
HAL Id: hal-03426711
https://hal.science/hal-03426711v2

Submitted on 20 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

On Type-Cases, Union Elimination, and Occurrence
Typing

Giuseppe Castagna, Mickael Laurent, Kim Nguyen, Matthew Lutze

To cite this version:
Giuseppe Castagna, Mickael Laurent, Kim Nguyen, Matthew Lutze. On Type-Cases, Union Elimina-
tion, and Occurrence Typing. Proceedings of the ACM on Programming Languages, 2022, 49th ACM
SIGPLAN Symposium on Principles of Programming Languages, 6 (POPL), pp.75. �10.1145/3498674�.
�hal-03426711v2�

https://hal.science/hal-03426711v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

13

On Type-Cases, Union Elimination, and Occurrence Typing

GIUSEPPE CASTAGNA, CNRS, Université de Paris, France
MICKAËL LAURENT, Université de Paris, France
KIM NGUYỄN, Université Paris-Saclay, France
MATTHEW LUTZE, Université de Paris, France

We extend classic union and intersection type systems with a type-case construction and show that the

combination of the union elimination rule of the former and the typing rules for type-cases of our extension

encompasses occurrence typing. To apply this system in practice, we define a canonical form for the expressions

of our extension, called MSC-form. We show that an expression of the extension is typable if and only if its

MSC-form is, and reduce the problem of typing the latter to the one of reconstructing annotations for that

term. We provide a sound algorithm that performs this reconstruction and a proof-of-concept implementation.

CCS Concepts: • Theory of computation→ Type structures; Program analysis; • Software and its engi-

neering→ Functional languages.

Additional Key Words and Phrases: subtyping, union types, intersection types, type-case, dynamic languages,

type systems.

ACM Reference Format:

Giuseppe Castagna, Mickaël Laurent, Kim Nguyễn, and Matthew Lutze. 2022. On Type-Cases, Union Elim-

ination, and Occurrence Typing. Proc. ACM Program. Lang. 6, POPL, Article 13 (January 2022), 75 pages.

https://doi.org/10.1145/3498674

1 INTRODUCTION
TypeScript [Microsoft] and Flow [Facebook] are extensions of JavaScript that allow the programmer

to specify in the code type annotations used to statically type-check the program. For instance, the

following function definition is valid in both languages

function foo(x : number | string) {
return (typeof(x) === "number")? x+1 : x.trim(); (1)

}

Apart from the type annotation (in red) of the function parameter, the above is standard JavaScript

code defining a function that checks whether its argument is an integer; if it is so, then it returns the

argument’s successor (x+1), otherwise it calls the method trim() of the argument. The annotation

specifies that the parameter is either a number or a string (the vertical bar denotes a union type).

If this annotation is respected and the function is applied to either an integer or a string, then

the application cannot fail because of a type error (trim() is a standard string method) and both

TypeScript and Flow rightly accept this function and deduce that it will return either a number

or a string, that is, a result of type number|string. This is possible because both type-checkers

Authors’ addresses: Giuseppe Castagna, Mickaël Laurent, Matthew Lutze, Institut de Recherche en Informatique Fondamen-

tale (IRIF), Université de Paris, CNRS, 8 place Aurélie Nemours, 75013 Paris, France; Kim Nguyễn, Laboratoire Méthodes

Formelles (LMF), Université Paris-Saclay, CNRS, ENS Paris-Saclay, 91190, Gif-sur-Yvette, France.

This work is licensed under a Creative Commons Attribution 4.0 International License (CC-BY 4.0).

© 2022 Copyright held by the owner/author(s).

2475-1421/2022/1-ART13

https://doi.org/10.1145/3498674

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

HTTPS://ORCID.ORG/0000-0003-0951-7535
HTTPS://ORCID.ORG/0000-0003-1590-2392
HTTPS://ORCID.ORG/0000-0002-1729-870X
HTTPS://ORCID.ORG/0000-0002-2904-5099
https://doi.org/10.1145/3498674
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0000-0003-0951-7535
HTTPS://ORCID.ORG/0000-0003-1590-2392
HTTPS://ORCID.ORG/0000-0002-2904-5099
HTTPS://ORCID.ORG/0000-0002-1729-870X
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3498674

13:2 Giuseppe Castagna, Mickaël Laurent, Kim Nguyễn, and Matthew Lutze

implement a specific type discipline called occurrence typing or flow typing:
1
as a matter of fact,

standard type disciplines would reject this function. The reason for that is that standard type

disciplines would try to type every part of the body of the function under the assumption that x
has type number | string and they would fail, since the successor is not defined for strings and

the method trim() is not defined for numbers. This is so because standard disciplines do not take

into account the type test performed on x. Occurrence typing is the typing technique that uses the

information provided by the type test to specialize—precisely, to refine—the type of the occurrences

of x in the branches of the conditional: since the program tested that x is of type number, then we

can safely assume that x is of type number in the “then” branch, and that it is not of type number
(and thus deduce from the type annotation that it must be of type string) in the “else” branch.

Occurrence typing was first defined and formally studied by Tobin-Hochstadt and Felleisen

[2008] to statically type-check untyped Scheme programs, and later extended by Tobin-Hochstadt

and Felleisen [2010] yielding the development of Typed Racket. To that end the authors define

a system to deduce propositions, that express relations between variables and types, and these

are attached to functional types (à la effect system) to describe facts about the result of applying

the corresponding functions. In this work we argue that to capture occurrence typing—and, as

we detail later on, much, much more—it is not necessary to resort to effect-like systems, perform

flow analysis, or invent new expressive types. It just suffices to add to the language at issue a

type-case expression and combine (a tailored definition of) its typing rules with the classic union

elimination rule as it was first introduced by MacQueen et al. [1986]. More precisely, let 𝑡 be a type

and (𝑒∈𝑡) ? 𝑒1 : 𝑒2 be the type-case expression that first evaluates 𝑒 to a value 𝑣 and continues as

𝑒1 if 𝑣 is of type 𝑡 , and as 𝑒2 otherwise. Then we claim that all the situations in which occurrence

typing is used are covered by these three typing rules.

Γ ⊢ 𝑒 ′ : 𝑡1∨𝑡2 Γ, 𝑥 :𝑡1 ⊢ 𝑒 : 𝑡 Γ, 𝑥 :𝑡2 ⊢ 𝑒 : 𝑡

Γ ⊢ 𝑒{𝑒 ′/𝑥} : 𝑡

Γ ⊢ 𝑒 : 𝑡 Γ ⊢ 𝑒1 : 𝑡1

Γ ⊢ (𝑒∈𝑡) ? 𝑒1 : 𝑒2 : 𝑡1

Γ ⊢ 𝑒 : ¬𝑡 Γ ⊢ 𝑒2 : 𝑡2

Γ ⊢ (𝑒∈𝑡) ? 𝑒1 : 𝑒2 : 𝑡2

The first is the classic union elimination rule by MacQueen et al. [1986] where 𝑒{𝑒 ′/𝑥} is the
expression obtained from 𝑒 by substituting 𝑒 ′ for 𝑥 and 𝑡1 ∨ 𝑡2 is a union type (for union and

intersection we respectively use | and & in code snippets and ∨ and ∧ in formal types). If we

interpret a type set-theoretically as the set of all values that have that type, then 𝑡1 ∨ 𝑡2 is the

type that contains all values of type 𝑡1 and all values of type 𝑡2. In a sound system an expression 𝑒

is given a type 𝑡 only if it can only produce a result in 𝑡 ; this implies that an expression of type

𝑡1 ∨ 𝑡2 can produce a result either of type 𝑡1 or of type 𝑡2 . The union elimination rule states that

given some expression (here, 𝑒{𝑒 ′/𝑥}) with a subexpression 𝑒 ′ of type 𝑡1∨𝑡2, if we can give to this

expression the type 𝑡 both under the hypothesis that 𝑒 ′ produces a result of type 𝑡1 and under the

hypothesis the 𝑒 ′ produces a result in 𝑡2, then we can safely give this expression type 𝑡 .

The two other rules are new and provide a natural and nifty way to type type-case expressions.

The first rule states that if 𝑒 can only produce a result in 𝑡 , then the type of (𝑒∈𝑡) ? 𝑒1 : 𝑒2 is the type

of 𝑒1. The second rule states that if 𝑒 can only produce a result in ¬𝑡 , then the type of (𝑒∈𝑡) ? 𝑒1 : 𝑒2

is the type of 𝑒2: since the negation type ¬𝑡 is interpreted set-theoretically as the set of all values

that are not of type 𝑡 , this means that, in that case, 𝑒 can only produce a result not of type 𝑡 .

The reader may wonder how we type a type-case expression (𝑒∈𝑡) ? 𝑒1 : 𝑒2 when the tested

expression 𝑒 is neither of type 𝑡 nor of type ¬𝑡 . As a matter of fact, a type-case is interesting only if

we cannot statically determine whether it will succeed or fail. For instance, the type-case in (1) tests

whether x is of type number, but since x is of type number|string, then it is neither of type number
nor of type ¬number. Here, the combination of set-theoretic types and the union rule plays its

1
TypeScript calls it “type guard recognition” while Flow uses the terminology “type refinements”.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

On Type-Cases, Union Elimination, and Occurrence Typing 13:3

magic. Union and negation types, give intersection types for free: just define 𝑡1 ∧ 𝑡2 as ¬(¬𝑡1 ∨¬𝑡2).
Thus, even though the tested expression 𝑒 has some type 𝑠 that is neither contained in (i.e., subtype

of) 𝑡 nor in ¬𝑡 , we can use intersection and negation to split 𝑠 into the union of two types that have

this property, since 𝑠 ≃ (𝑠 ∧ 𝑡) ∨ (𝑠 ∧¬𝑡). We can thus apply the union rule and check the type-case

under the hypothesis that the tested expression has type (𝑠 ∧ 𝑡) and under the hypothesis that it

has type (𝑠 ∧ ¬𝑡). For instance, for (1) we check the type-case under the hypothesis that x has type

number (i.e., (number∨string)∧number) and deduce the type number, and under the hypothesis

that x has type string (i.e., (number∨string)∧¬number) and deduce the type string, which by

subsumption gives for the whole expression the expected type number∨string.
We see that our treatment of occurrence typing heavily depends on the properties of set-theoretic

types: unions, intersections, and negations of types. This does not come as a surprise since from its

inception occurrence typing was intimately tied to type systems with set-theoretic types. Union

was the first type connective to appear, since it was already used in [Tobin-Hochstadt and Felleisen

2008] to characterize the different control flows of a type test, as our foo example shows: one

flow for integer arguments and another for strings. Intersection types appear (in limited forms)

combined with occurrence typing both in TypeScript and in Flow and serve to give, among other

things, more precise types to functions such as foo. For instance, since x + 1 evaluates to an integer

and x.trim() to a string, then our function foo has type (number|string)→(number|string).
But it is clear that a more precise type would be one that states that foo returns a number when it is

applied to a number and returns a string when it is applied to a string, so that the type deduced for,

say, foo(42) would be number rather than the less precise number|string. This is exactly what

the intersection type

(number→number) & (string→string) (2)

states (intuitively, an expression has an intersection of types, noted &, if and only if it has all the

types of the intersection) and corresponds in Flow to declaring foo as follows:

var foo : (number => number) & (string => string) = x => {
return (typeof(x) === "number")? x+1 : x.trim(); (3)

}

For what concerns negation types, they are pervasive in the occurrence typing approach, even

though they are used only at meta-theoretic level, in particular to determine the type environment

when the type-case fails. We already saw negation types at work whenwe informally typed the “else”

branch in foo, for which we assumed that 𝑥 did not have type number—i.e., it had the (negation)

type ¬number—and deduced from it that 𝑥 then had type string—i.e., (number|string)&¬number
which is equivalent to the set-theoretic difference (number|string)\ number and, thus, to string.

Since set-theoretic types play such a pivotal role in our treatment the system we study in this

work is a conservative extension of the standard type assignment system for union and intersection

types, which was defined by Barbanera et al. [1995, Definition 3.5]. To cope with occurrence typing

we extend, in a nutshell, the system of [Barbanera et al. 1995] with three simple ingredients:

(1) we add to its expressions the type-case expression (𝑒∈𝑡) ? 𝑒 : 𝑒;
(2) we add to its types the negation connective and the empty type;

(3) we add to its deduction rules the typing rules for type-cases we showed before.

The resulting system, presented in Section 2, is a type-assignment system for an untyped 𝜆-calculus

with constants, pairs, and type-cases.

We said earlier that the combination of the union rule and set-theoretic types gives us much

more than what current formalizations of occurrence typing can capture. The approaches cited

above essentially focus on refining the type of variables that occur in an expression whose type is

being tested. They do it when the variable occurs at top-level in the test (i.e., the variable is the

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

13:4 Giuseppe Castagna, Mickaël Laurent, Kim Nguyễn, and Matthew Lutze

expression being tested) or under some specific positions such as in nested pairs or at the end

of a path of selectors. The union elimination rule of MacQueen et al. [1986] does not have such

limitations: it can refine the type of any expression 𝑒 ′ occurring in any position of the current

expression 𝑒 , by splitting the type of 𝑒 ′ into a union of types that are tested separately for 𝑒 . The

separation of these tests combines with our new rules for type-cases to yield a system in which

different branches of the same type-case are typed under different typing hypotheses, which is the

essence of occurrence typing. In this work we aim at exploiting this power of the union rule and

refine the type of any expression that occurs in a tested expression (or elsewhere). Of particular

interest will be the expressions occurring in applications since the refinement of their types is

pivotal in deducing and exploiting intersection types for functions. For example, let 𝑥1 be a variable

of type (Int→Int) ∧ (String→String) (e.g., 𝑥1 binds the function foo defined in (3)) and 𝑥2 be of

type Int ∨ String. If @ denotes string concatenation, then we can use the three typing rules above

to deduce that the following expression has type Int ∨ String.

(𝑥1𝑥2 ∈ Int)?(𝑥2 + 1):((𝑥1𝑥2) @𝑥2) (4)

This is done by splitting the type of 𝑥2: if 𝑥2 is of type Int, then 𝑥1𝑥2 is also of type Int, thus the
first branch is selected and the addition in it is well typed with type Int; if 𝑥2 is of type String, then
𝑥1𝑥2 is also of type String, thus the second branch is selected and the concatenation in it is well

typed with type String. This is an example of typing that is out of reach for all the previously cited

approaches. This is possible because our approach does not perform occurrence typing using only

the information given by type-cases: it also uses all type information provided by applications,

even more when functions are overloaded (i.e., typed by an intersection of arrows, as 𝑥1 in (4)).

One of the most important consequences of such a thorough analysis is that we can use its results

to infer intersection types for functions, even in the absence of precise annotations such as the one

given in the definition of foo in (3): we split the type of the function parameter (initially supposed

to be the top type Any) and deduce a distinct arrow for each split of the input type, discarding

from the domain the split types for which the inference fails. To put it simply, we can infer the

type (2) for the unannotated pure JavaScript code of foo (i.e., no type annotation at all), while in

TypeScript and Flow (and any other formalism we are aware of) this requires an explicit and full

type annotation as the one given in (3). This creates a virtuous circle since, as the program in (4)

shows, determining intersection types for functions is crucial to refine the type of expressions

in applications, which allows to deduce more precise types for functions and so forth. Thanks

to this virtuous circle our system can type a whole class of functions that other systems fail to

type (even when given explicit full type annotations) and must then hard-code to retain sufficient

expressiveness. And for well-typed programs our approach needs, in general, fewer annotations.

For instance, we can type all the 14 paradigmatic examples of Tobin-Hochstadt and Felleisen [2010]

without any annotation, whereas they need to specify annotations for 5 of them (see Section 6).

Having three typing rules that allow us to type all the examples of occurrence typing (and even

more) is still a far cry from a practical system that can decide whether a program of our source

language (the untyped 𝜆-calculus with constants, pairs, and type-cases) is well-typed or not. The

culprit is, of course, the powerful union rule: to use this rule to type some expression 𝑒 one has

to guess a subexpression 𝑒 ′ of 𝑒 to single out, the occurrences of 𝑒 ′ to be tested, and how to split

the type of this 𝑒 ′ in a union of types to be tested separately. This is no simple feat: according to

Mariangiola Dezani, arguably the best expert in union and intersection type systems, determining

an inversion (a.k.a., generation) lemma for this union rule is the most important open problem in

this field of research [Dezani-Ciancaglini 2020]. And an inversion lemma is an important aid to

define a type-inference algorithm, since it tells us when and how to apply the rule.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

On Type-Cases, Union Elimination, and Occurrence Typing 13:5

bind 𝑥1 = 𝑎1 in
bind 𝑥2 = 𝑎2 in
bind 𝑥3 = 𝑥1𝑥2 in
bind 𝑥4 = 𝑥2 + 1 in
bind 𝑥5 = 𝑥3@𝑥2 in
bind 𝑥6 = (𝑥3∈Int) ?𝑥4 :𝑥5 in 𝑥6

Fig. 1. Pure MSC-form

bind 𝑥1 : {𝑡1} = 𝑎1 in
bind 𝑥2 : {Int , String} = 𝑎2 in
bind 𝑥3 : {𝑥2:Int⊲Int , 𝑥2:String⊲String} = 𝑥1𝑥2 in
bind 𝑥4 : {Int} = 𝑥2 + 1 in
bind 𝑥5 : {String} = 𝑥3@𝑥2 in
bind 𝑥6 : {𝑡2} = (𝑥3∈Int) ?𝑥4 :𝑥5 in 𝑥6

Fig. 2. Annotated MSC-form

In order to tackle this last problem of deciding whether an expression is well typed or not,

we transform it into an equivalent problem in which the range of possible choices is much more

restricted. To that end we introduce a canonical form for the expressions of our source language that

we call maximal-sharing canonical form (MSC-form). A MSC-form is essentially a list of bindings

from variables to atoms. An atom is either an expression of our source language in which all

subexpressions are variables, or it is a 𝜆-abstraction whose body is a MSC-form. We call these forms

maximal-sharing forms because they must satisfy the property that there cannot be two distinct

bindings for the same atom. This is a crucial property because it ensures that every expression of the

source language (𝑖) is equivalent to a unique (modulo some trivial syntactic conversions) MSC-form

and (𝑖𝑖) is well-typed if and only if its MSC-form is. For instance, consider the expression in (4) where

𝑥1 and 𝑥2 rather than being variables are generic atoms of type 𝑡1 = (Int→Int) ∧ (String→String)
and 𝑡2 = Int ∨ String, that is (𝑎1𝑎2 ∈ Int)?(𝑎2 + 1):((𝑎1𝑎2) @𝑎2). Its MSC-form will look like the

term in Figure 1. Notice that this term satisfies the maximal sharing property because the two

occurrences of the application 𝑎1𝑎2 in the source language expression are bound by the same

variable 𝑥3. The other crucial property that we prove is that an MSC-form is well-typed if and only

if it is possible to explicitly annotate all the bindings of variables so that the MSC-form type-checks.

These annotations essentially define how the type of the variables must be split and the annotated

MSC-form type-checks if the rest of the expression type-checks for each of the splits specified in its

annotations. Figure 2 gives the annotations for the previous MSC-form. The important annotations

are those of the variables 𝑥2 and 𝑥3. The first states that to type the expression, the type Int∨String
of 𝑎2 must be split and the expression must be checked separately for 𝑥2 : Int and 𝑥2 : String. The
annotation of 𝑥3 states that when 𝑥2 has type Int then 𝑥3 must be assumed to be of type Int and
when 𝑥2 has type String so must have 𝑥3 (see Section 4 for details).

Since we can effectively transform a source language expression into its MSC-form, then we have

a method to check the well-typedness of an expression of the source language: transform it into its

MSC-form and infer all the annotations of its variables, if possible. Inferring the annotations of a

MSC-form boils down to deciding how to split the types of its atoms. This is done by an algorithm

we present in Section 5 which starts from a MSC-form in which all variables are annotated with the

top type Any and performs several passes to refine these annotations. Each pass has three possible

outcomes: either (𝑖) the MSC-form type-checks with its current annotations and the algorithm

stops with a success, or (𝑖𝑖) the MSC-form does not type-check, the pass proposes a new version of

the same MSC-form but with refined annotations, and a new pass is started, or (𝑖𝑖𝑖) the MSC-form

does not check and it is not possible to further refine the annotations so that the form may become

typable, then the algorithm stops with a failure. The algorithm refines the annotations differently

for variables that are bound by lambdas and by binds. For the variables in binds the algorithms

produces a set of disjoint types so that their union is the type of the atom in the bind; for lambdas

the algorithm splits the type of the parameter into a set of disjoint types and rejects the types in this

set for which the function does not type-check, thus determining the domain of the function. The

very last point that remains to explain is how to determine the split of a type: as a matter of fact, in

general there are infinitely many different ways to split a type. The split of the types is driven by

the types tested in type-cases and the operations applied to their components. For instance, the

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

13:6 Giuseppe Castagna, Mickaël Laurent, Kim Nguyễn, and Matthew Lutze

split of the type of 𝑎2 for the variable 𝑥2 in Figures 1 and 2 is determined by the test 𝑥3∈Int: the
algorithm will propose to split the type 𝑡3 of 𝑥3 into 𝑡3 ∧ Int and 𝑡3 ∧ ¬Int. Since 𝑡3 is Int∨String,
the split proposed for 𝑥3 is actually Int or String. This split triggers in the subsequent pass the split

for the type of 𝑥2 since 𝑥3 is defined as 𝑥1𝑥2 and 𝑥3 can be of type Int only if 𝑥2 is of type Int and it

can be of type String only if 𝑥2 is of type String. We just got the expected annotation.

Contributions. This work provides four main technical contributions. (𝑖)We show how to extend the

system of Barbanera et al. [1995] with negation types and type-cases and prove its soundness (§2);

(𝑖𝑖) we define MSC-forms and prove that the problem of typing a term of the previous system is

equivalent to the one of typing its MSC-form (§3); (𝑖𝑖𝑖) we prove that the latter problem is equivalent

to adding type annotations in a MSC-form so that it becomes a well-typed term and that checking

well-typedness of an annotated MSC-form is decidable (§4); (𝑖𝑣) we define a sound reconstruction

algorithm for the annotations of a MSC-form (§5) and provide an implementation (§6).

More generally, this work provides a novel formal lens for viewing the conceptual core of

occurrence typing, whose essence it reveals. It reframes occurrence typing in the more standard and

general setting of classic union and intersection type systems and, in doing so, it removes several

current limitations of existing approaches. The removal of these limitations makes it possible

for our system not only to type several examples that are out of reach of existing approaches

but also to deduce precise intersection types for completely unannotated functions, something

that, in our ken, no other system is currently capable of. By the definition of MSC-forms, it

circumscribes the use of union elimination to a very specific setting, thus advancing in the quest

for the characterization of inversion of union rules. More importantly, it shows that well-typing

in such systems is equivalent to the problem of reconstructing annotations for MSC-forms, thus

providing a formal yard-stick to compare different approaches. We exploited this new setting to

define a sound reconstruction algorithm that we rendered in a proof-of-concept implementation.

This implementation demonstrates the potential practical implications of our work, even though

the gap with mature implementations such as those of Flow, Typed Racket, or TypeScript is still

huge. Last but not least, we obtained a system that is arguably more robust to extensions such as

the addition of side-effects and of polymorphic types, as we are eager to verify in the near future.

For space reasons several definitions and rules, the extensions with records and let-constructs,

and all the proofs are moved to the appendix, available on line as supplemental material.

2 SOURCE LANGUAGE AND DECLARATIVE TYPE SYSTEM
2.1 Types
Types are exactly those of the semantic subtyping framework by Frisch et al. [2002, 2008].

Definition 2.1 (Types). The set of types Types is formed by the terms 𝑡 coinductively produced

by the grammar:

Types 𝑡 ::= 𝑏 | 𝑡 → 𝑡 | 𝑡 × 𝑡 | 𝑡 ∨ 𝑡 | ¬𝑡 | 0
and that satisfy the following conditions

- (regularity) every term has a finite number of different sub-terms;

- (contractivity) every infinite branch of a term contains an infinite number of occurrences of the

arrow or product type constructors.

We introduce the abbreviations 𝑡1 ∧ 𝑡2 =
def ¬(¬𝑡1 ∨ ¬𝑡2), 𝑡1 ∖ 𝑡2 =

def

𝑡1 ∧ (¬𝑡2), and 1 =
def ¬0. 𝑏 ranges

over basic types (e.g., Int, Bool), 0 and 1 respectively denote the empty (that types no value) and

top (that types all values) types. Coinduction accounts for recursive types and the condition on

infinite branches bars out ill-formed types such as 𝑡 = 𝑡 ∨ 𝑡 (which does not carry any information

about the set denoted by the type) or 𝑡 = ¬𝑡 (which cannot represent any set). Regularity is needed

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

On Type-Cases, Union Elimination, and Occurrence Typing 13:7

for the decidability of the subtyping relation. We refer to 𝑏, ×, and→ as type constructors, and to

∨, ¬, ∧, and ∖ as type connectives. As customary, connectives have priority over constructors and

negation has the highest priority—e.g., ¬𝑠∨𝑡 → 𝑢∧𝑣 denotes ((¬𝑠)∨𝑡) → (𝑢∧𝑣).
The subtyping relation for these types, noted ≤, is the one defined by Frisch et al. [2008]

to which the reader may refer for the formal definition (we recall it in Appendix A.1 for the

reader’s convenience). A detailed description of the algorithm to decide this relation can be found

in [Castagna 2020]. For this presentation it suffices to consider that types are interpreted as sets of

values (i.e., either constants, 𝜆-abstractions, or pairs of values: see Section 2.2 right below) that have

that type, and that subtyping is set containment (i.e., a type 𝑠 is a subtype of a type 𝑡 if and only if 𝑡

contains all the values of type 𝑠). In particular, 𝑠 → 𝑡 contains all 𝜆-abstractions that when applied

to a value of type 𝑠 , if their computation terminates, then they return a result of type 𝑡 (e.g., 0→ 1
is the set of all functions and 1→ 0 is the set of functions that diverge on every argument). Type

connectives (i.e., union, intersection, negation) are interpreted as the corresponding set-theoretic

operators (e.g., 𝑠 ∨ 𝑡 is the union of the values of the two types). We use ≃ to denote the symmetric

closure of ≤: thus 𝑠 ≃ 𝑡 (read, 𝑠 is equivalent to 𝑡) means that 𝑠 and 𝑡 denote the same set of values

and, as such, they are semantically the same type.

2.2 Terms
The expressions of our source language, that is the language the programmer uses, are defined as:

Test Types 𝜏 ::= 𝑏 | 0→ 1 | 𝜏 × 𝜏 | 𝜏 ∨ 𝜏 | ¬𝜏 | 0
Expressions 𝑒 ::= 𝑐 | 𝑥 | 𝜆𝑥.𝑒 | 𝑒𝑒 | (𝑒, 𝑒) | 𝜋𝑖𝑒 | (𝑒∈𝜏) ? 𝑒 : 𝑒
Values 𝑣 ::= 𝑐 | 𝜆𝑥.𝑒 | (𝑣, 𝑣)

(5)

Expressions are an untyped 𝜆-calculus with constants 𝑐 , pairs (𝑒, 𝑒), pair projections 𝜋𝑖𝑒 , and type-

cases. A typecase (𝑒0∈𝜏) ? 𝑒1 : 𝑒2 is a dynamic type test that first evaluates 𝑒0 and, then, if 𝑒0 reduces

to a value 𝑣 evaluates 𝑒1 if 𝑣 has type 𝜏 or 𝑒2 otherwise. Type-cases cannot test arbitrary types but

just types of the form 𝜏 where the only arrow type that can occur in them is 0→ 1, the type of all
functions. This means that type-cases can distinguish functions from other values but they cannot

distinguish, say, functions that have type Int→Int from those that do not. In previous work on

semantic subtyping, there is no such restriction, but this is possible only because 𝜆-abstractions

are explicitly annotated with their types. If in the presence of non-annotated 𝜆-abstractions we

allowed tests on function types, then in a practical implementation the semantics would depend on

the implementation of the type checking or type inference algorithms. Thanks to this restriction,

instead, the semantics does not depend on the type system: it can be implemented without keeping

track of compile-time types at runtime. Moreover, the interest of the typecase construct in this

work is mostly to encode a pattern matching construct. Standard pattern matching cannot check

function types, so the restriction is not a problem for this. Typecases of this form also have the same

expressiveness as the type-testing primitives of dynamic languages like JavaScript and Racket.

Since every test type 𝜏 is also a type, then in what follows wemay sometimes use the metavariable

𝑡 to denote test types when this is clear from the context.

2.3 Reduction Semantics
The reduction semantics is the one of call-by-value pure 𝜆-calculus with products and with a

type-case expression. The reduction is given by the following notions of reductions

(𝜆𝑥 .𝑒)𝑣 { 𝑒{𝑣/𝑥}
𝜋1 (𝑣1, 𝑣2) { 𝑣1

𝜋2 (𝑣1, 𝑣2) { 𝑣2

(𝑣∈𝜏) ? 𝑒1 : 𝑒2 { 𝑒1 if 𝑣 ∈ 𝜏
(𝑣∈𝜏) ? 𝑒1 : 𝑒2 { 𝑒2 if 𝑣 ∈ ¬𝜏

together with the context rules that implement a leftmost outermost reduction strategy.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

13:8 Giuseppe Castagna, Mickaël Laurent, Kim Nguyễn, and Matthew Lutze

The definition uses the standard substitution operation 𝑒{𝑒 ′/𝑥} that denotes the capture avoiding
substitution of 𝑒 ′ for 𝑥 in 𝑒 , and the relation 𝑣 ∈ 𝜏 that determines whether a value is of a given type

or not and holds true if and only if typeof (𝑣) ≤ 𝜏 , where typeof (𝜆𝑥 .𝑒) = 0→1, typeof (𝑐) = b𝑐 ,
typeof ((𝑣1, 𝑣2)) = typeof (𝑣1)×typeof (𝑣2), and b𝑐 is the unique basic type of the constant 𝑐 (e.g.,
b42 = Int). Note that typeof () maps every 𝜆-abstraction to 0→ 1, so it does not depend on static

types. This approximation is allowed by the restriction on arrow types in typecases.

The language we just defined is the same as the functional core of CDuce defined by Frisch et al.

[2002, 2008] bar two important differences. The first difference is that 𝜆-abstractions in [Frisch

et al. 2002, 2008] are explicitly annotated with their types while here no annotation is needed.

The absence of annotations not only relieves the programmer of an important burden but also, in

the case of curried functions, makes it possible to type some expressions that could not be typed

with the annotations used in CDuce (see Section 4). The price to pay for this choice is twofold: the

burden of finding the annotations for 𝜆-abstractions is passed on the type system and, as explained

before, we no longer allow type-cases to test for arbitrary types. The second difference is that

the type-case expressions in [Frisch et al. 2002, 2008] introduce a binding since they are of the

form (𝑥 :=𝑒◦∈𝜏) ? 𝑒1 : 𝑒2, that is, the expression binds the result of the tested expression 𝑒◦ to the

variable 𝑥 so that it is possible to specialize the type of 𝑥 differently for typing 𝑒1 and 𝑒2 and thus

implement a limited form of occurrence typing (if 𝑒◦ : 𝑡 , then we assume 𝑥 : 𝑡 ∧ 𝜏 when typing 𝑒1

and 𝑥 : 𝑡 ∧ ¬𝜏 when typing 𝑒2). Here we do not ask the programmer to write such a binding: in our

system such a binding is deduced by the type system (and this deduction is not limited to type-case

expressions). The deduction of this binding is the core of our approach and constitutes the key idea

of our generalization of occurrence typing.

2.4 Type System
While the terms, types, and operational semantics of the language are essentially the same as the

language by Frisch et al. [2002, 2008], the type inference system is completely different, in particular

in what concerns the typing of the type-cases. Per se the typing system we detail below is far from

being new: it is composed exactly by the rules of the classic system of union and intersection types

defined by Barbanera et al. [1995] to which we add standard introduction and elimination rules

for products ([×I], [×E1], [×E2]) and the three rules for the type-cases ([0], [∈1], [∈2]). The typing

rules are given in Figure 3 and use the following definition of type environments.

Definition 2.2 (Type environment). Type environments, ranged over by Γ are finite sets of

mappings from pairwise distinct variables to types. We denote by dom(Γ) the set of variables mapped

by Γ. We write Γ, 𝑥 : 𝑡 for the type environment Γ ∪ {𝑥 ↦→ 𝑡}, when Γ is a type environment such that

𝑥 ∉ dom(Γ). We write ∅ for the type environment formed by an empty set of mappings.

If we remove from Figure 3 the three rules for type-cases ([0], [∈1], [∈2]) the resulting system

is the same as the one in Definition 3.5 of Barbanera et al. [1995, Definition 3.5] (extended with

standard rules for products and constants). The rules for abstractions and applications are those

of the simply typed 𝜆-calculus while those for pairs and projections extend it to products. Union

and intersection types are handled by the rule [∧] that introduces intersections, the rule [∨] that
eliminates unions, and the subsumption rule [≤] that introduces unions and eliminate intersections.

Notice that, by the definition of type-environments, it is not possible to type two nested 𝜆-

abstractions abstracting the same variable and that in the rule [∨] we have that 𝑥 ∉ dom(Γ).
It is instead possible to have two distinct (not nested) 𝜆-abstractions with the same abstracted

variable, even though from a type-perspective point of view this is not relevant since, as it is

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

On Type-Cases, Union Elimination, and Occurrence Typing 13:9

[Const]

Γ ⊢ 𝑐 : b𝑐
[Ax]

Γ ⊢ 𝑥 : Γ(𝑥)
𝑥 ∈ dom(Γ)

[→I]

Γ, 𝑥 : 𝑡1 ⊢ 𝑒 : 𝑡2

Γ ⊢ 𝜆𝑥 .𝑒 : 𝑡1 → 𝑡2
[→E]

Γ ⊢ 𝑒1 : 𝑡1 → 𝑡2 Γ ⊢ 𝑒2 : 𝑡1

Γ ⊢ 𝑒1𝑒2 : 𝑡2

[×I]
Γ ⊢ 𝑒1 : 𝑡1 Γ ⊢ 𝑒2 : 𝑡2

Γ ⊢ (𝑒1, 𝑒2) : 𝑡1 × 𝑡2
[×E1]

Γ ⊢ 𝑒 : 𝑡1 × 𝑡2
Γ ⊢ 𝜋1𝑒 : 𝑡1

[×E2]

Γ ⊢ 𝑒 : 𝑡1 × 𝑡2
Γ ⊢ 𝜋2𝑒 : 𝑡2

[∧]
Γ ⊢ 𝑒 : 𝑡1 Γ ⊢ 𝑒 : 𝑡2

Γ ⊢ 𝑒 : 𝑡1 ∧ 𝑡2
[∨]

Γ ⊢ 𝑒 ′ : 𝑡1∨𝑡2 Γ, 𝑥 : 𝑡1 ⊢ 𝑒 : 𝑡 Γ, 𝑥 : 𝑡2 ⊢ 𝑒 : 𝑡

Γ ⊢ 𝑒{𝑒 ′/𝑥} : 𝑡
[≤]

Γ ⊢ 𝑒 : 𝑡 𝑡 ≤ 𝑡 ′

Γ ⊢ 𝑒 : 𝑡 ′

[0]
Γ ⊢ 𝑒 : 0

Γ ⊢ (𝑒∈𝑡) ? 𝑒1 : 𝑒2 : 0
[∈1]

Γ ⊢ 𝑒 : 𝑡 Γ ⊢ 𝑒1 : 𝑡1

Γ ⊢ (𝑒∈𝑡) ? 𝑒1 : 𝑒2 : 𝑡1
[∈2]

Γ ⊢ 𝑒 : ¬𝑡 Γ ⊢ 𝑒2 : 𝑡2

Γ ⊢ (𝑒∈𝑡) ? 𝑒1 : 𝑒2 : 𝑡2

Fig. 3. Declarative type system

standard in such systems, the deduction is defined modulo 𝛼-conversion. In other terms, we

suppose the existence of the implicit rule given below on the right (where ≡𝛼 denotes 𝛼-conversion).

