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Abstract:
In recent years, through whole genome analyses, convincing evidence for the contribution of genetic
predisposition to childhood B-cell precursor - acute lymphoblastic leukemia (BCP-ALL) due to altered
PAX5 has been provided. A recurrent mutation p.Gly183Ser affecting the octapeptide domain has been
described in three unrelated families and a p.Arg38His mutation affecting the DNA-binding paired domain
reported in another one.
We strengthen here the assumption of the inherited character of familial BCP-ALL by identifying the PAX5
p.Arg38His mutation in a family in which the three children developed BCP-ALL. One relapsed two years
after his initial diagnosis and was allografted with his brother’s cells before the latter developed
BCP-ALL. The patient allografted relapsed later from donor-related cells.
By syngeneic transplantations in mice, we showed that p.Arg38His expression does not abrogate the
engraftment capacity of transduced Pax5-/- pro-B cells unlike wild type PAX5-rescued Pax5-/- pro-B cells
and can predispose to BCP-ALL. Through functional and molecular analyses, we demonstrated that
p.Arg38His acts as a hypomorphic variant altering the pattern of expression of PAX5 target genes. Our
data highlight the importance of transcriptional deregulation, particularly of genes involved in B cell
differentiation in familial BCP-ALL. We demonstrated that inherited genetic basis of susceptibility to
BCP-ALL has been underestimated and should be considered before any familial allograft.
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We describe here a family with a high incidence of B-cell precursor-acute lymphoblastic 

leukemia (BCP-ALL) affecting 3 children (II.1, II.2 and II.3) at 11, 17 and 25 years old, 

respectively (Figure 1A, C and Supplemental Figure 1). Both parents were asymptomatic. 

After a first relapse, the proband (II.2) underwent a familial allogeneic hematopoietic stem 

cell transplantation (HSCT) with his 11-year-old younger brother (II.3) leading to a complete 

remission (CR) for 20 years but relapsed a second time and died rapidly after intracranial 

hemorrhage. His sister (II.1) developed BCP-ALL for which she was treated by 

chemotherapy leading to a CR even 30 years after her initial diagnosis. II.3 developed BCP-

ALL 14 years after being HSCT donor for II.2 and died from infectious complications after 

HSCT from an unrelated donor (Supplemental Figure 1). 

As the family history was compatible with a germline transmission of the disease, a whole 

exome sequencing was performed on II.3, which identified a PAX5 germline heterozygous 

c.113G>A mutation resulting in a R38H substitution. The R38H substitution is predicted to 

alter the protein affinity to DNA1 and concerns a highly conserved residue located within the 

N-terminal DNA-binding Paired domain (Supplemental Figure 2A-C and Supplemental 

Tables 1 and 2). This mutation is associated with leukemic progression in murine models 

with Pax5 haploinsufficiency2 or PAX5-ELN fusion3. This mutation was subsequently 

detected in all affected subjects, at the BCP-ALL diagnosis and at remission, and in one 

asymptomatic parent without history of malignancy (Figure 1B, Supplemental Figure 1 and 

Supplemental Table 3). PAX5 somatic alterations are present in one third of sporadic BCP-

ALL4,5 but only recently, PAX5 germline mutations leading to BCP-ALL have been identified6-

8. PAX5 encodes a critical transcription factor for B-cell differentiation9-11 repressing B-lineage 

‘inappropriate’ gene expression and promoting the transcription of specific B-cell genes10-14.  

As described in other germline PAX5 pedigrees6-8, the existence of asymptomatic carriers 

and the absence of immunodeficiency before the onset of BCP-ALL suggest the requirement 

of additional genetic alterations leading to the development of leukemia. Subjects II.2 and II.3 

had a normal karyotype at the BCP-ALL stage. Additional cytogenetic abnormalities were 

found in II.2 at his first (before transplant) and second (after transplant with his brother, 
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consequently named II.3/2) relapses. Somatic CDKN2A homozygous loss and RAS pathway 

mutations, recurrent features of BCP-ALL, were detected in all analyzed BCP-ALL samples 

(II.2, II.3 and II.3/2) (Supplemental Figure 3 and Supplemental Tables 3 and 4). A second 

PAX5 mutation was detected at diagnosis: Y371fs in II.1, R140L in II.3 and II.3/2 (Figure 1D-F 

and Supplemental Table 3). Next-Generation Sequencing of II.3 patient cDNA showed that 

these two PAX5 mutations were mainly detected on different alleles (data not shown). 

More than 20 years separate HSCT allograft in II.2 from his donor-related (II.3/2) leukemia 

and fourteen years from the allograft to II.3’s diagnosis of BCP-ALL (Supplemental Figure 1). 

