown) parameter of the distribution is Ψl = σ2

ǫ which corre-
sponds to the variance (level) of the noise in the measurements. This likelihood130

is clearly more adapted to the problem under study than the traditional nor-
mal distribution used for example in (Yee et al., 2008; Rajaona et al., 2015;
Septier et al., 2020).

2.3. A priori knowledge about the source parameters

Our belief regarding the characteristics of the unknown state of interest, β, is135

encapsulated within the prior probability distributions of the proposed Bayesian
model. As pointed out above with the likelihood, the method we propose in
this work could be applied for any choice of prior probability distribution for
the source parameters β as soon as sampling from such distribution and its
point-wise evaluation are possible.140

As an illustration, if we just know that the release could appear anywhere
uniformly in the region of surveillance denoted here by Ω ⊆ R

2, the following
uniform prior distribution could be chosen for the position of the source:

p(xs) = UΩ(xs). (7)
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Of course, in some scenarios of interest, it could be more appropriate to incor-
porate a more informative distribution to represent our initial guess about this
source location (nuclear plants, industrial sites, etc).

Regarding now the emission rate vector, q, as in (Keats et al., 2007b), we
consider a point source which releases material at a steady rate of α and whose
turn-on and turn-off times are ton and toff, i.e.:

qn = α1[ton;toff](n), (8)

with 1(·) denoting the indicator function. As a consequence, the emission rate
vector q is fully characterized by the three parameters: α ∈ R

+, (ton, toff) ∈
{1, . . . , Ts} with ton ≤ toff. However, in practice, the emission rate α is assumed
to be bounded such as Qmin ≤ α ≤ Qmax. If nothing else is known a priori
about these unknown parameters, the following uniform distribution for these
parameters can be chosen as prior distribution:

p(α) = U[Qmin;Qmax](α),

p(ton, toff) ∝ 1{1,...,Ts}(ton)× 1{ton,...,Ts}(toff).
(9)

By using such simple prior distributions, the unknown parameters that fully
characterize the source is given by β = [xs, α, ton, toff] and moreover there does145

not exist any unknown hyperparameters, so Ψp = ∅.

2.4. Source term estimation in a Bayesian framework

In this work, a Bayesian solution is considered in order to solve efficiently the
challenging STE problem. Instead of just a point-wise estimation of the source
characteristics, β, we are therefore interested in obtaining the full posterior
distribution of the unknown parameters, p(β|y), which completely character-
izes the available information on β given the measurements y obtained from
all the sensors deployed in the field. With such a quantity, one can obtain all
possible quantities of interest about the parameters such as, for example, point
estimates and more importantly confidence intervals. Additionally in this prob-
lem, we want to jointly estimate the unknown parameters of both the prior and
the likelihood probability functions, denoted respectively by Ψp and Ψl. As a
consequence, the complete Bayesian solution is to consider the posterior distri-
bution on the extended space (β,Ψl,Ψp) which can be decomposed as follows

p(β,Ψl,Ψp|y) =
p(y|β,Ψl)p(β|Ψp)p(Ψp,Ψl)

p(y)
, (10)

where p(Ψp,Ψl) represents the prior distribution on the unknown parameters
(Ψp,Ψl).

Unfortunately, even with some particular choice for the likelihood and prior150

distributions, this joint posterior distribution of interest in (10) is analytically
intractable. Indeed, the dependence of the position of the source in the measure-
ments is highly nonlinear due to the complex structure of the source-receptor
matrix C(xs) as discussed in Section 2.1. In this work, we will develop an ef-
ficient stochastic simulation based algorithm to approximate this complex pos-155

terior distribution p(β,Ψl,Ψp|y).
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3. Proposed SMC Sampler to STE

In this section, we first present the general principle of the SMC sampler
then we describe how to apply the SMC sampler to efficiently solve the STE
problem.160

3.1. General Idea of the SMC Sampler

The SMC Sampler methodology is a generic approach to approximate a se-
quence of probability distributions {πt}

T
t=1 regarding some parameters of inter-

est θ and which are defined upon a common measurable space E (Del Moral et al.,
2006), where the final distribution πT is the distribution of interest. The main165

ideas of the SMC sampler can be summarized as:

a) Instead of sampling directly from the complex target posterior distribu-

tion, a sequence of intermediate {πt}
T

t=1 is designed such that the transi-
tion from a simpler distribution, π0 to the one of interest, πT , is smooth.

b) The problem is then solved by transforming this problem in the standard
SMC filtering framework, where the sequence of target distributions on
the path-space denoted by {π̃t}

T
t=1, which admits {πt}

T
t=1 as marginals,

is defined on the product space, i.e. supp(π̃t) = E × · · · × E = Et. This
novel sequence of target distributions π̃t is defined as follows:

π̃t(θ1:t) =
γ̃t(θ1:t)

Zt

(11)

where

γ̃t(θ1:t) = γt(θt)

t−1∏

k=1

Lk(θk+1,θk) (12)

in which the artificial kernels {Lk}
t−1
k=1 are called backward Markov kernels170

since Lt(θt+1,θt) denotes the probability density of moving back from
θt+1 to θt. γt and γ̃t represent the unnormalized version of the target
distribution πt and π̃t, respectively. Zt thus corresponds to the normal-
izing constant of the target distribution π̃t. By using such a sequence of
extended target distributions {π̃t}

T

t=1 based on the introduction of back-175

ward kernels {Lk}
t−1
k=1, sequential importance sampling can be used in the

same manner as standard SMC filtering algorithms.