[≡𝛼]
Γ ⊢ 𝑒 : 𝑡 𝑒 ≡𝛼 𝑒 ′

Γ ⊢ 𝑒 ′ : 𝑡

Working modulo 𝛼-conversion is crucial in systems with union

types since rule [∨] breaks the 𝛼-invariance property (see Hindley

and Seldin [2008, Discussion 12.5]). For instance, the following

judgement 𝑦 : 1→Bool ⊢ (𝑦 (𝜆𝑥.𝑥), 𝑦 (𝜆𝑥 .𝑥)) : (True×True) ∨ (False×False) can be derived in

the system above by using [∨] together with the rules for application and pairs (where Bool =
True∨False, with True being the singleton type containing the value true,2 and likewise for False).
However, to derive the same type for the 𝛼-equivalent term (𝑦 (𝜆𝑥 .𝑥), 𝑦 (𝜆𝑧.𝑧)) the rule [≡𝛼] must

be used. In what follows, we will use a variant of the system above where the rules [∨] and [∧]
are replaced by the following rules that produce more compact derivations and are closer to the

syntax-directed system given in the next section:

[∧+]
(∀𝑖 ∈ 𝐼) Γ ⊢ 𝑒 : 𝑡𝑖

Γ ⊢ 𝑒 :

∧
𝑖∈𝐼 𝑡𝑖

𝐼 ≠ ∅ [∨+]
Γ ⊢ 𝑒 ′ :

∨
𝑖∈𝐼 𝑡𝑖 (∀𝑖 ∈ 𝐼) Γ, 𝑥 : 𝑡𝑖 ⊢ 𝑒 : 𝑡

Γ ⊢ 𝑒{𝑒 ′/𝑥} : 𝑡
𝐼 ≠ ∅

Although the rules in our system are textually the same as those in [Barbanera et al. 1995, Definition

3.5] there is an important difference, namely, that our types are an extension of those of Barbanera

et al. [1995] since they include recursive types, negation types, and the empty type. As a consequence

our subsumption rule uses a type-theory that is more general than the one of Barbanera et al.

[1995], the theory of semantic subtyping ℭ rather than the type theory ℑ of Barbanera et al. [1995]

of which semantic subtyping is a conservative extension (cf. Dezani-Ciancaglini et al. [2003]). The

subsumption rule handles directly the addition of recursive types; negation and empty types are

explicitly handled by the rules to type type-case expressions that we comment next.

The combination of the union rule [∨] with the three new rules [0], [∈1], [∈2] is the key novelty

of our type-system and, we claim, it captures the essence of occurrence typing. For one thing,

thanks to this combination it is possible to type all the examples of [Tobin-Hochstadt and Felleisen

2010], all examples of [Castagna et al. 2022a], and several more examples that are captured by

neither of these systems. Of course, to paraphrase a famous quotation [see Wikipedia 2021], with

great power comes great algorithmic complexity, and thus to determine when an expression is well

typed is more challenging with [∨] than in the cited systems. To see how this combination works

2
Henceforth, for every constant of the language we suppose the existence of a singleton type containing that constant.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

13:10 Giuseppe Castagna, Mickaël Laurent, Kim Nguyễn, and Matthew Lutze

it may be useful to see how type-case expressions are typed in the system by Frisch et al. [2002,

2008]. These, we remind, require an explicit binding to perform occurrence typing, and are typed

by the following rule:

Γ ⊢ 𝑒 ′ : 𝑠 (𝑠∧𝜏 ≃ 0 or Γ, 𝑥 : 𝑠∧𝜏 ⊢ 𝑒1 : 𝑡) (𝑠∧¬𝜏 ≃ 0 or Γ, 𝑥 : 𝑠∧¬𝜏 ⊢ 𝑒2 : 𝑡)
Γ ⊢ (𝑥 :=𝑒 ′∈𝜏) ? 𝑒1 : 𝑒2 : 𝑡

In a nutshell, we know that 𝑒 ′ can yield only a result in 𝑠 and that this result will be bound to 𝑥 ; so

we type 𝑒1 only if 𝑒 ′ can yield a result in 𝜏 (i.e., 𝑠∧𝜏 ; 0) and in that case we can assume that the

obtained value (bound to 𝑥) is of type 𝑠∧𝜏 ; likewise for 𝑒2. We can type exactly the same type-case

by using [∨] combined with [0], [∈1], and/or [∈2] and for that we do not need an explicit binding,

since this is taken care of by [∨]: our rules can directly type the expression in which we removed

the binding, that is 𝑒 = (𝑒 ′∈𝜏) ? (𝑒1{𝑒 ′/𝑥}) : (𝑒2{𝑒 ′/𝑥}), simply by noticing that this expression is

equivalent to ((𝑥∈𝜏) ? 𝑒1 : 𝑒2){𝑒 ′/𝑥}, that 𝑠 ≃ (𝑠∧𝜏) ∨ (𝑠∧¬𝜏), and then applying [∨]. For instance,
when both 𝑠∧𝜏 and 𝑠∧¬𝜏 are different from 0 we have:

[∨]
Γ ⊢ 𝑒 ′ : 𝑠

[∈1]

[≤]

[Ax]

Γ, 𝑥 :𝑠∧𝜏 ⊢ 𝑥 : 𝑠∧𝜏
Γ, 𝑥 :𝑠∧𝜏 ⊢ 𝑥 : 𝜏 Γ, 𝑥 :𝑠∧𝜏 ⊢ 𝑒1 : 𝑡

Γ, 𝑥 : 𝑠∧𝜏 ⊢ (𝑥∈𝜏) ? 𝑒1 : 𝑒2 : 𝑡
[∈2]

[≤]

[Ax]

Γ, 𝑥 :𝑠∧¬𝜏 ⊢ 𝑥 : 𝑠∧¬𝜏
Γ, 𝑥 :𝑠∧¬𝜏 ⊢ 𝑥 : ¬𝜏 Γ, 𝑥 :𝑠∧¬𝜏 ⊢ 𝑒2 : 𝑡

Γ, 𝑥 : 𝑠∧𝜏 ⊢ (𝑥∈𝜏) ? 𝑒1 : 𝑒2 : 𝑡

Γ ⊢ ((𝑥∈𝜏) ? 𝑒1 : 𝑒2){𝑒 ′/𝑥} : 𝑡

and if either 𝑠∧𝜏 or 𝑠∧¬𝜏 is empty, then we replace the corresponding [∈𝑖] rule by [0]. In summary,

the combination of [∨] with the three type-cases rule [0], [∈1], and [∈2] encodes and simplifies

the system by Frisch et al. [2002, 2008] moving the burden of the binding from the programmer to

the type-system. But it also generalizes the approaches for occurrence typing defined by Tobin-

Hochstadt and Felleisen [2010] and Castagna et al. [2022a] since the binding in [∨] is unconstrained,
that is, it is not limited to the occurrences of an expression 𝑒 ′ that appear in some particular positions

(e.g., in the tests of type-cases [Castagna et al. 2022a] or at the root of path expressions [Tobin-

Hochstadt and Felleisen 2010]).

2.5 Type Soundness
It is well-known that subject-reduction (i.e., type preservation) does not hold in systems that,

like ours, include the rule [∨]. For instance, consider the expression (𝑓 3, 𝑓 3) where 𝑓 : 1→Bool.
Using the rule [∨], it can be typed by (True × True) ∨ (False × False). However, after a step

of reduction, we might get for instance the expression (true, 𝑓 3), which cannot be typed by

(True × True) ∨ (False × False) anymore (the smallest type we can deduce for it is (True × Bool)).
Nevertheless, our type system is sound in the sense of Wright and Felleisen [1994]:

Theorem 2.3 (Type Soundness). If ∅ ⊢ 𝑒 : 𝑡 , then either 𝑒 diverges or 𝑒 {∗ 𝑣 with ∅ ⊢ 𝑣 : 𝑡 .

For instance, with the earlier example, even if (true, 𝑓 3) cannot be typed by (True×True) ∨ (False×
False), it will finally reduce to (true, true) which is of type (True × True) ∨ (False × False).
In order to prove this theorem, we introduce an alternative semantics which performs parallel

reductions and that satisfies both subject reduction and progress (a typable expression is either a

value or can be reduced). These two properties yield soundness for the parallel semantics. Finally,

we prove that the parallel semantics is equivalent to the semantics introduced in Section 2.3, in

the sense that for any expression 𝑒 , if 𝑒 diverges with one semantics then it also diverges with the

other, and if 𝑒 reduces to a value 𝑣 with one semantics then it also reduces to the value 𝑣 with the

other. From this we deduce the soundness of our system. All the details are given in the appendix.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

On Type-Cases, Union Elimination, and Occurrence Typing 13:11

3 INTERMEDIATE SYSTEM: SYNTAX-DIRECTED RULES AND CANONICAL FORMS
We have seen that the previous system is sound, that is, that every well-typed term can only diverge

or yield a result of the same type. Now the problem is to decide whether a given term is well

typed or not. For that the rules of Figure 3 are not very useful since they allow too many different

possibilities to type a given term. As customary, there are essentially two problems:

(1) the rules are not syntax directed: given a term, to type it we can try to apply some elimina-

tion/introduction rule, but also to apply the intersection rule [∧], or the subsumption rule

[≤], or the union rule [∨].
(2) some rules are non-analytic:

3
if we use the [→I] rule to type some 𝜆-abstraction we do not

know how to determine the type 𝑡1 in the premise; if we use the [∨] rule we know neither

how to determine 𝑒 ′ nor how to determine the types 𝑡1 and 𝑡2 that split the type of 𝑒
′
.

Notice that [∨] cumulates both problems. We tackle each problem in the order.

In the rest of this section we deal with rules that are not syntax directed. These are the intersection

rule [∧], the subsumption rule [≤], and the union rule [∨] insofar as the expression in their

conclusion can have any form. We adopt different solutions for the rules [∧] and [≤] and for

the rule [∨]. For [∧] and [≤] we simply eliminate them and embed the use of intersections and

subtyping in the remaining rules. This essentially amounts to resorting to canonical derivations:

we prove that it is possible to derive a type for a term if and only if there exists a derivation for that

typing judgment in which intersection [∧] and subsumption [≤] rules are used only at determined

specific places.
4
For the union rule [∨] we add to the language a binding expression whose typing

rule will replace the current [∨] rule. Since the binding expressions will explicitly determine both

the subterm 𝑒 ′ and the variable 𝑥 to be used in a [∨] instance, then the introduction of bindings

also addresses part the non-analyticity of the union rule.

In Section 4 we tackle the non-analyticity problem, or what it remains of it, namely, how to

determine the type(s) to assign to a function parameter in a [→I] instance and the split types 𝑡1,

𝑡2 in a [∨] instance. We solve this problem by adding explicit type annotations for the variables

bound in bind-expressions and 𝜆-abstractions: these annotations will provide the information that

is missing when applying the [→I] and [∨] rules. The rest of this section proceeds as follows:

(1) In Section 3.1 we introduce an intermediate language obtained by adding bind-expressions

to the source language of Section 2.2.

(2) In Section 3.2 we define a syntax-directed type system for this intermediate language (with

a small caveat for the union rule). We prove that this system is sound and complete with

respect to the source language type system, in the sense that every well-typed term of the

intermediate language encodes a valid derivation in the source language (soundness) and that

every term of the source language is well typed only if there exists a term of the intermediate

language that encodes one of its type derivations (completeness).

(3) In Section 3.3 we show that soundness and completeness hold also for a strict sub-language

of the intermediate language. We call the terms of this sub-language theMSC-forms (maximal

sharing canonical forms). The advantage of this sub-language is that there is a one-to-one

correspondence between MSC-forms and the expressions of the source language and such a

correspondence is effective since it is easy to transform every source language expression

into “its” MSC-form.

3
We consider non-analytic (or synthetic) a rule in which the input (i.e., Γ and 𝑒) of the judgement at the conclusion is not

sufficient to determine the inputs of the judgments at the premises (cf. [Martin-Löf 1994; Types 2019]).

4
Intuitively, a deduction is canonical if (𝑖) subsumption is only used on the premises of application, type-case, union, and

projection rules and (𝑖𝑖) intersection is only used for expressions that are 𝜆-abstractions, that is, all the premises of an

intersection rule are the consequence of a [→I]. See the deduction system in Appendix A.3 and Lemmas D.5 and D.6.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

13:12 Giuseppe Castagna, Mickaël Laurent, Kim Nguyễn, and Matthew Lutze

In this way, we reduced the problem of typing a source language expression to the one of typing

“its” MSC-form, for which a syntax-directed type system exists. In Section 4 we show this to be

equivalent to searching for a way to annotate this MSC-form to make it typable. The search for

these annotations is performed by the algorithm described in Section 5.

3.1 Expressions with Bindings
Formally, we consider the following grammar of intermediate expressions (or expressions with

bindings) ranged over by the meta-variable 𝒆 so as to distinguish them from expressions of the

source language (declarative expressions) for which we continue to use the non-bold symbol 𝑒 .

Intermediate exprs 𝒆 ::= 𝑐 | 𝑥 | 𝜆𝑥 .𝒆 | 𝒆𝒆 | (𝒆, 𝒆) | 𝜋𝑖𝒆 | (𝒆∈𝜏) ? 𝒆 : 𝒆 | bind𝑥 = 𝒆 in 𝒆 (6)

Intermediate expressions extend the syntax of declarative expressions by adding a new construction

bind𝑥 = 𝒆 in 𝒆 . Given an expression bind𝑥 = 𝒆′ in 𝒆 we call 𝒆′ the argument of the expression and

𝒆 the body of the expression. Such an expression is used to bind a variable to a definition. A bind-

expression is different from a let-expression let𝑥 = 𝑒 ′ in 𝑒 (cf. Appendix C.1) as it is not associated

with a call-by-value semantics: bind𝑥 = 𝒆′ in 𝒆 is just a way to indicate that a specific instance

of the [∨] rule must be used to type the expression, but it does not force the evaluation of the

argument of the bind expression (call-by-need would be appropriate: cf. Appendix A.6).

3.2 Intermediate Typing Rules
We want to define a syntax-directed type-system for the expressions above. The addition of a

binding expression makes [∨] syntax-directed, but we still have to eliminate the intersection [∧]
and subsumption [≤] rules. In order to define the typing of applications and projections in the

absence of subsumption we need some operators on types. Consider the rule [→E] for applications

of source language expressions (Figure 3). It essentially does three things: (𝑖) it checks that the
expression in the function position has a functional type; (𝑖𝑖) it checks that the argument is in

the domain of the function, and (𝑖𝑖𝑖) it returns the type of the application. In systems without

set-theoretic types these operations are straightforward: (𝑖) corresponds to checking that that

expression in the function position has an arrow type, (𝑖𝑖) corresponds to checking that the

argument is in the domain of the arrow deduced for the function, and (𝑖𝑖𝑖) corresponds to returning
the codomain of that arrow. With set-theoretic types things get more complicated, since in general

the type of a function is not always a single arrow, but it can be a union of intersections of arrow

types and their negations. Checking that the expression in the function position has a functional

type is easy since it corresponds to checking that it has a type subtype of 0→1. Determining its

domain and the type of the application is more complicated and needs the operators dom() and ◦
defined as dom(𝑡) =

def

max{𝑢 | 𝑡 ≤ 𝑢 → 1} and 𝑡 ◦ 𝑠 =
def

min{𝑢 | 𝑡 ≤ 𝑠 → 𝑢}. In short, dom(𝑡) is the
largest domain of any single arrow that subsumes 𝑡 while 𝑡 ◦ 𝑠 is the smallest codomain of an arrow

type that subsumes 𝑡 and has domain 𝑠 . We need similar operators for projections since the type 𝑡 of

𝑒 in 𝜋𝑖𝑒 may not be a single product type but, say, a union of products: all we know is that 𝑡 must be

a subtype of 1×1. So let 𝑡 be a type such that 𝑡 ≤ 1×1, we define 𝝅1 (𝑡) =
def

min{𝑢 | 𝑡 ≤ 𝑢 ×1} and
𝝅2 (𝑡) =

def

min{𝑢 | 𝑡 ≤ 1×𝑢}. All these type operators can be effectively computed (cf. Appendix A.4).

We have now all the notions we need to define the syntax-directed type system for the intermediate

language whose rules are given in Figure 4. The rules for constants, variables, and pairs are omitted

since they are the same as in the deduction system for the declarative expressions. Contrary to

the previous system, there no longer are explicit rules for intersection and subtyping: we want

to have canonical derivations for which the deductions performed by these rules are distributed

over the rest of the system. In particular, the only rule that introduces intersections is now the

rule [→I-Int] for 𝜆-abstractions. The type subsumption rule [≤] is no longer needed since the

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

On Type-Cases, Union Elimination, and Occurrence Typing 13:13

[→I-Int]

(∀𝑗 ∈ 𝐽) Γ, 𝑥 : 𝑡 𝑗 ⊢I 𝒆 : 𝑠 𝑗

Γ ⊢I 𝜆𝑥 .𝒆 :

∧
𝑗 ∈𝐽 𝑡 𝑗 → 𝑠 𝑗

𝐽 ≠ ∅ [→E-Int]

Γ ⊢I 𝒆1 : 𝑡1 Γ ⊢I 𝒆2 : 𝑡2

Γ ⊢I 𝒆1𝒆2 : 𝑡1 ◦ 𝑡2
𝑡1 ≤ 0→ 1
𝑡2 ≤ dom(𝑡1)

[×E1-Int]

Γ ⊢I 𝒆 : 𝑡 ≤ (1 × 1)
Γ ⊢I 𝜋1𝒆 : 𝜋1 (𝑡)

[×E2-Int]

Γ ⊢I 𝒆 : 𝑡 ≤ (1 × 1)
Γ ⊢I 𝜋2𝒆 : 𝜋2 (𝑡)

[0-Int]
Γ ⊢I 𝒆 : 0

Γ ⊢I (𝒆∈𝑡) ? 𝒆1 : 𝒆2 : 0

[∈1-Int]

Γ ⊢ 𝒆 : 𝑡0 ≤ 𝑡 Γ ⊢ 𝒆1 : 𝑡1

Γ ⊢ (𝒆∈𝑡) ? 𝒆1 : 𝒆2 : 𝑡1
𝑡0 ; 0 [∈2-Int]

Γ ⊢I 𝒆 : 𝑡0 ≤ ¬𝑡 Γ ⊢ 𝒆2 : 𝑡2

Γ ⊢I (𝒆∈𝑡) ? 𝒆1 : 𝒆2 : 𝑡2
𝑡0 ; 0

[∨1-Int]

Γ ⊢I 𝒆2 : 𝑠

Γ ⊢I bind𝑥 = 𝒆1 in 𝒆2 : 𝑠
𝑥∉dom(Γ) [∨2-Int]

Γ ⊢I 𝒆1 :

∨
𝑗 ∈𝐽 𝑡 𝑗 (∀𝑗∈𝐽) Γ, 𝑥 :𝑡 𝑗 ⊢I 𝒆2 : 𝑠 𝑗

Γ ⊢I bind𝑥 = 𝒆1 in 𝒆2 :

∨
𝑗 ∈𝐽 𝑠 𝑗

𝐽≠∅

Fig. 4. Intermediate typing rules

checks for the subtyping relation are performed in the elimination rules and in the two [∈𝑖] rules.
The [→E-Int] rule works as we explained above: (𝑖) it checks that the type 𝑡1 of the expression in

the function position is functional (i.e., 𝑡1 ≤ 0→1); (𝑖𝑖) it checks that the type 𝑡2 of the argument

is contained the domain of the function (i.e, 𝑡2 ≤ dom(𝑡1)), and (𝑖𝑖𝑖) it returns the type 𝑡1 ◦ 𝑡2 of
the application. The product elimination rules check whether the argument of the projection is a

product (i.e., 𝑡 ≤ 1×1) and apply the corresponding type operator on this type.

The three rules for type-case expressions are essentially as before, bar two minor modifications.

First, in the [∈𝑖-Int] rules the checked expression must be explicitly subsumed to either 𝑡 or ¬𝑡
since there no longer is a [≤] rule in our system to do that. Second, since we want our type-system

to be syntax-directed, then we add the side condition 𝑡0 ; 0 in the [∈𝑖] rules so as to avoid any

overlap with the [0] rule and thus giving priority to the latter.

Finally, the [∨] rule (actually, [∨+]) is encoded by a binding expression. We split the [∨+] in two

rules. One, [∨1-Int], is for the case when the variable 𝑥 in 𝒆2 is not reachable (either because it is not

free in 𝒆2 or because it is in a type-case branch that cannot be selected such as in (42∈Int) ? 3 :𝑥).

The other, [∨2-Int], is the normal case for [∨+] where the bind-expression determines the variable

𝑥 and the expression 𝒆1 to be substituted for it, but does not specify how to split the type of 𝒆1 into

a union of types. Notice that in [∨1-Int] we added the side condition 𝑥 ∉ dom(Γ): this condition
is not necessary in [∨2-Int] since (as in [∨] and [∨+]) the environment Γ is extended and, by

Definition 2.2, the extension Γ, 𝑥 : 𝑡 𝑗 is defined only if 𝑥 ∉ dom(Γ).
The system is syntax-directed: the form of the expression determines the rules to apply and the

rules for a same form do not overlap (for bindings, [∨1-Int] must be used only if 𝒆1 is not typable:

we will be more precise in Section 4).

Soundness and completeness. A well-typed expression of the intermediate language is typed by

derivations in which every instance of the [∨] rule corresponds to a bind-expression. Any such

derivation is also a canonical derivation for a particular expression of the source language. This

expression can be obtained from the intermediate language expression by unfolding its bindings.

Formally, this is obtained by the unwinding operation, noted ⌈.⌉ and defined for the binding

expressions as ⌈bind𝑥 = 𝒆1 in 𝒆2 ⌉ =
def ⌈𝒆2⌉{⌈𝒆1⌉/𝑥}, as the identity for constants and variables, and

homomorphically for all the other expressions (cf. Appendix A.5).

We can now prove that the problem of typing a declarative expression is equivalent to the problem

of finding a typable intermediate expression whose unwinding is that declarative expression. In

other terms, a declarative expression is typable if and only if we can enrich it with bindings so that

it becomes a typable intermediate expression. This is formally stated by the theorems of soundness

and completeness of the intermediate system:

Theorem 3.1 (Soundness). If Γ ⊢I 𝒆 : 𝑡 then Γ ⊢ ⌈𝒆⌉ : 𝑡

Theorem 3.2 (Completeness). If Γ ⊢ 𝑒 : 𝑡 then ∃𝒆′, 𝑡 ′ such that ⌈𝒆′⌉ ≡𝛼 𝑒 , 𝑡 ′ ≤ 𝑡 , and Γ ⊢I 𝒆′ : 𝑡 ′

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

13:14 Giuseppe Castagna, Mickaël Laurent, Kim Nguyễn, and Matthew Lutze

3.3 Maximal Sharing Canonical Forms
The definition of the intermediate expressions is a step forward in solving the problem of typing a

declarative expression, but it also brings a new problem, since we now have to decide where to add

the bindings in a declarative expression so as to make it typable in the intermediate system. We get

rid of this problem by defining the maximal sharing canonical forms (MSC-form for short). The idea

is pretty simple, and consists in adding a new binding for every distinct (modulo 𝛼-conversion)

sub-expressions of a declarative expression. Formally, this transformation yields a MSC-form:

Definition 3.3 (MSC Forms). An intermediate expression 𝒆 is a maximal sharing canonical form

if it is produced by the following grammar:

Atomic expressions 𝒂 ::= 𝑐 | 𝜆𝑥.𝜿 | (𝑥, 𝑥) | 𝑥𝑥 | (𝑥∈𝜏) ?𝑥 :𝑥 | 𝜋𝑖𝑥
MSC-forms 𝜿 ::= 𝑥 | bind𝑥 = 𝒂 in𝜿 (7)

and is 𝛼-equivalent to an expression 𝜿 that satisfies the following properties:

(1) if bind𝑥1 = 𝒂1 in𝜿1 and bind𝑥2 = 𝒂2 in𝜿2 are distinct sub-expressions of 𝜿 , then ⌈𝒂1⌉ .𝛼 ⌈𝒂2⌉;
(2) if 𝜆𝑥 .𝜿1 is a sub-expression of𝜿 and bind𝑦 = 𝒂 in𝜿2 a sub-expression of𝜿1, then fv(𝒂) ⊈ fv(𝜆𝑥 .𝜿1);
(3) if bind𝑥 = 𝒂 in𝜿 ′ is a sub-expression of 𝜿 , then 𝑥 ∈ fv(𝜿 ′).

MSC-forms, ranged over by 𝜿 , are variables possibly preceded by a list of bindings of variables

to atoms. Atoms are either 𝜆-abstractions whose body is a MSC-form or any other expression in

which all proper sub-expressions are variables. Therefore, bindings can appear in a MSC-form

either at top-level or at the beginning of the body of a function. MSC-forms are defined modulo

𝛼-conversion.5 Since MSC-forms are also intermediate expressions, then the typing rules and the

definition of unwinding for intermediate terms of Section 3.2 apply to MSC-forms, too.

The syntactic form of MSC-forms guarantees that if a source language expression 𝑒 is the

unwinding of an MSC-form 𝜿 , then every distinct sub-expression of 𝑒 is bound by a variable in 𝜿 ,
while the first property of Definition 3.3 guarantees that distinct variables bind distinct (i.e., non

𝛼-convertible) sub-expressions (i.e., this first property enforces the maximal sharing of common

sub-expressions). The second property requires that bind-expressions must extrude 𝜆-abstractions

whenever possible. The third property guarantees that in a MSC-form there is no useless binding.

The first two properties of Definition 3.3 are important since they ensure that an expression

of the source language is typable if and only if it is the unwinding of a typable MSC-form. For

the first property, this is because reducing the bindings in an intermediate expression—while

preserving unwinding—increases the typeability of a term: if we can type an intermediate term

in which two distinct variables bind the same sub-expression, then the same term in which this

sub-expression is bound by a single variable can also be typed by assigning to the unique variable

the intersection of the types of the distinct variables, but the converse does not hold. For the

second property this is because outer bindings may produce better types. For instance, consider

the expression bind𝑥 = 𝒂 in 𝜆𝑦. 𝑥 , where 𝒂 is an expression that can be either an integer or a

Boolean. This expression can be typed with (1→ Int) ∨ (1→ Bool). However, for the expression
𝜆𝑦. (bind𝑥 = 𝒂 in𝑥) which has the same unwinding as the previous one, the most precise type

one can deduce is 1→ (Int ∨ Bool), which is strictly larger than (1→ Int) ∨ (1→ Bool).
The last property of Definition 3.3 is important because it ensures that given a source language

expression 𝑒 there exists a unique (modulo 𝛼-conversion and the order of bindings) MSC-form

whose unwinding is 𝑒 (cf. Proposition 3.5): we denote this MSC-form by MSC(𝑒).
Given a source language expression 𝑒 it is easy to produce its uniqueMSC-formMSC(𝑒). For space

constraints we give the formal definition of the transformation and all details in the Appendixes A.7

5
For instance, both 𝜆𝑥.bind𝑧 =𝑥𝑦 in𝑧𝑦 and 𝜆𝑥.bind𝑧 =𝑥𝑦 in𝑧 are two distinct atoms that can occur in the same MSC-

form, even though the atom 𝑥𝑦 appears in both: an 𝛼-renaming of 𝑥 makes the first MSC-property hold.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

On Type-Cases, Union Elimination, and Occurrence Typing 13:15

and A.8, but in practice what the transformation needs to do is to visit 𝑒 bottom up and generate

a distinct binding for each distinct sub-expression, taking special care for free-variables, when

extruding abstractions, and for 𝛼-convertible expressions (see Section 6 for more details).

We just got rid of the problem of determining where to put the bindings in a source language

expression 𝑒: generateMSC(𝑒) and try to type it in the syntax-directed system of Section 3.2.

Formally, we define the following congruence on MSC-forms:

Definition 3.4 (Canonical eqivalence). We denote by ≡𝜅 the smallest congruence on MSC-

forms that is closed by 𝛼-conversion and such that

bind𝑥1 = 𝒂1 in bind𝑥2 = 𝒂2 in𝜿 ≡𝜅 bind𝑥2 = 𝒂2 in bind𝑥1 = 𝒂1 in𝜿 𝑥1 ∉ fv(𝒂2), 𝑥2 ∉ fv(𝒂1)
Then we prove that all the MSC forms of a source language expression are equivalent:

Proposition 3.5. If 𝜿1 and 𝜿2 are two MSC-forms and ⌈𝜿1⌉ ≡𝛼 ⌈𝜿2⌉, then 𝜿1 ≡𝜅 𝜿2.

(Proof hint). Given two MSC-forms with the same unwinding, conditions (1) and (3) of Definition 3.3
ensure that there is a one-to-one correspondence between their bindings, and condition (2) that each
binding is located in the outermost possible 𝜆. So the two MSC-forms differ by the relative order between

independent bindings that are in the same 𝜆-abstraction or at top-level and, thus, are equivalent. □

It is easy to observe that the canonical equivalence preserves typeability (this is a direct conse-

quence that type environments are mappings in which order does not matter). Thus, the corollary

of this proposition is that an expression 𝑒 is typable if and only if its unique (modulo ≡𝜅) MSC-form

is typable, too. Formally, let MSC(𝑒) be any element of the set {𝜿 | 𝑒 ≡𝛼 ⌈𝜿⌉}, then
Corollary 3.6 (Soundness and Completeness). For every closed term 𝑒 of the source language

⊢ 𝑒 : 𝑡 ⇒ ⊢I MSC(𝑒) : 𝑡 ′ ≤ 𝑡 (completeness)

⊢ 𝑒 : 𝑡 ⇐ ⊢I MSC(𝑒) : 𝑡 (soundness)

Corollary 3.6 states that given a source language expression 𝑒 it is typable if and only if MSC(𝑒)
is: we reduced the problem of typing 𝑒 to the one of typing MSC(𝑒), a form that we can effectively

produce from 𝑒 and for which we have a syntax-directed type system.

4 ALGORITHMIC SYSTEM: ADDING TYPE ANNOTATIONS
The intermediate type system of Figure 4 is not algorithmic since it still contains non-analytic rules:

we neither know which decomposition in 𝑡𝑖 ’s to use when applying the [∨2-Int] rule, nor which

𝑡 𝑗 ’s to choose when applying the [→I-Int] rule. To solve this problem, we enrich our intermediate

language with annotations that determine the types to use when typing a bind expression or a

𝜆-abstraction. It is then straightforward to define an algorithmic system (i.e., a syntax-directed

system composed only of analytic rules) for these enriched expressions and prove it to be sound

and complete with respect to the system of the intermediate language.

Annotations. In a nutshell, we consider expressions of the form 𝜆𝑥 :𝐴.𝒆 and bind𝑥 :𝐴 = 𝒆 in 𝒆 , where
𝐴 ranges over annotations of the form {Γ⊲𝑡, . . . ,Γ⊲𝑡}. Our annotations are, thus, finite relations
between type environments and types. An annotation of the form 𝑥 : {Γ𝑖⊲𝑡𝑖 }𝑖∈𝐼 indicates that under
the hypothesis Γ𝑖 the variable 𝑥 is assumed to be of type 𝑡𝑖 .

We write {𝑡1, . . . ,𝑡𝑛} for {∅⊲𝑡1, . . . ,∅⊲𝑡𝑛} and just 𝑡 for {∅⊲𝑡}. So for instance we write 𝜆𝑥 :𝑡 .𝒆 for
𝜆𝑥 :{∅⊲𝑡}.𝒆 while, say, bind𝑥 :{𝑡1, . . . ,𝑡𝑛} = 𝒆1 in 𝒆2 stands for bind𝑥 :{∅⊲𝑡1, . . . ,∅⊲𝑡𝑛} = 𝒆1 in 𝒆2 .

In this system terms encode derivations. Terms with simple annotations such as 𝜆𝑥 :𝑡 .𝒆 represent
derivations as they can be found in the simply-typed 𝜆-calculus: in other terms, to type the function

the system must look for a type 𝑠 such that 𝜆𝑥 :𝑡 .𝒆 is of type 𝑡 → 𝑠 .

When annotations are sets of types, such as in 𝜆𝑥 :{𝑡1, . . . , 𝑡𝑛}.𝒆, then the term represents a

derivation for an intersection type, such as the derivations that can be found in semantic subtyping

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

13:16 Giuseppe Castagna, Mickaël Laurent, Kim Nguyễn, and Matthew Lutze

calculi: in other terms, to type the function the system look for a set of types {𝑠1, . . . , 𝑠𝑛} such that

𝜆𝑥 :{𝑡1, . . . , 𝑡𝑛}.𝒆 has type
∧𝑛
𝑖=1
𝑡𝑖 → 𝑠𝑖 .

Finally, the reason why we need the more complex annotations of the form {Γ1⊲𝑡1, . . . , Γ1⊲𝑡1} can
be shown by an example. Consider 𝜆𝑥.((𝜆𝑦.(𝑥,𝑦))𝑥): in the declarative system we can deduce for it

the type (Int→Int×Int) ∧ (Bool→Bool×Bool). We must find the annotations 𝐴1 and 𝐴2 such that

𝜆𝑥 :𝐴1.((𝜆𝑦:𝐴2.(𝑥,𝑦))𝑥) has type (Int→Int×Int) ∧ (Bool→Bool×Bool). Clearly 𝐴1 = {Int,Bool}.
However, the typing of the parameter 𝑦 depends on the typing of 𝑥 : when 𝑥 :Int then 𝑦 must have

type Int (the type of 𝑦 must be larger than the one of 𝑥—the argument it will be bound to—, but also

smaller than Int so as to deduce that 𝜆𝑦.(𝑥,𝑦) returns a pair in Int×Int). Likewise when 𝑥 :Bool, then
𝑦 must be of type Bool, too. Therefore, we use as𝐴2 the annotation {𝑥 :Int⊲Int, 𝑥 :Bool⊲Bool}, which
precisely states that when 𝑥 :Int, then we must suppose that 𝑦 (the variable annotated by 𝐴2) is of

type Int, and likewise for Bool. Using the typing rules we describe in the next section we are then

able to deduce that 𝜆𝑥 :{Int,Bool}.(𝜆𝑦:{𝑥 :Int⊲Int, 𝑥 :Bool⊲Bool}.(𝑥,𝑦))𝑥 has type (Int→Int×Int) ∧
(Bool→Bool×Bool). Because of this last form of annotations, these annotations are strictly more

expressive than those of the functional core of CDuce presented in [Frisch et al. 2008]: even if

CDuce is a calculus with explicit full annotations, it is not possible to decorate 𝜆𝑥.((𝜆𝑦.(𝑥,𝑦))𝑥)
with a (CDuce) annotation so that the resulting term has type (Int→Int×Int) ∧ (Bool→Bool×Bool):
CDuce annotations are exactly as expressive as our {∅⊲𝑡1, . . . ,∅⊲𝑡𝑛} annotations.
In the preceding paragraphs we explained how our annotations work by using as examples

expressions of the intermediate language. However, recall that our ultimate goal is to type the

expressions of the source language we introduced in Section 2.2 and, as we saw in the previous

section, for that one does not need to consider the whole intermediate language: the MSC-forms

suffice. This is why in the rest of this section we add annotations only to MSC-forms: the definitions

and results of this section can be easily extended to all expressions of the intermediate language.

4.1 Algorithmic Expressions and Typing Rules
Formally, we consider the following grammar of explicitly annotated MSC-forms (or algorithmic

expressions)—i.e., MSC-forms as per Definition 3.3 enriched with annotations—ranged over by the

meta-variable 𝜅 (to distinguish them from the unannotated MSC-forms ranged over by 𝜿).

Annotations 𝐴 ::= {Γ⊲𝑡, . . . ,Γ⊲𝑡}
Algorithmic Atoms 𝑎 ::= 𝑐 | 𝜆𝑥 :𝐴.𝜅 | (𝑥, 𝑥) | 𝑥𝑥 | (𝑥∈𝜏) ?𝑥 :𝑥 | 𝜋𝑖𝑥
Algorithmic Expressions 𝜅 ::= 𝑥 | bind𝑥 :𝐴 =𝑎 in𝜅

(8)

These enrich the syntax of MSC-forms by inserting an annotation wherever a variable is introduced

by a binder (either a “𝜆” or a “bind”). We use 𝜑 to range over either atoms 𝑎 or expressions 𝜅.

For the algorithmic typing rules we need to define the following pre-order on type environments:

Definition 4.1 (Envinronment subsumption). Given two type environments Γ and Γ′, we say
that Γ′ subsumes Γ, written, Γ ≤ Γ′ if and only if ∀𝑥 ∈ dom(Γ′) we have Γ(𝑥) ≤ Γ′(𝑥).

