Diogo Sabino 
email: diogo.ferreirasabino@onera.fr
  
Olivier Marquet 
  
David Fabre 
  
Vincent Mons 
  
Global Aeroelastic Stability Analysis of a NACA0012 Airfoil in Transitional Reynolds Regime

Keywords: linear stability analysis, transitional Reynolds regime, laminar separation flutter

The onset of pitch-oscillations of a NACA0012 airfoil mounted on a torsion-spring is investigated by the means of a global fluid-structure linear stability analysis (LSA). Experimental studies from literature have shown this configuration undergoing on a flutter behaviour for a close range of Reynolds. This phenomenon is attributed to the laminar character of the boundary layer on the airfoil surface and to its detachment, transition and subsequent reattachment. In this regard, we carried out a global fluid-structure LSA of a mean flow field, issued from a time and spanwise averaged Direct Numerical Simulation, at different incidences, α, for Re = 50 000. The LSA at α = 0 • predicts a static divergence behaviour of the airfoil from its equilibrium position, whereas the LSA at different incidences predicts the stabilisation of the static mode, associated to the existence of a laminar separation bubble over the upper surface of the airfoil.

Introduction

The linear stability of fluid-solid systems is a classic subject on the aeroelasticity community [START_REF] Bisplinghoff | Aeroelasticity[END_REF]. The primordial aim was to delimit the flight envelope of military and commercial aircraft cruise flights, whose Reynolds number often exceeds a million and where the boundary layer remains turbulent and attached to the airfoil for a relatively hight range of angles of attack. However, as the Reynolds number decreases, the transition location moves downstream, originating a laminar boundary layer over a considerable portion of the wing. For a low-to-moderate Reynolds number range, 10 4 ≤ Re ≤ 10 6 , the flow regime is characterised by the coexistence of laminar, transition and turbulent regions, where laminar boundary layer region can lead to complex viscous phenomena, such as laminar boundary layer separation, with a possible transition and reattachment. In this Reynolds regime, Poirel et al. [START_REF] Poirel | Self-sustained aeroelastic oscillations of a NACA0012 airfoil at low-to-moderate Reynolds numbers[END_REF] carried out a wind tunnel experimental investigation of a NACA0012 airfoil mounted on a torsional spring system, demonstrating the existence of a self-sustained limit cycle oscillation (LCO) within the Reynolds number range of 45 × 10 3 ≤ Re ≤ 130 × 10 3 . This limit cycle was characterised by a Strouhal frequency around St = 0.06 and an oscillation amplitude of α max ≈ 5.5°, around the equilibrium position at α = 0°. The authors suggested that the loss of stability of the airfoil at α = 0°and, consequently, the dynamics of the pitch oscillations, were governed by the laminar separation of the boundary layer, either due to the trailing edge separation or to the presence of the laminar separation bubble (LSB). The phenomenon was numerically reproduced by [START_REF] Poirel | Computational aeroelastic simulations of self-sustained pitch oscillations of a NACA0012 at transitional Reynolds numbers[END_REF] and others, using a time-marching coupled aeroelastic simulation, where it was confirmed that the laminar separation near the trailing edge plays a critical role in initiating and sustaining the pitch oscillations. For this reason, the phenomenon was labelled as Laminar Separation Flutter (LSF). Regarding the global linear stability analysis (LSA), the aim is to evaluate the linear stability character of the dynamical system considered. In the case of coupled fluid-structure systems, several configurations have been studied in the past years [START_REF] Assemat | The onset of unsteadiness of two-dimensional bodies falling or rising freely in a viscous fluid: a linear study[END_REF][START_REF] Sabino | Vortex-induced vibration prediction via an impedance criterion[END_REF]. Concerning the LSF, Negi [START_REF] Negi | Stability and Transition in Pitching Wings[END_REF] performed a fluid-structure LSA over a NACA0012 airfoil at Re = 50 000 and α = 0°around a mean flow issued from a spanwise and time-averaged time-marching simulation. They found an unstable static mode, responsible for the departure of the structure from its equilibrium position, and further associate the subsequent non-linear oscillation to a sub-critical mode, which would be non-linearly excited. In this work, we propose to give an insight on the linear behaviour of the mean flow field at Re = 50 000 by the means of a global fluid-structure linear stability analysis for different incidences. In a first time, the analysis is carried out at α = 0 • . This analysis is then followed by a discussion on the mean flow topology as the angle of attack increases, and in a second time, we analyse the cases for α > 0°.