Within this framework, one may then work with the constructed sequence
of distributions, π̃t, under the standard SMC algorithm (Doucet et al., 2001).
In summary, the SMC sampler algorithm involves three stages:180

1. mutation, where the particles are moved from θt−1 to θt via a mutation
kernel Kt(θt−1,θt);

2. correction, where the particles are reweighted with respect to πt via the
incremental importance weight (Equation (16)); and

3. selection, where according to some measure of particle diversity, such as185

effective sample size, the weighted particles may be resampled in order to
reduce the variability of the importance weights.
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In more detail, suppose that at time t−1, we have a set of weighted particles{
θ
(m)
1:t−1, W̃

(m)
t−1

}N

m=1
that approximates π̃t−1 via the empirical measure

π̃N
t−1(dθ1:t−1) =

N∑

m=1

W̃
(m)
t−1 δθ(m)

1:t−1

(dθ1:t−1) (13)

where δ(·) is the Dirac delta function. These particles are first propagated to
the next distribution π̃t using a Markov kernel Kt(θt−1,θt) to obtain the set

of particles
{
θ
(m)
1:t

}N

m=1
. IS is then used to correct for the discrepancy between

the sampling distribution ηt(θ1:t) defined as

ηt(θ
(m)
1:t ) = η1(θ

(m)
1 )

t∏

k=2

Kk(θ
(m)
t−1 ,θ

(m)
t ) (14)

and π̃t(θ1:t). In this case the new expression for the unnormalized importance
weights is given by

W
(m)
t ∝

π̃t(θ
(m)
1:t )

ηt(θ
(m)
1:t )

=
πt(θ

(m)
t )

∏t−1
s=1 Ls(θ

(m)
s+1,θ

(m)
s )

η1(θ
(m)
1 )

∏t

k=2 Kk(θ
(m)
t−1 ,θ

(m)
t )

∝ wt(θ
(m)
t−1 ,θ

(m)
t )W

(m)
t−1

(15)
where wt, termed the (unnormalized) incremental weights, are calculated as,190

wt(θ
(m)
t−1 ,θ

(m)
t ) =

γt(θ
(m)
t )Lt−1(θ

(m)
t ,θ

(m)
t−1)

γt−1(θ
(m)
t−1)Kt(θ

(m)
t−1 ,θ

(m)
t )

(16)

However, as in the particle filter, since the discrepancy between the target
distribution π̃t and the proposal ηt increases with t, the variance of the un-
normalized importance weights tends therefore to increase as well, leading to a
degeneracy of the particle approximation. A common criterion used in practice
to check this problem is the effective sample size ESS, which is given by:

ESSt =

[
N∑

m=1

(W̃
(m)
t )2

]−1

=

(
N∑

m=1
W̃

(m)
t−1wt(θ

(m)
t−1 ,θ

(m)
t )

)2

N∑
j=1

(
W̃

(j)
t−1

)2 (
wt(θ

(j)
t−1,θ

(j)
t )

)2
(17)

If the degeneracy is too high, i.e., the ESSt is below a prespecified threshold,
ESS, then a resampling step is performed. The particles with low weights are
discarded whereas particles with high weights are duplicated. After resampling,
the particles are equally weighted.

The final weighted particles at distribution πT are considered weighted sam-
ples from the target distribution π of interest. As a consequence, the SMC
sampler provides an estimate of this distribution

πN
T (dθ) =

N∑

m=1

W̃
(m)
T δ

θ
(m)
T

(dθ) (18)
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and the estimation of expectation of some function ϕ(·) with respect to the
target distribution of interest is given by

EπN
T
[ϕ(θ)] =

N∑

m=1

W̃
(m)
T ϕ(θ

(m)
T ) (19)

3.2. Algorithm settings195

As described in Section 2.4 - Eq. (10), the target distribution of interest in
our case is defined as the posterior distribution over the unknown parameters,
i.e.