The algorithmic type system is then given by the rules for abstractions and binding in Figure 5

plus all the other rules of the intermediate type system (specialized for MSC-forms, i.e., where every

subexpression is a variable: cf. Figure 4 and Appendix A.9). The introduction of intersections is

driven by the annotation {Γ𝑖⊲𝑡𝑖 }𝑖∈𝐼 of the 𝜆-abstraction: for every 𝑡 𝑗 whose hypotheses Γ𝑗 subsume

the current environment Γ, the system checks whether the function has type 𝑡 𝑗 → 𝑠 𝑗 , that is, under

the hypothesis that 𝑥 : 𝑡 𝑗 it tries to infer a type 𝑠 𝑗 for the body 𝜅 of the function; the condition

𝐽 ≠ ∅ ensures that at least one Γ𝑖 subsumes Γ. Bind expressions are still handled by the two rules

[∨1-Int] and [∨2-Int]. The first one, [∨1-Int], is for the case when the variable 𝑥 is not reachable

in 𝜅. It is used when the current environment Γ is not subsumed by any of the environments in

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

On Type-Cases, Union Elimination, and Occurrence Typing 13:17

[→I-Alg]

(∀𝑗 ∈ 𝐽) Γ, 𝑥 : 𝑡 𝑗 ⊢A 𝜅 : 𝑠 𝑗

Γ ⊢A 𝜆𝑥 :{Γ𝑖⊲𝑡𝑖 }𝑖∈𝐼 .𝜅 :

∧
𝑗 ∈𝐽 𝑡 𝑗 → 𝑠 𝑗

𝐽 = {𝑖 ∈ 𝐼 | Γ ≤ Γ𝑖 } ≠ ∅

[∨1-Alg]

Γ ⊢A 𝜅 : 𝑠

Γ ⊢A bind𝑥 :{Γ𝑖⊲𝑡𝑖 }𝑖∈𝐼 =𝑎 in𝜅 : 𝑠

𝑥 ∉ dom(Γ)
{𝑖 ∈ 𝐼 | Γ ≤ Γ𝑖 } = ∅

[∨2-Alg]

Γ ⊢A 𝑎 :

∨
𝑗 ∈𝐽 𝑡 𝑗 (∀𝑗 ∈ 𝐽) Γ, 𝑥 : 𝑡 𝑗 ⊢A 𝜅 : 𝑠 𝑗

Γ ⊢A bind𝑥 :{Γ𝑖⊲𝑡𝑖 }𝑖∈𝐼 =𝑎 in𝜅 :

∨
𝑗 ∈𝐽 𝑠 𝑗

𝐽 = {𝑖 ∈ 𝐼 | Γ ≤ Γ𝑖 } ≠ ∅

Fig. 5. Algorithmic typing rules

the annotation of 𝑥 . The other, [∨2-Alg], is the normal case for [∨+] where the bind-expression
determines both the variable 𝑥 and the atom 𝑎 to be substituted for it, and where its annotation

determines how to split the type of 𝑎 into a union of types.

The first important property satisfied by the algorithmic type system is that it is syntax directed

and composed only by analytic rules (a simple visual check of the rules in Appendix A.9 suffices

to verify it). As such it describes a deterministic algorithm to infer the type of an algorithmic

expression. Furthermore, it is also decidable (this can be proved by a simple induction on the

structure of the term, by observing that the subtyping relation is decidable, and that the operators

used in the rules can be effectively computed: cf. Frisch et al. [2008, Section 6] and Appendix A.4).

The main interest of the algorithmic system is that a well-typed algorithmic term univocally

encodes a type derivation for a MSC-form and, in virtue of Corollary 3.6, it also encodes a particular

canonical derivation for a source language expression. The source language expression at issue

is the one obtained by erasing the annotations from our algorithmic term and then applying the

unwinding operation defined in Section 3.2. The annotation erasing operation, noted ⟨.⟩, is defined
as ⟨bind𝑥 :𝐴 =𝑎 in𝜅 ⟩ =

def bind𝑥 = ⟨𝑎⟩ in ⟨𝜅⟩ , ⟨𝜆𝑥 :𝐴.𝜅⟩ =
def

𝜆𝑥.⟨𝜅⟩, and as the identity otherwise. We

can now prove that the problem of typing an MSC-form is equivalent to the problem of decorating

it with some annotations that make it typable with the algorithmic type system. This is formally

stated by the theorems of soundness and completeness of the system for algorithmic expressions

(ranged over by 𝜅) with respect to the unannotated MSC-forms (ranged over by 𝜿):

Theorem 4.2 (Soundness). If Γ ⊢A 𝜅 : 𝑡 then Γ ⊢I ⟨𝜅⟩ : 𝑡

Theorem 4.3 (Completeness). If Γ ⊢I 𝜿 : 𝑡 , then ∃𝜅 such that ⟨𝜅⟩ = 𝜿 and Γ ⊢A 𝜅 : 𝑡 ′ ≤ 𝑡
Soundness states that if an algorithmic expression is well-typed, then removing its annota-

tions gives a well-typed MSC-form. Completeness states that every well-typed MSC-form can be

decorated with annotations so that it becomes a well-typed algorithmic expression.

By combining these theorems with the previous results on the intermediate language, we obtain

the soundness and completeness of the algorithmic system with respect to the source language.

Corollary 4.4 (Algorithmic soundness and completeness).

⊢A 𝜅 : 𝑡 ⇒ ⊢ ⌈⟨𝜅⟩⌉ : 𝑡 (soundness)

⊢ 𝑒 : 𝑡 ⇒ ∃𝜅 . ⊢A 𝜅 : 𝑡 ′ ≤ 𝑡 and ⌈⟨𝜅⟩⌉ ≡𝛼 𝑒 (completeness)

Notice that in the statement of completeness ⌈⟨𝜅⟩⌉ ≡𝛼 𝑒 is equivalent to writing ⟨𝜅⟩ = MSC(𝑒).
Combining this with the soundness result yields that for every closed declarative expression 𝑒 ,

if ⊢A 𝜅 : 𝑡 and ⟨𝜅⟩ = MSC(𝑒), then ⊢ 𝑒 : 𝑡 . All this gives us a procedure to check whether an

expression 𝑒 of the source language is well typed or not: produceMSC(𝑒) and look for a way to

annotate it so that it becomes a well-typed algorithmic expression 𝜅. If we find such annotations,

then the soundness property tells us that 𝑒 is well typed. If such annotations do not exist, then the

completeness property tells us that 𝑒 is not well-typed.

In the next section we describe a sound algorithm to search for such annotations.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

13:18 Giuseppe Castagna, Mickaël Laurent, Kim Nguyễn, and Matthew Lutze

5 ALGORITHM FOR RECONSTRUCTING ANNOTATIONS
We define an algorithm to reconstruct annotations for an MSC-form to make it become a well-typed

algorithmic expression. It starts by annotating all the bindings of the MSC-form by 1 (the weakest

possible annotation) and performs several passes to refine these annotations until it either obtains

a well-typed algorithmic expression or it fails.

At each pass the algorithm takes as input a type environment Γ, an algorithmic expression 𝜅,

and a type 𝑡 and checks whether 𝜅 can be given the type 𝑡 under the hypothesis Γ. The check
yields one of three possible results: either (𝑖) success with an expression 𝜅 ′ obtained from 𝜅 by

refining some annotations—meaning that it is possible to deduce from Γ the type 𝑡 for 𝜅 ′—, or (𝑖𝑖)
a failure—meaning that the algorithm cannot propose any better refinement of the annotations to

type the expression—, or (𝑖𝑖𝑖) a refined expression 𝜅 ′ and a set of type environments that refine

Γ—meaning that it is not yet possible to deduce 𝑡 for 𝜅 ′ under Γ and that the algorithm must try

further passes using the new type environments returned by this pass.

Formally, passes are defined by a deduction system whose judgments are of the form

Γ ⊢R 𝜑 : 𝑡 ⇒ (𝜑 ′,L), where L
denotes a possibly empty set of type environments, 𝑡 is a type,

and 𝜑 , 𝜑 ′ are either algorithmic atoms or algorithmic expressions as defined in (8). Γ, 𝜑 , and 𝑡
form the input of the pass while 𝜑 ′ and

L
are the output and they refine 𝜑 and Γ, respectively.

The reason why the output is a pair is because we want to refine the type of all the variables in

the input expression 𝜑 : the types of the variables that are free in 𝜑 are refined by providing new

environments that refine the input environment Γ, yielding
L
; the types of the variables that are

bound in 𝜑 are refined by refining their annotations in 𝜑 , yielding 𝜑 ′.
Given a judgment Γ ⊢R 𝜑 : 𝑡 ⇒ (𝜑 ′,L), an empty

L
means failure while if

L
is the singleton {Γ},

this means success. For instance, the rules for constants in the deduction system are:

[Const]

b𝑐 ≤ 𝑡
Γ ⊢R 𝑐 : 𝑡 ⇒ (𝑐, {Γ})

[ConstUntypable]

b𝑐 ≰ 𝑡

Γ ⊢R 𝑐 : 𝑡 ⇒ (𝑐, {})
The system succeeds in checking that a constant 𝑐 has a supertype of b𝑐 and fails otherwise. Notice
that the atom in the result is the same as in the input, since in a constant there is no annotation to

refine (this is true for all the rules for atoms excluding 𝜆-abstractions).

If a pass neither fails nor succeeds, then it proposes a refinement of the types of the variables

in the expression, refinement that is to submit to a further pass. This corresponds to a judgment

Γ ⊢R 𝜑 : 𝑡 ⇒ (𝜑 ′, {Γ1,, Γ𝑛}): for the variables that are bound in 𝜑 it proposes a refinement by

refining the annotations in 𝜑 yielding the new expression 𝜑 ′; for the variables that are free in 𝜑 , it
proposes a refinement of the environment Γ by proposing the refinements Γ1. . .Γ𝑛 . The type of a
variable is refined in two ways: either it can be restricted to match the usage of the variable or it

can be split when it is the union of simpler types (to determine a unique split of unions, the rules

use the disjunctive normal forms of [Frisch et al. 2008]: cf. Appendix B.1). For instance, if we try to

type the atom 𝜋1𝑥 and the current annotation/environment for 𝑥 is a type 𝑡 that does not contain

only pairs, then the algorithm proposes to refine the type of 𝑥 into 𝑡 ∧ (1×1); if the type 𝑡 is a union
of products such as (𝑠1×𝑠2) ∨ (𝑡1×𝑡2), then the algorithm suggests to split the type of 𝑥 into two

separate types (𝑠1×𝑠2) and (𝑡1×𝑡2). Both these refinements are done by the rules for projections:

[Proj1]

Γ(𝑥) ∧ (𝑡 × 1) ≃ ∨
𝑖∈𝐼 𝑡𝑖 × 𝑠𝑖

Γ ⊢R 𝜋1𝑥 : 𝑡 ⇒ (𝜋1𝑥, {Γ [𝑥 :=
∧
𝑡𝑖×𝑠𝑖]}𝑖∈𝐼)

[Proj2]

Γ(𝑥) ∧ (1 × 𝑡) ≃ ∨
𝑖∈𝐼 𝑡𝑖 × 𝑠𝑖

Γ ⊢R 𝜋2𝑥 : 𝑡 ⇒ (𝜋2𝑥, {Γ [𝑥 :=
∧
𝑡𝑖×𝑠𝑖]}𝑖∈𝐼)

where Γ [𝑥 :=
∧
𝑡] is the environment obtained by refining the binding of 𝑥 in Γ by intersecting it

with 𝑡 , that is, Γ [𝑥 :=
∧
𝑡] =

def (Γ ∖ {𝑥 ↦→ Γ(𝑥)}) ∪ {𝑥 ↦→ Γ(𝑥)∧𝑡} for 𝑥 ∈ dom(Γ). The rules force the
projections to have the checked type 𝑡 by intersecting the type of 𝑥 with (𝑡×1) or (1×𝑡), and split

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

On Type-Cases, Union Elimination, and Occurrence Typing 13:19

the resulting type into the different summands by proposing different refinements of the current

environment Γ. Again, the returned atom is the same as in the input, since there are no annotations

to refine in it. The inference for occurrence typing is performed by the rule for type-cases:

[Case]

Γ ⊢R (𝑥∈𝑠) ?𝑥1 :𝑥2 : 𝑡 ⇒ ((𝑥∈𝑠) ?𝑥1 :𝑥2, {Γ [𝑥 :=
∧
𝑠] [𝑥1 :=

∧
𝑡], Γ [𝑥 :=

∧ ¬𝑠] [𝑥2 :=
∧
𝑡]})

In order to analyze the test that 𝑥 has type 𝑠 , the rule [Case] splits the current type of 𝑥 by

intersecting it with 𝑠 and ¬𝑠 , a split that it proposes in the two refinements Γ [𝑥 :=
∧
𝑠] and Γ [𝑥 :=

∧ ¬𝑠]
given in the result of the conclusion. The first refinement corresponds to the selection of the “then”

branch, that is of 𝑥1. Since the rule requires the whole expression to be of type 𝑡 , then the first type

environment also refines the type of 𝑥1 with 𝑡 . Likewise for the second environment and 𝑥2. An

important though pretty hidden detail is that the notation for the refinement of type environments

handles the cases in which two or more variables coincide: for instance if 𝑥 = 𝑥1, then the rule

[Case] will refine Γ(𝑥) in the first refinement by intersecting it both with 𝑠 and with 𝑡 . In all the

rules presented in this section we suppose that the intersections occurring in them are not empty:

the cases for empty types are handled by other rules, omitted here (see Appendix B.3).

The reason why we may split the type of a variable 𝑥 when its type is a union or when we test it

dynamically can be understood by considering the typing rule [∨2-Alg] in Figure 5: we are trying to

reconstruct the annotation for 𝑥 in the conclusion of [∨2-Alg] and thus determine the environments

compatible with the current one that should be used in this annotation. However, [∨2-Alg] is

not the only rule that splits the derivation in sub-derivations with different environments: also

[→I-Alg] does it, with the difference that it does not split a union or a tested case, but it splits

an intersection of arrows. We encounter this split of intersections in the rules for applications, in

particular in [AppR]. These rules are defined as follows (we present a simplified version):

[AppR]

Γ(𝑥1) ≃
∧
𝑖∈𝐼 (𝑠𝑖 → 𝑡𝑖)

Γ ⊢R 𝑥1𝑥2 : 𝑡 ⇒ (𝑥1𝑥2, {Γ [𝑥1 :=
∧ ((𝑠𝑖 ∧ Γ(𝑥2)) → 𝑡)] [𝑥2 :=

∧
𝑠𝑖]}𝑖∈𝐼)

[AppL]

Γ(𝑥1) ∧ (0→ 1) ≃ ∨
𝑖∈𝐼 𝑠𝑖

Γ ⊢R 𝑥1𝑥2 : 𝑡 ⇒ (𝑥1𝑥2, {Γ [𝑥1 :=
∧
𝑠𝑖]}𝑖∈𝐼)

The type of a functional expression is in general a union of intersections of arrows (cf. Frisch et al.

[2008]). When it is a union then, as for any other algorithmic atom, the system splits this union into

distinct type environments, here in the rule [AppL]. Then each summand (which is an intersection

of arrows) is separately checked by the rule [AppR] which deserves a detailed explanation. The

hypothesis about 𝑥1 is that it is bound to a function whose type is an intersection of arrows. For

each arrow 𝑠𝑖 → 𝑡𝑖 in this intersection, the rule proposes a refined environment Γ𝑖 in which both

the type of 𝑥1 and the type of 𝑥2 are refined: the first by intersecting it with (𝑠𝑖 ∧ Γ(𝑥2)) → 𝑡 ,

to ensure that the application uses the right domain and will yield a result not only in 𝑡𝑖 (since

Γ(𝑥1) ≤ 𝑠𝑖→𝑡𝑖), but also in 𝑡 (and, thus, in 𝑡𝑖∧𝑡); the second by intersecting it with 𝑠𝑖 since the

argument must be in the domain of 𝑥1. The intuition is that these different Γ𝑖 correspond to the

different typing checks performed by the rule [→I-Alg] to type the body of the function bound to

𝑥1. It is important to stress that, as in previous cases, an environment Γ𝑖 is added to the result only

if Γ(𝑥2)∧𝑠𝑖 is not empty since we want to discard from the type of 𝑥1 the arrows whose domain is

not compatible with the current typing of the argument. Likewise, if the intersection in [AppL] is

empty, then this produces an empty set of refinements, meaning failure since we are applying to

some argument an expression that is not a function.

All the rules we have seen so far are actually axioms (we only considered atoms in which the only

subexpressions are variables) in which the returned expression is the same as in the input (there are

no annotations to refine). The bulk of the inference work is done in the rules for binding expressions

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

13:20 Giuseppe Castagna, Mickaël Laurent, Kim Nguyễn, and Matthew Lutze

[BindArgSkip]

(Γ⊲𝐴) = {} Γ ⊢R 𝜅 : 𝑡 ⇒ (𝜅 ′,L)
Γ ⊢R bind𝑥 :𝐴 =𝑎 in𝜅 : 𝑡 ⇒ (bind𝑥 :{} =𝑎 in𝜅 ′ ,L)

[BindArgUntyp]

Γ ⊢R 𝑎 :

∨(Γ⊲𝐴) ⇒ (𝑎′, {}) Γ ⊢R 𝜅 : 𝑡 ⇒ (𝜅 ′,L)
Γ ⊢R bind𝑥 :𝐴 =𝑎 in𝜅 : 𝑡 ⇒ (bind𝑥 :{} =𝑎′ in𝜅 ′ ,L)

[BindArgRefEnv]

Γ ⊢R 𝑎 :

∨(Γ⊲𝐴) ⇒ (𝑎′,L)
Γ ⊢R bind𝑥 :𝐴 =𝑎 in𝜅 : 𝑡 ⇒ (bind𝑥 :𝐴 =𝑎′ in𝜅 ,

L ∪ {Γ})
(L ≠ {Γ})

[BindArgRefAnns]

Γ ⊢R 𝑎 :

∨(Γ⊲𝐴) ⇒ (𝑎′, {Γ}) Γ ⊢R bind𝑥 :𝐴 =𝑎′ in𝜅 : 𝑡 ⇒ (𝜅 ′,L)
Γ ⊢R bind𝑥 :𝐴 =𝑎 in𝜅 : 𝑡 ⇒ (𝜅 ′,L)

(𝑎′ ≠ 𝑎)

[Bind]

Γ ⊢R 𝑎 :

∨(Γ⊲𝐴) ⇒ (𝑎, {Γ}) Γ ⊢A 𝑎 : 𝑠 {𝑠𝑖 }𝑖∈𝐼 = partition({𝑠 ∧ 𝑢 | 𝑢 ∈ (Γ⊲𝐴)})
(∀𝑖∈𝐼) Γ, (𝑥 : 𝑠𝑖) ⊢R 𝜅 : 𝑡 ⇒ (𝜅𝑖 ,

L
𝑖)

L′
𝑖 = propagate𝑥,𝑎,𝑠𝑖 (

L
𝑖) (𝐴𝑖 ,

L′′
𝑖) = extract𝑥 (

L′
𝑖)

Γ ⊢R bind𝑥 :𝐴 =𝑎 in𝜅 : 𝑡 ⇒ (bind𝑥 :

⋃
𝑖∈𝐼 𝐴𝑖 =𝑎

′ in merge({𝜅𝑖 }𝑖∈𝐼) ,
⋃
𝑖∈𝐼

L′′
𝑖)

Fig. 6. Reconstruction rules for bind-expressions

(and in those for 𝜆-abstractions that are conceptually similar to those for bindings). The complete

set of rules for bind-expressions are presented in Figure 6 in their priority order: a rule can be

applied only if the previous rules cannot (we just did two slight simplifications in the first and third

rule: cf. Appendix B.3). These rules use some auxiliary definitions. We note by (Γ⊲𝐴) the set of the
types of the annotation 𝐴 that are compatible with Γ, that is, (Γ⊲𝐴) =

def {𝑡 | Γ′⊲𝑡 ∈ 𝐴 and Γ ≤ Γ′},
and by

∨(Γ⊲𝐴) the union of these types, that is,

∨(Γ⊲𝐴) =
def

∨
𝑡 ∈(Γ⊲𝐴) 𝑡 .

To check that the bind-expression bind𝑥 :𝐴 =𝑎 in𝜅 has type 𝑡 under the hypotheses Γ, the
system first focuses on the argument 𝑎 of the bind-expression using the first four rules in Figure 6.

If no type in 𝐴 is compatible with the current environment Γ (i.e., (Γ⊲𝐴) is empty), then the bind

is skipped and the system tries to type the body 𝜅 of the expression without using 𝑥 : no type

assumption for 𝑥 is added to Γ and the annotation is emptied (rule [BindArgSkip]). If instead

(Γ⊲𝐴) is not empty, then the argument 𝑎 must have a type smaller than the union of all types in

(Γ⊲𝐴). Thus the system tries to check under the current hypothesis Γ whether 𝑎 can be given the

type

∨(Γ⊲𝐴). The result of this check is a pair (𝑎′,L) according to which we can distinguish four

different outcomes, corresponding to the last four rules. (1) the check failed, that is, it returned

an empty

L
(rule [BindArgUntyp]): then this binding must be skipped and we proceed as for

rule [BindArgSkip]. (2) the check did not succeed but it proposed a set of refinements for Γ (and,

possibly, for 𝑎), that is,
L
≠ {Γ} ([BindArgRefEnv]): then before attacking the body 𝜅 of the bind

expression, the system proposes these refinements for the whole bind-expression updated with

the refined argument 𝑎′; furthermore, since the first premise of the rules does not guarantee 𝑎 to

be well-typed, then the current environment Γ is also returned for the cases in which this should

fail. (3) the test succeeded (i.e.,

L
= {Γ}) and proposed a refinement 𝑎′ of 𝑎 different from it (i.e.,

𝑎 ≠ 𝑎′, rule [BindArgRefAnns]): since we do not know whether 𝑎′ is the best possible refinement

for the argument, yet, then before attacking the body 𝜅 the system retries to check the expression

using the new refinement 𝑎′ for argument. Finally, (4) the check for the argument succeeded (i.e.,L
= {Γ}) and it proposed its best refinement for the argument (i.e., 𝑎 = 𝑎′): then the system can

attack the body 𝜅 of the bind-expression, which is done in the rule [Bind].

The [Bind] rule is, by far, the most complex rule of our system and needs several auxiliary

definitions. First, [Bind] uses the algorithmic system to deduce the best type 𝑠 for the argument

𝑎, since this can be a strict subtype of

∨(Γ⊲𝐴). Then it uses this type 𝑠 to refine the types in the

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

On Type-Cases, Union Elimination, and Occurrence Typing 13:21

annotation 𝐴 that are compatible with the current Γ, yielding the set {𝑠 ∧ 𝑢 | 𝑢 ∈ (Γ⊲𝐴)}. The
function partition is applied to this set: this splits the types in the set so that they are pairwise

disjoint (actually, two types with a non-empty intersection are split in three types: their intersection

and their two differences).
6
This yields a set of types {𝑠𝑖 }𝑖∈𝐼 which are the summands into which

we want to split the type of the argument for the union rule: indeed we have Γ ⊢A 𝑎 : 𝑠 =
∨
𝑖∈𝐼 𝑠𝑖 .

Therefore the next step it to check that for each 𝑖 ∈ 𝐼 the body 𝜅 of the bind-expression has type 𝑡

under the hypothesis that 𝑥 has type 𝑠𝑖 . This gives a set of result pairs {(𝜅 ′,
L
𝑖)}𝑖∈𝐼 . We must extract

from this set the appropriate information to elaborate the result for the whole bind-expression.

Using the various 𝜅𝑖 ’s is easy: all these are copies of 𝜅 with refined annotations, and we merge

all of them simply by unioning the corresponding annotations: this is what the merge function
occurring in the conclusion of the rule does. Using the various

L
𝑖 ’s requires more work, since the

type environments in

L
𝑖 contain hypotheses about the variable 𝑥 defined in the examined bind-

expression. In particular, if the type for 𝑥 has been refined, then we have to reflect this refinement to

the free variable of 𝑎, since 𝑎 is bound to 𝑥 . Consider a Γ′ in
L
𝑖 for some 𝑖 . If the type of 𝑥 has been

refined in Γ′, that is, if Γ′(𝑥) ≠ 𝑠𝑖 , then we have to refine in Γ′ also the free variables of 𝑎. For instance
imagine that 𝑎 is (𝑥1, 𝑥2), 𝑠𝑖 = 1×1, and Γ′(𝑥) = (Int×Int) ∨ (Bool × String). Since Γ′(𝑥) is strictly
smaller than 𝑠𝑖 , thenwe have to refine the types of the variables in𝑎 by proposing two refinements for

Γ′, namely, Γ′[𝑥1 :=
∧ Int] [𝑥2 :=

∧ Int] and Γ′[𝑥1 :=
∧ Bool] [𝑥2 :=

∧ String]. This is what propagate𝑥,𝑎,𝑠𝑖
does: it propagates to the types of the free variables of 𝑎 any refinement of 𝑠𝑖 specified in the typing

of 𝑥 . This yields a new set

L′
𝑖 whose environments refine those in

L
𝑖 . Once we obtained this newL′

𝑖 we can now extract the hypotheses about 𝑥 to create a new annotation 𝐴𝑖 for the binding and

pass the rest of the environment as a refinement for the whole bind expression. This is done by the

function extract𝑥 defined as follows: extract𝑥 (
L) =

def ({(Γ∖𝑥) ⊲ Γ(𝑥) | Γ ∈ L}, {Γ∖𝑥 | Γ ∈ L})
where Γ∖𝑥 =

def Γ ∖ {𝑥 ↦→ Γ(𝑥)} for 𝑥 ∈ dom(Γ). Finally, the result of the rule is formed by a pair

obtained by unioning all the annotations 𝐴𝑖 and all the refinements

L′′
𝑖 obtained for each 𝑖 ∈ 𝐼 .

We conclude the presentation of our system by explaining a simplified version of the main rule

for checking 𝜆-abstractions which is applied when the type 𝑡 to check is an intersection of arrows:

[Abs]

{𝑠𝑖 }𝑖∈𝐼 = partition((Γ⊲𝐴) ∪ {𝑠 𝑗 | 𝑗 ∈ 𝐽 })
(∀𝑖 ∈ 𝐼) Γ, (𝑥 : 𝑠𝑖) ⊢R 𝜅 : 𝑡 ◦ 𝑠𝑖 ⇒ (𝜅𝑖 ,

L
𝑖) (𝐴𝑖 ,

L′
𝑖) = extract𝑥 (

L
𝑖)

Γ ⊢R 𝜆𝑥 :𝐴.𝜅 : 𝑡 ⇒ (𝜆𝑥 :

⋃
𝑖∈𝐼 𝐴𝑖 . merge({𝜅𝑖 }𝑖∈𝐼),

⋃
𝑖∈𝐼

L′
𝑖)

𝑡 ≃ ∧
𝑗 ∈𝐽 (𝑠 𝑗 → 𝑡 𝑗)

According to [→I-Alg], we must find how to split the domain of the function into some domain

types, that we assign to the parameter of the function to check its body. This will yield the

intersection type of the function. To determine this set of domains, we take those of the type 𝑡

we are checking (i.e., {𝑠 𝑗 | 𝑗 ∈ 𝐽 }, since 𝑡 ≃
∧
𝑗 ∈𝐽 (𝑠 𝑗→𝑡 𝑗)) and we add them to those we already

know, which are specified in the annotation 𝐴 of the parameter (i.e., (Γ⊲𝐴)). Then, as for [Bind],
we partition this set yielding the set of domains {𝑠𝑖 }𝑖∈𝐼 . As customary for each 𝑖 we check under

the hypothesis 𝑥 : 𝑠𝑖 that the body has the expected type, that is, the type of the function 𝑡 applied

to the type of the parameter 𝑠𝑖 , namely, 𝑡 ◦ 𝑠𝑖 . This yields a set of result pairs {(𝜅𝑖 ,
L
𝑖)}𝑖∈𝐼 that we

use in the same way as we did in [Bind] to form the final result. The only difference is that we

do not need any further refinements for the

L
𝑖 ’s, since, contrary to [Bind], there is no argument

whose variables need to be refined.

All the remaining rules (pairs, variables, and the rules for the special cases of unions and empty

types) are mostly straightforward and can be found in Appendix B with a detailed explanation and

the formal definition of all the auxiliary functions used therein. All that remains to do is to define

6
Formally, partition({𝑡𝑖 }𝑖∈𝐼) is the smallest (in term of cardinality) non-empty set of types {𝑠 𝑗 } 𝑗∈𝐽 such that (𝑖)∨
𝑗∈𝐽 𝑠 𝑗 ≃

∨
𝑖∈𝐼 𝑡𝑖 , (𝑖𝑖) ∀𝑗 ∈ 𝐽 . ∀𝑗 ′ ∈ 𝐽 . 𝑗 ≠ 𝑗 ′ ⇒ 𝑠 𝑗 ∧ 𝑠′𝑗 ≃ 0, and (𝑖𝑖𝑖) ∀𝑗 ∈ 𝐽 . ∀𝑖 ∈ 𝐼 . 𝑠 𝑗 ≤ 𝑡𝑖 or 𝑠 𝑗 ∧ 𝑡𝑖 ≃ 0

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

13:22 Giuseppe Castagna, Mickaël Laurent, Kim Nguyễn, and Matthew Lutze

𝑎 : ((Int→(Int∨Bool)) ∨ (Int× (Int∨Bool)))
𝑛 : Int

Fig. 7. Types of the atoms 𝑎 and 𝑛.

1 (𝑎 ∈ (Int×Int)) ? 𝜋1𝑎 == 𝜋2𝑎
2 :(𝑎 ∈ (1×1)) ? 𝜋2𝑎
3 :((𝑎 𝑛) ∈ Int) ? (𝑎 𝑛) < 42
4 :(𝑎 𝑛)

Fig. 8. Expression 𝑒◦ of the source language.

0 bind 𝑥0 : 𝐴0 = 𝑎 in
1 bind 𝑥1 : 𝐴1 = 𝑛 in
2 bind 𝑥2 : 𝐴2 = 𝜋1𝑥0 in
3 bind 𝑥3 : 𝐴3 = 𝜋2𝑥0 in
4 bind 𝑥4 : 𝐴4 = 𝑥2 == 𝑥3 in
5 bind 𝑥5 : 𝐴5 = 𝑥0 𝑥1 in
6 bind 𝑥6 : 𝐴6 = 𝑥5 < 42 in
7 bind 𝑥7 : 𝐴7 = (𝑥5 ∈ Int) ?𝑥6:𝑥5 in
8 bind 𝑥8 : 𝐴8 = (𝑥0 ∈ 1×1) ?𝑥3:𝑥7 in
9 bind 𝑥9 : 𝐴9 = (𝑥0 ∈ Int×Int) ?𝑥4:𝑥8 in 𝑥9

Fig. 9. MSC-form of the expression 𝑒◦.

the result of the inference algorithm as the fixpoint of the transformation defined by that system.

Formally, let 𝜅 be a closed MSC-form, we define the annotation reconstruction algorithm R as:

R(𝜅) =

𝜅 if ∅ ⊢R 𝜅 : 1⇒ (𝜅, {∅})
R(𝜅 ′) if ∅ ⊢R 𝜅 : 1⇒ (𝜅 ′, {∅}) and 𝜅 ≠ 𝜅 ′

Fail if ∅ ⊢R 𝜅 : 1⇒ (𝜅 ′, {})

The reconstruction algorithm is sound:

Theorem 5.1 (Soundness). If 𝜅 is a closed MSC-form and R(𝜅) = 𝜅 ′, then ∅ ⊢A 𝜅 ′ : 𝑡 for some 𝑡 .

Notice that if the algorithm does not fail, then ⌈⟨R(𝜅)⟩⌉ = ⌈⟨𝜅⟩⌉. This, together with Corollary 4.4,

yields a sound procedure to type an expression 𝑒 of the source language. Let 𝜅 be the algorithmic

expression obtained by adding the annotation {∅⊲1} everywhere in MSC(𝑒). If R(𝜅) does not
fail, then ∅ ⊢A R(𝜅) : 𝑡 . Since ⌈⟨R(𝜅)⟩⌉ = ⌈⟨𝜅⟩⌉ = ⌈MSC(𝑒)⌉ ≡𝛼 𝑒 , then by the soundness part of

Corollary 4.4 we can conclude ∅ ⊢ 𝑒 : 𝑡 . Notice also that the algorithm works for initial annotations

different from 1, too. In particular, soundness holds also for intermediate terms whose 𝜆-abstractions

are explicitly annotated as in 𝜆𝑥 :𝐴.𝒆: if it succeeds, the algorithm will refine the term so that its

domain is a subtype of

∨(Γ⊲𝐴). This means that we have for free a typing algorithm for the source

language (5) of Section 2.2 extended with explicitly annotated functions of the form 𝜆𝑥 :𝐴.𝑒 . This is

why in our prototype, presented in next section, function parameters may be optionally annotated.
7

Finally, we conjecture that the algorithm terminates, that is, that R(𝜅) is defined for every closed

MSC-form 𝜅, but this result is difficult to prove because the rule [AppR] creates new arrow types.

Example. We illustrate on a complete example the behaviour of our inference algorithm. We type

the source language expression 𝑒◦ given in Figure 8 in which 𝑛 and 𝑎 are atomic expressions (whose

definitions we omit) whose types are given in Figure 7. The MSC-form of 𝑒◦ is given in Figure 9.

Notice that the various occurrences of 𝜋1𝑎 and 𝑎 𝑛 are shared, using 𝑥2 and 𝑥5 respectively. We

describe the iterations of Algorithm R which deduces for 𝑒◦ the type Bool. In what follows, we call

𝑡𝑎 the original type of 𝑎 given in Figure 8. We start with 𝐴0 = 𝑡𝑎 , 𝐴1 = Int, and 𝐴𝑖 = 1 for 𝑖 = 2..9.

First iteration.

→ bind 𝑥0 . . . , Γ = ∅, 𝐴0 = {𝑡𝑎}: Rule [Bind] on the only type in the annotation 𝐴0 (we assume

nothing is learned while typing 𝑎);

→ bind 𝑥1 . . . , Γ = {𝑥0 : 𝑡𝑎}, 𝐴1 = {Int}: Rule [Bind] on the only type in the annotation 𝐴1;

→ bind 𝑥2 . . . , Γ = {𝑥0 : 𝑡𝑎 , 𝑥1 : Int}, 𝐴2 = {1}: Rule [BindArgRefEnv] triggers recursively
rule [Proj1] to type 𝜋1 𝑥0. It returns the singleton set of environments:L

= { {𝑥0 : (Int × (Int∨Bool)) , 𝑥1 : Int} }.
7
In the implementation we forbid the annotations written by the user to be refined, so that the domain of 𝜆𝑥 :𝐴.𝑒 will be

exactly

∨(Γ⊲𝐴) . In this way the system deduces for 𝜆𝑥.(𝑥 + 1) the type Int→Int but rejects 𝜆𝑥 :1.(𝑥 + 1) as ill-typed.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

On Type-Cases, Union Elimination, and Occurrence Typing 13:23

← bind 𝑥2 . . .: Rule [BindArgRefEnv] returns the following set containing two environmentsL
0 = { {𝑥0 : (Int × (Int∨Bool)), 𝑥1 : Int} , {𝑥0 : 𝑡𝑎, 𝑥1 : Int}} }.

Notice that the rest of the program is ignored and

L
0 is propagated upward.

← bind 𝑥1 . . .: Rule [Bind] returns. Here since nothing new is learned about the type of 𝑥1

(functions propagate and extract behave as identities),

L
0 is propagated upward.

← bind 𝑥0 . . . : Rule [Bind] returns. Here functions propagate and extract create the new

annotation for 𝑥0 that is 𝐴
′
0
= {𝑡𝑎, (Int × (Int∨Bool))}

At this point a new annotation has been inferred (i.e., 𝐴′
0
), so Algorithm R restarts.

Second iteration.

→ bind 𝑥0 . . . , Γ = ∅, 𝐴0 = {(Int × (Int∨Bool)) , 𝑡𝑎}: Rule [Bind] on the two types in 𝐴0. Here

partition splits the annotation into Int × (Int∨Bool) and 𝑡𝑎 ∖ (Int × (Int∨Bool)) ≃ Int→
(Int∨Bool). The rule tries both types for 𝑥0 in turn. We focus first on Int × (Int∨Bool).