Mathematical and Numerical Formulations

Fluid and Solid Models

The dynamics of an incompressible flow field is governed by the Navier-Stokes equations, that can be posed, with respect to a non-inertial frame of reference, as

∀X ∈ Ω f ⊂ R 3 , t > 0 :      ∂U ∂t +Ω × U +([U -u w ] •∇) U + ∇p - 1 Re ∇• ∇U + (∇U ) T = 0 , ∇•U = 0 , (1a) (1b) 
with

Ω f the fluid domain, U (X, t) = [U, V, W ]
T the absolute fluid velocity field, p(X, t) the fluid pressure and u w the airfoil velocity, defined as

u w = Ω × (X -X EC ) + ẊEC with ẊEC = U ∞ [-cos(θ), sin(θ), 0] T . (2) 
The Reynolds number is defined as Re = cU ∞ /ν, with c the airfoil chord, U ∞ its the translation velocity on the absolute frame and ν the kinematic viscosity. The airfoil is considered as a rigid body, allowed to rotate around its elastic centre, X EC , fixed at 0.186c. The pitching motion is characterised by the instantaneous angular displacement, θ(t), and by the angular velocity, Ω(t), both considered positive for a nose-down displacement. Ω(t) represents the e z -component of the vectorial angular velocity Ω = Ω e z . Additionally, the angle of attack is defined simply as α = -θ. We consider homogeneous Dirichlet conditions on the inlet and lateral domain boundaries for the velocity field and a natural Neumann condition at the outlet, imposing a stress-free condition.

The fluid state vector can be posed as

q f = [U , p] T .
The Direct Numerical Simulations (DNS) were performed for a fixed airfoil configuration, hence having Ω = 0 and θ fixed on time. The motion of the airfoil is considered for the linear stability analysis formulation, with a temporal evolution defined as

I s (X EC ) dΩ dt + D s Ω + K s θ = m z q f , X EC , with dθ dt -Ω = 0 (3) 
where 

I

Linearised Equations

The linear stability of the airfoil structure is determined by investigating the nature of small amplitude perturbations of a steady state field. In that sense, the the fluid-solid state variable, q, is decomposed as the sum of a steady solution q = q f , θ, Ω T and unsteady infinitesimal perturbation q as q(X, t) = q(X) + q (X, t) ,

where 1. As the steady solution is independent of time, its angular velocity is equal to zero, Ω ≡ 0, unlike the angle of incidence θ = 0, which can represent the airfoil at a given equilibrium position. The infinitesimal perturbation can be further decomposed into the form of global modes, i.e.,

q (X, t) = q(X) e σt + c.c. 2 , (5) 
where c.c. is a short hand for complex conjugate, q(X) is a complex eigenmode with an eigenvalue σ = λ + iω. The eigenmode describes the spatial distribution of the perturbation, whereas the eigenvalue accounts for amplification rate, λ, and frequency characteristics, ω, for that eigenmode. The sign of the amplification rate indicates if the corresponding eigenmode decays (negative sign) or grows (positive sign) exponentially in time, dictating if the steady state is linearly stable or unstable to the eigenmode perturbation. The complex moment of the eigenmode is defined as mz = m T qf . The steady state is here represented by the mean flow field, issued from the time and spanwise averaged DNS, at different incidences, for Re = 50 000. As the mean flow is averaged in the spanwise direction, the LSA computations are made in a two-dimensional space, having q = Û , V , p T .

Injecting the decomposition 4 into the equations 1 and 3, one obtains, at order , an eigenvalue problem, that can be put in the form σMq = Lq:

σ     M f 0 0 0 1 0 0 0 I s         qf θ Ω     =     L f v θ v Ω 0 0 1 m T -K s -D s         qf θ Ω     , (6) 
where M f is the fluid mass operator, L f the fluid Jacobian operator, and v θ , v Ω the vector components of the solid motion. v θ represents an unitary linear displacement of the airfoil structure, whereas v Ω represents an unitary linear angular velocity.

Numerical Formulation

The spatial discretisation is based on a finite element method. The unknown velocity and pressure fields were discretised using the classical Taylor-Hood basis in order to satisfy the Ladyzhenskaya-Babuška-Brezzi (known as LBB) condition (see, for instance, [START_REF] Brezzi | Mixed and Hybrid Finite Element Methods[END_REF]). All the discrete matrices resulting from the projection of the variational formulations onto the basis of finite elements were built with the FreeFem++ software [START_REF] Hecht | New development in freefem++[END_REF], and the linear systems solved via a parallel implementation using SLEPc/PETSc software [START_REF] Hernandez | SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems[END_REF][START_REF] Balay | PETSc users manual[END_REF]. The resolution of the shift-and-invert system passed through an Arnoldi iterative algorithm [START_REF] Saad | Numerical Methods for Large Eigenvalue Problems[END_REF].