π(θ) = p(θ|y), (20)

where all the parameters of interest that have to be jointly estimated is denoted
by θ = {β,Ψl,Ψp}. The algorithm presented in the previous subsection is very
general. There is a wide range of possible choices to consider when designing an
SMC sampler algorithm, the appropriate sequence of distributions {πt}1≤t≤T ,
the choice of both the mutation kernel {Kt}2≤t≤T and the backward mutation200

kernel {Lt−1}
T
t=2 (for a given mutation kernels), see details in (Del Moral et al.,

2006). In this subsection, we provide a discussion on how to choose these pa-
rameters of the algorithm for our estimation problem.

3.2.1. Sequence of distributions πt

There are many potential choices for {πt} leading to various integration and
optimization algorithms. As a special case, we can set πt = π for all t ∈ N .
Alternatively, to maximize π(θ), we could consider πt(θt) = [π(θt)]

ξt for an
increasing schedule {ξt}t∈N to ensure πT (θ) is concentrated around the set of
global maxima of π(θ). In the context of Bayesian inference for static parameters
which is the main focus of this paper, we consider the likelihood tempered target
sequence (Neal, 2001)

πt(θ) ∝ p(θ)p(y|θ)φt (21)

where {φt} is a non-decreasing temperature schedule with φ0 = 0 and φT = 1.
We thus sample initially from the prior distribution π0 = p(θ) directly and in-
troduce the effect of the likelihood gradually in order to obtain at the end t = T

an approximation of the posterior distribution p(θ|y). Tempering the likelihood
could significantly improve the exploration of the state space in complex multi-
modal posterior distribution. The approximation of an expectation with respect
to the posterior distribution of interest is therefore given by:

EπN [ϕ(θ)] =

N∑

i=1

W̃
(i)
T ϕ(θ

(i)
T ) (22)

As discussed in (Nguyen et al., 2016), several statistical approaches have
been proposed in order to automatically obtain such a tempering schedule
via the optimization of some criteria, which are known as on-line schemes
(Jasra et al., 2011; Zhou et al., 2016). In particular, Zhou et al. (2016) pro-
pose to set the temperature at the t-th iteration of the algorithm such that the
conditional ESS (CESS), decays in a regular predefined way. This CESS given
by

CESSt =
N

(∑N

i=1 W̃
(i)
t−1wt(θ

(i)
t−1,θ

(i)
t )

)2

∑N

j=1 W̃
(j)
t−1

(
wt(θ

(j)
t−1,θ

(j)
t )

)2 . (23)
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is a slight modification of the ESS defined in Eq. (17). As shown in (Zhou et al.,205

2016), by characterizing how good an importance sampling proposal πt−1 would
be for the estimation of expectation under πt, the use of this quantity rather
than the ESS leads to a reduction in estimator variance.

3.2.2. Sequence of mutation kernels Kt

The performance of SMC samplers depends heavily upon the selection of the210

transition kernels {Kt}
T

t=2 and the auxiliary backward kernels {Lt−1}
T

t=2. There
are many possible choices for Kt which have been discussed in (Del Moral et al.,
2006). In this study, we propose to employ MCMC kernels of invariant distribu-
tion πt for Kt. This is an attractive strategy since we can use the vast literature
on the design of efficient MCMC algorithms to build a good importance distri-215

butions (See (Robert and Casella, 2004)).
More precisely, since we are interested in complex models with potentially

multimodal posterior distribution, a series Metropolis-within-Gibbs kernels with
local moves (Robert and Casella, 2004) will be employed in order to successively
move:220

• the position of the source xs,

• the level of emission α,

• the time of emission (ton, toff),

• the hyperparameters of the likelihood distribution Ψl = σ2
ǫ .

• and the hyperparameters of the prior distributions Ψp, if any.225

More specifically, after transforming the parameters σ2
ǫ and α to take value

in the real line by using the log(·) transform, an adaptive random walk proposal
is used for each parameter except for the time of emission which values are
discrete. This proposal consists, at the t-iteration of the SMC sampler, in adding
a random perturbation, which follows generally a centered Normal distribution
with covariance Σrw

·,t which is computed adaptively from the past simulations,
to the current value of the parameter. As an example, for the position of the
source, the proposed sample is obtained at the i-th move of the MCMC kernel
of the t-th iteration of the SMC sampler as:

x∗
s,t = xi

s,t + bxs,t (24)

in which bxs,t is a Gaussian random variable with zero mean and covariance
matrix Σrw

xs,t
. As with any sampling algorithm, faster mixing does not harm

performance and in some cases will considerably improve it. In the particular
case of Metropolis-Hastings kernels, the mixing speed relies on adequate pro-
posal scales. As a consequence, we adopt the strategy proposed in (Jasra et al.,230

2011). The authors applied an idea used within adaptive MCMC methods
(Andrieu and Moulines, 2006) to SMC samplers by using variance of parame-
ters estimated from its particle system approximation as the proposal scale for
the next iteration, i.e., the covariance matrix of the random-walk move for the