→ bind 𝑥1 . . . , Γ = {𝑥0 : Int × (Int∨Bool)}, 𝐴1 = {Int}: Rule [Bind] on the only type of the an-

notation 𝐴1; (the following cases from bind 𝑥2 to bind 𝑥4 are similar and omitted);

→ bind 𝑥5, Γ = {𝑥4 : Bool, . . .}: Rule [BindArgUntyp] since 𝑥0 does not have a function type;

→ bind 𝑥6 and bind 𝑥7, Γ = {𝑥4 : Bool, . . .}: Rule [BindArgUntyp] since 𝑥5 ∉ dom(Γ)
→ bind 𝑥8 . . . , Γ = {𝑥4 : Bool, . . .}: Rule [Bind] recursively calls [Case]. Here since, the type of

𝑥0 is completely contained in 1×1, the case rule only returns the original Γ (cf. the definition

of [_ :=
∧
_]): no new information is learned; the rest of the MSC-form is examined.

→ bind 𝑥9 . . . , Γ = {𝑥8 : (Int∨Bool), . . .}: Rule [BindArgRefEnv] recursively calls [Case] rule.

Here, however, the type of 𝑥0 is not a subtype of the tested type, this rule therefore returns a

singleton with a refined environment

L
= {Γ{[𝑥0 :=

∧ Int×Int]}
← bind 𝑥9 . . .: Rule [BindArgRefEnv] returns the original environment and a refined one for 𝑥0.

The typing does not continue further and returns upward.

← bind 𝑥0 . . . like in the previous iteration the annotation for 𝑥0 comes back to its binder, yielding

a new annotation : 𝐴′′
0
= {𝑡𝑎, (Int × (Int∨Bool))), Int×Int}

At the third iteration, partition() used in [Bind] on the “bind 𝑥0” expression splits 𝐴′′
0
into

three types : Int×Int, Int×Bool, and Int→(Int∨Bool). For both product types, the typing suc-

ceeds till the end (each time skipping the lines 5–7 where 𝑥0 is used as a function). As for

the functional annotation, it is almost straightforward. One caveat is in the typing of 𝑥6: since

< : Int→Int→Bool, the application 𝑥5 < 42 introduces a new refinement for 𝑥5 which, at this

point, has type Int∨Bool (the return type of 𝑥0). The algorithm propagates both types to 𝐴5

and the rest of the program is typed twice, under both hypotheses. Notice that both succeed

since, in the case where 𝑥5 has type Bool, 𝑥6 only occurs in an unreachable branch of a type

case. The final MSC-form has annotations 𝐴0={Int×Int, Int×Bool, Int→(Int∨Bool)}, 𝐴1=𝐴2=Int,
𝐴3={𝑥0:Int×Int⊲Int, 𝑥0:Int×Bool⊲Bool}, 𝐴5={𝑥0:Int→(Int∨Bool)⊲Int, 𝑥0:Int→(Int∨Bool)⊲Bool},
Bool guarded by the active environments for the others. For this term ⊢A infers the type Bool.

6 IMPLEMENTATION
We have implemented Algorithm R in OCaml, using CDuce [CDuce] as a library to provide set-

theoretic types and semantic subtyping. The prototype amounts to 3500 lines of OCaml code

and features several extensions such as let bindings and records (both formalised in Appendix C)

and annotations of function parameters (see Footnote 7). The transformation of terms in their

MSC-form is similar to the locally nameless approach ([Charguéraud 2012]). Expressions from the

source language are transformed so that bound variables are represented using De Bruijn indices,

while free variables are represented with symbolic names. While performing this transformation,

hash-consing is used to identify structurally equal subterms. We give in Table 1 the code of

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

13:24 Giuseppe Castagna, Mickaël Laurent, Kim Nguyễn, and Matthew Lutze

Table 1. Types inferred by the implementation (times are in ms)

Code Inferred type MSC Inf.

1 let is_int = fun x ->
if x is Int then true else false

let is_bool = fun x ->
if x is Bool then true else false

(Int→ True) ∧ (¬Int→ False)

(Bool→ True) ∧ (¬Bool→ False)

0.02

0.02

0.22

0.21

2 type Falsy = False | "" | 0
type Truthy = ~Falsy

let not_ = fun x ->
if x is Truthy then false else true

let to_Bool = fun x -> not_ (not_ x)

let and_ = fun x -> fun y ->
if x is Truthy then to_Bool y else false

let or_ = fun x -> fun y ->
not_ (and_ (not_ x) (not_ y))

(Truthy→ False) ∧ (Falsy→ True)

(Truthy→ True) ∧ (Falsy→ False)

(Falsy→1→False) ∧ (Truthy→Truthy→True)∧
(Truthy→Falsy→False)

(Truthy→1→True) ∧ (Falsy→Truthy→True)∧
(Falsy→ Falsy→ False)

0.03

0.02

0.03

0.03

0.58

0.93

2.24

3.34

3 strlen : String -> Int
let example14 =
fun input -> fun extra ->
if and_ (is_int input)

(is_int(fst extra)) is True
then input + (fst extra)
else if is_int (fst extra) is True

then (strlen input) + (fst extra)
else 0

((Int ∨ String) → (¬Int×1) → 0)∧
((Int ∨ String) → (Int×1) → Int)∧
(¬(Int ∨ String) → (¬Int×1) → 0)

0.05 3.61

4 let example6_wrong =
fun (x : Int|String) -> fun (y : Any) ->
if and_ (is_int x)(is_string y) is True then

add x (strlen y) else strlen x

let example6_ok =
fun x -> fun y ->
if and_ (is_int x)(is_string y) is True then

add x (strlen y) else strlen x

Ill typed

(String→ 1→ Int)∧
(Int→ String→ Int)

0.07

0.07

1.52

3.51

5 let detailed_ex =
fun (a : (Int -> (Int|Bool))

|(Int , (Int|Bool))) ->
fun (n : Int) ->
if a is (Int ,Int) then (fst a)=(snd a)
else if a is (Any ,Any) then snd a
else if (a n) is Int then (a n) < 42
else a n

(Int→ (Int ∨ Bool)) ∨ (Int×(Int ∨ Bool)) →
Int→ Bool

0.08 1.77

several functions, using a syntax similar to OCaml, where uppercase identifiers (e.g., True, String)
denote types and lowercase identifiers denote variables or constants. For each function we report

its inferred type, the time taken to put its body in MSC form, and the time taken to infer its type or

typecheck it (for annotated functions). All runtimes are given in milliseconds, averaged over ten

runs. The experiments were done on an Intel Core i7-8565U 1.8GHz CPU (with 16GB of RAM). The

code was compiled natively using OCaml 4.12.0. All these examples (and more) can be tested online

with the interactive prototype hosted at https://typecaseunion.github.io [Castagna et al. 2022b].

Code 1 and 2 show that exact overloaded types can be inferred even in the absence of annotations.

In Code 1 we encode type predicates as they can be found in Typed Racket. The inferred overloaded

types exactly specify the semantics of these functions using the singleton types of the values true
and false, while in Typed Racket this requires these predicates to be primitives of the language

and are typed with specific rules. Code 2 implements Boolean operators by considering values as

in JavaScript where eight specific “falsy” values (false, "", 0, -0, 0n, undefined, null, and NaN)
are considered to be equivalent to false, and all the others—called “truthy” values—to be equivalent

to true. We first define the type Falsy as the union of the singleton types of false, "", and 0 (the

other values are absent in our prototype) and the type Truthy as the negation of Falsy. We said

that our system decides how to split the types of variables in bindings by using the type-cases

and the applications of overloaded functions that occur in the program. The function not_ is an

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

https://typecaseunion.github.io

On Type-Cases, Union Elimination, and Occurrence Typing 13:25

example in which the decision is based on the type-cases: the exact inferred intersection type

is obtained by splitting the type of x because x is tested in a type-case. The function to_Bool
is an example in which the decision is based on an overloaded application: the type is inferred

by splitting the type of x since x is the argument of the function not_. In to_Bool by a double

application of not_ we map truthy values into true and falsy ones into false, as the type inferred
for to_Bool exactly specifies. The function and_ mixes the two kinds of decision since it tests

the type of the first argument and applies an overloaded function to the second argument. We

could have defined and_ as two nested tests checking whether both arguments are truthy and

returning false otherwise: the system would have inferred the same type which, once more, exactly

specifies the semantics of the function. If we wanted to implement for the “and” operator the same

semantics as the one defined for the logical AND (&&) of JavaScript, then we should instead have

used the following definition fun x -> fun y -> if x is Falsy then x else y whose inferred type

(Falsy→1→Falsy)∧(Truthy→1→1) does not specify the function’s exact semantics because

our system lacks polymorphism (with polymorphic types we would expect the inferred type to be

∀𝛼.(𝛼∧Falsy→1→𝛼∧Falsy)∧(Truthy→𝛼→𝛼)—where 𝛼 is a type variable—which states that

if the first argument is of type (subtype of) Falsy, then the result will be of the same type as the

type of first argument—independently from the second one—, while if the first argument is of type

Truthy, then the result will be of the same type as the type of second argument). Finally, the last

example in Code 2 defines or_ by combining the two previous functions according to De Morgan’s

laws: again the inferred type is exact. The degree of precision achieved by the type inference for

the examples in Code 2 is out of reach of all existing approaches to occurrence typing.

Our implementation can type all the 14 paradigmatic examples listed by Tobin-Hochstadt and

Felleisen [2010] (THF) whose results we improve in several ways: first, we infer types that are

more precise than those inferred in THF; second, our system types all examples without needing

any annotation, whereas THF must specify some annotations in 5 of the 14 examples; third, our

analysis works also when in these example we employ user-defined connectives and type predicates,

whereas in THF these must be hard-coded to be used inside a test. For space reasons, we did not

detail all these examples here (but they can be tested in our online prototype by selecting the

appropriate menu entry) and chose instead to show only two of them in Code 3 and 4.

Code 3 is Example 14 of THF, which is last and most complete of the 14 examples of THF and

summarizes the features of all the others. This definition shows all the improvements brought by

our system and listed above: first, we infer a more precise type which discriminates the cases in

which the function returns a generic integer or 0 (i.e., 0 is returned whenever the second argument

is of type (¬Int × 1), independently from the first argument’s type); second, our inference does not

need any annotation, while in THF both parameters of the function must be explicitly annotated;

third, the tested expression is a Boolean expression obtained by applying custom user-defined

connectives (and_) and type predicates (is_int) whose use would make the analysis of THF fail.

Code 4 is Example 6 of THF which shows error detection: if x is assumed of type Int∨String (as

in example6_wrong), then the function is ill-typed, and rightly so since if both arguments are not

strings, then strlen x is selected and its execution fails. However, if as in example6_ok, we let our
system determine the types of the parameters, then it rightly determines that the first argument

must be either a string or an integer (any other type would select strlen x and then fail), but also

that when the first is an integer, then the second must be a string, or the function would fail. Such

a deduction is out of reach of the approach defined by THF.

Code 5 is the detailed example of the previous section and shows that the type of function

parameters can easily be constrained if one wishes. Interestingly, if we remove the Int annotation

from the second parameter n, the system computes a more precise type ((Int→(Bool∨Int)) →

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

13:26 Giuseppe Castagna, Mickaël Laurent, Kim Nguyễn, and Matthew Lutze

Int→ Bool) ∧ ((Int×(Bool∨Int)) → 1→ Bool) which clearly states that the second argument of

the function needs to be an integer only when the first one is a function.

7 RELATEDWORK
As previously said, the present paper extends the system of [Barbanera et al. 1995] with three rules

for type-cases and with the use of a particular subtyping relation. We then define, in several steps,

a type inference algorithm for this calculus. The resulting calculus and type-inference appears to

be particularly well suited for typing programs written in dynamic languages such as JavaScript.

While taking a radically different approach, we achieve a goal similar to occurrence typing,

introduced in [Tobin-Hochstadt and Felleisen 2008] and further advanced in [Tobin-Hochstadt

and Felleisen 2010], in the context of the Typed Racket language. In this and subsequent work,

types are annotated by two logical propositions that record the type of the input depending on the

(Boolean) value of the output. For instance, the type of the number? function states that when the

output is true, then the argument has type Number, and when the output is false, the argument

does not. These propositions are propagated and used in particular in type-cases to refine the type

of variables and, more generally, expressions in the “then” and “else” branches of a conditional.

Furthermore, this analysis focuses on a particular set of pure operations, so that the approach

works also in the presence of side-effects. Contrary to these works, we try not to depend on

an external logic but, rather, to express as much as possible these conditions with set-theoretic

types. For instance, we track the dependency between input and output types of functions using

intersection types (cf. Code 1 in Table 1), while type-case expressions are typed using intersection

and negation types to refine the typing environments of the branches. Our approach is more global

since, not only our analysis strives to infer type information by analyzing all types of results (and

not just true or false), but also tries to perform this analysis for all possible expressions (and

not just for a restricted set of expressions). This allows our system to type all the examples given

in [Tobin-Hochstadt and Felleisen 2010] (and contrary to the cited work, without needing any

annotations) and many more but, as we explain at the end of this section, at the expense of an

immediate compatibility with the presence of side-effects.

In a previous work [Castagna et al. 2022a] we already used characteristics of semantic subtyping

to improve occurrence typing but the approach we used there was completely different from the one

presented here. Instead of relying on bindings to track the different occurrences of a same expression,

we enriched type environments so that they mapped occurrences of expressions (expressed in

terms of paths) to types. This yielded a type-theoretic approach with non standard features (the

type environments) that, contrary to the present one, could not capture the flow of information

between variables and thus failed to type Code 3 of Table 1. Furthermore, the connection with the

union elimination rule was completely missing.

Set-theoretic types have also been used by [Kent 2019, Chapter 5] to extend the logical techniques

developed for Typed Racket to track under which hypotheses an expression returns false or not.

Kent uses set-theoretic types to express type predicates (a predicate that holds only for a type 𝑡 has

type 𝑝 : (𝑡→True) ∧ (¬𝑡→False)) as well as to express in a more compact (and, sometimes, more

precise) way the types of several built-in Typed Racket functions. It also uses the properties of

set-theoretic types to deduce the logical types (i.e., the propositions that hold when an expressions

produces false or not) of arguments of function applications. The main difference of Kent’s

approach with respect to ours is that, since it builds on the logical propositions approach, then it

focuses the use of set-theoretic types and of the analysis of arguments of applications of a selected

set of pure expressions (while we use all expressions) to determine when an expression yields a

result of type False or ¬False (while we use all types of results). The consequence is that not only
Kent’s approach covers fewer cases than ours and cannot infer intersection types, but also the very

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

On Type-Cases, Union Elimination, and Occurrence Typing 13:27

fact of focusing on truthy vs. false results may make Kent’s analysis fail even for pure Boolean tests

where it would be naively expected to work. The approach has however the advantage of building

on Typed Racked which provides a mature and high-performing implementation. The reader will

find in [Castagna et al. 2022a, see section on related work] an extensive and detailed comparison

between current approaches of occurrence typing and those based on set-theoretic types.

Our approach is based on program transformation: we transform expressions into MSC-forms. A

similar approach is used by Rondon et al. [2008] who transform expressions into A-normal forms

(ANF) [Sabry and Felleisen 1992] and track precise type information for every sub-expression by

keeping this information for the variables. While this solution is close to ours it does not achieve

the same degree of precision for the simple reason that, contrary to MSC-forms, ANFs were not

designed to target occurrence typing. MSC-forms’ rationale is to give a unique name to every

𝛼-equivalent sub-expression of the initial term, ANFs instead ensure that arguments of applications

are immediate values. While the result looks similar, there are key differences: since the sharing of

𝛼-equivalent subterms is used only for typing, it does not need to preserve the semantics of the

original term. For example, sub-expressions in the branches of a conditional are hoisted outside

the conditional (crucial for occurrence-typing), which must not be done for ANFs. Conversely, all

proper subterms of an application must be variables in MSC-forms but not in ANFs.

The typing algorithm we present in Section 5 works as a bi-directional typing algorithm: the

definition of a variable gives a forward constraint on its type while the use of a variable (e.g., in a

type-case or as part of an application) gives a backward constraint that is added to its definition.

From the extensive survey by Dunfield and Krishnaswami [2019a] on bi-directional typing, we see

that this technique is well-suited for the type-checking or type-inference of complex features such

as, for instance, in [Pierce and Turner 2000] (local type inference in the presence of subtyping),

[Pottier and Régis-Gianas 2006] (bi-directional type propagation for typing generalized algebraic

data-types), or [Dunfield and Krishnaswami 2019b] (bi-directional type checking for higher rank

polymorphism). The two latter works, in particular, seem to indicate that our approach remains

viable when extending the present work with parametric polymorphism.

A feature we completely omitted in our study is gradual typing. Works such as [Chaudhuri

et al. 2017] (for Flow) or [Rastogi et al. 2015] (for TypeScript), account for the presence of unsafe,

already written code, by using a form of gradual typing. Castagna et al. [2022a] outline how gradual

typing can be integrated in a system with semantic subtyping and occurrence typing using work by

[Castagna et al. 2017; 2019]: we think that those ideas can be adapted to the work presented here.

We end this presentation of related work with a discussion on side effects, a crucial feature for

dynamic languages. Although in our system we did not take into account side-effects—and actually

our system works because all the expressions of our language are pure—it is interesting to see how

the different approaches of occurrence typing position themselves with respect to the problem

of handling side effects, since this helps to better place our work in the taxonomy of the current

literature. As Sam Tobin-Hochstadt insightfully noticed, one can distinguish the approaches that

use types to reason about the dynamic behavior of programs according to the set of expressions

that are taken into account by the analysis. In the case of occurrence typing, this set is often

determined by the way impure expressions are handled. On the one end of the spectrum lies our

approach (both this work and the one in Castagna et al. [2022a]): our analysis takes into account

all expressions but, in its current formulation, it works only for pure languages. On the other end

of the spectrum we find the approach of Typed Racket whose analysis reasons about a limited

and predetermined set of pure operations: all data structure accessors. Somewhere in-between

lies the approach of the Flow language—whose core features were formalized by Chaudhuri et al.

[2017]—which implements a complex effect systems to determine pure expressions. While the

system presented here does not work for impure languages, we argue that its foundational nature

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

13:28 Giuseppe Castagna, Mickaël Laurent, Kim Nguyễn, and Matthew Lutze

predisposes it to be adapted to handle impure expressions as well, by adopting existing solutions or

proposing new ones. For instance, it is not hard to modify our system so that it takes into account

only a set of predetermined pure expressions, as done by Typed Racket: it suffices to instruct the

transformation in MSC-form to use distinct bind variables for distinct occurrences of expressions

that are not in this set. However, such a solution would be marginally interesting since by excluding

from the analysis all applications, we would lose most of the advantages of our approach with

respect to the one with logical propositions. Thus a more interesting solution would be to use

some external static analysis tools—e.g., to graft the effect system of Chaudhuri et al. [2017] on

ours—to detect impure expressions. The idea would be to mark different occurrences of a same

impure expression using different marks and, again, instruct the transformation in MSC-form

to use distinct bind variables for expressions with distinct marks. For instance, consider the test

(𝑓 𝑥 ∈ Int)? ... : ...: if 𝑓 𝑥 were flagged as impure then an occurrence of 𝑓 𝑥 in the “then” branch

would not be supposed to be of type Int since the MSC-form of this expressions would use two

distinct variables to bind 𝑓 𝑥 occurring in the test and the one in the branch. Although this would

certainly improve our analysis, is would still significantly limit the sharing. Which is why we

believe that, ultimately, our system should not resort to external static analysis tools to detect

impure expressions but, rather, it has to integrate this analysis with the typing one, so as to mark

only those impure expressions whose side-effects may affect the semantics of some type-cases.

For instance, consider a JavaScript object obj that we modify as follows: obj["key"] = 3. If the
field "key" is already present in obj with type Int and we do not test it more than about this type,

then it is not necessary to mark different occurrences of obj with different marks, since the result

of the type-case will not be changed by the assignment; the same holds true if the field is absent

but type-cases do not discriminate on its presence. Otherwise, some occurrences of obj must use

different marks: the analysis will determine which ones. We leave this study for future work.

8 CONCLUSION
Although the technical development of our work may appear complex, the unfolding of the logical

sequence of its steps can be easily summarized. In Section 1 we argued that the essence of occurrence

typing can be captured by adding three typing rules, [∨], [∈1], and [∈2]: the union elimination rule

can split the type of any expressions into a union of two types that can be tested separately and

the rules for type-cases distribute these tests differently on the two branches of a type-case. The

addition of these three rules yields the system of Section 2 which captures the spirit of occurrence

typing, covers the examples proposed by existing approaches, but is not algorithmic. To obtain

an algorithmic system, four technical problems are to be solved: (𝑖) how to choose on which

expressions the rule [∨] must be applied; (𝑖𝑖) given an expression chosen for applying [∨], how
to choose which sub-expression of this expression and which occurrences of this sub-expression

should the system use to apply [∨]; (𝑖𝑖𝑖) how to determine the union of types into which the system

should split the type of a sub-expression chosen for [∨]; (𝑖𝑣) how to determine the arrows that

form the intersection type of a 𝜆-abstraction that is not annotated. Section 3 solves the first two

problems—which made the system non syntax-directed—by the definition of MSC-forms: the fact

that MSC-forms bind atoms whose all proper sub-expressions are variables means that the system

chooses to apply [∨] on all sub-expressions, while the maximal sharing property of MSC-forms

means that the system chooses all occurrences of each sub-expression since it replaces all of them

by the same variable. Section 4 solves the last two problems—which made the system non analytic—

by the definition of annotations: annotations state how to split the type of the bound variables

into a union of types (when the variable is bound by a 𝜆 this corresponds to splitting the type of

the 𝜆-abstraction into an intersection, when the variable is bound by a bind this corresponds to
splitting the type of the argument of the bind-expression into a union). By this sequence of steps

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

On Type-Cases, Union Elimination, and Occurrence Typing 13:29

we reduced the problem of typing expressions with occurrence typing to the problem of choosing

annotations for MSC-forms and shown that this choice corresponds to determining how to split

types into unions for bind-expressions and into intersection for 𝜆-abstractions. Section 5 suggests

that the choice of how to split these types can be based on a program analysis that focuses on the

types tested in type-cases or involved in applications of overloaded functions. Section 6 implements

these choices demonstrating the practical implications of our work.

In summary, the logical sequence described above highlights the connection between union

elimination and occurrence typing techniques via the addition of negation types and their use in

the typing of type-case expressions. It also provides an effective way to reduce this typing problem

to the inference of some specific annotations.

From a theoretical viewpoint, our work is a step forward in the quest of an inversion lemma

for the union elimination rule. Although we are still far from an inversion lemma, the results of

Sections 3 and 4 show that for a well-typed term 𝑒 of the source language (or of Barbanera et al.

[1995]) there exists a canonical way to use the union rule to derive its type, which corresponds

to the derivation encoded by MSC(𝑒). Thus the problem now is no longer when to use the rule,

but how to determine the split of the type of the argument of the union rule into the union of two

types, which coincides with inferring the annotations for the corresponding binding-expression.

From a practical viewpoint, our work reframes the problem of occurrence typing into a classical

setting that has been actively studied for thirty years and for which a wealth of results and

techniques already exists. We want to transpose some of them to our specific setting, in particular

the extension to polymorphism and the generation and resolution of systems of constraints, to

infer the polymorphic types we hinted at in Section 6. For this we count reusing the theory of

polymorphic types with semantic subtyping [Castagna and Xu 2011] together with the typing

techniques and algorithms developed for CDuce, both for its explicitly typed version [Castagna

et al. 2015, 2014] and the implicitly typed one [Castagna et al. 2016; Petrucciani 2019]. Eminently

of practical interest is also the fact that we effectively reduced type inference to a very specific

problem, namely, the reconstruction of some specific annotations. The algorithm we described in

Section 5 is just one possible solution to this problem, but our formal setting opens the way to the

definition of other different techniques. In particular, we are studying the feasibility of switching

from the current system that at each pass generates type refinements for the variables of the term,

to one that generates, instead, sets of type constraints (such as those defined by Petrucciani [2019,

Chapter 4]) whose resolution would yield these (and hopefully better) refinements. This seems

an obvious choice if we want to handle polymorphism and it would also improve the precision

of our algorithm which currently works poorly when higher-order function parameters are not

explicitly annotated. This shortcoming is expected—and shared among the approaches that lack

polymorphism—since our algorithm initializes higher-order parameters with the type 0→1 while,

if type variables were available, the algorithm could instead initialize them with 𝛼→𝛽 where 𝛼 and

𝛽 are fresh. This would allow the system to better track and refine the types of these parameters.

ACKNOWLEDGMENTS
This research was partially supported by Labex DigiCosme (project ANR-11-LABEX-0045- DIGI-

COSME) operated by ANR as part of the program «Investissement d’Avenir» Idex Paris-Saclay

(ANR-11-IDEX-0003-02), by the « Chaire Langages Dynamiques pour les Données » of the Paris-

Saclay foundation, and by a Google PhD fellowship. The authors would like to thank Delia Kesner

for her help with the rewriting systems.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

13:30 Giuseppe Castagna, Mickaël Laurent, Kim Nguyễn, and Matthew Lutze

REFERENCES
Franco Barbanera, Mariangiola Dezani-Ciancaglini, and Ugo de’Liguoro. 1995. Intersection and Union Types. Inf. Comput.

119, 2 (June 1995), 202–230. https://doi.org/10.1006/inco.1995.1086

Giuseppe Castagna. 2020. Covariance and Controvariance: a fresh look at an old issue (a primer in advanced type

systems for learning functional programmers). Logical Methods in Computer Science 16, 1 (2020), 15:1–15:58. https:

//doi.org/10.23638/LMCS-16(1:15)2020

Giuseppe Castagna and Victor Lanvin. 2017. Gradual Typing with Union and Intersection Types. Proc. ACM Program. Lang.

1, ICFP, Article 41 (Aug. 2017), 28 pages. https://doi.org/10.1145/3110285

Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek. 2019. Gradual Typing: a New Perspective.

Proc. ACM Program. Lang. 3, POPL ’19 46th ACM Symposium on Principles of Programming Languages, Article 16 (Jan.

2019), 32 pages. https://doi.org/10.1145/3290329

G. Castagna, M. Laurent, V. Lanvin, and K. Nguyễn. 2022a. Revisiting Occurrence Typing. Science of Computer Programming

(2022). To appear. Preprint available at https://arxiv.org/abs/1907.05590.

Giuseppe Castagna, Mickaël Laurent, Kim Nguyễn, and Matthew Lutze. 2022b. Prototype for Article: On Type-Cases,

Union Elimination, and Occurrence Typing. https://doi.org/10.1145/3462306 Online interactive version available at

https://typecaseunion.github.io.

Giuseppe Castagna, Kim Nguyễn, Zhiwu Xu, and Pietro Abate. 2015. Polymorphic functions with set-theoretic types. Part 2:

local type inference and type reconstruction. In Proceedings of the 42nd Annual ACM SIGPLAN Symposium on Principles

of Programming Languages (POPL ’15). 289–302. https://doi.org/10.1145/2676726.2676991

Giuseppe Castagna, Kim Nguyễn, Zhiwu Xu, Hyeonseung Im, Sergueï Lenglet, and Luca Padovani. 2014. Polymorphic

Functions with Set-Theoretic Types. Part 1: Syntax, Semantics, and Evaluation. In Proceedings of the 41st Annual ACM

SIGPLAN Symposium on Principles of Programming Languages (POPL ’14). 5–17. https://doi.org/10.1145/2676726.2676991

Giuseppe Castagna, Tommaso Petrucciani, and Kim Nguyễn. 2016. Set-Theoretic Types for Polymorphic Variants. In ICFP ’16,

21st ACM SIGPLAN International Conference on Functional Programming. 378–391. https://doi.org/10.1145/2951913.

2951928

Giuseppe Castagna and Zhiwu Xu. 2011. Set-theoretic Foundation of Parametric Polymorphism and Subtyping. In ICFP ’11:

16th ACM-SIGPLAN International Conference on Functional Programming. 94–106. https://doi.org/10.1145/2034773.2034788

CDuce. The CDuce Compiler. CDuce. https://www.cduce.org

Arthur Charguéraud. 2012. The Locally Nameless Representation. J. Autom. Reason. 49, 3 (2012), 363–408. https:

//doi.org/10.1007/s10817-011-9225-2

Avik Chaudhuri, Panagiotis Vekris, Sam Goldman, Marshall Roch, and Gabriel Levi. 2017. Fast and Precise Type Checking

for JavaScript. Proc. ACM Program. Lang. 1, OOPSLA, Article 48 (Oct. 2017), 30 pages. https://doi.org/10.1145/3133872

Mariangiola Dezani-Ciancaglini. 2020. Personal communication.

Mariangiola Dezani-Ciancaglini, Alain Frisch, Elio Giovannetti, and Yoko Motohama. 2003. The Relevance of Semantic

Subtyping. Electronic Notes in Theoretical Computer Science 70, 1 (2003), 88 – 105. https://doi.org/10.1016/S1571-

0661(04)80492-4 ITRS ’02, Intersection Types and Related Systems (FLoC Satellite Event).

Jana Dunfield and Neel Krishnaswami. 2019a. Bidirectional Typing. CoRR abs/1908.05839 (2019). arXiv:1908.05839

Jana Dunfield and Neelakantan R. Krishnaswami. 2019b. Sound and Complete Bidirectional Typechecking for Higher-Rank

Polymorphism with Existentials and Indexed Types. Proc. ACM Program. Lang. 3, POPL, Article 9 (Jan. 2019), 28 pages.

https://doi.org/10.1145/3290322

Facebook. Flow. Facebook https://flow.org/

Alain Frisch. 2004. Théorie, conception et réalisation d’un langage de programmation adapté à XML. Ph. D. Dissertation.

Université Paris Diderot. http://www.cduce.org/papers/frisch_phd.pdf

Alain Frisch, Giuseppe Castagna, and Véronique Benzaken. 2002. Semantic Subtyping. In LICS ’02, 17th Annual IEEE

Symposium on Logic in Computer Science. IEEE Computer Society Press, 137–146. https://doi.org/10.1109/LICS.2002.

1029823

Alain Frisch, Giuseppe Castagna, and Véronique Benzaken. 2008. Semantic subtyping: dealing set-theoretically with

function, union, intersection, and negation types. Journal of the ACM 55, 4 (Sept. 2008), 19:1–19:64. http://doi.acm.org/

10.1145/1391289.1391293

J. Roger Hindley and Jonathan P. Seldin. 2008. Lambda-Calculus and Combinators An Introduction. Cambridge University

Press.

Andrew M. Kent. 2019. Advanced Logical Type Systems for Untyped Languages. Ph. D. Dissertation. Indiana University.

https://pnwamk.github.io/docs/dissertation.pdf

David MacQueen, Gordon Plotkin, and Ravi Sethi. 1986. An ideal model for recursive polymorphic types. Information and

Control 71, 1 (1986), 95–130. https://doi.org/10.1016/S0019-9958(86)80019-5

Per Martin-Löf. 1994. Analytic and Synthetic Judgements in Type Theory. Springer Netherlands, Dordrecht, 87–99. https:

//doi.org/10.1007/978-94-011-0834-8_5

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

https://doi.org/10.1006/inco.1995.1086
https://doi.org/10.23638/LMCS-16(1:15)2020
https://doi.org/10.23638/LMCS-16(1:15)2020
https://doi.org/10.1145/3110285
https://doi.org/10.1145/3290329
https://arxiv.org/abs/1907.05590
https://doi.org/10.1145/3462306
https://typecaseunion.github.io
https://doi.org/10.1145/2676726.2676991
https://doi.org/10.1145/2676726.2676991
https://doi.org/10.1145/2951913.2951928
https://doi.org/10.1145/2951913.2951928
https://doi.org/10.1145/2034773.2034788
https://www.cduce.org
https://doi.org/10.1007/s10817-011-9225-2
https://doi.org/10.1007/s10817-011-9225-2
https://doi.org/10.1145/3133872
https://doi.org/10.1016/S1571-0661(04)80492-4
https://doi.org/10.1016/S1571-0661(04)80492-4
https://arxiv.org/abs/1908.05839
https://doi.org/10.1145/3290322
https://flow.org/
http://www.cduce.org/papers/frisch_phd.pdf
https://doi.org/10.1109/LICS.2002.1029823
https://doi.org/10.1109/LICS.2002.1029823
http://doi.acm.org/10.1145/1391289.1391293
http://doi.acm.org/10.1145/1391289.1391293
https://pnwamk.github.io/docs/dissertation.pdf
https://doi.org/10.1016/S0019-9958(86)80019-5
https://doi.org/10.1007/978-94-011-0834-8_5
https://doi.org/10.1007/978-94-011-0834-8_5

On Type-Cases, Union Elimination, and Occurrence Typing 13:31

Microsoft. TypeScript. Microsoft https://www.typescriptlang.org/

Tommaso Petrucciani. 2019. Polymorphic Set-Theoretic Types for Functional Languages. Ph. D. Dissertation. Joint Ph.D. Thesis,

Università di Genova and Université Paris Diderot. https://tel.archives-ouvertes.fr/tel-02119930

Benjamin C. Pierce and David N. Turner. 2000. Local Type Inference. ACM Trans. Program. Lang. Syst. 22, 1 (Jan. 2000), 1–44.

https://doi.org/10.1145/345099.345100

François Pottier and Yann Régis-Gianas. 2006. Stratified type inference for generalized algebraic data types. In Proceedings

of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2006, Charleston, South

Carolina, USA, January 11-13, 2006, J. Gregory Morrisett and Simon L. Peyton Jones (Eds.). ACM, 232–244. https:

//doi.org/10.1145/1111037.1111058

Aseem Rastogi, Nikhil Swamy, Cédric Fournet, Gavin Bierman, and Panagiotis Vekris. 2015. Safe and Efficient Gradual

Typing for TypeScript. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (Mumbai, India) (POPL ’15). Association for Computing Machinery, New York, NY, USA, 167–180. https:

//doi.org/10.1145/2676726.2676971

Patrick Maxim Rondon, Ming Kawaguchi, and Ranjit Jhala. 2008. Liquid types. In Proceedings of the ACM SIGPLAN 2008

Conference on Programming Language Design and Implementation, Tucson, AZ, USA, June 7-13, 2008, Rajiv Gupta and

Saman P. Amarasinghe (Eds.). ACM, 159–169. https://doi.org/10.1145/1375581.1375602

Amr Sabry and Matthias Felleisen. 1992. Reasoning about Programs in Continuation-Passing Style.. In Proceedings of the

1992 ACM Conference on LISP and Functional Programming (LFP ’92). Association for Computing Machinery, 288–298.

https://doi.org/10.1145/141471.141563

Sam Tobin-Hochstadt and Matthias Felleisen. 2008. The Design and Implementation of Typed Scheme. In Proceedings of

the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (San Francisco, California,

USA) (POPL ’08). ACM, New York, NY, USA, 395–406. https://doi.org/10.1145/1328438.1328486

Sam Tobin-Hochstadt and Matthias Felleisen. 2010. Logical types for untyped languages. In Proceedings of the 15th ACM

SIGPLAN International Conference on Functional Programming (Baltimore, Maryland, USA) (ICFP ’10). ACM, New York,

NY, USA, 117–128. https://doi.org/10.1145/1863543.1863561

Types 2019. What exactly should we call syntax-directed inference rules? Discussion on the Types mailing list. http:

//lists.seas.upenn.edu/pipermail/types-list/2019/002138.html.

Wikipedia. 2021. Peter Parker principle. https://en.wikipedia.org/wiki/With_great_power_comes_great_responsibility

[Online; accessed 22-October-2021].