3 Results

Fluid Stability Analysis at

Re = 50 000, α = 0 •
We start the analysis by a purely fluid eigenproblem, at Re = 50 000, where the airfoil is fixed at α = 0°. The eigenvalue results are presented in the one-sided spectrum in figure 1a, with the growth rate on the horizontal axis and the eigenmode frequency on the vertical axis. A zoom at the origin is plotted in figure 1b. The unstable zone, in grey, corresponds to a positive amplification rate. The spectrum is characterised by a cloud of stable modes and a single unstable eigenmode, vibrating at a frequency of ω = 29.73. This frequency corresponds to the frequency of the vortex-shedding that can be found on the unsteady airfoil wake. Although this mode is expected to be marginally stable, as in the case of the unsteady vortex shedding on a cylinder wake at supercritical Reynolds regimes [START_REF] Sipp | Global stability of base and mean flows: a general approach and its applications to cylinder and open cavity flows[END_REF], the discrepancy can be associated to the high convective character of the perturbation. This fact is in accordance with the conclusions of [START_REF] Poirel | Self-sustained aeroelastic oscillations of a NACA0012 airfoil at low-to-moderate Reynolds numbers[END_REF], when they found no correlation between the pitch response frequencies and the vortex-shedding frequency and in accordance with [START_REF] Negi | Stability and Transition in Pitching Wings[END_REF], where the projection of the solid variables onto the fluid variables was concluded to be close to zero for all the high frequency eigenmodes. 

FSI Stability Analysis at

Re = 50 000, α = 0 •
The FSI stability analysis was carried out for the same dimensional parameters as the ones reported in [START_REF] Poirel | Self-sustained aeroelastic oscillations of a NACA0012 airfoil at low-to-moderate Reynolds numbers[END_REF] and subsequently used by [START_REF] Negi | Stability and Transition in Pitching Wings[END_REF], i.e., I dim s = 0.00135kg m 2 , D dim s = 0.002N m s and K dim s = 0.15N m/rad. Figure 1c shows the one-sided spectra of the FSI linear stability analysis. Differently from the hydrodynamic case, the FSI eigenproblem reveals the emergence of two pairs of eigenvalues, associated to the structure. The first pair is located along the real axis, presenting no associated frequency. The unstable eigenmode has a growth rate of λ = 0.2091, whereas the other eigenvalue is stable and located in the vicinity of the fluid modes. The second pair is located at the a growth rate of λ = -0.1500 and with a frequency of ω = ±0.5264. The eigenmode presenting a divergent character will be labelled Static Mode, whereas the low frequency eigenmode, possibly at the origin of the nonlinear flutter oscillations, will be labelled Flutter Mode. The flutter mode of the fully coupled fluid-structure problem can be compared with the eigenvalues of the structure equation. The real and imaginary part of these eigenvalues can be computed analytically and read

σ 2 s I s + σ s D s + K s = 0 ⇒ λ s = - D s 2I s ω s = ± K s I s -λ 2 s . (7) 
From this result, one can infer that a structure without damping will be marginally stable, resonating at the natural frequency of ω s = (K s /I s ). Any positive value of the damping coefficient results into a negative growth rate, damping any structure oscillation, which returns to a stable equilibrium position. For the current parameters, the natural structure eigenvalues are σ s = -0.0234 ± 0.3320i. The positive frequency eigenvalue can be visualised in the one-sided spectrum of figure 1c and compared to the FSI flutter eigenvalue. The coupled fluid-structure problem gives a more stable mode, suggesting that, for this incidence, the fluid has a stabilising effect on the structure equation.

FSI Stability Analysis at

Re = 50 000, α > 0 •
The DNS computations were further carried out at the incidences from α = 0.5 • to α = 2.0 • , in order to access to the time and spanwise averaged mean flow field at angles of attack higher than 0 • . The streamwise component of the velocity field of the mean flow for four angles of attack is present in the figure 2, at left. The upper figure corresponds to the case at α = 0 • . As illustrated by the streamlines, the flow field has a separation point at x/c = 0.7. This separated flow gives rise to a long recirculation bubble that is present in the rear of airfoil, in both lower and upper surfaces. As the angle of attack increases, the separation point on the upper surface of the airfoil moves upstream, while the one on the lower surface moves downstream, the former
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Figure 3 -At left, the spectrum close to the origin of the FSI LSA analyses, for a fixed K dim s = 0.15N m/rad, when varying the angle of attack. At right, the K dim s is varying, such that the equilibrium requirement is met.

reaching the value of x/c = 0.46 for the case at α = 2 • . At this angle, we observe a reattachment of the upper surface separated flow to the rear of the airfoil, giving rise to a recirculation bubble, refereed to as a laminar separation bubble. The aerodynamic loads acting on each x section along the chord are superposed to the velocity field. Each of these infinitesimal forces contributes to the total moment coefficient evaluated around the elastic centre, X EC , whose evolution, with α, is present in figure 2, at right. As depicted by the black arrows in the case α = 1 • , the forces at the rear of the airfoil are pointing downwards, generating an initial negative moment coefficient. As the angle increases, the sense of these forces is reversed, starting from the trailing edge, up to the case α = 2 • , where all contributions have an upward sense, generating a positive moment coefficient. From a static point of view, the initial negative slope of the C mEC -α curve gives us the information that the airfoil has a tendency to pitch-up, as the angle of attack increases. This observation is coherent with the unstable static mode found from the FSI linear stability analysis at α = 0 • . As the angle of attack increases, a second equilibrium can be found, depending on the structural parameters. This second equilibrium position is given by equation 3, after considering a static perturbation in the form θ = θ + θe λt :