10



position of the source is thus given by:235

Σrw
xs,t

=

N∑

m=1

W̃
(m)
t−1

(
x
(m)
s,t−1 − µxs,t−1

)(
x
(m)
s,t−1 − µxs,t−1

)T

(25)

with µxs,t−1 =

N∑

m=1

W̃
(m)
t−1 x

(m)
s,t−1

The motivation is that if πt−1 is close to πt (which is recommended for an ef-
ficient SMC sampler algorithm), then the variance estimated at iteration t − 1
will provide a sensible scaling at time t. In difficult problems such as the one
addressed in this paper, other approaches could be added in order to have ap-
propriate scaling adaptation; one approach demonstrated in (Jasra et al., 2011)240

is to simply employ a pair of acceptance rate thresholds and to alter the pro-
posal scale from the simply estimated value whenever the acceptance rate falls
outside those threshold values. This scheme is to ensure that the acceptance
rates in the Metropolis-Hastings steps did not get too large or small. Through
all this work, we use this procedure which consists for example to multiply the245

covariance matrix by 5 (resp. 1/5) if the rate exceeded 0.7 (resp. fell below
0.2). The same procedure is used respectively to sample respectively the log
transform of the level of emission log(α) and of the likelihood variance log(σ2

ǫ ).
Finally, for the time of emission, the proposal distribution used is defined

as:
q(ton, toff|t

i
on,t, t

i
off,t) = q(ton|t

i
on,t)q(toff|ton, t

i
off,t), (26)

where

q(ton|t
i
on,t) ∝ 1{max(1,tion,t−∆rw

t,on),...,min(Ts,t
i
on,t+∆rw

t,on)}
(ton),

q(toff|ton, t
i
off,t) ∝ 1{max(ton,tioff,t−∆rw

t,off),...,min(Ts,t
i
off,t+∆rw

t,off)}
(toff).

(27)

where ∆rw
t,on and ∆rw

t,off are adapted using the same strategy as previously de-
scribed for the other proposals, i.e. for ∆rw

t,on:250

∆rw
t,on =

[
N∑

m=1

W̃
(m)
t−1

(
t
(m)
on,t−1 − µton,t−1

)2
] 1

2

(28)

with µton,t−1 =

N∑

m=1

W̃
(m)
t−1 t

(m)
on,t−1

∆rw
t,off is obtained by just replacing t

(m)
on,t−1 by t

(m)
off,t−1. This adaptive Metropolis

within Gibbs used in the implementation of the SMC sampler through this work
is summarized in Algorithm 2.

3.2.3. Sequence of backward kernels Lt

The backward kernel Lt is arbitrary, however as discussed in (Del Moral et al.,
2006), it should be optimized with respect to mutation kernel Kt to obtain good
performance. (Del Moral et al., 2006) establish that the backward kernel which
minimizes the variance of the unnormalized importance weights, Wt, are given
by

Lopt
t (θt+1,θt) =

ηt(θt)Kt+1(θt,θt+1)

ηt+1(θt+1)
(29)

11



However, it is typically impossible to use these optimal kernels as they rely on
the marginalization of the joint distribution defined in Eq. (14) which do not
admit any closed form expression, especially if an MCMC kernel is used as Kt

which is πt-invariant distribution. Thus we can either choose to approximate
Lopt
t or choose kernels Lt so that the importance weights are easily calculated

or have a familiar form. As discussed in (Del Moral et al., 2006), if an MCMC
kernel is used as forward kernel, the following Lt is employed

Lt−1(θt,θt−1) =
πt(θt−1)Kt(θt−1,θt)

πt(θt)
(30)

which is a good approximation of the optimal backward if the discrepancy be-
tween πt and πt−1 is small; note that (30) is the reversal Markov kernel asso-
ciated with Kt. In this case, the unnormalized incremental weights becomes

w
(m)
t (θ

(m)
t−1 ,θ

(m)
t ) =

γt(θ
(m)
t−1)

γt−1(θ
(m)
t−1)

= p(y|θ
(m)
t−1)

(φt−φt−1) (31)

This expression (31) is remarkably easy to compute and valid regardless of255

the MCMC kernel adopted. Note that φt − φt−1 is the step length of the
cooling schedule of the likelihood at time t. As we choose this step larger, the
discrepancy between πt and πt−1 increases, leading to increase the variance of
the importance approximation when it deteriorates. Thus, it is important to
construct a smooth sequence of distributions {πt}0≤t≤T by judicious choice of260

an associated real sequence {φt}
T
t=0.

Let us remark that when such backward kernel is used, the unnormal-
ized incremental weights in Eq. (31) at time t does not depend on the par-
ticle value at time t but just on the previous particle set. As suggested in

(Del Moral et al., 2006), in such case, the particles
{
θ
(m)
t

}
should be sampled265

after the weights
{
W

(m)
t

}
have been computed and after the particle approxi-

mation
{
W

(m)
t ,θ

(m)
t−1

}
has possibly been resampled.