The II.2 and II.3 leukemic samples harbored distinct IGH clonal rearrangements 

(Supplemental Figure 4) suggesting that the R140L mutation occurred independently in both 

patients. Interestingly, the R140L mutation is recurrently associated to the R38H mutation in 

sporadic BCP-ALL since 10/11 of patients reported in the literature with R140L mutation 

have also the R38H mutation suggesting rather a cooperation between these two mutations15 

than just a biallelic inactivation of PAX516. 

The onset of BCP-ALL in patients with PAX5 G183S germline mutations located in the 

octapeptide domain is very early with a median age of 2 years old and associated with a loss 

of the chromosome 9p leading to the simultaneous losses of the second PAX5 allele and 

CDKN2A6,7. In contrast, the germline R38H variant (this work and 8) is associated with an 

older age of onset (11 to 25 years old) and a normal karyotype (Supplemental Figure 5 and 

Supplemental Table 5).  

To functionally address the impact of the R38H mutation on the B-cell differentiation, we 

transduced with PAX5 WT and/or R38H murine fetal liver Pax5-/- B-cells (Figure 2A) and the 

murine plasmacytoma 558LµM cell line that does not express Pax5 and Cd79a 

(Supplemental Figure 6). As expected, PAX5 WT restored the expression of Cd19 in Pax5-/- 

cells and their capacity to differentiate in contrast to R38H (Figure 2B). R38H was also 

unable to rescue surface IgM expression in 558LµM cell line (Supplemental Figure 6). In 
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addition, R38H exhibited a weak competitive or additive effect on PAX5 WT when co-

expressed in primary cells or in 558LµM cell line respectively (Figure 2B and Supplemental 

Figure 6). PAX5 WT significantly increased the in vitro clonal activity of transduced Pax5-/- 

B220+ cells and led to the expression of Cd19 unlike R38H (Supplemental Figure 7), 

confirming that R38H is not able to trigger B-cell differentiation. Furthermore although no 

difference in frequencies of positive wells between PAX5 R38H- and MIG-infected cells was 

observed, the absolute number of B cells obtained per well was significantly higher 

(Supplemental Figure 7). Altogether, our data demonstrate that R38H disables B-cell 

differentiation and partially maintains PAX5-dependent cell growth properties without overt 

dominant-negative effect on the normal PAX5 function. 

The transcriptome of R38H-transduced Pax5-/- cells (Figure 2C-E) is similar, although not 

identical, to the negative control (MIG) and clearly distinct from the PAX5 WT condition 

(Figure 2C). Gene set enrichment analyses confirmed that R38H is unable to regulate PAX5 

target genes and to lead to a pro-B-cell gene expression program in contrast to PAX5 WT17 

(Figure 2D and Supplemental Figure 8). Worthnotingly, the comparison of the residual 

transcriptional activity of PAX5 germline mutants showed that R38H has a stronger 

hypomorphic effect than G183S (Supplemental Figure 9). Although the R38H transcriptome 

shares similarities with the one of PAX5 WT, supervised comparative analyses identified 

molecular profile specific to R38H (Figure 2E). In particular, the Leukemia Inhibiting Factor 

Receptor gene (Lifr)18, implicated in stemness, is downregulated in PAX5 WT condition and 

upregulated in R38H condition (Figure 2E). Our results suggest that PAX5 R38H confers 

some stemness features to the B cells. We thus transplanted transduced CD45.2+ Pax5-/- B 

cells (Figure 2A, F-H). As previously described19,20, MIG-transduced cells were able to home 

back to the bone marrow (BM) and to efficiently long-term engraft with an average of 30% 

CD45.2+/GFP+ cells in BM 18 weeks after transplantation (Figure 2F-G). In contrast, PAX5 

WT-transduced cells abrogated their long-term engraftment capacity in the BM and spleen of 

recipient mice (Figure 2G). Interestingly, the ectopic expression of R38H led to an 

intermediate phenotype 3.5 weeks after transplantation and as expected, none of engrafted 
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GFP+ cells acquired Cd19 (data not shown) since they do not express PAX5 WT. 

Interestingly, 2 out of 4 mice maintained their engraftment 18 weeks post-transplantation and 

one (PAX5 R38H #4) developed a clonal B220+/IL7R+/Kit- leukemia (Figure 2H and 

Supplemental Figure 10) with acquisition of a Jak3V670G mutation (Supplemental Table 6). 

In conclusion, we report a germline PAX5 p.R38H mutation in a family in which three children 

developed BCP-ALL. We demonstrate that R38H acts as a hypomorphic variant, does not 

abrogate the engraftment capacity of transduced Pax5-/- pro-B cells and can predispose to 

BCP-ALL. The existence of asymptomatic patients without evidence of immunodeficiency 

before the onset of BCP-ALL shows that PAX5 germline cases might be underestimated and 

should be considered prior to any familial allograft. 
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Figure legends  

Figure 1: Familial BCP-ALL with heterozygous germline PAX5 R38H mutation. 