Andrew K. Wright and Matthias Felleisen. 1994. A Syntactic Approach to Type Soundness. Information and Computation

115, 1 (1994), 38–94. https://doi.org/10.1006/inco.1994.1093

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

https://www.typescriptlang.org/
https://tel.archives-ouvertes.fr/tel-02119930
https://doi.org/10.1145/345099.345100
https://doi.org/10.1145/1111037.1111058
https://doi.org/10.1145/1111037.1111058
https://doi.org/10.1145/2676726.2676971
https://doi.org/10.1145/2676726.2676971
https://doi.org/10.1145/1375581.1375602
https://doi.org/10.1145/141471.141563
https://doi.org/10.1145/1328438.1328486
https://doi.org/10.1145/1863543.1863561
http://lists.seas.upenn.edu/pipermail/types-list/2019/002138.html
http://lists.seas.upenn.edu/pipermail/types-list/2019/002138.html
https://en.wikipedia.org/wiki/With_great_power_comes_great_responsibility
https://doi.org/10.1006/inco.1994.1093

13:32 Giuseppe Castagna, Mickaël Laurent, Kim Nguyễn, and Matthew Lutze

A SUPPLEMENTAL DEFINITIONS
A.1 Subtyping Relation
Subtyping is defined by giving a set-theoretic interpretation of the types of Definition 2.1 into a

suitable domain D:

Definition A.1 (Interpretation domain [Frisch et al. 2008]). The interpretation domain D
is the set of finite terms 𝑑 produced inductively by the following grammar

𝑑 F 𝑐 | (𝑑,𝑑) | {(𝑑, 𝜕), . . . , (𝑑, 𝜕)}
𝜕 F 𝑑 | Ω

where 𝑐 ranges over the set C of constants and where Ω is such that Ω ∉ D.

The elements of D correspond, intuitively, to (denotations of) the results of the evaluation of

expressions. In particular, in a higher-order language, the results of computations can be functions

which, in this model, are represented by sets of finite relations of the form {(𝑑1, 𝜕1), . . . , (𝑑𝑛, 𝜕𝑛)},
where Ω (which is not in D) can appear in second components to signify that the function fails

(i.e., evaluation is stuck) on the corresponding input. This is implemented by using in the second

projection the meta-variable 𝜕 which ranges over DΩ = D ∪ {Ω} (we reserve 𝑑 to range over D,

thus excluding Ω). This constant Ω is used to ensure that 1→ 1 is not a supertype of all function

types: if we used 𝑑 instead of 𝜕, then every well-typed function could be subsumed to 1→ 1 and,

therefore, every application could be given the type 1, independently from its argument as long as

this argument is typable (see Section 4.2 of [Frisch et al. 2008] for details). The restriction to finite

relations corresponds to the intuition that the denotational semantics of a function is given by the

set of its finite approximations, where finiteness is a restriction necessary (for cardinality reasons)

to give the semantics to higher-order functions.

We define the interpretation J𝑡K of a type 𝑡 so that it satisfies the following equalities, where Pfin
denotes the restriction of the powerset to finite subsets and B denotes the function that assigns to

each basic type the set of constants of that type, so that for every constant 𝑐 we have 𝑐 ∈ B(b𝑐) (we
use b𝑐 to denote the basic type of the constant 𝑐):

J0K = ∅ J𝑡1 ∨ 𝑡2K = J𝑡1K ∪ J𝑡2K J¬𝑡K = D ∖ J𝑡K
J𝑏K = B(𝑏) J𝑡1 × 𝑡2K = J𝑡1K × J𝑡2K

J𝑡1→𝑡2K = {𝑅 ∈ Pfin (D×DΩ) | ∀(𝑑, 𝜕) ∈ 𝑅. 𝑑 ∈ J𝑡1K =⇒ 𝜕 ∈ J𝑡2K}

We cannot take the equations above directly as an inductive definition of JK because types are
not defined inductively but coinductively. Notice however that the contractivity condition of

Definition 2.1 ensures that the binary relation ▷ ⊆Types×Types defined by 𝑡1 ∨ 𝑡2 ▷ 𝑡𝑖 , 𝑡1 ∧ 𝑡2 ▷ 𝑡𝑖 ,
¬𝑡 ▷ 𝑡 is Noetherian. This gives an induction principle

8
on Types that we use combined with

structural induction on D to give the following definition, which validates these equalities.

Definition A.2 (Set-theoretic interpretation of types [Frisch et al. 2008]). We define

a binary predicate (𝑑 : 𝑡) (“the element 𝑑 belongs to the type 𝑡”), where 𝑑 ∈ D and 𝑡 ∈ Types, by

8
In a nutshell, we can do proofs and give definitions by induction on the structure of unions and negations—and, thus,

intersections—but arrows, products, and basic types are the base cases for the induction.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

On Type-Cases, Union Elimination, and Occurrence Typing 13:33

induction on the pair (𝑑, 𝑡) ordered lexicographically. The predicate is defined as follows:
(𝑐 : 𝑏) = 𝑐 ∈ B(𝑏)

((𝑑1, 𝑑2) : 𝑡1 × 𝑡2) = (𝑑1 : 𝑡1) and (𝑑2 : 𝑡2)
({(𝑑1, 𝜕1), ..., (𝑑𝑛, 𝜕𝑛)} : 𝑡1 → 𝑡2) = ∀𝑖 ∈ [1..𝑛] . if (𝑑𝑖 : 𝑡1) then (𝜕𝑖 : 𝑡2)

(𝑑 : 𝑡1 ∨ 𝑡2) = (𝑑 : 𝑡1) or (𝑑 : 𝑡2)
(𝑑 : ¬𝑡) = not (𝑑 : 𝑡)
(𝜕 : 𝑡) = false otherwise

We define the set-theoretic interpretation JK : Types→ P(D) as J𝑡K = {𝑑 ∈ D | (𝑑 : 𝑡)}.
Finally, we define the subtyping preorder and its associated equivalence relation as follows.

Definition A.3 (Subtyping relation [Frisch et al. 2008]). We define the subtyping relation

≤ and the subtyping equivalence relation ≃ as 𝑡1 ≤ 𝑡2 ⇐⇒def J𝑡1K ⊆ J𝑡2K and 𝑡1 ≃ 𝑡2 ⇐⇒def (𝑡1 ≤
𝑡2) and (𝑡2 ≤ 𝑡1) .

A.2 Capture Avoiding Substitution

𝑐{𝑒 ′/𝑥} = 𝑐 (9)

𝑥{𝑒 ′/𝑥} = 𝑒 ′ (10)

𝑦{𝑒 ′/𝑥} = 𝑦 𝑥 ≠ 𝑦 (11)

(𝜆𝑥.𝑒){𝑒 ′/𝑥} = 𝜆𝑥 .𝑒 (12)

(𝜆𝑦.𝑒){𝑒 ′/𝑥} = 𝜆𝑦.(𝑒{𝑒 ′/𝑥}) 𝑥 ≠ 𝑦,𝑦 ∉ fv(𝑒 ′) (13)

(𝜆𝑦.𝑒){𝑒 ′/𝑥} = 𝜆𝑧.(𝑒{𝑧/𝑦}{𝑒 ′/𝑥}) 𝑥 ≠ 𝑦,𝑦 ∈ fv(𝑒 ′), 𝑧 fresh (14)

(𝑒1𝑒2){𝑒 ′/𝑥} = (𝑒1{𝑒 ′/𝑥})(𝑒2{𝑒 ′/𝑥}) (15)

(𝑒1, 𝑒2){𝑒 ′/𝑥} = (𝑒1{𝑒 ′/𝑥}, 𝑒2{𝑒 ′/𝑥}) (16)

(𝜋𝑖𝑒){𝑒 ′/𝑥} = 𝜋𝑖 (𝑒{𝑒 ′/𝑥}) (17)

((𝑒1∈𝜏) ? 𝑒2 : 𝑒3){𝑒 ′/𝑥} = (𝑒1{𝑒 ′/𝑥}∈𝜏) ? 𝑒2{𝑒 ′/𝑥} : 𝑒3{𝑒 ′/𝑥} (18)

A.3 Canonical Declarative Deductions
[Const]

Γ ⊢C 𝑐 : b𝑐
[Ax]

Γ ⊢C 𝑥 : Γ(𝑥)
𝑥 ∈ dom(Γ)

[→I
(∧)

]

∀𝑖 ∈ 𝐼 Γ, 𝑥 : 𝑠𝑖 ⊢C 𝑒 : 𝑡𝑖

Γ ⊢C 𝜆𝑥.𝑒 :

∧
𝑖∈𝐼 𝑠𝑖 → 𝑡𝑖

[→E
(≤)

]

Γ ⊢C 𝑒1 : 𝑡 ≤ 𝑡1 → 𝑡2 Γ ⊢C 𝑒2 : 𝑡1

Γ ⊢C 𝑒1𝑒2 : 𝑡2

[×I]
Γ ⊢C 𝑒1 : 𝑡1 Γ ⊢C 𝑒2 : 𝑡2

Γ ⊢C (𝑒1, 𝑒2) : 𝑡1 × 𝑡2
[×E(≤)

1
]

Γ ⊢C 𝑒 : 𝑡 ≤ 𝑡1 × 𝑡2
Γ ⊢C 𝜋1𝑒 : 𝑡1

[×E(≤)
2

]

Γ ⊢C 𝑒 : 𝑡 ≤ 𝑡1 × 𝑡2
Γ ⊢C 𝜋2𝑒 : 𝑡2

[∨+(≤)]
Γ ⊢C 𝑒 ′ :

∨
𝑖∈𝐼 𝑡𝑖 (∀𝑖 ∈ 𝐼) Γ, 𝑥 : 𝑡𝑖 ⊢C 𝑒 : 𝑠𝑖 ≤ 𝑡

Γ ⊢C 𝑒{𝑒 ′/𝑥} : 𝑡
𝐼 ≠ ∅

[0]
Γ ⊢C 𝑒 : 0

Γ ⊢C (𝑒∈𝑡) ? 𝑒1 : 𝑒2 : 0
[∈ (≤)

1
]

Γ ⊢C 𝑒 : 𝑡◦ ≤ 𝑡 Γ ⊢C 𝑒1 : 𝑡1

Γ ⊢C (𝑒∈𝑡) ? 𝑒1 : 𝑒2 : 𝑡1
[∈ (≤)

2
]

Γ ⊢C 𝑒 : 𝑡◦ ≤ ¬𝑡 Γ ⊢C 𝑒2 : 𝑡2

Γ ⊢C (𝑒∈𝑡) ? 𝑒1 : 𝑒2 : 𝑡2

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

13:34 Giuseppe Castagna, Mickaël Laurent, Kim Nguyễn, and Matthew Lutze

A.4 Operators on Types
The various systems presented in this work use the following type-operators:

dom(𝑡) = max{𝑢 | 𝑡 ≤ 𝑢 → 1}
𝑡 ◦ 𝑠 = min{𝑢 | 𝑡 ≤ 𝑠 → 𝑢}
𝑡 ‚ 𝑠 = min{𝑢 | 𝑡 ◦ (dom(𝑡) ∖ 𝑢) ≤ ¬𝑠}
𝑡 ▶ 𝑠 = max{𝑢 | 𝑡 ◦ 𝑢 ≤ 𝑠}
𝝅1 (𝑡) = min{𝑢 | 𝑡 ≤ 𝑢 × 1}
𝝅2 (𝑡) = min{𝑢 | 𝑡 ≤ 1 × 𝑢}

In words, 𝑡 ◦ 𝑠 is the best (i.e., smallest wrt ≤) type we can deduce for the application of a function

of type 𝑡 to an argument of type 𝑠; 𝑡 ‚ 𝑠 is the largest type in dom(𝑡) such that the application

of a function of type 𝑡 to an argument of that type will not surely give a result in ¬𝑠 , that is, it is
the largest set of valid arguments that when applied to a function of type 𝑡 may return a result in

𝑠; 𝑡 ▶ 𝑠 is the largest set of valid arguments that when applied to a function of type 𝑡 only return

results in 𝑠 . Projection and domain are standard. All these operators can be effectively computed as

shown below (see Castagna et al. [2022a]; Frisch et al. [2008] for details and proofs).

For 𝑡 ≃ ∨
𝑖∈𝐼

(∧
𝑝∈𝑃𝑖 (𝑠𝑝 → 𝑡𝑝) ∧

∧
𝑛∈𝑁𝑖
¬(𝑠 ′𝑛 → 𝑡 ′𝑛)

)
, the first four operators are computed by:

dom(𝑡) =
∧
𝑖∈𝐼

∨
𝑝∈𝑃𝑖

𝑠𝑝

𝑡 ◦ 𝑠 =
∨
𝑖∈𝐼

©­«
∨

{𝑄⊊𝑃𝑖 | 𝑠≰
∨

𝑞∈𝑄 𝑠𝑞 }

©­«
∧

𝑝∈𝑃𝑖∖𝑄
𝑡𝑝
ª®¬ª®¬ (for 𝑠 ≤ dom(𝑡))

𝑡 ‚ 𝑠 = dom(𝑡) ∧
∨
𝑖∈𝐼

©­«
∧

{𝑃⊆𝑃𝑖 | 𝑠≤
∨

𝑝∈𝑃 ¬𝑡𝑝 }

©­«
∨
𝑝∈𝑃
¬𝑠𝑝

ª®¬ª®¬
𝑡 ▶ 𝑠 =

∧
𝑖∈𝐼

©­«
∨

{𝑃⊆𝑃𝑖 |
∧

𝑝∈𝑃 𝑡𝑝 ≤𝑠 }

©­«
∧
𝑝∈𝑃

𝑠𝑝
ª®¬ª®¬

For 𝑡 ≃ ∨
𝑖∈𝐼

(∧
𝑝∈𝑃𝑖 (𝑠𝑝 , 𝑡𝑝) ∧

∧
𝑛∈𝑁𝑖
¬(𝑠 ′𝑛, 𝑡 ′𝑛)

)
the last two operators are computed by

𝝅1 (𝑡) =
∨
𝑖∈𝐼

∨
𝑁 ′⊆𝑁𝑖

©­«
∧
𝑝∈𝑃𝑖

𝑠𝑝 ∧
∧
𝑛∈𝑁 ′
¬𝑠 ′𝑛

ª®¬
𝝅2 (𝑡) =

∨
𝑖∈𝐼

∨
𝑁 ′⊆𝑁𝑖

©­«
∧
𝑝∈𝑃𝑖

𝑡𝑝 ∧
∧
𝑛∈𝑁 ′
¬𝑡 ′𝑛

ª®¬
Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

On Type-Cases, Union Elimination, and Occurrence Typing 13:35

Furthermore the algorithm for reconstructing annotations uses the operator 𝑡 ◦1 𝑠 defined as

𝑡 ◦1 𝑠 =
{
𝑡 ◦ 𝑠 if 𝑠 ≤ dom(𝑡)
1 otherwise

that can be easily computed from dom(𝑠) and 𝑡 ◦ 𝑠 .

A.5 Unwinding

⌈𝑐⌉ = 𝑐
⌈𝑥⌉ = 𝑥

⌈𝜆𝑥.𝒆⌉ = 𝜆𝑥.⌈𝒆⌉
⌈𝒆1𝒆2⌉ = ⌈𝒆1⌉ ⌈𝒆2⌉

⌈(𝒆1, 𝒆2)⌉ = (⌈𝒆1⌉, ⌈𝒆2⌉)
⌈𝜋𝑖𝒆⌉ = 𝜋𝑖 ⌈𝒆⌉ 𝑖 = 1, 2

⌈(𝒆∈𝜏) ? 𝒆1 : 𝒆2⌉ = (⌈𝒆⌉∈𝜏) ? ⌈𝒆1⌉ : ⌈𝒆2⌉
⌈bind𝑥 = 𝒆1 in 𝒆2 ⌉ = ⌈𝒆2⌉{⌈𝒆1⌉/𝑥}

A.6 Reduction Semantics of the Intermediate Language
For the goals of this work it is not necessary to define a reduction semantics for the intermediate

language defined in Section 3.1. This system was introduced to encode typing derivations, so what

really matters is that any typable intermediate term has a type that can be deduced also for its

unwinding. Nevertheless, it is interesting to define the reduction semantics of the annotated terms

so that their reduction encodes the reduction of their unwindings.

The idea of this definition is that the bind-expressions must be evaluated only when their result

is needed. In other words, binding-expressions follow a call-by-need reduction strategy. This can

be formalized by using some specific contexts as follows.

A context 𝐶 is an expression with a hole (written []) in it. We write 𝐶 [𝑒] for the expression
obtained by replacing the hole in 𝐶 with 𝑒 . We write 𝐶⌜⌞𝑒⌝⌟ for 𝐶 [𝑒] when the free variables of 𝑒 are

not bound by 𝐶 : for example, bind𝑥 = 𝑒1 in𝑥 is of the form 𝐶 [𝑥] – with 𝐶 ≡ (bind𝑥 = 𝑒1 in []) –
but not of the form 𝐶⌜⌞𝑥⌝⌟; conversely, bind𝑥 = 𝑒1 in𝑦 is both of the form 𝐶 [𝑦] and 𝐶⌜⌞𝑦⌝⌟.
Evaluation contexts 𝐸 are the subset of contexts generated by the following grammar:

𝐸 F [] | 𝑣𝐸 | 𝐸𝑒 | (𝑣, 𝐸) | (𝐸, 𝑒) | 𝜋𝑖𝐸 | (𝐸∈𝜏) ? 𝑒 : 𝑒 | bind𝑥 = 𝑒 in𝐸
We then add to the notions of reduction the following one:

bind𝑥 = 𝑒 in𝐸⌜⌞𝑥⌝⌟ { (𝐸⌜⌞𝑥⌝⌟){𝑒/𝑥} (19)

This implements the reduction defined for the declarative system (i.e., ⌈𝑒⌉ { ⌈𝑒 ′⌉ implies 𝑒 {+ 𝑒 ′).
If we want to implement the parallel reduction of Appendix D.1.1, then we have to add also the

following production to the definition of evaluation context:

𝐸 ::= bind𝑥 =𝐸 in𝐸⌜⌞𝑥⌝⌟

and replace the previous notion of reduction by the following one:

bind𝑥 = 𝑣 in𝐸⌜⌞𝑥⌝⌟ { (𝐸⌜⌞𝑥⌝⌟){𝑣/𝑥} (20)

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

13:36 Giuseppe Castagna, Mickaël Laurent, Kim Nguyễn, and Matthew Lutze

A.7 Canonical Forms for the Intermediate Language
The definition of the intermediate expressions is a step forward in solving the problem of typing a

declarative expression, but it also brings a new problem, since we now have to decide where to

put the bindings in a declarative expression so as to make it a typable intermediate expression.

We can get rid of this problem simply by adding bindings wherever it is possible, so that every

sub-expression of the original declarative expression will be bound to a variable. This corresponds

to considering intermediate expressions that have a very specific form that we call canonical forms

and that constitute a sub-language of the intermediate expressions.

An intermediate expression 𝒆 is a canonical form if it is produced by the following grammar.

Atomic expressions 𝒂 ::= 𝑥 | 𝑐 | 𝜆𝑥 .𝜿 | (𝑥, 𝑥) | 𝑥𝑥 | (𝑥∈𝜏) ?𝑥 :𝑥 | 𝜋𝑖𝑥
Canonical Forms 𝜿 ::= 𝑥 | bind𝑥 = 𝒂 in𝜿 (21)

Canonical forms, ranged over by 𝜿 , are variables possibly preceded by a list of bindings of variables

to atoms. Atoms are either 𝜆-abstractions whose body is a canonical form or any other expression

in which all proper sub-expressions are variables. Therefore, bindings can appear in a canonical

form either at top-level or at the beginning of the body of a function. Notice that variables are

atoms and, therefore, it is possible to have aliasing (e.g., bind𝑥 =𝑦 in𝜿): we will get rid of aliasing

in the next section, but having it here yields a simpler definition of the transformation J.K later in
this section.

Since canonical forms are also intermediate expressions, then the typing rules and the definition

of unwinding for intermediate terms of Section 3.2 apply to canonical forms, too. Canonical forms

are enough to “represent” well typed intermediate expressions since we have the following (non

trivial) property:

Proposition A.4. For every intermediate expression 𝒆, if Γ ⊢I 𝒆 : 𝑡 , then there exists a canonical

form 𝜿 such that Γ ⊢I 𝜿 : 𝑡 and ⌈𝒆⌉ = ⌈𝜿⌉.

Since a well-typed intermediate expression represents a class of derivations for the source

language expression obtained by its unwinding, then the property above tells us that canonical

forms suffice to provide such a representation.

We can prove the property above by defining a transformation from an intermediate expression

to a canonical form that satisfies the property.

Let Δ denote a possibly empty list of mappings from variables to atoms. We note these lists

extensionally by separating elements by a semicolon, that is, 𝑥1 ↦→𝒂1; ...;𝑥𝑛 ↦→𝒂𝑛 and use 𝜀 to denote
the empty list. Next we define an operation term(Δ, 𝑥) which takes a list of mappings Δ and a

variable 𝑥 and constructs the canonical form whose binding are those listed in Δ and whose body

is 𝑥 , that is:

term(𝜀, 𝑥) =
def

𝑥

term((𝑦 ↦→𝒂;Δ), 𝑥) =
def bind𝑦 = 𝒂 in term(Δ, 𝑥)

We can now define the function J𝒆K that transforms an expression 𝒆 into a pair (Δ, 𝑥) formed by

a list of mappings Δ and a variable 𝑥 that will be bound to the atom representing 𝒆. The definition

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

On Type-Cases, Union Elimination, and Occurrence Typing 13:37

is as follows, where 𝑥◦ is a fresh variable.

J𝑐K = ((𝑥◦ ↦→𝑐), 𝑥◦)
J𝑥K = (𝜀, 𝑥)

J𝜆𝑥 .𝒆K = ((𝑥◦ ↦→𝜆𝑥.termJ𝒆K), 𝑥◦)
J𝜋𝑖𝒆K = ((Δ;𝑥◦ ↦→𝜋𝑖𝑥), 𝑥◦) where (Δ, 𝑥) = J𝒆K

J𝒆1𝒆2K = ((Δ1;Δ2;𝑥◦ ↦→𝑥1𝑥2), 𝑥◦) where (Δ1, 𝑥1) = J𝒆1K, (Δ2, 𝑥2) = J𝒆2K
J(𝒆1, 𝒆2)K = ((Δ1;Δ2;𝑥◦ ↦→(𝑥1, 𝑥2)), 𝑥◦) where (Δ1, 𝑥1) = J𝒆1K, (Δ2, 𝑥2) = J𝒆2K

J(𝒆∈𝜏) ? 𝒆1 : 𝒆2K = ((Δ;Δ1;Δ2;𝑥◦ ↦→(𝑥∈𝜏) ?𝑥1 :𝑥2), 𝑥◦)
where (Δ, 𝑥) = J𝒆K , (Δ1, 𝑥1) = J𝒆1K , (Δ2, 𝑥2) = J𝒆2K

Jbind𝑥 = 𝒆1 in 𝒆2 K = ((Δ1;𝑥 ↦→𝑥1;Δ2), 𝑥2) where (Δ1, 𝑥1) = J𝒆1K, (Δ2, 𝑥2) = J𝒆2K

Notice that if we remove the rule for bindings (i.e., the very last rule), the remaining rules define

a transformation of the terms of the source language into a canonical form.

It is easy to see that ⌈term(J𝒆K)⌉ = ⌈𝒆⌉ (or that ⌈term(J𝑒K)⌉ = 𝑒 if 𝑒 is a term of the source

language). Moreover, besides unwindings, this transformation preserves also types: if Γ ⊢I 𝒆 : 𝑡 ,

then Γ ⊢I term(J𝒆K𝜀) : 𝑡 . These two results prove Proposition A.4.

We can thus use the result of Proposition A.4 to refine the Completeness Theorem 3.2 as follows:

Theorem A.5 (Completeness of Canonical Forms). If Γ ⊢ 𝑒 : 𝑡 then ∃𝜿 , 𝑡 ′ such that ⌈𝜿⌉ = 𝑒 ,
𝑡 ′ ≤ 𝑡 , and Γ ⊢I 𝜿 : 𝑡 ′

This combinedwith the soundness Theorem 3.1 for intermediate expressions (recall that canonical

forms are intermediate expressions) tells us that an expression of the source language is well-typed

if and only if it is the unwinding of a well-typed canonical form.

A.8 Maximal Sharing Canonical Forms
The transformation in Section A.7 returns just one of the possible canonical forms that satisfy

Proposition A.4, but there are many of them. In order to infer types for the source language, we are

interested in the canonical forms that satisfy four particular properties.

Definition A.6 (MSC Forms). A maximal sharing canonical form (abbreviated as MSC-form) is

(any canonical form 𝛼-equivalent to) a canonical form 𝜿 such that:

(1) if bind𝑥1 = 𝒂1 in𝜿1 and bind𝑥2 = 𝒂2 in𝜿2 are distinct sub-expressions of𝜿 , then ⌈𝒂1⌉ .𝛼 ⌈𝒂2⌉
(2) if bind𝑥 = 𝒂 in𝜿 ′ is a sub-expression of 𝜿 , then 𝒂 is not a variable.

(3) if 𝜆𝑥 .𝜿1 is a sub-expression of 𝜿 and bind𝑦 = 𝒂 in𝜿2 a sub-expression of 𝜿1, then fv(𝒂) ⊈
fv(𝜆𝑥 .𝜿1)

(4) if bind𝑥 = 𝒂 in𝜿 ′ is a sub-expression of 𝜿 , then 𝑥 ∈ fv(𝜿 ′).

MSC-forms are defined modulo 𝛼-conversion.9 The first property states that distinct variables

denote different (i.e., not 𝛼-convertible) expressions of the source language. The second property

forbids aliasing. The third property requires that bindings must extrude 𝜆 abstractions whenever

possible. The fourth condition states that there is no useless bind (the bound variable must occur in

the body of the bind).

9
For instance, both 𝜆𝑥.bind𝑧 =𝑥𝑦 in𝑧𝑦 and 𝜆𝑥.bind𝑧 =𝑥𝑦 in𝑧 are two distinct atoms that can occur in the same MSC-

form, even though the atom 𝑥𝑦 appears in both: an 𝛼-renaming of 𝑥 makes the first MSC-property hold.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

13:38 Giuseppe Castagna, Mickaël Laurent, Kim Nguyễn, and Matthew Lutze

The first two properties ensure the maximal sharing of common sub-expressions in the source

language, where common sub-expressions designate sets composed by different occurrences of

sub-expressions that are equal (in our case, 𝛼-convertible). In other terms if we start from a source

language term and we put it into a MSC-form, then all common sub-expressions occurring in it will

be bound by the same variable. For instance, if we start from the term (𝑓 3, 𝑓 3), then its MSC-form

will be (𝛼-equivalent to) bind𝑥 = 3 in bind𝑦 = 𝑓 𝑥 in bind 𝑧 = (𝑦,𝑦) in 𝑧: both occurrences of 𝑓 3 are

bound to 𝑦. 10

The first three properties of Definition A.6 are important since they ensure that an expression of

the source language is typable if and only if it is the unwinding of a typable MSC-form. For the

first two properties, this is because reducing the bindings in an intermediate expression—while

preserving unwinding—increases the typeability of a term: if we can type an intermediate term

in which two distinct variables bind the same sub-expression, then the same term in which this

sub-expression is bound by a single variable can also be typed by assigning to the unique variable

the intersection of the types of the distinct variables, but the converse does not hold. For the

third property this is because outer bindings may produce better types. For instance, consider

the expression bind𝑥 = 𝒂 in 𝜆𝑦. 𝑥 , where 𝒂 is an expression that can be either an integer or a

Boolean. This expression can be typed with (1→ Int) ∨ (1→ Bool). However for the expression
𝜆𝑦. (bind𝑥 = 𝒂 in𝑥) which has the same unwinding as the previous one, the most precise type

one can deduce is 1→ (Int ∨ Bool), which is strictly larger than (1→ Int) ∨ (1→ Bool).
The last property of Definition A.6 is important because it ensures that given a source language

expression 𝑒 there exists a unique (modulo 𝛼-conversion and the order of bindings) MSC-form

whose unwinding is 𝑒 (cf. Proposition A.8): we denote this MSC-form byMSC(𝑒).
An important property of MSC-forms is that given an expression 𝑒 of the source language, all

its MSC-forms (i.e., all MSC-form whose unwinding is 𝑒) are the same modulo the order in which

their bindings appear. Formally, we define the following congruence on canonical forms:

Definition A.7 (Canonical eqivalence). We denote by≡𝜅 the smallest congruence on canonical

forms that is closed by 𝛼-conversion and such that

bind𝑥1 = 𝒂1 in bind𝑥2 = 𝒂2 in𝜿 ≡𝜅 bind𝑥2 = 𝒂2 in bind𝑥1 = 𝒂1 in𝜿 𝑥1∉fv(𝒂2), 𝑥2∉fv(𝒂1) (22)

Then we prove that all the MSC forms of a source language expression are equivalent:

Proposition A.8. If 𝜿1 and 𝜿2 are two MSC-forms and ⌈𝜿1⌉ ≡𝛼 ⌈𝜿2⌉, then 𝜿1 ≡𝜅 𝜿2.

It is easy to observe that the canonical equivalence preserves typeability (this is a direct conse-

quence that type environments are mappings in which order does not matter).

It is easy to transform a canonical form into a MSC-form that has the same type and the

same unwinding. This can be done by applying the rewriting rules below, that are confluent and

normalizing.

10
Notice that this would not be true if aliasing were allowed: for instance (𝑓 3, 𝑓 3) could be transformed into

bind𝑥 = 3 in bind𝑤 =𝑥 in bind 𝑦1 = 𝑓 𝑥 in bind 𝑦2 = 𝑓 𝑤 in bind𝑧 = (𝑦1, 𝑦2) in𝑧

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

On Type-Cases, Union Elimination, and Occurrence Typing 13:39

bind𝑥1 = 𝒂1 in
bind𝑥2 = 𝒂2 in𝜿

d bind𝑥1 = 𝒂1 in𝜿{𝑥1/𝑥2} 𝒂1 ≡𝛼 𝒂2 (23)

bind𝑥 = 𝒂 in𝜿 d 𝜿 𝑥 ∉ fv(𝜿) (24)

𝜆𝑥.(bind𝑦 =𝑥 in𝜿) d 𝜆𝑥.𝜿{𝑥/𝑦} (25)

bind𝑥 = 𝒂 in
bind𝑦 =𝑥 in𝜿

d bind𝑥 = 𝒂 in𝜿{𝑥/𝑦} (26)

bind𝑥 = 𝜆𝑦.(
bind 𝑧 = 𝒂 in𝜿◦)

in𝜿
d

bind 𝑧 = 𝒂 in
bind𝑥 = 𝜆𝑦.𝜿◦ in𝜿

𝑦 ∉ fv(𝒂), 𝑧 ∉ fv(𝜿) (27)

𝜿1 d𝜅 𝜿2 ∃𝜿 ′
1
. 𝜿1 ≡𝜅 𝜿 ′1 d 𝜿2 (28)

Rule (23) implements the maximal sharing: if two variables bind atoms with the same unwinding

(modulo 𝛼-conversion), then the variables are unified. Rule (24) removes useless bindings while

(25) and (26) removes aliases. Rule (27) extrudes bindings from abstractions of variables that do

not occur in the argument of the binding. Rule (28) applies the previous rule modulo the canonical

equivalence: in practice it applies the swap of binding defined in (22) as many times as it is needed

to apply one of the other rules. As customary, these rules can be applied under any context.

Since the transformation above transforms every well-typed canonical form into an MSC-form

that has the same type (or a more precise one) and the same unwinding, the completeness theorem

of canonical forms already holds for MSC-form. The theorem can thus be stated as follows:

Theorem A.9 (Completeness of MSC-Forms). If ⊢ 𝑒 : 𝑡 then ∃𝜿 , 𝑡 ′ such that 𝜿 is a maximal

sharing canonical form, ⌈𝜿⌉ ≡𝛼 𝑒 , 𝑡 ′ ≤ 𝑡 , and ⊢I 𝜿 : 𝑡 ′

Notice that now we used 𝛼-conversion instead of equality, since 𝑒 may contain 𝛼-equivalent but

not equal subterms that the MSC-form 𝜿 would of course unify.

Putting it All Together. The corollary of these propositions is that an expression 𝑒 is typable if

and only if its unique (modulo ≡𝜅) MSC-form is typable, too. More formally, given an expres-

sions 𝑒 of the source language, let us denote by MSC(𝑒) any element of the set {𝜿 | 𝑒 ≡𝛼
⌈𝜿⌉ and 𝜿 is a MSC-form} that is, the unique (modulo ≡𝜅) MSC-form of 𝑒 . Then we have

Corollary A.10 (Soundness and Completeness). For every closed term 𝑒 of the source language

⊢ 𝑒 : 𝑡 ⇒ ⊢I MSC(𝑒) : 𝑡 ′ ≤ 𝑡 (completeness)

⊢ 𝑒 : 𝑡 ⇐ ⊢I MSC(𝑒) : 𝑡 (soundness)

Finally, it is straightforward to generate a particular MSC-form for a closed source language

expression 𝑒: simply apply the rewriting rules in (23)–(28) to termJ𝑒K. Corollary A.10 states that

this MSC-form is typable if and only if 𝑒 is: we reduced the problem of typing 𝑒 to the one of

typing a MSC-form of 𝑒 , form that we can effectively produce from 𝑒 and for which we have a

syntax-directed type system.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

13:40 Giuseppe Castagna, Mickaël Laurent, Kim Nguyễn, and Matthew Lutze

A.9 Algorithmic Typing Rules
[Const-Alg]

Γ ⊢A 𝑐 : b𝑐
[Ax-Alg]

Γ ⊢A 𝑥 : Γ(𝑥)
𝑥 ∈ dom(Γ)

[→I-Alg]

(∀𝑗 ∈ 𝐽) Γ, 𝑥 : 𝑡 𝑗 ⊢A 𝜅 : 𝑠 𝑗

Γ ⊢A 𝜆𝑥 :{Γ𝑖⊲𝑡𝑖 }𝑖∈𝐼 .𝜅 :

∧
𝑗 ∈𝐽 𝑡 𝑗 → 𝑠 𝑗

𝐽 = {𝑖 ∈ 𝐼 | Γ ≤ Γ𝑖 } ≠ ∅

[→E-Alg]

Γ ⊢A 𝑥1 : 𝑡1 Γ ⊢A 𝑥2 : 𝑡2

Γ ⊢A 𝑥1𝑥2 : 𝑡1 ◦ 𝑡2
𝑡1 ≤ 0→ 1
𝑡2 ≤ dom(𝑡1)

[×I-Alg]
Γ ⊢A 𝑥1 : 𝑡1 Γ ⊢A 𝑥2 : 𝑡2

Γ ⊢A (𝑥1, 𝑥2) : 𝑡1 × 𝑡2

[×E1-Alg]

Γ ⊢A 𝑥 : 𝑡 ≤ (1 × 1)
Γ ⊢A 𝜋1𝑥 : 𝜋1 (𝑡)

[×E2-Alg]

Γ ⊢A 𝑥 : 𝑡 ≤ (1 × 1)
Γ ⊢A 𝜋2𝑥 : 𝜋2 (𝑡)

[0-Alg]
Γ ⊢A 𝑥 : 0

Γ ⊢A (𝑥∈𝑡) ?𝑥1 :𝑥2 : 0

[∈1-Alg]

Γ ⊢ 𝑥 : 𝑡0 ≤ 𝑡 Γ ⊢ 𝑥1 : 𝑡1

Γ ⊢ (𝑥∈𝑡) ?𝑥1 :𝑥2 : 𝑡1
𝑡0 ; 0 [∈2-Alg]

Γ ⊢A 𝑥 : 𝑡0 ≤ ¬𝑡 Γ ⊢ 𝑥2 : 𝑡2

Γ ⊢A (𝑥∈𝑡) ?𝑥1 :𝑥2 : 𝑡2
𝑡0 ; 0

[∨1-Alg]

Γ ⊢A 𝜅 : 𝑠

Γ ⊢A bind𝑥 :{Γ𝑖⊲𝑡𝑖 }𝑖∈𝐼 =𝑎 in𝜅 : 𝑠

𝑥 ∉ dom(Γ)
{𝑖 ∈ 𝐼 | Γ ≤ Γ𝑖 } = ∅

[∨2-Alg]

Γ ⊢A 𝑎 :

∨
𝑗 ∈𝐽 𝑡 𝑗 (∀𝑗 ∈ 𝐽) Γ, 𝑥 : 𝑡 𝑗 ⊢A 𝜅 : 𝑠 𝑗

Γ ⊢A bind𝑥 :{Γ𝑖⊲𝑡𝑖 }𝑖∈𝐼 =𝑎 in𝜅 :

∨
𝑗 ∈𝐽 𝑠 𝑗

𝐽 = {𝑖 ∈ 𝐼 | Γ ≤ Γ𝑖 } ≠ ∅

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

On Type-Cases, Union Elimination, and Occurrence Typing 13:41

B ALGORITHM FOR RECONSTRUCTING ANNOTATIONS
In this section we give the complete definition of the algorithm for the reconstruction of annotations

together with all the auxiliary operations it uses. We start in Section B.1 with the definitions that

concern the refinement of the type environments. In Section B.2 we define the operations that

manipulate type environments, annotations and their types, in particular to (1) partition a set
of types into a set of disjoint types, to (2) manipulate expressions, in particular to restrict and
empty their annotations and to merge several expressions that differ only by their annotations

and (3) to extract and propagate the information provided by sets of refinements. Section B.3

present the inference rules that define a single pass of our algorithm.