Based on this discussion regarding the different choices, the SMC sampler
that will be used for Bayesian inference in the STE model is summarized in
Algorithm 1.270
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Algorithm 1 SMC Sampler Algorithm for STE

1: Initialize particle system

2: Sample
{
θ
(m)
1

}N

m=1
∼ η1(·) and compute W̃

(m)
1 =

(
γ1(θ

(m)
1 )

η1(θ
(m)
1 )

)[∑N

j=1

γ1(θ
(j)
1 )

η1(θ
(j)
1 )

]
−1

and do resampling if ESS < ESS

3: for t = 2, . . . , T do

4: Set the temperature schedule such that the CESS defined in Eq. (23) decays in
a regular predefined way.

5: Computation of the weights: for each m = 1, . . . , N

W
(m)
t = W̃

(m)
t−1 p(y|θ

(m)
t−1)

(φt−φt−1)

Normalization of the weights : W̃
(m)
t = W

(m)
t

[∑N

j=1 W
(j)
t

]
−1

6: Selection: if ESS < ESS then Resample
7: Mutation: for each m = 1, . . . , N : Sample θ

(m)
t ∼ Kt(θ

(m)
t−1 ; ·) where Kt(·; ·) is

a πt(·) invariant Markov kernel described in more details in Algo. 2.
8: end for
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Algorithm 2 Adaptive Metropolis-within-Gibbs Kernel Kt(·; ·) for the m-th
particle

1: Input: Set θ0 =
{
x0

s, log(α)
0, (t0on, t

0
off), log(σ

2
ǫ )

0
}
= θ

(m)
t−1

2: for i = 1, . . . , NMCMC do

3: MHwGibbs for the position of the source:

4: Sample x∗

s ∼ N
(
xi−1

s ,Σrw
xs,t

)
with Σ

rw
xs,t defined in Eq. 25

5: Compute the Acceptance ratio:

ρx = min

{
1,

p(y|x∗

s ,θ
i−1
−xs

)φtp(x∗

s)

p(y|xi−1
s ,θi−1

−xs
)φtp(xi−1

s )

}

with θi−1
−xs

= {log(α)i−1, (ti−1
on , ti−1

off ), log(σ2
ǫ )

i−1} corresponding to the set con-
taining all the unknown parameters of interest excepting xs.

6: Set xi
s = x∗

s with probability ρx, otherwise set xi
s = xi−1

s

7: MHwGibbs for the level of emission:
8: Sample log(α)∗ ∼ N

(
log(α)i−1,Σrw

α,t

)
by following the same procedure as for

xs

9: Compute the Acceptance ratio:

ρα = min

{
1,

p(y| log(α)∗,θi−1
−α )φtp(log(α)∗)

p(y| log(α)i−1,θi−1
−α )φtp(log(α)i−1)

}

with θi−1
−α = {xi

s, (t
i−1
on , ti−1

off ), log(σ2
ǫ )

i−1}
10: Set log(α)i = log(α)∗ with probability ρα, otherwise set log(α)i = log(α)i−1

11: MHwGibbs for the time of emission:
12: Sample (t∗on, t

∗

off) ∼ q(ton, toff|t
i−1
on , ti−1

off ) defined in Eq. 26
13: Compute the Acceptance ratio:

ρt = min

{
1,

p(y|t∗on, t
∗

off,θ
i−1
−t )φtp(t∗on, t

∗

off)q(t
i−1
on , ti−1

off |t∗on, t
∗

off)

q(t∗on, t
∗

off|t
i−1
on , ti−1

off )p(y|xi−1
s ,θi−1

−t )φtp(ti−1
on , ti−1

off )

}

with θi−1
−t = {xi

s, log(α)
i, log(σ2

ǫ )
i−1}

14: Set (tion, t
i
off) = (t∗on, t

∗

off) with probability ρt, otherwise set (tion, t
i
off) =

(ti−1
on , ti−1

off )
15: MHwGibbs for the variance of measurements’ noise:

16: Sample log(σ2
ǫ )

∗ ∼ N
(
log(σ2

ǫ )
i−1,Σrw

σ2
ǫ ,t

)
by following the same procedure as

for xs

17: Compute the Acceptance ratio:

ρσ2
ǫ
= min

{
1,

p(y| log(σ2
ǫ )

∗,θi−1
−σ2

ǫ
)φtp(log(σ2

ǫ )
∗)

p(y| log(σ2
ǫ )i−1,θi−1

−σ2
ǫ
)φtp(log(σ2

ǫ )i−1)

}

with θi−1
−σ2

ǫ
= {xi

s, log(α)
i, (tion, t

i
off)}

18: Set log(σ2
ǫ )

i = log(σ2
ǫ )