       O(1) : K s θ = m z (θ) , O( ) : λ 2 I s θ + λD s θ + K s θ = ∂m z ∂θ θ=θ θ . (8a) (8b) 
Noting that α = -θ, equation 8a gives the equilibrium position α, for a given moment coefficient and structure rigidity. The second equation informs us about the presence of an unstable static mode, depending on the slope of the C mEC -α for the considered α. Further, if one considers D s = 0, the stability criterion can be formed as:

           if ∂m z ∂α θ=θ < -K s ⇒ Unstable Static Mode Present , if ∂m z ∂α θ=θ > -K s No Unstable Static Mode Present . (9a) (9b) 
The validity of the above stability criterion is first verified without respecting the equilibrium position. For that, an FSI stability analysis is carried out for the different angles with the rigidity parameters I dim s = 0.00135kg m 2 , D dim s = 0 and K dim s = 0.15N m/rad, with the correspondent spectrum present in figure 3a. The results confirm the stability criterion of equation 9, i.e., for the cases α = 0 • and 0.5 • , the slope of the C mEC -α is lower than the rigidity of the airfoil, giving a static unstable eigenmode. On the other hand, for the cases of α = 1 • and 1.5 • , the slope of the C mEC -α higher than the rigidity of the airfoil, resulting in a stable static mode. We note that, although stable, the flutter mode for the latter case has a higher growth rate, being least stable than the lower angle cases.

The same reasoning can be applied by respecting the equilibrium position on equation 8a. For that, and since the values of C mEC and α are fixed by the DNS, the value of K s must be adjusted in order to respect the equilibrium. The results are present in figure 3b, for D s = 0. For the case α = 0.5 • , the mode is expected to be marginally unstable, as the slope of C mEC -α matches exactly the slope rigidity. However, the eigenmode is found to be in the stable side of the spectrum. For the higher cases α = 1.0 • and α = 1.5 • , the static mode becomes stable, as, again, the slope of the C mEC -α is higher than the rigidity of the airfoil. These stable static eigenvalues are not represented in the spectrum as they are mixed with the remaining stable spurious modes. In case at α = 1.5 • , the flutter mode is also found to have moved towards the unstable region, although remaining stable. The change in the frequency of the flutter mode is associated to the fact that the considered rigidity of the structure changes, to match the equilibrium position requirement.

Conclusion

The onset of pitch-oscillations of a NACA0012 airfoil mounted on a torsion-spring was investigated by the means of a global fluid-structure linear stability analysis, around a mean flow field, issued from the time and spanwise averaged DNS, at different incidences, for Re = 50 000. The results at α = 0 • show the presence of a static unstable mode, associated to the divergent departure of the airfoil from its equilibrium position. These results are confirmed by the presence of a negative slope on the C mEC -α, corroborating the tendency of the airfoil to pitch-up. The LSA computations were then carried out for different incidences, taking into account the second equilibrium position attained by the airfoil. As the angle of attack increases, the static mode has become stable, whereas the flutter mode, although stable, has approached the marginal axis. As a future work, the authors suggest to increase the Reynolds number, as the case studied represent the lower boundary of the laminar oscillation flutter instability found by [START_REF] Poirel | Self-sustained aeroelastic oscillations of a NACA0012 airfoil at low-to-moderate Reynolds numbers[END_REF].

  s is the non-dimensional moment of inertia around the elastic centre position, D s the non-dimensional structural damping, K s the non-dimensional structural stiffness and m z the e z -component of the aerodynamic moment, m = m z e z , measured around the elastic centre. The corresponding dimensional structure parameters are noted I dim s
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 1 Figure1-On the left, the fluid spectrum showing a unstable eigenvalue, with a frequency correspondent to the vortex-shedding frequency. On the centre, a close-up of the same spectrum near the origin. On the right, a fluid-structure spectrum near the origin, highlighting the static and flutter modes, along with the eigenvalue of the structure equation in vacuum, represented by the black cross.
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 2 Figure 2 -At left, the rear airfoil mean flow topology, illustrated by the streamwise velocity component. The resultant forces from the aerodynamics loads applied to the lower and upper surfaces, that contribute to the moment around X EC , for each section along the chord, are represented by the vertical arrows. At right, the evolution of the moment coefficient of the mean flow with the angle of attack, showing a first range of incidences where the moment is negative.