B.1 Type Environment Refinements
During the annotation reconstruction process, we start from a generic context and generic annota-

tions (initially 1) and specialize them when necessary as we progress into the expression. In order

to refine an environment, we use the following operator.

Definition B.1 (Refinement of environments). Let Γ a type environment, 𝑥 a variable and 𝑡 a

type. We define the refinement Γ [𝑥 :=
∧
𝑡] as follows:

Γ [𝑥 :=
∧
𝑡] =

def

{
(Γ ∖ {𝑥 ↦→ Γ(𝑥)}) ∪ {𝑥 ↦→ Γ(𝑥)∧𝑡} if 𝑥∈dom(Γ) and (Γ(𝑥) ≃ 0 or Γ(𝑥)∧𝑡 ; 0)
undefined otherwise

Note that this operator is undefined when 𝑥 ∉ dom(Γ): we do not want to consider refinements

on variables that are not in the context. It is also undefined when Γ(𝑥) ; 0 and Γ(𝑥)∧𝑡 ≃ 0: we
do not want to consider refinements that require a variable to have an empty type, except if this

variable already had an empty type before the refinement.

Necessary Refinements. In a term in canonical form, type-cases test the type of variables bound to

atoms. So, morally we are examining expressions of the form (𝑎∈𝑡) ?𝑎1 :𝑎2. To precisely type such

an expression we need to determine the conditions under which each branch is selected or not.

The “conditions” at issue are given as possible refinements of the current type environment. More

precisely, given a type environment Γ and an atom 𝑎 that is typable under the type environment Γ,
we want to refine the types of the free variables of 𝑎 in Γ so that any result of 𝑎 under this refined

context will possibly be of type 𝑡 .

Rather than a single refinement we will look a finite set of refinements which will be described

by a finite set {Γ𝑖 }𝑖∈𝐼 of type environments. Each of these environments Γ𝑖 will be subsumed (in the

sense of Definition 4.1) by the initial environment Γ.
In particular, we are interested in refinements that are necessary (but may not be sufficient) to

ensure that 𝑎 will produce results of type 𝑡 . This will allow the system to give a precise typing to

the branches of typecase expressions by integrating the information that if the branch was selected,

then the type-test failed/succeeded.

More precisely, we define a quaternary relations that takes an atom 𝑎, a type 𝑡 (into which 𝑎

must reduce), the current type-environment Γ (under which 𝑎 is typable) and a finite set {Γ𝑖 }𝑖∈𝐼 of
type environments subsumed by Γ. We denote this relation by the following judgment (we use the

modal symbol □ to stress that the atom 𝑎 does not diverge and reduces to a value in 𝑡):

[Γ ⊢ □(𝑎{𝑡)] ⊃ {Γ𝑖 }𝑖∈𝐼
meaning that if 𝑎 must reduce to values of type 𝑡 (connective □), then it is necessary (connective ⊃)
that at least one of the refinements Γ𝑖 of Γ holds.

In particular [Γ ⊢ □(𝑎{𝑡)] ⊃ {} means that it is impossible under the hypothesis Γ that 𝑎

produces a value of type 𝑡 ; [Γ ⊢ □(𝑎{𝑡)] ⊃ {Γ} means that Γ already provides all conditions that

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

13:42 Giuseppe Castagna, Mickaël Laurent, Kim Nguyễn, and Matthew Lutze

are necessary for 𝑎 to produce a value of type 𝑡 . For example, we have: [Γ ⊢ □(42{Bool)] ⊃ {},
[Γ ⊢ □(42{Int)] ⊃ {Γ}, and [𝑥 :1 ⊢ □((𝑥, 𝑥){(Int×Int)∨(Bool×Bool))] ⊃ {(𝑥 :Int) , (𝑥 :Bool)}.
The latter states that for (𝑥, 𝑥) to reduce to a value of type (Int×Int)∨(Bool×Bool it is necessary
that either 𝑥 is of type Int or 𝑥 is of type Bool.

The quaternary relation is defined by induction on atoms as follows:

[Γ ⊢ □(𝑐{𝑡)] ⊃ {} b𝑐 ∧ 𝑡 ≃ 0 (29)

[Γ ⊢ □(𝑐{𝑡)] ⊃ {Γ} b𝑐 ∧ 𝑡 ; 0 (30)

[Γ ⊢ □(𝑥1 𝑥2{𝑡)] ⊃ {Γ [𝑥1 :=
∧
𝑡𝑖] [𝑥2 :=

∧
𝑡𝑖 ‚ 𝑡] | 𝑖 ∈ 𝐼 } Γ(𝑥1) ≃dnf

∨
𝑖∈𝐼 𝑡𝑖 (31)

[Γ ⊢ □(𝜆𝑥.𝜅{𝑡)] ⊃ {} (0→1) ∧ 𝑡 ≃ 0 (32)

[Γ ⊢ □(𝜆𝑥.𝜅{𝑡)] ⊃ {Γ} (0→1) ∧ 𝑡 ; 0 (33)

[Γ ⊢ □(𝜋1𝑥{𝑡)] ⊃ {Γ [𝑥 :=
∧
𝑡 × 1]} (34)

[Γ ⊢ □(𝜋2𝑥{𝑡)] ⊃ {Γ [𝑥 :=
∧ 1 × 𝑡]} (35)

[Γ ⊢ □((𝑥1, 𝑥2){
∨
𝑖∈𝐼 (𝑡𝑖 × 𝑠𝑖))] ⊃ {Γ [𝑥1 :=

∧
𝑡𝑖] [𝑥2 :=

∧
𝑠𝑖] | 𝑖 ∈ 𝐼 } (36)

[Γ ⊢ □((𝑥∈𝜏) ?𝑥1 :𝑥2{𝑡)] ⊃ {Γ [𝑥1 :=
∧
𝑡] [𝑥 :=

∧
𝜏] , Γ [𝑥2 :=

∧
𝑡] [𝑥 :=

∧ ¬𝜏]} (37)

with the convention that the sets on the right-hand side of the relations contain only the type-

environments for which the operations are defined. So for instance in (34) if (𝑡×1) ∧ Γ(𝑥) ≃ 0,
then Γ [𝑥 :=

∧
𝑡 × 1] is undefined and therefore [Γ ⊢ □(𝜋1𝑥{𝑡)] ⊃ {} holds.

Let us explain the rules for each atom. If the atom is a constant 𝑐 then (29) states that it is

impossible that the constant produces a result of type 𝑡 if b𝑐 ∧ 𝑡 ≃ 0; if instead b𝑐 ∧ 𝑡 ; 0, then (30)

states that Γ does not need to be refined (actually, it cannot be refined since the atom 𝑐 has no free

variables to refine) to ensure that 𝑐 may produce such a result.

The case (31) for the application of a function 𝑥1 of type

∨
𝑖∈𝐼 𝑡𝑖 to an argument 𝑥2 is the most

interesting one and needs detailed explanation. In short, rule (31) states that if the application must

produce a result of type 𝑡 , then there must exist 𝑖 ∈ 𝐼 such that the function is of type 𝑡𝑖 , 𝑡𝑖 is a

functional type (i.e., a subtype of 0→1), and the argument has type 𝑡𝑖 ‚ 𝑡 which, by definition,

ensures the property. Let us explain each single bit. First of all, the rule states Γ(𝑥1) ≃dnf
∨
𝑖∈𝐼 𝑡𝑖 .

This means that we take the type Γ(𝑥1) of 𝑥1 and we transform it in its disjunctive normal form

as defined by Frisch et al. [2008, Section 6.1]. This is a union of intersections of literals of the

same form. A literal is an atomic type or its negation. An atomic type (and, thus, literals) has three

possible forms: it is either a basic type or an arrow type or a product type. For instance, if 𝑡 is a

function type, that is, 𝑡 ≤ 0→1, then it is equivalent to a union of intersections of arrows and their

negations: 𝑡 ≃dnf ∨
𝑖∈𝐼 (

∧
𝑝∈𝑃𝑖 (𝑠𝑝 → 𝑡𝑝) ∧

∧
𝑛∈𝑁𝑖
¬(𝑠 ′𝑛 → 𝑡 ′𝑛)) for some 𝑃𝑖 ’s and 𝑁𝑖 ’s, a property we

used in Appendix A.4. Also in Appendix A.4 there is the definition of 𝑡𝑖 ‚ 𝑡 which is the largest

type we can give to an argument of a function of type 𝑡𝑖 so that the application may yield a result

of type 𝑡 , which is exactly what we need here. Also notice that 𝑡𝑖 ‚ 𝑡 is defined only for 𝑡𝑖 ≤ 0→1,
which means that a refinement will be produced only for those 𝑡𝑖 of the disjunctive normal form

of Γ(𝑥1) that are functional types. Finally, disjunctive normal forms are not unique but the best

results for our algorithm are obtained when the disjunctive normal forms for products are formed

by disjoint sets of minimum cardinality (e.g., (Int, Int∨Bool) ∨ (Int, Int∨String) will be decomposed

as (Int, Int∨Bool∨String) rather than as (Int, Int) ∨ (Int,Bool) ∨ (Int, String)) while soundness
of our algorithm requires that the disjunctive normal form for arrows has minimum cardinality

(obviously they cannot be disjoint unions, since 1→0 is in the intersection of any pair of arrows).

In practice in our implementation we will use the result of the normalize function provided by

the CDuce API for types.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

On Type-Cases, Union Elimination, and Occurrence Typing 13:43

The cases for 𝜆-abstraction are just rough approximations since we do not try to refine the type

of the variables that are free in the body of a function to determine the type of that function.
11
As a

consequence, the treatment of 𝜆-abstractions is similar to the one for constants. In particular, (33)

states that if 𝑡 contains some functions, then we do not need to do anything to ensures that the

𝜆-abstraction may be of type 𝑡 .

The other cases are straightforward. For a projection to yield a result of a certain type the

projected expression must be of the corresponding product types (34-35); for a pair to yield a value

in a union of products, it must yield a value in at least one of the summands of the union; finally, a

type-case will yield a result in 𝑡 if and only if the branch that is selected does it.

B.2 Auxiliary Definitions
The rules in the next section use several auxiliary functions, some of whichwhere already introduced

and more or less formally described in Section 5. We recall all of them with their definitions.

partition({𝑡𝑖 }𝑖∈𝐼) is the smallest (in terms of cardinality) non empty set of types {𝑠 𝑗 } 𝑗 ∈𝐽 such
that (𝑖) ∨𝑗 ∈𝐽 𝑠 𝑗 ≃

∨
𝑖∈𝐼 𝑡𝑖 , (𝑖𝑖) ∀𝑗 ∈ 𝐽 . ∀𝑗 ′ ∈ 𝐽 . 𝑗 ≠ 𝑗 ′ ⇒ 𝑠 𝑗 ∧ 𝑠 𝑗 ′ ≃ 0, and (𝑖𝑖𝑖) ∀𝑗 ∈ 𝐽 . ∀𝑖 ∈

𝐼 . 𝑠 𝑗 ≤ 𝑡𝑖 or 𝑠 𝑗 ∧ 𝑡𝑖 ≃ 0. Notice that since partition must return a non-empty set, then for∨
𝑖∈𝐼 𝑡𝑖 ≃ 0 we have partition({𝑡𝑖 }𝑖∈𝐼) = {0}.

empty(𝜑) (where 𝜑 , we recall, denotes either an algorithmic atom 𝑎 or an algorithmic expression

𝜅) replaces all the annotations in 𝜑 by the empty annotation {}.
merge𝜑 ({𝜑𝑖 }𝑖∈𝐼) is defined when all 𝜑𝑖 are the same except for their annotations (i.e., they all have

the same erasure ⟨𝜑𝑖⟩) and produces a new annotated expression that concatenates all these

annotations. If 𝐼 = ∅, then it returns empty(𝜑).
propagate𝑥,𝑎,𝑡 (

L) propagates to the types of the free variables of 𝑎 any refinement of 𝑡 specified

in the typings of 𝑥 in the environments in

L
. Essentially it applies [Γ ⊢ □(𝑎{Γ(𝑥))] ⊃ L′

for each Γ ∈ L
for which a refinement must be propagated. It is defined as:

propagate𝑥,𝑎,𝑡 ({Γ𝑖 }𝑖∈𝐼) =
def

⋃
𝑖∈𝐼

L
𝑖 with ∀𝑖 ∈ 𝐼 .

{L
𝑖 = {Γ𝑖 } if 𝑡 ≤ Γ𝑖 (𝑥)
[Γ𝑖 ⊢ □(𝑎{Γ𝑖 (𝑥))] ⊃

L
𝑖 otherwise

.

extract𝑥 (
L) extracts from L

all the hypotheses about 𝑥 to create a new annotation that it returns

with the set of type environments from which these hypotheses were removed, that is,

extract𝑥 (
L) =

def ({(Γ∖𝑥) ⊲ Γ(𝑥) | Γ ∈ L}, {Γ∖𝑥 | Γ ∈ L}) where Γ∖𝑥 =
def Γ ∖ {𝑥 ↦→ Γ(𝑥)}.

(Γ⊲𝐴) denotes the set of the types of the annotation 𝐴 that are compatible with (i.e., whose

hypotheses subsume) Γ, that is, (Γ⊲𝐴) =
def {𝑡 | Γ′⊲𝑡 ∈ 𝐴 and Γ ≤ Γ′}. We use

∨(Γ⊲𝐴) to
denote the union of these types.

restrictΓ (𝐴) refines all the type environments in the annotation𝐴 with the hypotheses in Γ, that
is restrictΓ (𝐴) =

def {(Γ ∧ Γ′)⊲𝑡 | Γ′⊲𝑡 ∈ 𝐴} where Γ ∧ Γ′ denotes the pointwise intersection
of two type environments with possibly distinct domains, which is formally defined as:

(Γ ∧ Γ′) (𝑥) =
def


Γ(𝑥) if 𝑥 ∈ dom(Γ) ∖ dom(Γ′)
Γ′(𝑥) if 𝑥 ∈ dom(Γ′) ∖ dom(Γ)
Γ(𝑥) ∧ Γ′(𝑥) if 𝑥 ∈ dom(Γ) ∩ dom(Γ′)
undefined otherwise

restrictΓ (𝜑) replaces every annotation 𝐴 in 𝜑 by restrictΓ (𝐴).

We have now all the notions to formally define the inference rules of our algorithm.

11
As a matter of fact, it is possible to handle this case more precisely, but for the sake of simplicity we do not do it here.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

13:44 Giuseppe Castagna, Mickaël Laurent, Kim Nguyễn, and Matthew Lutze

B.3 Annotations Reconstruction Rules
The rules below use the convention that the sets on the right-hand side of the conclusion contain

only the type-environments for which the operations are defined. In particular, only the environment

refinements Γ [𝑥 :=
∧
𝑡] for which 𝑥 ∈ dom(Γ) and (Γ(𝑥) ≃ 0 or Γ(𝑥) ∧ 𝑡 ; 0) are considered. This

in particular means that the set notation {Γ [𝑥 :=
∧
𝑡𝑖]}𝑖∈𝐼 used in the rules must be considered as a

shorthand for {Γ𝑖 | 𝑖 ∈ 𝐼 , Γ𝑖 = Γ [𝑥 :=
∧
𝑡𝑖], Γ𝑖 (𝑥) ; 0}. We list all the rules below and comment them

next.

[Const]

b𝑐 ≤ 𝑡
Γ ⊢R 𝑐 : 𝑡 ⇒ (𝑐, {Γ})

[ConstUntypable]

b𝑐 ≰ 𝑡

Γ ⊢R 𝑐 : 𝑡 ⇒ (𝑐, {})

[ProjEmpty]

Γ(𝑥) ≃ 0

Γ ⊢R 𝜋𝑖𝑥 : 𝑡 ⇒ (𝜋𝑖𝑥, {Γ})

[Proj1]

Γ(𝑥) ∧ (𝑡 × 1) ≃dnf ∨
𝑖∈𝐼 𝑡𝑖 × 𝑠𝑖

Γ ⊢R 𝜋1𝑥 : 𝑡 ⇒ (𝜋1𝑥, {Γ [𝑥 :=
∧
𝑡𝑖 × 𝑠𝑖]}𝑖∈𝐼)

[Proj2]

Γ(𝑥) ∧ (1 × 𝑡) ≃dnf ∨
𝑖∈𝐼 𝑡𝑖 × 𝑠𝑖

Γ ⊢R 𝜋2𝑥 : 𝑡 ⇒ (𝜋2𝑥, {Γ [𝑥 :=
∧
𝑡𝑖 × 𝑠𝑖]}𝑖∈𝐼)

[PairEmpty]

Γ(𝑥1) × Γ(𝑥2) ≃ 0

Γ ⊢R (𝑥1, 𝑥2) : 𝑡 ⇒ ((𝑥1, 𝑥2), {Γ})

[Pair]

𝑡 ∧ (1 × 1) ≃dnf ∨
𝑖∈𝐼 𝑡𝑖 × 𝑠𝑖

Γ ⊢R (𝑥1, 𝑥2) : 𝑡 ⇒ ((𝑥1, 𝑥2), {Γ [𝑥1 :=
∧
𝑡𝑖] [𝑥2 :=

∧
𝑠𝑖]}𝑖∈𝐼)

[CaseEmpty]

Γ(𝑥) ≃ 0

Γ ⊢R (𝑥∈𝑡) ?𝑥1 :𝑥2 : 𝑡 ⇒ ((𝑥∈𝑡) ?𝑥1 :𝑥2, {Γ})

[Case]

Γ ⊢R (𝑥∈𝑠) ?𝑥1 :𝑥2 : 𝑡 ⇒ ((𝑥∈𝑠) ?𝑥1 :𝑥2, {Γ [𝑥 :=
∧
𝑠] [𝑥1 :=

∧
𝑡], Γ [𝑥 :=

∧ ¬𝑠] [𝑥2 :=
∧
𝑡]})

[AppREmpty]

Γ(𝑥2) ≃ 0 Γ(𝑥1) ≤ 0→ 1

Γ ⊢R 𝑥1𝑥2 : 𝑡 ⇒ (𝑥1𝑥2, {Γ})
[AppLEmpty]

Γ(𝑥1) ≃ 0 𝑥2 ∈ dom(Γ)
Γ ⊢R 𝑥1𝑥2 : 𝑡 ⇒ (𝑥1𝑥2, {Γ})

[AppR]

Γ(𝑥1) ≃dnf
∧
𝑖∈𝐼 (𝑠𝑖 → 𝑡𝑖) ∧

∧
𝑗 ∈𝐽 (¬(𝑠 ′𝑗 → 𝑡 ′𝑗))

Γ ⊢R 𝑥1𝑥2 : 𝑡 ⇒ (𝑥1𝑥2, {Γ [𝑥1 :=
∧ (𝑠𝑖 ∧ Γ(𝑥2)) → 𝑡] [𝑥2 :=

∧
𝑠𝑖]}𝑖∈𝐼)

[AppL]

Γ(𝑥1) ∧ (0→ 1) ≃dnf ∨
𝑖∈𝐼 𝑠𝑖 𝑥2 ∈ dom(Γ)

Γ ⊢R 𝑥1𝑥2 : 𝑡 ⇒ (𝑥1𝑥2, {Γ [𝑥1 :=
∧
𝑠𝑖]}𝑖∈𝐼)

[Abs]

𝑡 ≃dnf ∧
𝑗 ∈𝐽 (𝑠 𝑗 → 𝑡 𝑗) (Γ⊲𝐴) ≠ {} ∨

𝑗 ∈𝐽 𝑠 𝑗 ≤
∨(Γ⊲𝐴)

{𝑠𝑖 }𝑖∈𝐼 = partition((Γ⊲𝐴) ∪ {𝑠 𝑗 | 𝑗 ∈ 𝐽 }) ∀𝑖 ∈ 𝐼 . Γ, (𝑥 : 𝑠𝑖) ⊢R 𝜅 : 𝑡 ◦1 𝑠𝑖 ⇒ (𝜅𝑖 ,
L
𝑖)

∀𝑖 ∈ 𝐼 . (𝐴𝑖 ,
L′
𝑖) = extract𝑥 (

L
𝑖) 𝐴′ =

⋃
𝑖∈𝐼 𝐴𝑖

∨
𝑗 ∈𝐽 𝑠 𝑗 ≤

∨{𝑠 ′ | (Γ′⊲𝑠 ′) ∈ 𝐴′}
Γ ⊢R 𝜆𝑥 :𝐴.𝜅 : 𝑡 ⇒ (𝜆𝑥 :𝐴′. merge𝜅 ({𝜅𝑖 }𝑖∈𝐼),

⋃
𝑖∈𝐼

L′
𝑖)

[AbsUntypable]

Γ ⊢R 𝜆𝑥 :𝐴.𝜅 : 𝑡 ⇒ (𝜆𝑥 :{}.empty(𝜅), {})

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

On Type-Cases, Union Elimination, and Occurrence Typing 13:45

[UndefinedVar]

Γ ⊢R 𝑎 : 𝑡 ⇒ (𝑎, {})

[BindArgSkip]

Γ⊲𝐴 = {} Γ ⊢R 𝜅 : 𝑡 ⇒ (𝜅 ′,L)
Γ ⊢R bind𝑥 :𝐴 =𝑎 in𝜅 : 𝑡 ⇒ (bind𝑥 :{} = empty(𝑎) in𝜅 ′ ,L)

[BindArgUntyp]

Γ ⊢R 𝑎 :

∨(Γ⊲𝐴) ⇒ (𝑎′, {}) Γ ⊢R 𝜅 : 𝑡 ⇒ (𝜅 ′,L)
Γ ⊢R bind𝑥 :𝐴 =𝑎 in𝜅 : 𝑡 ⇒ (bind𝑥 :{} =𝑎′ in𝜅 ′ ,L)

[BindArgRefEnv]

Γ ⊢R 𝑎 :

∨(Γ⊲𝐴) ⇒ (𝑎′,L)
𝜅 ′ = restrictΓ (𝜅) 𝐴′ = restrictΓ (𝐴)

Γ ⊢R bind𝑥 :𝐴 =𝑎 in𝜅 : 𝑡 ⇒ (bind𝑥 :𝐴′ =𝑎′ in𝜅 ′,
L ∪ {Γ})

L
≠ {Γ}

[BindArgRefAnns]

Γ ⊢R 𝑎 :

∨(Γ⊲𝐴) ⇒ (𝑎′, {Γ}) Γ ⊢R bind𝑥 :𝐴 =𝑎′ in𝜅 : 𝑡 ⇒ (𝜅 ′,L)
Γ ⊢R bind𝑥 :𝐴 =𝑎 in𝜅 : 𝑡 ⇒ (𝜅 ′,L)

𝑎′ ≠ 𝑎

[Bind]

Γ ⊢R 𝑎 :

∨(Γ⊲𝐴) ⇒ (𝑎, {Γ})
Γ ⊢A 𝑎 : 𝑠 {𝑠𝑖 }𝑖∈𝐼 = partition({𝑠 ∧ 𝑢 | 𝑢 ∈ (Γ⊲𝐴)}) (∀𝑖 ∈ 𝐼)

Γ, (𝑥 : 𝑠𝑖) ⊢R 𝜅 : 𝑡 ⇒ (𝜅𝑖 ,
L
𝑖)

L′
𝑖 = propagate𝑥,𝑎,𝑠𝑖 (

L
𝑖) (𝐴𝑖 ,

L′′
𝑖) = extract𝑥 (

L′
𝑖)

Γ ⊢R bind𝑥 :𝐴 =𝑎 in𝜅 : 𝑡 ⇒ (bind𝑥 :

⋃
𝑖∈𝐼 𝐴𝑖 =𝑎

′ in merge𝜅 ({𝜅𝑖 }𝑖∈𝐼) ,
⋃
𝑖∈𝐼

L′′
𝑖)

[Var]

Γ ⊢R 𝑥 : 𝑡 ⇒ (𝑥, {Γ [𝑥 :=
∧
𝑡]})

The rules above are listed in priority order, meaning that a rule applies only if no other previous

rule does.

In Section 5 we said that we omitted the rules for empty types. A first example of such rules is

the rule [ProjEmpty] that states that when 𝑥 is of type 0 (i.e., the variable is bound to an expression

that diverges), then the atom 𝜋𝑖𝑥 is well-typed (since by subsumption it has type 𝑡 × 1 and 1 × 𝑡 ,
that can be used for each specific 𝜋𝑖).

The rules [Proj𝑖] are as in Section 5 with the only difference that instead of ≃ they use the

relation ≃dnf we defined in Appendix B.1. The reason is that we want a deterministic algorithm and

therefore these rules simply apply to the types on the left-hand side the normalization algorithm

by Frisch et al. [2008] yielding the type on the right-hand side.

The rule [PairEmpty] follows the same logic as [ProjEmpty], where Γ(𝑥1) × Γ(𝑥2) ≃ 0 is just a

notational trick to state that either Γ(𝑥1) ≃ 0 or Γ(𝑥2) ≃ 0.
The rule [Pair] states that for a pair to have a type 𝑡 , it must inhabit the product part of 𝑡 , that is

𝑡 ∧ (1 × 1). The rule then performs the decomposition of this part in its disjunctive normal form.

The [CaseEmpty] states that if in type-case expression the tested expression diverges, then the

expression is well typed. The rule [Case] was explained in Section 5.

The rules [AppLEmpty] and [AppREmpty] reflect the use of our left to right evaluation strategy:

if 𝑥1 diverges then the application is well typed provided 𝑥2 is defined; if 𝑥2 diverges then the

application is well typed provided 𝑥1 has a functional type and thus, implicitly, it already converged

to a 𝜆-abstraction.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

13:46 Giuseppe Castagna, Mickaël Laurent, Kim Nguyễn, and Matthew Lutze

The rule [AppR] is as the one presented and explained in Section 5 apart from two details. First,

as for the other rules, instead of checking the equivalence ≃, we use ≃dnf which transforms the

type of the function into its disjunctive normal form. Second, even though this has no consequence

on the conclusion of the rule, we stress that this transformation can make some negated arrow

types appear. We omitted this detail in the main presentation because to see that this is possible

one needs to examine the details of the definition of partition, that in the rule [Abs] is used to

partition the domain of the function. If we have a function whose parameter is annotated with some

functional type, say, Int→Int and this parameter was initially given type 1, then partition will
produce for these two types the set {(Int→ Int),¬(Int→ Int)} which contains a negated arrow.

The presence of negated arrows becomes important for the rules [Abs] and [AbsUntypable].

We explained the rule [Abs] in Section 5. However the rule presented there was a simplified

version. Let us pinpoint the differences. As customary, rather than checking the equivalence ≃, we
use ≃dnf which transforms the checked type 𝑡 into its disjunctive normal form. Notice, however,

that the rule applies only if the disjunctive normal form does not contain any negated arrow type.

Indeed, for a given 𝜆-abstraction there is no way to ensure that it will have a specific negated arrow

type (this is possible in CDuce since 𝜆-abstractions are explicitly annotated, but here in general we

have no annotation in the source language to enforce it). So in case there are any negated arrow

types, the type constraint 𝑡 must be considered not satisfiable and this case is handled by the rule

[AbsUntypable]. The rule [Abs] above uses the operator 𝑡 ◦1 𝑠𝑖 given in Appendix A.4 whereas

the rule in Section 5 used 𝑡 ◦ 𝑠𝑖 . The former is defined as 𝑡 ◦ 𝑠𝑖 but it returns 1 when 𝑠𝑖 ≰ dom(𝑡).
This forces the system to check whether it is possible to type the function under the hypothesis

that 𝑥 : 𝑠𝑖 even if 𝑠𝑖 is not in the current domain that was deduced for the function. The reason

is that we are determining this domain: at the beginning all we know about a function is that, if

it is well typed, then it will be of type 0 → 1. Clearly we do not want to test for the function

only the 0 domain, but also the domains suggested by the current annotation for 𝑥 (initially 1).
The annotation 𝐴′ produced will retain only those for which the test will have succeeded. Still in

the rule [Abs], the additional checks (Γ⊲𝐴) ≠ {} and ∨
𝑗 ∈𝐽 𝑠 𝑗 ≤

∨(Γ⊲𝐴) absent in the version of

Section 5 are there to ensure that the algorithm will only refine the initial annotations and not

enlarge them (this is needed for the—conjectured—termination of the algorithm). The last condition

added, namely,

∨
𝑗 ∈𝐽 𝑠 𝑗 ≤

∨{𝑠 ′ | (Γ′⊲𝑠 ′) ∈ 𝐴′}, is a necessary (but far from sufficient) condition

to ensure that the annotated 𝜆-abstraction produced by the pass has type 𝑡 : if all the types in the

produced annotation 𝐴′ (independently from their guards) do not cover dom(𝑡) (i.e., ∨𝑗 ∈𝐽 𝑠 𝑗) then
there is no way by which a lambda abstraction of the form 𝜆𝑥 :𝐴′.𝜅 could have type 𝑡 .

If any of the conditions added in the rule [Abs] fail, or if the checked type 𝑡 has any negated

arrow type, then there is no way that 𝜆𝑥 :𝐴.𝜅 can be given type 𝑡 and the pass fails. This is done by

the rule [AbsUntypable]. Notice that for this rule the returned expression is the initial one with

all annotations emptied. This is necessary because even if the typing of this term under Γ failed, it

may succeed under different hypotheses and thus the merging of this atom with the successful one

should not perturb the latter.

The rule [UndefVar] is the default case for the typing of atoms. It means that if none of the

previous rules can be applied (recall that the rules are given in priority order), then the algorithm

must return a failure. We called it [UndefVar] since this happens when one of the variables of 𝑎 is

not in dom(Γ).
The rule [UndefVar] concludes the rules for algorithmic atoms. The rules that follow are for

algorithmic expressions, that is, bind-expressions and variables. We already explained in detail

the rules for bind-expressions in Section 5 where we gave the complete rules with just two sim-

plifications. First, in the rule [BindArgSkip] we omitted to apply the empty function to 𝑎. As in

the case for [AbsUntypable] this must be done in order to avoid to perturb the merge with other

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

On Type-Cases, Union Elimination, and Occurrence Typing 13:47

successful annotations. Second in the rule [BindArgRefEnv], when the typing of the argument 𝑎

needs more refinements, it is not sufficient to forward these refinements to the whole pass, since

these refinements may impact the annotations already present in the MSC-form, that are thus

refined by applying the restrict function.

Finally, the very last rule, [Var] states that in order to ensure that a variable has type 𝑡 the

obvious solution is to refine Γ(𝑥) with 𝑡 . Simply notice that if Γ(𝑥) is a subtype of 𝑡 , then the rule

returns {Γ}, that is success.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

13:48 Giuseppe Castagna, Mickaël Laurent, Kim Nguyễn, and Matthew Lutze

C EXTENSIONS
In this sectionwe present two extensions of our source language of Section 2, that add let-expressions

and records. The former is a minimum requirement for any practical programming language, the

latter plays a key role if we want our theory to be applicable to dynamic languages.

C.1 Let Bindings
C.1.1 Declarative Type System. Let bindings can easily be added to the syntax of our language:

Expressions 𝑒 ::= · · · | let𝑥 = 𝑒 in 𝑒 (38)

For the reduction semantics, we just add the following notion of reduction and definition of

evaluation context:

let𝑥 = 𝑣 in 𝑒 { 𝑒{𝑣/𝑥}

Evaluation Context 𝐸 ::= · · · | let𝑥 =𝐸 in 𝑒

and the typing rule is straightforward:

[Let]

Γ ⊢ 𝑒1 : 𝑡1 Γ, (𝑥 : 𝑡1) ⊢ 𝑒2 : 𝑡2

Γ ⊢ let𝑥 = 𝑒1 in 𝑒2 : 𝑡2

C.1.2 Intermediate System. We add the same production as in (38) in the grammar for intermediate

expressions. The definition of unwinding is then straightforward:

⌈let𝑥 = 𝑒1 in 𝑒2 ⌉ = let𝑥 = ⌈𝑒1⌉ in ⌈𝑒2⌉

The definition of canonical forms instead changes in a more surprising way since we add as atom

for let expressions the following canonical form:

Atomic expr 𝑎 ::= · · · | let𝑥 in𝑥 (39)

Surprising as it may be, the intuition is rather simple: to produce the atom for the expression

let𝑥 = 𝑒1 in 𝑒2 we must replace each subexpression by a variable which would yield something of

the form let𝑥 =𝑥1 in𝑥2 . It easy to see that since the body of the let-expression is a variable, then

the variable 𝑥 is completely useless. The same expressivity can be obtained by specifying only the

other two variables, which yields let𝑥1 in𝑥2 and which explains the definition of the atom for let

expressions. To say it into a different way, we proceed as before, and define canonical forms so

that every subexpression that is not a variable is isolated in the definition of a bind (in this way

every such subexpression can be designated by a variable). If we were to proceed as before then we

should add to atoms the let expression in which all subexpressions are variables. We then add to

the transformation function the following clause to transform the let expressions:

Jlet𝑥 = 𝑒1 in 𝑒2 K = (Δ1;Δ2;𝑥◦ ↦→ let𝑥1 in𝑥2 , 𝑥◦)
where (Δ1, 𝑥1) = J𝑒1K, (Δ2, 𝑥2) = J𝑒2{𝑥1/𝑥}K

yielding the following canonical form for the example expression let𝑥 = 𝜆𝑦.𝑦 in (𝑥, 𝑥) :

bind𝑥1 = 𝜆𝑦.𝑦 in
bind𝑥2 = (𝑥1, 𝑥1) in
bind𝑥◦ = (let𝑥1 in𝑥2) in𝑥◦

The variable 𝑥 is no longer present in the expression. It is unneeded as it is an alias for the variable

𝑥1.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

On Type-Cases, Union Elimination, and Occurrence Typing 13:49

We do the same for algorithmic expressions, since we do not want to add an annotation in an

atom let𝑥1 in𝑥2 : such annotations will be directly put on the bind-expressions that bind 𝑥1 and

𝑥2.

C.1.3 Annotation Reconstruction Rules. The extension of the algorithm for reconstruction is

straightforward. We add to the clauses of Appendix B.1 the following clause:

[Γ ⊢ □(let𝑥1 in𝑥2{𝑡)] ⊃ {Γ [𝑥1 :=
∧ 1] [𝑥2 :=

∧
𝑡]} (40)

In a word, the type 𝑡 of the expression matches the type of 𝑥2, while we also ensure that 𝑥1 is

well-typed simply by refining its current type by the top type 1.

[Let]

Γ ⊢R let𝑥1 in𝑥2 : 𝑡 ⇒ (let𝑥1 in𝑥2 , Γ [𝑥1 :=
∧ 1] [𝑥2 :=

∧
𝑡])

The [Let] rule that defines the algorithm pass for the new atom we added matches the refinement

rule: 𝑥1 must be well-typed, while the type of 𝑥2 refines to the type of the entire expression.

C.2 Records
In languages such as JavaScript, the fundamental object type is implemented as an extensible record.

Record expressions are sometimes an afterthought in the definition of a calculus, as their semantics

can typically be reduced to that of the pair. Extending their operations beyond projection to include

field update and deletion, however, warrants additional attention.

C.2.1 Terms. New expressions are added to the source language to create and manipulate records:

the empty record, a record update expression, a field deletion expression, and a field projection

expression. Record values consist of empty records and record update expressions whose constituent

expressions are themselves values.