∗ with probability ρσ2
ǫ
, otherwise set log(σ2

ǫ )
i =

log(σ2
ǫ )

i−1

19: end for

20: Set the new particle value at time t as

θ
(m)
t =

{
x

NMCMC
s , log(α)NMCMC , (tNMCMC

on , t
NMCMC
off ), log(σ2

ǫ )
NMCMC

}

14



4. Numerical Simulations

The performances of the source term estimate method presented in this pa-
per are assessed using twin experiments assuming a fictitious malevolent release
in a complex atmospheric environment. The exact nature of the release is not
at stakes for this hypothetical event. It could be constituted of chemical prod-275

ucts, biological pathogenic agents, radioactive-nuclear materials or explosives
(CBRN-E) In order to extend the study done by Septier et al. (2020), we con-
sider the same actual urban area corresponding to the district of the Opera in
Paris (France), where all buildings are explicitely accounted for. The 3D sim-
ulation domain has dimensions of 1.1km × 0.9km × 1.6km. It is meshed at a280

horizontal regular resolution of 2 meters and a vertical resolution of 2 meters
near the ground decreasing with the elevation above the ground. Figure 1a de-
picts the simulated source and 20 virtual sensors set up in the urban district,
which are represented respectively by a green asterisk and red crosses. The
location of the source is chosen here as an example and it could be anywhere in285

the simulation domain. The sensors are displayed quite regularly in the street
network. For the sake of simplicity, both the simulated source and sensors are
assumed to be located at the same level close to the ground, immersed in the
urban canopy. Even if the source term localization is a two-dimensional problem
in these twin experiments, the flow and dispersion simulations are performed in290

three-dimensional space across the time dimension. The meteorological condi-
tions considered during and after the fake noxious release correspond to a real
weather sequence with the wind initially blowing from the west-northwest, then
gradually rotating and, finally, blowing from north-northeast. Dispersion sim-
ulations are carried out with the model defined in Eq. (2) in backward mode295

from each virtual sensor emitting unit releases each minute over a 45-minute
period. Owing to the reciprocity between direct and retrograde atmospheric
transport, the backward computations allow us to obtain the source-receptor
matrix C(·) in Eq. (3). As discussed in Section 2.1, backward atmospheric
transport has the advantage of drastically reducing the number of computa-300

tions necessary to obtain this matrix as there are many less virtual sensors than
potential (N ×NMCMC × T ) positions of the emitting source generated by the
SMC sampler. More precisely, using the dispersion model in backward mode,
Nc ×Tc computations are needed where Nc is the number of sensors and Tc the
number of time samples collected by each sensor. In the test-case presented in305

the paper, Nc and Tc are equal respectively to 20 and 45. One can notice that in
a practical situation, these numbers would even be lower. For example, results
are given for the source represented by the green asterisk in Figure 1a. The sim-
ulated concentration values on all sensors affected by the plume are shown as a
function of time in Figure 1b with a different color for each sensor. The concen-310

tration histories with additional noise are assimilated to pseudo-measurements,
which in turn are used by the source term estimate method. For example, real-
izations of the noisy concentration pseudo-measurements are presented in Figure
(1c-1d), where the clipped normal distribution, defined in Eq. (5), is used with
two different values of the variance for all types of errors (measurements, model,315

etc) denoted by σ2
ǫ . The different colors represent different sensors.
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Figure 1: Scenario under study – (a) 20 sensors (red) & 1 source (green). (b) Output concen-
tration levels, ỹi,n at the sensor location from the dispersion model obtained every minute by
the 20 sensors from 9:00 to 9:45. A realization of the noisy measurements, yi,n obtained using
the clipped normal likelihood defined in Eq. (5) with σ2

ǫ = 10−6 (c) and σ2
ǫ = 10−5 (d).
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(a) 2:00 p.m. (b) 2:09 p.m.

(c) 2:18 p.m. (d) 2:27 p.m.

(e) 2:36 p.m. (f) 2:45 p.m.

Figure 2: Wind Velocity fields of the considered scenario at different time instants and 2
meters from the ground.
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In this study, the 3D flow illustrated and dispersion simulations have been
performed with the Parallel-Micro-SWIFT-SPRAY (PMSS) system presented
in (Oldrini et al., 2017) and (Oldrini et al., 2019). PMSS is the efficient par-
allel version in time, space, and Lagrangian particles of Micro-SWIFT-SPRAY320

(MSS), which was originally developed to provide simplified CFD solutions for
the flow and dispersion, respectively with SWIFT and SPRAY, in built-up en-
vironments in a limited amount of time (Tinarelli et al., 2013). On the one
hand, SWIFT is a 3D terrain-following mass-consistent diagnostic model tak-
ing account of the buildings and providing the 3D fields of wind, turbulence,325

temperature, and humidity. The resulting velocity fields of the wind used in
all the simulations are depicted in Fig. 2. On the other hand, SPRAY is
a 3D Lagrangian Particle Dispersion Model able to account for the presence
of buildings. PMSS has been systematically validated against numerous wind
tunnel and in-field experimental campaigns for short and prolonged releases330