(A) The germline R38H variant was shown to be inherited from one parent (I.2) who is so far 

an asymptomatic carrier with no history of cancer at 68 years old. The proband (II.2, 

indicated by an arrow) developed BCP-ALL at 17 years old. He relapsed two years after his 

initial diagnosis and was allografted with his brother (II.3) as a donor 14 years before II.3 also 

developed BCP-ALL. II.2 relapsed at 40 years old and rapidly passed away after intracranial 

hemorrhage. His sister (II.1) developed BCP-ALL at 11 years old for which she received 

chemotherapy without HSCT. She is still in CR more than 30 years after her initial diagnosis. 

The proband’s younger brother (II.3) developed also BCP-ALL at 25 years old and died from 

infectious complications after HSCT from an unrelated donor. The symbol (+) indicates the 

presence of the R38H germline mutation (B) Sanger sequencing of PAX5 mutation in 

samples of I.1, I.2, II.1, II.2 and II.3 with the location of the mutation indicated by an arrow 

demonstrating a germline origin. The nucleotide and protein sequences are indicated at the 

bottom. (C) Representative image of May-Grunwald-Giemsa–stained bone marrow smear at 

BCP-ALL diagnosis in individual II.1. (D) Somatic PAX5 mutations in leukemic samples from 

subjects II.1 (top) and II.3 (bottom). Positions of mutations are indicated with red arrows. (E-

F) Leukemic architecture at BCP-ALL diagnosis in subject II.3 (donor, (E)) and at donor-

related BCP-ALL in subject II.2 (recipient, (F)).Variant allele frequency (VAF) for each 

mutation is indicated. 

 

 

Figure 2: PAX5 R38H behaves as a hypomorphic variant and can predispose to BCP-

ALL in mice  

(A) Experimental scheme of retroviral complementation assays. (B) Pax5-/- cells were co-

transduced with either empty MIG (MSCV-IRES-GFP) and MImCherry (labeled as empty 

vectors), empty MImCherry and MIG PAX5 WT (labeled as PAX5 WT), empty MImCherry 

and MIG-PAX5 R38H (labeled as PAX5 R38H) or MImCherry-PAX5 WT and MIG-PAX5 
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R38H (labeled as WT + R38H) retroviral vectors. The proportions of cell markers were 

evaluated by FACS for each condition (n=8 per condition). Data are representative of two 

independent experiments (n=4 independent infections per experiment). Percentages indicate 

proportions of GFP/mCherry-double-positive that are CD19-positive or surface IgM (sIgM)-

positive as indicated. Results are expressed as mean ± SD; *p<0.05, **p<0.01, ***p<0.001, 

****p<0.0001. (C) Principal Component Analysis (PCA) of the 2 best components for the 

2000 most differentially expressed genes between the three conditions. Black dots represent 

empty MIG condition, blue dots MIG-PAX5 WT condition and red dots MIG-PAX5 R38H 

condition. (D) GSEA of PAX5 target gene and pro-B cell gene sets17 in expression profiles of 

Pax5-/- cells transduced with PAX5 WT versus PAX5 R38H with False Discovery Rate FDR < 

0.01. NES: Normalized Enrichment Score. (E) Comparative supervised heatmap using a Z-

score and spearman correlation clustering displaying the 44 most differentially expressed 

coding genes between PAX5 R38H-expressing Pax5-/- pro-B cells and MIG condition (fold > 

1.5; q-value < 0.05), with side comparison (lower panel) of corresponding gene expression in 

PAX5 WT-expressing Pax5-/- pro-B cells. (F) Representative FACS plots showing 

engraftment of the GFP+ donor cells in bone marrow (BM) samples at 3.5 and 18 weeks and 

spleen samples at 18 weeks post-transplantation. Mice were numbered with #x. (G) 

Quantification of engraftment of CD45.2+/GFP+ donor cells over time in BM at 3.5, 11.5 and 

18 weeks post-transplantation and in spleen 18 weeks post-transplantation. Each dot 

represents individual mice (n=4 to 6). Data show medians of engrafted mice (CD45.2+/GFP+ 

cell proportion >1% of total cells). (H) Representative FACS plots showing B220 (CD45R) 

and Kit (CD117) expression in CD45.2+/GFP+ cells of BM or spleen of PAX5 R38H- or MIG- 

transduced cells 18 weeks after transplantation. Mouse #4 shows BCP-ALL phenotype. 
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