Expressions 𝑒 ::= · · · | {} | {𝑒 with ℓ = 𝑒} | 𝑒\ℓ | 𝑒.ℓ
Values 𝑣 ::= · · · | {} | {𝑣 with ℓ = 𝑣} (41)

To reduce verbosity, we use syntactic sugar for nonempty records. Assuming all the labels are

distinct, {{{{} with ℓ1 = 𝑒1} with ℓ2 = 𝑒2} . . . with ℓ𝑛 = 𝑒𝑛} is represented by {ℓ1 = 𝑒1, ℓ2 =

𝑒2, . . . ℓ𝑛 = 𝑒𝑛}.
The record expressions of the source language correspond directly

12
to operations on objects in

JavaScript:

JavaScript Source Language

obj.field obj.field

delete obj.field obj\field
obj.field = val {obj with field = val}

C.2.2 Declarative Type System. Reduction of record expressions is straightforward. It is worth

noting that in this representation, multiple identical labels may exist in a record expression, but this

is equivalent to limiting to one label, as projection reduces to the last-applied field, and deletion

12
One important difference is that the operations in JavaScript are effectful. Field update and deletion modify the object on

which they are operating, rather than returning a new object. To complicate things further, update and projection operations

may actually call setter and getter methods on the object, rather than directly modifying the object’s properties. Lastly,

property accesses may be forwarded to an object’s prototype if not present on the object itself. We use a more naïve model

for comparison.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

13:50 Giuseppe Castagna, Mickaël Laurent, Kim Nguyễn, and Matthew Lutze

removes all instances of a label from the record:

{𝑣 ′ with ℓ = 𝑣}.ℓ { 𝑣 (42)

{𝑣 ′ with ℓ ′ = 𝑣}.ℓ { 𝑣 ′.ℓ ℓ ′ . ℓ (43)

{}\ℓ { {} (44)

{𝑣 ′ with ℓ = 𝑣}\ℓ { 𝑣 ′\ℓ (45)

{𝑣 ′ with ℓ ′ = 𝑣}\ℓ { {𝑣 ′\ℓ with ℓ ′ = 𝑣} ℓ ′ . ℓ (46)

Evaluation of the expressions is performed left-to-right, as in the rest of the language:

Evaluation Context 𝐸 ::= · · · | {𝐸 with ℓ = 𝑒} | {𝑣 with ℓ = 𝐸} | 𝐸\ℓ | 𝐸.ℓ (47)

C.2.3 Types.
Types 𝑡 ::= · · · | {{{𝑓 · · · 𝑓 }}} | {{{𝑓 · · · 𝑓 ..}}}

Fields 𝑓 ::= ℓ = 𝑡 | ℓ =? 𝑡
(48)

In the syntax for record types, we distinguish between two kinds of record types. An open record

type, denoted by {{{}}}, is the type of records whose labels include those explicitly written. A

closed record type, denoted by {{{ . . .}}}, is the type of records whose labels are exactly those explicitly

written. Formally, this is syntactic sugar for the the record types of Frisch [2004], where record

types are quasi constant functions, that is, functions that map label into types and are constant apart

from on a finite number of labels. A closed record type {{{ℓ1 = 𝑡1, ℓ2 = 𝑡2}}} maps ℓ1 into 𝑡1, ℓ2 into 𝑡2
and all other labels into the constant Undef meaning that the field is “absent”. Undef is a type that
is not inhabited by any value of the language. Undef and can be seen as the type of the result of

projection of a missing label. Undef is particular in that it is not considered a normal type, that is,

Undef ∧ 1 = ∅. This property allows us to encode open record types, by considering them as quasi

constant functions where all the labels not explicitly written are mapped to Undef ∨ 1 (i.e., they

are either absent, or they have some type).

The syntax of types does not allow us to explicitly refer to the Undef constant. The open/closed
record syntax provides a way to set it for the infinitely many constant fields that are not explicitly

written in the record type. For a single label, the access to the Undef constant is provided via the

syntax of fields. There are two kinds of fields. The former, denoted by ℓ = 𝑡 , indicates the field is

present in the record. The latter, denoted by ℓ =? 𝑡 is syntactic sugar for ℓ = (𝑡 ∨Undef), indicating
that a label ℓ may be present, and if so, it has the type 𝑡 . Note the special case ℓ =? 0, which indicates
that the field for ℓ is absent.

𝑡 .ℓ =

{
min{𝑢 |𝑡 ≤ {{{ℓ = 𝑢 ..}}}} if 𝑡 ≤ {{{ℓ = 1 ..}}}
Undef otherwise

(49)

𝑡1 + 𝑡2 = min

{
𝑢

����∀ℓ ∈ Labels. { 𝑢.ℓ ≥ 𝑡2.ℓ if 𝑡2.ℓ ≤ ¬Undef
𝑢.ℓ ≥ 𝑡1.ℓ ∨ (𝑡2.ℓ\Undef) otherwise

}
(50)

𝑡\ℓ = min

{
𝑢

����∀ℓ ′ ∈ Labels. { 𝑢.ℓ ′ ≥ Undef if ℓ ′ = ℓ
𝑢.ℓ ′ ≥ 𝑡 .ℓ ′ otherwise

}
(51)

Three operators are introduced for record types. Record projection (49) represents the union of

the possible types the label ℓ could have, or is undefined if the record type does not surely have a

label ℓ . Record concatenation (50) is the right-favored merging of two records. If a label is present

in just one of the records, then the type of that label is used. If it is present in both records, the

type of the right label is used. Record label deletion (51) marks the label as Undef.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

On Type-Cases, Union Elimination, and Occurrence Typing 13:51

The typing rules for records to add to the declarative system are straightforward:

[Record]

Γ ⊢ {} : {{{}}}
[Update]

Γ ⊢ 𝑒1 : 𝑡1 𝑡1 ≤ {{{ ..}}} Γ ⊢ 𝑒2 : 𝑡2

Γ ⊢ {𝑒1 with ℓ = 𝑒2} : 𝑡1 + {{{ℓ = 𝑡2}}}

[Delete]

Γ ⊢ 𝑒 : 𝑡 𝑡 ≤ {{{ ..}}}

Γ ⊢ 𝑒\ℓ : 𝑡\ℓ
[Select]

Γ ⊢ 𝑒 : 𝑡 𝑡 ≤ {{{ℓ = 1 ..}}}

Γ ⊢ 𝑒.ℓ : 𝑡 .ℓ

The empty record value has the closed record type. Record update uses the type operator for

extension and is defined provided that the type of 𝑒1 is a record type (i.e., 𝑡1 ≤ {{{ ..}}}). Field deletion

uses the corresponding type operator and so does field projection provided that the selected field ℓ

is present the expression 𝑒 (i.e., 𝑡 ≤ {{{ℓ = 1 ..}}}).

C.2.4 Intermediate Type System. The record typing rules for the intermediate type system are

identical to those in the declarative system. The unwinding rules are described below.

⌈{}⌉ = {}

⌈{𝒆1 with ℓ = 𝒆2}⌉ = {⌈𝒆1⌉ with ℓ = ⌈𝒆2⌉}
⌈𝒆\ℓ⌉ = ⌈𝒆⌉\ℓ
⌈𝒆.ℓ⌉ = ⌈𝒆⌉ .ℓ

C.2.5 Canonical Forms. The atomic expressions are, as before, those containing only variables as

their subexpressions.

Atomic expressions 𝑎 ::= · · · | {} | {𝑥 with ℓ = 𝑥} | 𝑥 .ℓ | 𝑥\ℓ (52)

They are obtained by adding to the definition of the transformation function given in Appen-

dix A.7 the following clauses:

J𝒆\ℓK = ((Δ;𝑥◦ ↦→𝑥\ℓ), 𝑥◦) where(Δ, 𝑥) = J𝒆K
J𝒆.ℓK = ((Δ;𝑥◦ ↦→𝑥 .ℓ), 𝑥◦) where(Δ, 𝑥) = J𝒆K

J{𝒆1 with ℓ = 𝒆2}K = ((Δ1;Δ2;𝑥◦ ↦→ {𝑥1 with ℓ = 𝑥2}, 𝑥◦)
where (Δ1, 𝑥1) = J𝒆1K, (Δ2, 𝑥2) = J𝒆2K

C.2.6 Annotation Reconstruction Rules. We add to the clauses of Appendix B.1 the following

clauses:

[Γ ⊢ □({}{𝑡)] ⊃ {} {{{}}} ∧ 𝑡 ≃ 0 (53)

[Γ ⊢ □({}{𝑡)] ⊃ {Γ} {{{}}} ∧ 𝑡 ; 0 (54)

[Γ ⊢ □(𝑥 .ℓ{𝑡)] ⊃ {Γ [𝑥 :=
∧ {{{ℓ = 𝑡 ..}}}]} (55)

[Γ ⊢ □(𝑥\ℓ{∨
𝑖∈𝐼 𝑡𝑖)] ⊃ {Γ [𝑥 :=

∧
𝑡𝑖\ℓ + {{{ℓ =? 1}}}] | 𝑖 ∈ 𝐼 ,Undef ≤ 𝑡𝑖 .ℓ} (56)

[Γ ⊢ □({𝑥1 with ℓ = 𝑥2}{
∨
𝑖∈𝐼 𝑡𝑖)] ⊃ {Γ [𝑥1 :=

∧
𝑡𝑖\ℓ + {{{ℓ =? 1}}}] [𝑥2 :=

∧ (𝑡𝑖∧{{{ℓ = 1 ..}}}).ℓ] | 𝑖 ∈ 𝐼 }
(57)

The necessary typing refinements for the empty record value are equivalent to those for other

constants. For projection, the type of the record is refined only to records containing the projected

label with the expected type. Field deletion and update split a union type into its components and

share the expression 𝑡𝑖\ℓ + {{{ℓ =? 1}}}. This expression removes all information about the label ℓ

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

13:52 Giuseppe Castagna, Mickaël Laurent, Kim Nguyễn, and Matthew Lutze

from the record type 𝑡𝑖 . Note that this cannot be achieved by simply removing the label as in 𝑡𝑖\ℓ ,
as this instead sets the record field to {{{ · · · ℓ =? 0 · · ·}}}. Indeed, the latter type expression denotes

records for which it is statically known that label ℓ does not occur. The field deletion rule uses does

it for 𝑡𝑖 only if the field ℓ of 𝑡𝑖 is optional or for which there is no information: every 𝑡𝑖 for which

the field ℓ has a given type (i.e., for which Undef ≰ 𝑡𝑖 .ℓ) is discarded because it is not possible that

𝑥\ℓ reduces to a value that has such a type 𝑡𝑖 . Field update removes any information about ℓ in 𝑥1

(thus weakening the constraints on it), consider only those 𝑡𝑖 which contain records with a field ℓ

(i.e., for which 𝑡𝑖∧{{{ℓ = 1 ..}}} is not empty), and refines the type of 𝑥2 with the type of that field.

Algorithm ⊢R (Section B.3) is extended with the rule below, plus two rules for the empty record

value that we omit since they are the same as the two rules for constants given in Section B.3 (just,

replace {} for 𝑐 and {{{}}} for b𝑐):

[SelectEmpty]

Γ(𝑥) ≃ 0

Γ ⊢R 𝑥 .ℓ : 𝑡 ⇒ (𝑥 .ℓ, {Γ})
[Select]

Γ(𝑥) ∧ {{{ℓ = 𝑡 ..}}} ≃dnf ∨
𝑖∈𝐼 𝑡𝑖

Γ ⊢R 𝑥 .ℓ : 𝑡 ⇒ (𝑥 .ℓ, {Γ [𝑥 :=
∧
𝑡𝑖]}𝑖∈𝐼)

[UpdateEmpty]

Γ(𝑥1) × Γ(𝑥2) ≃ 0

Γ ⊢R {𝑥1 with ℓ = 𝑥2} : 𝑡 ⇒ ({𝑥1 with ℓ = 𝑥2}, {Γ})

[Update]

{𝑥1, 𝑥2} ⊆ dom(Γ) 𝑡 ∧ {{{ℓ = Γ(𝑥2) ..}}} ≃dnf
∨
𝑖∈𝐼 𝑡𝑖

Γ ⊢R {𝑥1 with ℓ = 𝑥2} : 𝑡 ⇒ ({𝑥1 with ℓ = 𝑥2}, {Γ [𝑥1 :=
∧ (𝑡𝑖\ℓ) + {{{ℓ =? 1}}}] [𝑥2 :=

∧
𝑡𝑖 .ℓ]}𝑖∈𝐼)

[DeleteEmpty]

Γ(𝑥) ≃ 0

Γ ⊢R 𝑥\ℓ : 𝑡 ⇒ (𝑥\ℓ, {Γ})

[Delete]

𝑡 ∧ {{{ℓ =? 0 ..}}} ≃dnf ∨
𝑖∈𝐼 𝑡𝑖

Γ ⊢R 𝑥\ℓ : 𝑡 ⇒ (𝑥\ℓ, {Γ [𝑥 :=
∧ (𝑡𝑖\ℓ) + {{{ℓ =? 1}}}]}𝑖∈𝐼)

These rules work in a way similar to the rules for products (pairs and projections). Each new

atom is handled by two cases. In the case where the variable(s) at play have the empty type, the

input environment Γ is returned as a singleton, denoting success. Otherwise, the relevant record

part of the input type is isolated using an intersection with the top record type (augmented with

the relevant field), split into a union of records, and the input environment is refined accordingly.

In particular, [Select] refines the type of 𝑥 so that it becomes a record type in which the field ℓ has

a subtype of 𝑡 . The rule [Update] refines the type of 𝑥1 to conform the expected type 𝑡 but without

touching any type information about the type of ℓ in 𝑥 (since this information has no effect on the

final type of the update) and refines the type of 𝑥2 so that it is a subtype of the type of the field ℓ

in the checked type 𝑡 . Finally, [Delete] refines the type of 𝑥 so that it becomes a subtype of the

checked type 𝑡 but without considering and touching the type information of the field ℓ in the type

of 𝑥 (since it does not inflence the typing of 𝑥 ∖ ℓ whose ℓ field is of type Undef ∨ 0).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

On Type-Cases, Union Elimination, and Occurrence Typing 13:53

D PROOFS
D.1 Declarative Type System
D.1.1 Parallel Semantics. One technical difficulty in the proof of the subject reduction property is

that reducing an expression 𝑒 might break the use of a [∨] rule. Indeed, if in the original typing

derivation a rule [∨] substitutes multiple occurrences of the expression 𝑒 by a variable 𝑥 , reducing

one occurrence of 𝑒 but not the others would alter the application of this rule (correlation between

the reduced 𝑒 and the other occurrences of 𝑒 will be lost).

To circumvent this issue, we introduce a notion of parallel reduction which forces to reduce all

occurrences of a sub-expression at the same time.

The idea is to remember, when applying a reduction under a context, which reduction has been

performed inside this context. For that, each step of reduction is labeled with a statement of the

form 𝑒1 ↦→ 𝑒2 which denotes the inner reduction that has been performed. Then, this label is used

by the context rule (rule [𝜅] below) which will substitute occurrences of 𝑒1 by 𝑒2 everywhere in the

expression (not only under the current context).

The semantics based on parallel reduction is given below.

For convenience, we denote 𝑒
𝑒 ↦→𝑒′
{ 𝑒 ′ by 𝑒

Id

{ 𝑒 ′ and by 𝑒
_

{ 𝑒 ′ a step of reduction of the parallel

semantics, regardless of the value on the top of the arrow.

(𝜆𝑥.𝑒)𝑣 Id

{ 𝑒{𝑣/𝑥} (58)

𝜋1 (𝑣1, 𝑣2)
Id

{ 𝑣1 (59)

𝜋2 (𝑣1, 𝑣2)
Id

{ 𝑣2 (60)

(𝑣∈𝜏) ? 𝑒1 : 𝑒2

Id

{ 𝑒1 if 𝑣 ∈ 𝜏 (61)

(𝑣∈𝜏) ? 𝑒1 : 𝑒2

Id

{ 𝑒2 if 𝑣 ∈ ¬𝜏 (62)

The contexts are not exactly those of the original semantics: nesting of contexts is now handled

by the rule [𝜅]. This yields the following definition:

Evaluation Context 𝐸 ::= 𝑣 [] | []𝑒 | (𝑣, []) | ([], 𝑒) | ([]∈𝜏) ? 𝑒 : 𝑒

Context reductions:

[𝜅]
𝑒
𝑒𝑟 ↦→𝑒′𝑟
{ 𝑒 ′

𝐸 [𝑒]
𝑒𝑟 ↦→𝑒′𝑟
{ (𝐸 [𝑒 ′]){𝑒 ′𝑟/𝑒𝑟 }

Here is an example of a reduction step using the parallel semantics:

[𝜅]

[𝛽]

(𝜆𝑥. 𝑥 + 1) 1

(𝜆𝑥. 𝑥+1) 1 ↦→ 2

{ 2

if (𝜆𝑥 . 𝑥 + 1) 1 ∈ Int then (𝜆𝑥 . 𝑥 + 1) 1 else 0

(𝜆𝑥. 𝑥+1) 1 ↦→ 2

{ if 2 ∈ Int then 2 else 0

Notice that the rule [𝜅] applies a substitution from an expression to an expression. This is formally

defined as follows:

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

13:54 Giuseppe Castagna, Mickaël Laurent, Kim Nguyễn, and Matthew Lutze

Definition D.1 (Expression substitutions). Expression substitutions, ranged over by 𝜌 , map an

expression into another expression. The application of an expressions substitution 𝜌 to an expression 𝑒 ,

noted 𝑒𝜌 is the capture avoiding replacement defined as follows:

• If 𝑒 ′ ≡𝛼 𝑒 ′′, then 𝑒 ′′{𝑒/𝑒 ′} = 𝑒 .
• If 𝑒 ′ .𝛼 𝑒 ′′, then 𝑒 ′′{𝑒/𝑒 ′} is inductively defined as

𝑐{𝑒/𝑒 ′} = 𝑐
𝑥{𝑒/𝑒 ′} = 𝑥

(𝑒1𝑒2){𝑒/𝑒 ′} = (𝑒1{𝑒/𝑒 ′})(𝑒2{𝑒/𝑒 ′})
(𝜆𝑥.𝑒◦){𝑒/𝑒 ′} = 𝜆𝑥 .𝑒◦ 𝑥 ∈ fv(𝑒 ′)
(𝜆𝑥.𝑒◦){𝑒/𝑒 ′} = 𝜆𝑥.(𝑒◦{𝑒/𝑒 ′}) 𝑥 ∉ fv(𝑒) ∪ fv(𝑒 ′)
(𝜆𝑥.𝑒◦){𝑒/𝑒 ′} = 𝜆𝑦.((𝑒◦{𝑦/𝑥}){𝑒/𝑒 ′}) 𝑥 ∉ fv(𝑒), 𝑥 ∈ fv(𝑒 ′), 𝑦 fresh

(𝜋𝑖𝑒◦){𝑒/𝑒 ′} = 𝜋𝑖 (𝑒◦{𝑒/𝑒 ′})
(𝑒1, 𝑒2){𝑒/𝑒 ′} = (𝑒1{𝑒/𝑒 ′}, 𝑒2{𝑒/𝑒 ′})

((𝑒1∈𝑡) ? 𝑒2 : 𝑒3){𝑒/𝑒 ′} = (𝑒1{𝑒/𝑒 ′}∈𝑡) ? 𝑒2{𝑒/𝑒 ′} : 𝑒3{𝑒/𝑒 ′}

Notice that the expression substitutions are up to alpha-renaming and perform only one pass.

D.1.2 Normalization Lemmas. See 3 for the full delcarative system.

In the proofs below, the [∨+] and [∧+] rules will be used instead of the [∨] and [∧] rules.

Lemma D.2 (Monotonicity). If Γ ⊢ 𝑒 : 𝑡 and Γ′ ≤ Γ, then Γ′ ⊢ 𝑒 : 𝑡 .

Proof. By induction on the derivation of the judgement Γ ⊢ 𝑒 : 𝑡 . □

Lemma D.3 (Intersection). If Γ ⊢ 𝑒 : 𝑡1 and Γ ⊢ 𝑒 : 𝑡2, then Γ ⊢ 𝑒 : 𝑡1 ∧ 𝑡2.

Proof. Straightforward, by using a rule [∧+]. □

Lemma D.4 (Union). If Γ, 𝑥 : 𝑡1 ⊢ 𝑒 : 𝑡 and Γ, 𝑥 : 𝑡2 ⊢ 𝑒 : 𝑡 , then Γ, 𝑥 : (𝑡1 ∨ 𝑡2) ⊢ 𝑒 : 𝑡 .

Proof. Straightforward, by using a rule [∨+] of the following form:

[∨+]
Γ, 𝑥 : (𝑡1 ∨ 𝑡2) ⊢ 𝑥 : 𝑡1 ∨ 𝑡2 Γ, 𝑥 : (𝑡1 ∨ 𝑡2), 𝑦 : 𝑡1 ⊢ 𝑒 : 𝑡 Γ, 𝑥 : (𝑡1 ∨ 𝑡2), 𝑦 : 𝑡2 ⊢ 𝑒 : 𝑡

Γ, 𝑥 : (𝑡1 ∨ 𝑡2) ⊢ 𝑒{𝑥/𝑦} : 𝑡

□

Lemma D.5 (Normalization of [≤] rules). Any derivation of Γ ⊢ 𝑒 : 𝑡 can be transformed so

that every application of [≤] is:
• At the root of the derivation, or

• The first premise of a [∈1] or [∈2] rule, or

• The 𝑛th premise (𝑛 ≥ 2) of a [∨+] rule, or
• The premise of a [×E1] or [×E2] rule, or

• The first premise of a [→E] rule

Proof. We can transform any derivation into a derivation that satisfies these properties. We

proceed by induction on the depth of the derivation, without counting the [≤] rules nor the axioms

([Ax] and [Const]).

When there are two consecutive [≤] rules, they can trivially be merged into one [≤] rule.
The base case is trivial (if there is a [≤] rule, it is at the root of the derivation).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

On Type-Cases, Union Elimination, and Occurrence Typing 13:55

Now we consider the last rule of the derivation which is not a [≤], and assume that its premises

satisfy these properties.

If the last rule is a [∧+] with one of its premises being a [≤] rule:

[∧+]

[≤]

𝐴

Γ ⊢ 𝑒 : 𝑡 ′
1

Γ ⊢ 𝑒 : 𝑡1

𝐵𝑖

Γ ⊢ 𝑒 : 𝑡𝑖
∀𝑖 ∈ 𝐼

Γ ⊢ 𝑒 : 𝑡1 ∧
∧
𝑖∈𝐼 𝑡𝑖

−→ [≤]

[∧+]

𝐴

Γ ⊢ 𝑒 : 𝑡 ′
1

𝐵𝑖

Γ ⊢ 𝑒 : 𝑡𝑖
∀𝑖 ∈ 𝐼

Γ ⊢ 𝑒 : 𝑡 ′
1
∧∧𝑖∈𝐼 𝑡𝑖

Γ ⊢ 𝑒 : 𝑡1 ∧
∧
𝑖∈𝐼 𝑡𝑖

If the last rule is a [∨+] with its first premise being a [≤], we apply the following transformation

and then proceed inductively on the transformed 𝐵𝑖 premises:

[∨+]

[≤]

𝐴

Γ ⊢ 𝑒 ′ : 𝑠 ′

Γ ⊢ 𝑒 ′ :

∨
𝑖∈𝐼 𝑠𝑖

𝐵𝑖

Γ, : 𝑠𝑖 ⊢ 𝑒 : 𝑡
∀𝑖 ∈ 𝐼

Γ ⊢ 𝑒{𝑒 ′/𝑥} : 𝑡

↓

[≤]

[∨+]

𝐴

Γ ⊢ 𝑒 ′ :

∨
𝑖∈𝐼 (𝑠𝑖 ∧ 𝑠 ′)

Easily derived from 𝐵𝑖

Γ, (𝑥 : 𝑠𝑖 ∧ 𝑠 ′) ⊢ 𝑒 : 𝑡
∀𝑖 ∈ 𝐼

Γ ⊢ 𝑒{𝑒 ′/𝑥} : 𝑡

Γ ⊢ 𝑒{𝑒 ′/𝑥} : 𝑡

The other cases are trivial or similar. □

Lemma D.6 (Normalization of [∧+] rules). Any derivation of Γ ⊢ 𝑒 : 𝑡 can be transformed so

that all the applications of [∧+] have only [→I] rules as premises.

Proof. We can transform any derivation into a derivation that satisfies these properties. First,

we apply the [≤] normalization lemma on the derivation, so that [∧+] rules cannot have a [≤] rule
as premise. Then, we proceed by induction on the size of the derivation (i.e. the total number of

rule applications) without counting the applications of [≤] nor the axioms ([Ax] and [Const]).

The base case (size 0) is trivially true, as there are no instances of [∧+].
In the inductive case, if the last rule of the derivation is not a [∧+], we can directly conclude by

induction. If the last rule is a [∧+] with one of its premises being another [∧+] rule, we can easily

merge the two [∧+] rules and proceed inductively on the result.

If the last rule is a [∧+] with one of its premises being a [∨+] rule, we can apply the following

transformation and proceed inductively on the premises:

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

13:56 Giuseppe Castagna, Mickaël Laurent, Kim Nguyễn, and Matthew Lutze

[∧+]

[∨+]

𝐴

Γ ⊢ 𝑒 ′ :

∨
𝑖∈𝐼 𝑠𝑖

𝐵𝑖

Γ, 𝑥 : 𝑠𝑖 ⊢ 𝑒 : 𝑡1
∀𝑖 ∈ 𝐼

Γ ⊢ 𝑒{𝑒 ′/𝑥} : 𝑡1

𝐷 𝑗

Γ ⊢ 𝑒{𝑒 ′/𝑥} : 𝑡 𝑗
∀𝑗 ∈ 𝐽

Γ ⊢ 𝑒{𝑒 ′/𝑥} : 𝑡1 ∧
∧
𝑗 ∈𝐽 𝑡 𝑗

↓

[∨+]

𝐴

Γ ⊢ 𝑒 ′ :

∨
𝑖∈𝐼 𝑠𝑖

[∧+]

Easily derived from 𝐵𝑖

Γ, 𝑥 : 𝑠𝑖 ⊢ 𝑒 : 𝑡1

Easily derived from 𝐷 𝑗

Γ, 𝑥 : 𝑠𝑖 ⊢ 𝑒 : 𝑡 𝑗
∀𝑗 ∈ 𝐽

Γ, 𝑥 : 𝑠1 ⊢ 𝑒 : 𝑡1 ∧
∧
𝑗 ∈𝐽 𝑡 𝑗

∀𝑖 ∈ 𝐼

Γ ⊢ 𝑒{𝑒 ′/𝑥} : 𝑡1 ∧
∧
𝑗 ∈𝐽 𝑡 𝑗

with 𝑒 = 𝑒{𝑥/𝑒 ′}

If the last rule is a [∧+] and all its premises are a [→E] rule, we can apply the following

transformation and proceed inductively on the premises:

[∧+]

[→E]

𝐴𝑖

Γ ⊢ 𝑒1 : 𝑡𝑖
1
→ 𝑡𝑖

2

𝐵𝑖

Γ ⊢ 𝑒2 : 𝑡𝑖
1

Γ ⊢ 𝑒1𝑒2 : 𝑡𝑖
2

∀𝑖 ∈ 𝐼

Γ ⊢ 𝑒1𝑒2 :

∧
𝑖∈𝐼 𝑡

𝑖
2

↓

[→E]

[≤]

[∧+]

𝐴𝑖

Γ ⊢ 𝑒1 : 𝑡𝑖
1
→ 𝑡𝑖

2

∀𝑖 ∈ 𝐼

Γ ⊢ 𝑒1𝑒2 :

∧
𝑖∈𝐼 (𝑡𝑖1 → 𝑡𝑖

2
)

Γ ⊢ 𝑒1𝑒2 : (∧𝑖∈𝐼 𝑡
𝑖
1
) → (∧𝑖∈𝐼 𝑡

𝑖
2
)

[∧+]

𝐵𝑖

Γ ⊢ 𝑒2 : 𝑡𝑖
1

∀𝑖 ∈ 𝐼

Γ ⊢ 𝑒2 :

∧
𝑖∈𝐼 𝑡

𝑖
1

Γ ⊢ 𝑒1𝑒2 :

∧
𝑖∈𝐼 𝑡

𝑖
2

The other cases are trivial. □

Lemma D.7 (Normalization of [∨+] rules). Any derivation of Γ ⊢ 𝑒 : 𝑡 can be transformed so

that every application of [∨+] that uses the substitution {𝑒 ′/𝑥} satisfies one of these conditions:
• It is the 𝑛th premise (𝑛 ≥ 2) of a (possibly empty) succession of [∨+] rules at the root of the
derivation

• It is the 𝑛th premise (𝑛 ≥ 2) of a (possibly empty) succession of [∨+] rules used as a premise of a

[→I] rule that introduces a variable 𝑦 such that 𝑦 ∈ fv(𝑒 ′)
• It is the 𝑛th premise (𝑛 ≥ 2) of a (possibly empty) succession of [∨+] rules used as a premise of a

[∨+] rule that introduces a variable 𝑦 such that 𝑦 ∈ fv(𝑒 ′)

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

On Type-Cases, Union Elimination, and Occurrence Typing 13:57

Proof. We can transform any derivation into a derivation that satisfies these properties. First,

we apply the [∧+] normalization lemma on the derivation, so that [∧+] rules cannot have a [∨+]
rule as premise. Then, we proceed by structural induction on the derivation.

The base cases are trivially true, as there is no instance of [∨+].
Now, we consider the last rule of the derivation and assume that its premises satisfy these

properties.

If the last rule is a [∨+] with another [∨+] rule as first premise:

[∨+]

[∨+]

𝐴

Γ ⊢ 𝑒 ′′ :

∨
𝑗 ∈𝐽 𝑠 𝑗

𝐵 𝑗

Γ, 𝑦 : 𝑠 𝑗 ⊢ 𝑒 ′ :

∨
𝑖∈𝐼 𝑡𝑖

∀𝑗 ∈ 𝐽

Γ ⊢ 𝑒 ′{𝑒 ′′/𝑦} :

∨
𝑖∈𝐼 𝑡𝑖

𝐶𝑖

Γ, 𝑥 : 𝑡𝑖 ⊢ 𝑒 : 𝑡
∀𝑖 ∈ 𝐼

Γ ⊢ 𝑒{𝑒 ′{𝑒 ′′/𝑦}/𝑥} : 𝑡

↓

[∨+]

𝐴

Γ ⊢ 𝑒 ′′ :

∨
𝑗 ∈𝐽 𝑠 𝑗

[∨+]

𝐵 𝑗

Γ, 𝑦 : 𝑠 𝑗 ⊢ 𝑒 ′ :

∨
𝑖∈𝐼 𝑡𝑖

Easily derived from 𝐶𝑖

Γ, 𝑦 : 𝑠 𝑗 , 𝑥 : 𝑡𝑖 ⊢ 𝑒 : 𝑡
∀𝑖 ∈ 𝐼

Γ, 𝑦 : 𝑠 𝑗 ⊢ 𝑒{𝑒 ′/𝑥} : 𝑡
∀𝑗 ∈ 𝐽

Γ ⊢ (𝑒{𝑒 ′/𝑥}){𝑒 ′′/𝑦} : 𝑡

with 𝑦 ∉ fv(𝑒) (𝑦 can be renamed otherwise)

If the last rule is a [→I], introducing a variable𝑦, with a [∨+] rule as premise, such that𝑦 ∉ fv(𝑒 ′):

[→I]

[∨+]

𝐴

Γ, 𝑦 : 𝑡1 ⊢ 𝑒 ′ :

∨
𝑖∈𝐼 𝑠𝑖

𝐵𝑖

Γ, 𝑦 : 𝑡1, 𝑥 : 𝑠𝑖 ⊢ 𝑒 : 𝑡2
∀𝑖 ∈ 𝐼

Γ, 𝑦 : 𝑡1 ⊢ 𝑒{𝑒 ′/𝑥} : 𝑡2

Γ ⊢ 𝜆𝑦. (𝑒{𝑒 ′/𝑥}) : 𝑡1 → 𝑡2

↓

[∨+]

Easily derived from 𝐴

Γ ⊢ 𝑒 ′ :

∨
𝑖∈𝐼 𝑠𝑖

[→I]

𝐵𝑖

Γ, 𝑥 : 𝑠𝑖 , 𝑦 : 𝑡1 ⊢ 𝑒 : 𝑡2

Γ, 𝑥 : 𝑠𝑖 ⊢ 𝜆𝑦. 𝑒 : 𝑡1 → 𝑡2
∀𝑖 ∈ 𝐼

Γ ⊢ (𝜆𝑦. 𝑒){𝑒 ′/𝑥} : 𝑡1 → 𝑡2

In order to apply the transformation above, we can swap two independent [∨+] rules if necessary:
if we have a [∨+] rule that uses the substitution {𝑒 ′′/𝑦} as the 𝑛th premise (𝑛 ≥ 2) of another [∨+]
rule that uses the substitution {𝑒 ′/𝑥}, and such that 𝑥 ∉ fv(𝑒 ′′), then we can swap the order of

these two [∨+] rules in the following way.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

13:58 Giuseppe Castagna, Mickaël Laurent, Kim Nguyễn, and Matthew Lutze

[∨+]

𝐴

Γ ⊢ 𝑒 ′ : 𝑡1 ∨
∨
𝑖∈𝐼 𝑡𝑖

[∨+]

𝐵

Γ, 𝑥 : 𝑡1 ⊢ 𝑒 ′′ :

∨
𝑗 ∈𝐽 𝑠 𝑗

𝐶 𝑗

Γ, 𝑥 : 𝑡1, 𝑦 : 𝑠 𝑗 ⊢ 𝑒 : 𝑡
∀𝑗 ∈ 𝐽

Γ, 𝑥 : 𝑡1 ⊢ 𝑒{𝑒 ′′/𝑦} : 𝑡

𝐷𝑖

Γ, 𝑥 : 𝑡𝑖 ⊢ 𝑒{𝑒 ′′/𝑦} : 𝑡
∀𝑖 ∈ 𝐼

Γ ⊢ (𝑒{𝑒 ′′/𝑦}){𝑒 ′/𝑥} : 𝑡

↓

[∨+]

Easily derived from 𝐵

Γ ⊢ 𝑒 ′′ :

∨
𝑗 ∈𝐽 𝑠 𝑗

[∨+]

Easily derived from 𝐴

Γ, 𝑦 : 𝑠 𝑗 ⊢ 𝑒 ′ : 𝑡1 ∨
∨
𝑖∈𝐼 𝑡𝑖

Easily derived from 𝐶 𝑗

Γ, 𝑦 : 𝑠 𝑗 , 𝑥 : 𝑡1 ⊢ 𝑒 : 𝑡

Easily derived from 𝐷𝑖

Γ, 𝑦 : 𝑠 𝑗 , 𝑥 : 𝑡𝑖 ⊢ 𝑒 : 𝑡
∀𝑖 ∈ 𝐼

Γ, 𝑦 : 𝑠 𝑗 ⊢ 𝑒{𝑒 ′/𝑥} : 𝑡
∀𝑗 ∈ 𝐽

Γ ⊢ (𝑒{𝑒 ′/𝑥}){𝑒 ′′/𝑦} : 𝑡

with 𝑒 = 𝑒{𝑦/𝑒 ′′}

If the last rule is a [≤] with a [∨+] rule as premise:

[≤]

[∨+]

𝐴

Γ ⊢ 𝑒 ′ :

∨
𝑖∈𝐼 𝑠𝑖

𝐵𝑖

Γ, 𝑥 : 𝑠𝑖 ⊢ 𝑒 : 𝑡 ′
∀𝑖 ∈ 𝐼

Γ ⊢ 𝑒{𝑒 ′/𝑥} : 𝑡 ′

Γ ⊢ 𝑒{𝑒 ′/𝑥} : 𝑡

↓

[∨+]

𝐴

Γ ⊢ 𝑒 ′ :

∨
𝑖∈𝐼 𝑠𝑖

[≤]

𝐵𝑖

Γ, 𝑥 : 𝑠𝑖 ⊢ 𝑒 : 𝑡 ′

Γ, 𝑥 : 𝑠𝑖 ⊢ 𝑒 : 𝑡
∀𝑖 ∈ 𝐼

Γ ⊢ 𝑒{𝑒 ′/𝑥} : 𝑡

If the last rule is a [→E] with a [∨+] rule as first premise:

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

On Type-Cases, Union Elimination, and Occurrence Typing 13:59

[→E]

[∨+]

𝐴

Γ ⊢ 𝑒 ′ :

∨
𝑖∈𝐼 𝑠𝑖

𝐵𝑖

Γ, 𝑥 : 𝑠𝑖 ⊢ 𝑒1 : 𝑡1 → 𝑡2
∀𝑖 ∈ 𝐼

Γ ⊢ 𝑒1{𝑒 ′/𝑥} : 𝑡1 → 𝑡2

𝐶

Γ ⊢ 𝑒2 : 𝑡1

Γ ⊢ (𝑒1{𝑒 ′/𝑥})𝑒2 : 𝑡2

↓

[∨+]

𝐴

Γ ⊢ 𝑒 ′ :

∨
𝑖∈𝐼 𝑠𝑖

[→E]

𝐵𝑖

Γ, 𝑥 : 𝑠𝑖 ⊢ 𝑒1 : 𝑡1 → 𝑡2

Easily derived from 𝐶

Γ, 𝑥 : 𝑠𝑖 ⊢ 𝑒2 : 𝑡1

Γ, 𝑥 : 𝑠𝑖 ⊢ 𝑒1𝑒2 : 𝑡2
∀𝑖 ∈ 𝐼

Γ ⊢ (𝑒1𝑒2){𝑒 ′/𝑥} : 𝑡2

with 𝑥 ∉ fv(𝑒2) (𝑥 can be renamed otherwise)

If the last rule is a [→E] with a [∨+] rule as second premise, the transformation is similar.