(Trini Castelli et al., 2018; Oldrini and Armand, 2019). Besides the compliance
of PMSS results with the statistical acceptance criteria of dispersion models
in built-up environments, SPRAY dispersion model can be run in both direct
and retrograde mode what is a great advantage to evaluate the source-receptor
matrix C(·) in Eq. (3).335

The performances of the proposed SMC sampler are assessed with N = 200
particles andNMCMC = 10 MCMCmoves within the Markov kernel Kt(·; ·). Fig-
ures 3 and 4 give the results obtained by the proposed SMC sampler for a source
(represented respectively by a green asterisk in Fig. 1a) located at (300;320)
with the variance of the model and measurements errors set to σ2

ǫ = 10−6 and340

σ2
ǫ = 10−5, respectively. Firstly from Figs. 3a and 4a, we can remark that in

both cases, the position of the source is correctly estimated since the mean of
the posterior distribution of the source position p(xs, ys|y) approximated by the
algorithm is close to the ground truth (≤ 10 meters for the noisiest scenario in
Fig. 4a). As expected, the uncertainty given by the empirical measure of the345

posterior distribution for both p(xs|y) and p(ys|y) is higher when the errors are
larger (i.e. σ2

ǫ = 10−5). The remarks holds regarding the estimation of the pos-
terior distributions of σ2

ǫ and q depicted in Figs (3b,4b) and (3c,4c), respectively.
Let us remark that the SMC sampler learns only from the the measurements
that the errors are larger in Fig. 4 than in Fig. 3 since the variance of the350

noise is unknown and estimated by the algorithm quite accurately. Having an
estimation of such posterior distributions for all the unknown parameters is of
high interest for users in order to be able to quantify the associated uncertainty
which is not possible when an optimization technique is used to solve this STE
problem. Moreover, the resulting posterior distributions can be easily obtained355

without requiring a complex tuning of parameters by a non-expert user thanks
to the proposed complete automatic and adaptive Bayesian solution.

In Figure 5, the proposed SMC sampler is compared to a more traditional
MCMC algorithm. The MCMC approach is using the same Adaptive Metropolis-
within-Gibbs Kernel described in Algo. 2 as in the proposed SMC sampler. The360

MCMC estimator obtained to compute the source position is obtained by tak-
ing the last 60 % of the simulated Markov chain values (the first samples are
considered to be the burn-in period). Concerning the SMC sampler, the esti-
mator is based only on the last population of N = 200 particles generated at a
given iteration. The median of the Squared Error (SE) has been obtained by365

running 50 independent runs of both algorithms. From the results, the SMC
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sampler significantly outperforms the corresponding MCMC algorithm based
on the same MCMC kernel. Firstly, the SMC sampler has the benefit of us-
ing a population of N samples compared to the MCMC in which the samples
are generated successively. Additionally, the use of likelihood tempered target370

sequence clearly facilitates the exploration of the state-space and thus limits
the problem of having the inference algorithm to get stuck in one region of the
space, which could easily happen in our problem due to the presence of many
buildings in the surveillance area. Over the 50 trials, the squared errors of the
estimates are lower than 100 (which means that the estimate of the position of375

the source lies in a circle of 10 meters around the ground truth) only 10 times
for the MCMC algorithm but 50 times for the proposed SMC sampler. These
results clearly highlight the benefit of using the SMC sampler in this complex
environment. This fact also confirms in our context the remark mentioned in
Jasra et al. (2011) stating that the SMC samplers, when using a given MCMC380

kernel, often out-perform the corresponding MCMC algorithm.
Figures 6 and 7 show the results obtained using the SMC sampler for a

source located at (300;320) but with two different emission profile, a continuous
and a prompt release, which may be due to an insidious long emission of a
deleterious substance and an explosion, respectively. In both scenarios, the385

algorithm is able to provide accurate estimates for all the parameters of interest.
By comparing the two scenarios, the results empirically show that the level of
posterior uncertainties in the parameters decreases with the length of duration
of the release. The larger amount of pollutant in the atmosphere in the case of
Fig. 6 due to a longer release allows us to have more useful information from390

the sensor measurements and therefore more confidence about the parameters
of interest.
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Figure 3: Results of the SMC sampler for STE with a release at location (300;320) and
noise variance σ2

ǫ = 10−6 in Eq. (5). (a) Representation of the N = 200 particles regard-
ing the source position (blue) along with the ground truth (green) and the estimation of
p(xs|y)/p(ys|y) on the bottom/right. (b) Estimation in red of p(σ2

ǫ |y) and the true value in
dashed black. (c): Mean of p(q|y) (black) and the 90% confidence interval (grey) compared
to the ground truth (red).
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Figure 4: Results of the SMC sampler for STE with a release at location (300;320) and
noise variance σ2

ǫ = 10−5 in Eq. (5). (a) Representation of the N = 200 particles regard-
ing the source position (blue) along with the ground truth (green) and the estimation of
p(xs|y)/p(ys|y) on the bottom/right. (b) Estimation in red of p(σ2

ǫ |y) and the true value in
dashed black. (c): Mean of p(q|y) (black) and the 90% confidence interval (grey) compared
to the ground truth (red).
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Figure 5: Median of the squared error between the ground truth source position (300;320) and
the estimator provided by the proposed SMC sampler and an MCMC algorithm as a function
of the number of samples that have been generated in the algorithm. The parameters of the
source term are similar to the ones of Figure 4.
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Figure 6: Results of the SMC sampler for STE with a continuous release [variance of the
observation uncertainty σ2

ǫ = 10−6 in Eq. (5)]. (a) Representation of the N = 200 particles
regarding the source position (blue) along with the ground truth (green) and the estimation of
p(xs|y)/p(ys|y) on the bottom/right (b) Estimation in red of (a) p(σ2

ǫ |y) and the true value
in dashed black. (c): Mean of p(q|y) (black) and the 90% confidence interval (grey) compared
to the ground truth (red).
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Figure 7: Results of the SMC sampler for STE with a prompt release [variance of the ob-
servation uncertainty σ2

ǫ = 10−6 in Eq. (5)]. (a) Representation of the N = 200 particles
regarding the source position (blue) along with the ground truth (green) and the estimation of
p(xs|y)/p(ys|y) on the bottom/right (b) Estimation in red of (a) p(σ2

ǫ |y) and the true value
in dashed black. (c): Mean of p(q|y) (black) and the 90% confidence interval (grey) compared
to the ground truth (red).

Finally, Fig. (8) shows the output of a single run of the proposed SMC
sampler in the case of source located at (410;80). As can be seen in Fig (8a),
it is difficult to distinguish any smooth useful output concentration levels as395

in Fig. 1b from the measurements due to the relatively large level of noise.
Nevertheless, even in this challenging the STE problem, the algorithm is still
able to accurately estimate the source location as well as both the release rate
and the level of observation noise.
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Figure 8: Results of the SMC sampler for STE with a release at another location (410;80). (a)
Measurements obtained with a variance of σ2

ǫ = 5.10−5 in Eq. (5)]. (b) Representation of the
N = 200 particles regarding the source position (blue) along with the ground truth (green)
and the estimation of p(xs|y)/p(ys|y) on the bottom/right. (c) Estimation in red of p(σ2

ǫ |y)
and the true value in dashed black. (d): Mean of p(q|y) (black) and the 90% confidence
interval (grey) compared to the ground truth (red).

5. Conclusion400

In this paper, a complete automatic Bayesian solution is proposed to solve
the source term estimation problem. In a previous study (Septier et al., 2020),
an adaptive Bayesian solution based on importance sampling was proposed. Un-
fortunately despite its performance, the use of such algorithm was conditioned
on quite severe and not realistic assumptions regarding the model. Indeed in405

the previous work, both the likelihood and the prior function of the emission
rate vector had to be assumed to be normal distributions, thus leading to the
possibility of having negative values for some parameters such as the emission
rate. Moreover, the normal prior distribution necessitated to be tuned quite
finely by the user which could clearly be difficult in practice.410

In this paper, we provide a novel framework that overcomes these limita-
tions. More realistic and more general distributions of all physical quantities
and parameters can therefore be used and moreover the model parameters are
now assumed to be completely unknown and are included in the estimation pro-
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cedure. Compared to previous algorithms, the proposed strategy provides a full415

probabilistic solution without having to choose, sometimes arbitrarily, values for
certain model parameters, which therefore makes its use easier for practitioners.

The proposed solution is based on recent advances in the field of stochas-
tic simulation algorithms and more precisely on the Sequential Monte Carlo
sampler. Although this approach presents many advantages over traditional420

Monte-Carlo methods, the potential of this emergent technique is still however
largely underexploited in practice. Moreover, the SMC sampler has been effi-
ciently designed for this STE problem by integrating some adaptive schemes in
order to use a sequence of intermediate distributions using appropriate cooling
temperatures and also to explore the state in the MCMC moves using adaptive425

covariance for each parameter. Numerical twin experiments clearly demonstrate
the ability of the proposed solution to accurately estimate the posterior distri-
bution of the parameters of interest in complex atmospheric environments such
as industrial and urban ones. As future research directions, we plan to study
the impact of the scenario’s characteristics such as the environmental variables,430

source’s characteristics, placement and noise of the sensors on the proposed
Bayesian solution. Some real datasets, such as the FUSION Fields Trials 2007
(FFT07) Platt and Deriggi (2010) or the MUST campaign Biltoft (2001), will
also be used to assess the ability of the proposed SMC sampler to solve the STE
problem in a large number of different and various scenarios.435
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