The other cases are trivial or similar. □

Lemma D.8 (Deletion of value substitutions). Any derivation of Γ ⊢ 𝑒 : 𝑡 can be transformed

so that it does not contain any [∨+] rule with 𝑒 ′ being a value.

Proof. First, we apply the [≤], [∧+] and [∨+] normalization lemmas above to the derivation. In

particular, this ensures that there are no [∨+] rules in the derivations of the first premises of the

[∨+] rules, except as premise of a [→I] rule.

Now, let’s suppose one of the [∨+] rule of our derivation is using a substitution {𝑒 ′/𝑥} with 𝑒 ′
being a value. Its first premise is of the form Γ ⊢ 𝑣 : 𝑡 ′ with 𝑣 ≡ 𝑒 ′ and 𝑡 ′ ≃ ∨

𝑖∈𝐼 𝑡𝑖 . As the [≤] and
[∨+] rules have been normalized, the derivation of this premise does not contain any [∨+] rule nor
[≤] rule, except inside the derivation of the premise of a [→I] rule.

It can easily be deduced that 𝑡 ′ can be constructed with the following syntax:

Value Type 𝑡 ::= 𝑏 | 𝑡 → 𝑡 | 𝑡 × 𝑡 | 𝑡 ∧ 𝑡
A type constructed with the syntax above cannot be decomposed into a non-trivial union (in

particular, a conjunction of arrows cannot be decomposed into a non-trivial union of arrows). Thus,

we can deduce that the decomposition 𝑡 ′ ≃ ∨
𝑖∈𝐼 𝑡𝑖 is such that ∃𝑖 ∈ 𝐼 . ∀𝑗 ∈ 𝐼 . 𝑡𝑖 ≤ 𝑡 𝑗 .

Then, it becomes easy to remove the application of the [∨+] rule from our derivation by replacing

it by one of its premises (the one of the form Γ, 𝑥 : 𝑡𝑖 ⊢ 𝑒 : 𝑡 for some Γ, 𝑒 and 𝑡) in which the

applications of the rule [Ax] applied to 𝑣 have been replaced by the first premise.

This transformation can be used successively to remove all such [∨+] rules in the derivation. □

Note that all the normalization lemmas above are compatible: by applying the transformations

successively, we can transform a derivation into another one that satisfies all the lemmas D.5, D.6,

D.7 and D.8.

D.1.3 Subject-Reduction.

Property D.9. If Γ ⊢ 𝑣 : 𝜏 , then 𝑣 ∈ 𝜏 .

Proof. Straightforward, by induction on the derivation of the judgement Γ ⊢ 𝑣 : 𝜏 . Note that the

case of lambda-abstractions is trivial as 𝜏 can only be 0→ 1. □

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

13:60 Giuseppe Castagna, Mickaël Laurent, Kim Nguyễn, and Matthew Lutze

Lemma D.10 (Substitution lemma). If Γ, (𝑥 : 𝑡◦) ⊢ 𝑒 : 𝑡 and Γ ⊢ 𝑒 ′ : 𝑡◦, then Γ ⊢ 𝑒{𝑒 ′/𝑥} : 𝑡 .

Proof. Straightforward, by using the rule [∨] with 𝑡1 = 𝑡2 = 𝑡◦. □

The proof of the subject reduction requires a more permissive notion of reduction. In particular,

for the inductive case [∨+], we need our induction hypothesis to be able to reduce under any

context and to consider that variables are values.

Thus, we introduce the following notion of reduction. Note that it does not contain any context

rule (reductions can only happen at top-level): the context is handled in the statement of the subject

reduction.

Extended Values 𝑣 ::= 𝑐 | 𝜆𝑥.𝑒 | (𝑣, 𝑣) | 𝑥 (63)

(𝜆𝑥.𝑒)𝑣 {Ex 𝑒{𝑣/𝑥} (64)

𝜋1 (𝑣1, 𝑣2) {Ex 𝑣1 (65)

𝜋2 (𝑣1, 𝑣2) {Ex 𝑣2 (66)

(𝑣∈𝜏) ? 𝑒1 : 𝑒2 {Ex 𝑒1 if 𝑣 ∈ 𝜏 (67)

(𝑣∈𝜏) ? 𝑒1 : 𝑒2 {Ex 𝑒2 if 𝑣 ∈ ¬𝜏 (68)

Theorem D.11 (Generalized subject reduction). If Γ ⊢ 𝑒 : 𝑡 and 𝑒◦ {Ex 𝑒
′
◦, then Γ ⊢ 𝑒{𝑒 ′◦/𝑒◦} :

𝑡 .

Proof. We apply all the normalization lemmas above to the derivation of the judgement Γ ⊢ 𝑒 : 𝑡 ,

and we proceed by structural induction on it. We denote by 𝜌 the substitution {𝑒 ′◦/𝑒◦} and by 𝑒 ′ the
expression 𝑒𝜌 . If 𝑒 contains no occurrence of 𝑒◦ (modulo alpha-renaming), this theorem is trivial.

Thus, we will suppose in the following that 𝑒 contains at least one occurrence of 𝑒◦.
Depending on the last rule used:

[Const] Impossible case (𝑒 cannot contain a reducible expression).

[Ax] Impossible case (𝑒 cannot contain a reducible expression).

[≤] By induction on the premise Γ ⊢ 𝑒 : 𝑡 ′ (with 𝑡 ′ ≤ 𝑡), we get a derivation for Γ ⊢ 𝑒 ′ : 𝑡 ′, thus we
can derive Γ ⊢ 𝑒 ′ : 𝑡 by using [≤].

[∧+] Trivial (by induction on the premises as in the previous case).

[→I] We have 𝑒 ′ ≡ 𝜆𝑥 . (𝑒1𝜌), thus we can conclude by induction on the premise Γ, 𝑥 : 𝑡1 ⊢ 𝑒1 : 𝑡2
as in the previous case.

[×I] We have 𝑒 ′ ≡ (𝑒1𝜌, 𝑒2𝜌), thus we can conclude by induction on the premises as in the previous

case.

[→E] We have 𝑒 ≡ 𝑒1𝑒2. If 𝑒◦ is a subexpression of 𝑒1 and/or 𝑒2, we conclude trivially by induction

(as in the previous cases).

Otherwise, the reduction 𝑒◦ {Ex 𝑒
′
◦ uses the rule 58 and we know that 𝑒◦ ≡ 𝑒 ≡ (𝜆𝑥 . 𝑒𝜆)𝑣2

and 𝑒 ′◦ ≡ 𝑒 ′ ≡ 𝑒𝜆{𝑣2/𝑥}.
We have the following premises:

(1) Γ ⊢ 𝜆𝑥. 𝑒𝜆 : 𝑡1 → 𝑡2 (with 𝑡2 ≃ 𝑡)
(2) Γ ⊢ 𝑣2 : 𝑡1
As the [∨+] rules of our derivation satisfy the normalization lemma D.7, we can extract from

the first premise a collection of derivations of the judgements Γ, 𝑥 : 𝑠𝑖 ⊢ 𝑒𝜆 : 𝑠 ′𝑖 for 𝑖 ∈ 𝐼 , such
that

∧
𝑖∈𝐼 𝑠𝑖 → 𝑠 ′𝑖 ≤ 𝑡1 → 𝑡2.

Let’s consider a partition {𝑢 𝑗 } 𝑗 ∈𝐽 of 𝑡1 that satisfies the following property:

∀𝑖 ∈ 𝐼 . ∀𝑗 ∈ 𝐽 . 𝑢 𝑗 ≤ 𝑠𝑖 or 𝑢 𝑗 ∧ 𝑠𝑖 = ∅.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

On Type-Cases, Union Elimination, and Occurrence Typing 13:61

We can suppose that 𝐽 is not empty: the case 𝑡1 ≃ 0 is trivial. For every 𝑗 ∈ 𝐽 , we pose

𝐼 𝑗 = {𝑖 ∈ 𝐼 | 𝑠𝑖 ∧ 𝑢 𝑗 ≠ ∅} (𝐼 𝑗 cannot be empty as 𝑡1 ≤
∨
𝑖∈𝐼 𝑠𝑖). Note that for all 𝑗 ∈ 𝐽 and

𝑖 ∈ 𝐼 𝑗 , we have 𝑢 𝑗 ≤ 𝑠𝑖 .
According to the monotonicity lemma (D.2), for every 𝑗 ∈ 𝐽 and 𝑖 ∈ 𝐼 𝑗 we can derive the

judgement Γ, 𝑥 : 𝑢 𝑗 ⊢ 𝑒𝜆 : 𝑠 ′𝑖 . Moreover, as

∧
𝑖∈𝐼 𝑠𝑖 → 𝑠 ′𝑖 ≤ 𝑡1 → 𝑡2, we have for every 𝑗 ∈ 𝐽 :∧

𝑖∈𝐼 𝑗 𝑠
′
𝑖 ≤ 𝑡2.

Consequently, for every 𝑗 ∈ 𝐽 , we can derive the judgement Γ, 𝑥 : 𝑢 𝑗 ⊢ 𝑒𝜆 : 𝑡2 using the

intersection lemma (D.3) on the judgements {Γ, 𝑥 : 𝑢 𝑗 ⊢ 𝑒𝜆 : 𝑠 ′𝑖 }𝑖∈𝐼 𝑗 . Using the union lemma

(D.4) on the judgements {Γ, 𝑥 : 𝑢 𝑗 ⊢ 𝑒𝜆 : 𝑡2}𝑖∈𝐼 , we can derive Γ, 𝑥 : 𝑡1 ⊢ 𝑒𝜆 : 𝑡2.

As Γ ⊢ 𝑣2 : 𝑡1, we can deduce, using the substitution lemma (D.10), a derivation for Γ ⊢
𝑒𝜆{𝑣2/𝑥} : 𝑡2.

[×E1] We have 𝑒 ≡ 𝜋1𝑒1. If 𝑒◦ is a subexpression of 𝑒1, we conclude trivially by induction.

Otherwise, the reduction 𝑒◦ {Ex 𝑒
′
◦ uses the rule 59 and we know that 𝑒◦ ≡ 𝑒 ≡ 𝜋1 (𝑣1, 𝑣2)

and 𝑒 ′◦ ≡ 𝑒 ′ ≡ 𝑣1.

As the [∨+] rules of our derivation satisfy the normalization lemma D.7, we can extract from

the premise Γ ⊢ (𝑣1, 𝑣2) : 𝑡1 × 𝑡2 a collection of derivations of the judgements Γ ⊢ 𝑣1 : 𝑠𝑖 and

Γ ⊢ 𝑣2 : 𝑠 ′𝑖 for 𝑖 ∈ 𝐼 , such that

∧
𝑖∈𝐼 (𝑠𝑖 × 𝑠 ′𝑖) ≤ 𝑡1 × 𝑡2. This last property implies

∧
𝑖∈𝐼 𝑠𝑖 ≤ 𝑡1.

Therefore, we can conclude this case by using the intersection lemma (D.3) on the judgements

{Γ ⊢ 𝑣1 : 𝑠𝑖 }𝑖∈𝐼 .
[×E2] Similar to the previous case.

[∨+] We have 𝑒 ≡ 𝑒1{𝑒2/𝑥} (conclusion of the [∨+] rule), and thus 𝑒 ′ ≡ (𝑒1{𝑒2/𝑥}){𝑒 ′◦/𝑒◦}. We

know that 𝑒◦ does not contain 𝑥 as a free variable (otherwise there would be no occurrence

of 𝑒◦ in 𝑒1{𝑒2/𝑥}). Moreover, 𝑒 ′◦ does not contain 𝑥 neither, because a reduction step cannot

introduce a new free variable.

There are several cases:

• 𝑒◦ does not contain 𝑒2 and 𝑒2 does not contains 𝑒◦. In this case, we have:

𝑒 ′ ≡ (𝑒1{𝑒2/𝑥}){𝑒 ′◦/𝑒◦} ≡ (𝑒1{𝑒 ′◦/𝑒◦}){𝑒2/𝑥}. Thus, we can easily conclude with a [∨+]
rule by keeping the first premise and applying the induction hypothesis on the others.

• 𝑒2 contains 𝑒◦. In this case, we pose 𝑒 ′
2
= 𝑒2{𝑒 ′◦/𝑒◦}.

We have 𝑒 ′ ≡ (𝑒1{𝑒2/𝑥}){𝑒 ′◦/𝑒◦} ≡ (𝑒1{𝑒 ′◦/𝑒◦}){𝑒 ′2/𝑥}. We can easily derive Γ ⊢ 𝑒 ′
2

:

∨
𝑖∈𝐼 𝑡𝑖

by induction on the first premise, and Γ, 𝑥 : 𝑡𝑖 ⊢ 𝑒1{𝑒 ′◦/𝑒◦} : 𝑡 for all 𝑖 ∈ 𝐼 by induction on

the others. Thus, we can we can derive Γ ⊢ (𝑒1{𝑒 ′◦/𝑒◦}){𝑒 ′2/𝑥} : 𝑡 using the [∨+] rule.
• 𝑒◦ contains 𝑒2 as a strict subexpression. In this case, we pose 𝑒

1

◦ = 𝑒◦{𝑥/𝑒2} and 𝑒2

◦ = 𝑒
′
◦{𝑥/𝑒2}.

We have 𝑒 ′ ≡ (𝑒1{𝑒2/𝑥}){𝑒 ′◦/𝑒◦} ≡ (𝑒1{𝑒2

◦/𝑒1

◦}){𝑒2/𝑥}. Again, there are several cases:
𝑒1

◦ {Ex 𝑒
2

◦ This is the case if 𝑒2 only appears in 𝑒◦ inside of a lambda abstraction, in a branch

of a typecase, or in a value used as argument of an application or projection. In this case,

we can easily conclude with a [∨+] rule by keeping the first premise and applying the

induction hypothesis on the others.

𝑒1

◦ ≡ 𝑥𝑣 (for any 𝑣) It means that 𝑒2 is a lambda-abstraction. We can skip this case without

loss of generality according to the lemma D.8.

𝑒1

◦ ≡ 𝜋1𝑥 It means that 𝑒2 is a value. We can skip this case without loss of generality

according to the lemma D.8.

𝑒1

◦ ≡ 𝜋2𝑥 Similar to the previous case.

𝑒1

◦ ≡ (𝑥∈𝜏) ? 𝑒𝑡 : 𝑒𝑒 (for any 𝜏, 𝑒𝑡 , 𝑒𝑒) Similar to the previous case.

[0] We have 𝑒 ≡ (𝑒1∈𝜏) ? 𝑒2 : 𝑒3. As values cannot have the type 0, we know that 𝑒1 is not a value.

Thus, 𝑒 ′ ≡ (𝑒1𝜌∈𝜏) ? 𝑒2𝜌 : 𝑒3𝜌 . We can derive Γ ⊢ 𝑒1𝜌 : 0 by induction on the premise, thus

we can derive Γ ⊢ 𝑒 ′ : 0 by using [0].

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

13:62 Giuseppe Castagna, Mickaël Laurent, Kim Nguyễn, and Matthew Lutze

[∈1] We have 𝑒 ≡ (𝑒1∈𝜏) ? 𝑒2 : 𝑒3. There are three cases:

𝑒 ′ ≡ (𝑒1𝜌∈𝜏) ? 𝑒2𝜌 : 𝑒3𝜌 We can easily conclude by induction on the premises.

𝑒 ′ ≡ 𝑒2 We can easily conclude by induction on the second premise.

𝑒 ′ ≡ 𝑒3 This case is impossible. Indeed, it implies that 𝑒1 is a value. As Γ ⊢ 𝑒1 : 𝜏 (first premise),

we can deduce using the property D.9 that 𝑒1 ∈ 𝜏 , which contradicts 𝑒 {Ex 𝑒3.

[∈2] Similar to the previous case.

□

Corollary D.12 (Subject reduction). If Γ ⊢ 𝑒 : 𝑡 and 𝑒
_
{ 𝑒 ′, then Γ ⊢ 𝑒 ′ : 𝑡 .

Proof. The derivation of the reduction 𝑒
_

{ 𝑒 ′ may use several [𝜅] rules, but it must end with a

reduction 𝑒◦
_

{ 𝑒 ′◦ that does not use rule [𝜅]. As the{Ex semantics and the parallel semantics only

differ on the context rule, we also have 𝑒◦ {Ex 𝑒
′
◦.

Moreover, we have 𝑒 ′ ≡ 𝑒{𝑒 ′◦/𝑒◦}. Thus, we can conclude by using the previous theorem. □

D.1.4 Progress.

Theorem D.13 (Generalized progress). If Γ ⊢ 𝑒 : 𝑡 and if there is no evaluation context 𝐸 and

variable 𝑥 such that 𝑒 ≡ 𝐸 [𝑥], then either 𝑒 is a value or ∃𝑒 ′. 𝑒 _
{ 𝑒 ′.

Proof. We apply all the normalization lemmas above to the derivation of the judgement Γ ⊢ 𝑒 : 𝑡 ,

and we proceed by structural induction on it.

Depending on the last rule used:

[Const] Trivial (𝑒 is a value).

[Ax] Impossible case (𝑒 cannot be a variable).

[≤] Trivial (by induction on the premise).

[∧+] Trivial (by induction on one of the premises).

[→I] Trivial (𝑒 is a value).

[×I] We have 𝑒 ≡ (𝑒1, 𝑒2).
• If 𝑒1 is not a value, we know by applying the induction hypothesis that 𝑒1 can be reduced.

Thus, 𝑒 can also be reduced using the rule [𝜅].

• If 𝑒1 is a value, then we can apply the induction hypothesis on the second premise (as 𝑒1 is a

value, we know that ∀𝐸, 𝑥 . 𝑒2 . 𝐸 [𝑥]). It gives that either 𝑒2 is a value or it can be reduced.

We can easily conclude in both cases (if 𝑒2 is a value, then 𝑒 is also a value, otherwise, 𝑒

can be reduced using the rule [𝜅]).

[→E] We have 𝑒 ≡ 𝑒1𝑒2, with Γ ⊢ 𝑒1 : 𝑠 → 𝑡 and Γ ⊢ 𝑒2 : 𝑠 .

• If 𝑒1 is not a value, we know by applying the induction hypothesis that 𝑒1 can be reduced.

Thus, 𝑒 can also be reduced using the rule [𝜅].

• If 𝑒1 is a value, we can apply the property D.9 on it. As Γ ⊢ 𝑒1 : 0 → 1, it gives that
𝑒1 ∈ 0→ 1 and thus 𝑒1 ≡ 𝜆𝑥. 𝑒◦. Moreover, we can apply the induction hypothesis on the

second premise (as 𝑒1 is a value, we know that ∀𝐸, 𝑥 . 𝑒2 . 𝐸 [𝑥]). It gives that either 𝑒2 is a

value or it can be reduced. We can easily conclude in both cases (if 𝑒2 is a value, then 𝑒 can

be reduced using the rule 58, otherwise, 𝑒 can be reduced using the rule [𝜅]).

[×E1] We have 𝑒 ≡ 𝜋1𝑒◦, with Γ ⊢ 𝑒◦ : 𝑡 × 𝑠 . By induction on the premise, we know that 𝑒◦ is either
a value or it can be reduced. If 𝑒◦ can be reduced, then 𝑒 can also be reduced using the rule

[𝜅]. Otherwise, as Γ ⊢ 𝑒◦ : 1 × 1, we know by using the property D.9 that 𝑒◦ ∈ 1 × 1. Thus,
𝑒◦ ≡ (𝑣1, 𝑣2) (with 𝑣1 and 𝑣2 two values) and consequently 𝑒 can be reduced using the rule 59.

[×E2] Similar to the previous case.

[∨+] We have 𝑒 ≡ 𝑒◦{𝑒 ′/𝑥}, with Γ ⊢ 𝑒 ′ :

∨
𝑖∈𝐼 𝑡𝑖 and ∀𝑖 ∈ 𝐼 . Γ, 𝑥 : 𝑡𝑖 ⊢ 𝑒◦ : 𝑡 . There are two cases:

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

On Type-Cases, Union Elimination, and Occurrence Typing 13:63

• There exists a reduction context 𝐸 such that 𝑒◦ ≡ 𝐸 [𝑥]. In this case, we know that there

is no reduction context 𝐸 ′ and variable 𝑦 such that 𝑒 ′ ≡ 𝐸 ′[𝑦], otherwise we would have

𝑒 ≡ 𝐸 [𝐸 ′[𝑦]]. Thus, we can apply the induction hypothesis on the first premise. It gives

that either 𝑒 ′ is a value or it can be reduced. The case where 𝑒 ′ is a value can be skipped

without loss of generality according to the lemma D.8. Thus, we can assume that 𝑒 ′ can be

reduced. Consequently, 𝑒 can also be reduced using the rule [𝜅].

• There is no reduction context 𝐸 such that 𝑒◦ ≡ 𝐸 [𝑥]. We also know that there is no reduction

context 𝐸 and variable 𝑦 such that 𝑦 ≠ 𝑥 and 𝑒◦ ≡ 𝐸 [𝑦], otherwise we would have 𝑒 ≡ 𝐸 [𝑦].
Thus, we can apply the induction hypothesis on the second premise. It gives that either 𝑒◦
is a value or it can be reduced. We can easily conclude in both cases (if 𝑒◦ is a value, then 𝑒
is also a value, and if 𝑒◦ can be reduced, then 𝑒 can also be reduced).

[0] We have 𝑒 ≡ (𝑒◦∈𝜏) ? 𝑒1 : 𝑒2, with Γ ⊢ 𝑒◦ : 0. As values cannot have the type 0, we know

that 𝑒◦ is not a value. Thus, by induction on the premise, we know that 𝑒◦ can be reduced.

Consequently, 𝑒 can be reduced using the rule [𝜅].

[∈1] We have 𝑒 ≡ (𝑒◦∈𝜏) ? 𝑒1 : 𝑒2, with Γ ⊢ 𝑒◦ : 𝜏 . By induction on this premise, we know that 𝑒◦ is
either a value or it can be reduced. If 𝑒◦ is a value, then 𝑒 can be reduced using the rule 61.

Otherwise, 𝑒◦ can be reduced and thus 𝑒 can also be reduced using the rule [𝜅].

[∈2] Similar to the previous case.

□

Corollary D.14 (Progress). If ∅ ⊢ 𝑒 : 𝑡 , then either 𝑒 is a value or ∃𝑒 ′. 𝑒 _
{ 𝑒 ′.

Proof. We can deduce from ∅ ⊢ 𝑒 : 𝑡 that there is no evaluation context 𝐸 and variable 𝑥 such

that 𝑒 ≡ 𝐸 [𝑥]. Thus, we can apply the generalized progress theorem above. □

D.1.5 Equivalence of the Semantics. See 2.3 for the semantics of the paper.

Property D.15 (Inclusion of

_

{ in{). For any 𝑒 and 𝑣 , if 𝑒
_
{
∗
𝑣 , then 𝑒 {∗ 𝑣 . Moreover, for

any 𝑒 , if 𝑒
_
{
∗
(𝑒 diverges with

_
{), then 𝑒 {∗ (𝑒 diverges with{).

Proof. For any 𝑒1 and 𝑒2, we will use the notation 𝑒1 {Top 𝑒2 to denote a reduction 𝑒1 { 𝑒2

that applies at top-level (i.e. under the empty evaluation context). Moreover, we will denote by C
an expression with exactly one hole (it is more general than an evaluation context 𝐸).

First, we can easily prove by induction the following property:

for any context 𝐸 and expressions 𝑒, 𝑒 ′, 𝑒 ′′, if 𝐸 [𝑒] 𝑒 ↦→𝑒
′

{ 𝑒 ′′, then 𝑒 ′′ ≡ 𝐸{𝑒 ′/𝑒}[𝑒 ′] and 𝑒 {Top 𝑒
′

and 𝐸 [𝑒] { 𝐸 [𝑒 ′].
Then, we show that for any context 𝐸 and expressions 𝑒, 𝑒 ′, 𝑒 ′′, 𝑒1, · · · , 𝑒𝑛 , if 𝐸 [𝑒]

𝑒 ↦→𝑒′
{ 𝑒 ′′ and

∀𝑖 ∈ [1 . . 𝑛] . 𝑒𝑖 {Top 𝑒
′
𝑖 , then for any C such that C{𝑒 ′

1
/𝑒1} · · · {𝑒 ′𝑛/𝑒𝑛} ≡ 𝐸, there exists C′ such

that C[𝑒] {∗ C′[𝑒 ′] and C′{𝑒 ′
1
/𝑒1} · · · {𝑒 ′𝑛/𝑒𝑛}{𝑒 ′/𝑒}[𝑒 ′] ≡ 𝑒 ′′. The idea behind this result is that:

• If C is an evaluation context, we can directly conclude with the property above.

• Otherwise, we can successively reduce in C[𝐸] the expressions 𝑒𝑖 such that ∃𝐸. 𝐸 [𝑒𝑖] ≡ C[𝑒]
using the fact that ∀𝑖 ∈ [1 . . 𝑛] . 𝑒𝑖 {Top 𝑒

′
𝑖 , until C becomes an evaluation context.

The lemma we want to prove can easily be deduced from this result. □

Note that the other inclusion is also true, but is not required to prove the safety of our type

system.

Theorem D.16 (Type safety). For any expression 𝑒 , if ∅ ⊢ 𝑒 : 𝑡 , then either 𝑒 {∗ 𝑣 with ∅ ⊢ 𝑣 : 𝑡

or 𝑒 {∗ (𝑒 diverges).

Proof. Straightforward application of D.12, D.14 and D.15. □

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

13:64 Giuseppe Castagna, Mickaël Laurent, Kim Nguyễn, and Matthew Lutze

D.2 Intermediate Type System
See 3 for the full declarative system and 4 for the full intermediate system.

D.2.1 Soundness.

Lemma D.17. If Γ ⊢ 𝑒 : 𝑡 is derivable and 𝑥 ∉ Γ, then ∀𝑒 ′. Γ ⊢ 𝑒{𝑒 ′/𝑥} is derivable.
Proof. As 𝑥 ∉ Γ, the derivation of Γ ⊢ 𝑒 : 𝑡 cannot use the rule [Ax] on 𝑥 , and thus it does not

contain any typing derivation for 𝑥 as a sub-derivation. Thus, we can transform the derivation of

Γ ⊢ 𝑒 : 𝑡 into a derivation of Γ ⊢ 𝑒{𝑒 ′/𝑥} by replacing every occurrence of 𝑥 by 𝑒 ′ (straightforward
induction). □

Theorem D.18 (Soundness). If Γ ⊢I 𝒆 : 𝑡 then Γ ⊢ ⌈𝒆⌉ : 𝑡

Proof. We proceed by structural induction on the typing derivation of Γ ⊢I 𝒆 : 𝑡 .

Depending on the last rule used (we use the variable names defined in this rule):

[Const-Int] Trivial.

[Ax-Int] Trivial.

[→I-Int] By induction on the premises, we get ∀𝑗 ∈ 𝐽 . Γ, 𝑥 : 𝑡 𝑗 ⊢ ⌈𝒆⌉ : 𝑠 𝑗 . By applying the rule

[→I] on each of these derivations, we get ∀𝑗 ∈ 𝐽 . Γ ⊢ 𝜆𝑥.⌈𝒆⌉ : 𝑡 𝑗 → 𝑠 𝑗 . We conclude by

applying the rule [∧+].
[→E-Int] We have 𝑡 ≃ 𝑡1 ◦ 𝑡2. According to the definition of ◦, we can deduce that 𝑡1 ≤ 𝑡2 → 𝑡 .

Moreover, by induction on the premises, we get Γ ⊢ ⌈𝒆1⌉ : 𝑡1 and Γ ⊢ ⌈𝒆2⌉ : 𝑡2. By applying

the [≤] rule, we can derive Γ ⊢ ⌈𝒆1⌉ : 𝑡2 → 𝑡 . We can then easily conclude with an application

of the rule [→E].

[×I-Int] By induction on the premises, we get Γ ⊢ ⌈𝒆1⌉ : 𝑡1 and Γ ⊢ ⌈𝒆2⌉ : 𝑡2. We conclude by

applying the rule [×I].
[×E1-Int] By induction on the premise, we get Γ ⊢ ⌈𝒆⌉ : 𝑡 . According to the definition of 𝑝𝑖1, we

can deduce that 𝑡 ≤ (𝜋1𝑡) × 1. By applying the [≤] rule, we can derive Γ ⊢ ⌈𝒆⌉ : (𝜋1𝑡) × 1.
We conclude by applying the rule [×E1].

[×E2-Int] Similar to the previous case.

[0-Int] Similar to the previous case.

[∈1-Int] By induction on the premises, we get Γ ⊢ ⌈𝒆⌉ : 𝑡0 with 𝑡0 ≤ 𝑡 and Γ ⊢ ⌈𝒆1⌉ : 𝑡1. By

applying the [≤] rule, we can derive Γ ⊢ ⌈𝒆⌉ : 𝑡 . We conclude by applying the rule [∈1].

[∈2-Int] Similar to the previous case.

[∨1-Int] By induction on the premise, we get Γ ⊢ ⌈𝒆2⌉ : 𝑠 . As 𝑥 ∉ Γ, we can transform our

derivation into a derivation of Γ ⊢ ⌈𝒆2⌉{⌈𝒆1⌉/𝑥} : 𝑠 using lemma D.17.

[∨2-Int] By induction on the premises, we get Γ ⊢ ⌈𝒆1⌉ :

∨
𝑗 ∈𝐽 𝑡 𝑗 and ∀𝑗 ∈ 𝐽 . Γ, 𝑥 : 𝑡 𝑗 ⊢ ⌈𝒆2⌉ : 𝑠 𝑗 .

Using the rule [≤], we can derive ∀𝑗 ∈ 𝐽 . Γ, 𝑥 : 𝑡 𝑗 ⊢ ⌈𝒆2⌉ :

∨
𝑗 ∈𝐽 𝑠 𝑗 . We conclude by applying

the rule [∨+] (it gives a derivation for Γ ⊢ ⌈𝒆2⌉{⌈𝒆1⌉/𝑥} :

∨
𝑗 ∈𝐽 𝑠 𝑗).

□

D.2.2 Completeness. See A.8 for all the definitions relative to the canonical form and the MSC-form.

Lemma D.19 (Monotonicity). If Γ ⊢I 𝒆 : 𝑡 and Γ′ ≤ Γ, then Γ′ ⊢I 𝒆 : 𝑡 ′ with 𝑡 ′ ≤ 𝑡 .
More generally, in any derivation for Γ ⊢I 𝒆 : 𝑡 , we can replace any subderivation Γ◦ ⊢I 𝒆◦ : 𝑡◦ by a

derivation Γ◦ ⊢I 𝒆◦ : 𝑡 ′◦ ≤ 𝑡◦ and still keep a valid derivation for Γ ⊢I 𝒆 : 𝑡 ′ ≤ 𝑡 by doing some minor

transformations to the rest of the derivation, which involve:

• Refinement of some types in the derivation,

• Refinement of the splits made by a [∨1] rule (it may imply the removing of some branches and

the strengthening of the environment of some other branches),

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

On Type-Cases, Union Elimination, and Occurrence Typing 13:65

• Use of a [0-Int] rule instead of a [∈1-Int] or [∈2-Int] rule.

Proof. Straightforward induction on the typing derivation of Γ ⊢I 𝒆 : 𝑡 . □

Lemma D.20 (Intersection). If Γ ⊢I 𝒆 : 𝑡1 and Γ ⊢I 𝒆 : 𝑡2, then Γ ⊢I 𝒆 : 𝑡 ≤ 𝑡1 ∧ 𝑡2.

Proof. It is a straightforward induction on the typing derivations of Γ ⊢I 𝒆 : 𝑡1 and Γ ⊢I 𝒆 : 𝑡2.

We use the monotonicity lemma (D.19) when needed.

Here is the transformation to apply when both Γ ⊢I 𝒆 : 𝑡1 and Γ ⊢I 𝒆 : 𝑡2 use [∨2-Int] as last rule.

[∨2-Int]

𝐴

Γ ⊢I 𝒂 :

∨
𝑗 ∈𝐽 𝑡 𝑗

𝐵 𝑗

Γ, 𝑥 : 𝑡 𝑗 ⊢I 𝜿 : 𝑠 𝑗

Γ ⊢I bind𝑥 = 𝒂 in𝜿 :

∨
𝑗 ∈𝐽 𝑠 𝑗 ≃ 𝑡

[∨2-Int]

𝐴′

Γ ⊢I 𝒂 :

∨
𝑗 ∈𝐽 ′ 𝑡

′
𝑗

𝐵′𝑗

Γ, 𝑥 : 𝑡 ′𝑗 ⊢I 𝜿 : 𝑠 ′𝑗

Γ ⊢I bind𝑥 = 𝒂 in𝜿 :

∨
𝑗 ∈𝐽 ′ 𝑠

′
𝑗 ≃ 𝑡 ′

↓

[∨2-Int]

Derived by induction on 𝐴 and 𝐴′

Γ ⊢I 𝒂 : 𝑡◦ ≃
∨
𝑖∈𝐼 𝑢𝑖

Derived by induction on one of the 𝐵 𝑗 and 𝐵
′
𝑗

Γ, 𝑥 : 𝑢𝑖 ⊢I 𝜿 : 𝑣𝑖 ≤ 𝑡 ∧ 𝑡 ′

Γ ⊢I bind𝑥 = 𝒂 in𝜿 :

∨
𝑖∈𝐼 𝑣𝑖 ≤ 𝑡 ∧ 𝑡 ′

with {𝑢𝑖 }𝑖∈𝐼 = partition({𝑡 𝑗 ∧ 𝑡◦} 𝑗 ∈𝐽 ∪ {𝑡 ′𝑗 ∧ 𝑡◦} 𝑗 ∈𝐽 ′)

The case when both Γ ⊢I 𝒆 : 𝑡1 and Γ ⊢I 𝒆 : 𝑡2 use [→I-Int] as last rule is quite similar (the new

split to use is partition of the union of the two original splits).

The other cases are straightforward. □

Property D.21. For any intermediate expression 𝒆, ⌈term(J𝒆K)⌉ = ⌈𝒆⌉.

Proof. Straightforward structural induction on 𝒆. □

In the following, we extend the function term so that it can take an arbitrary intermediate

expression as second argument instead of just a variable.

Lemma D.22. If Γ, (𝑥 : 𝑠) ⊢I 𝒆 : 𝑡 and Γ ⊢I term(Δ, 𝑥) : 𝑠 , then Γ ⊢I term(Δ, 𝒆) : 𝑡 ′ with 𝑡 ′ ≤ 𝑡 .

Proof. We proceed by induction on the size of Δ.
If Δ = 𝜀, the property is trivial (we can directly use the rule [Ax-Int]).

Otherwise, we have Δ =
def

𝑦 ↦→𝒂;Δ′ and term(Δ, 𝑥) = bind𝑦 = 𝒂 in term(Δ′, 𝑥) . The last rule of
the derivation of Γ ⊢I term(Δ, 𝑥) : 𝑠 can be:

[∨1-Int] In this case, we have the premise Γ ⊢I term(Δ′, 𝑥) : 𝑠 and thus, by induction, we can

deduce Γ ⊢I term(Δ′, 𝒆) : 𝑡 ′ with 𝑡 ′ ≤ 𝑡 . We can derive Γ ⊢I term(Δ, 𝒆) : 𝑡 ′ by using the rule

[∨1-Int].

[∨2-Int] In this case, we have the premises Γ ⊢I 𝒂 :

∨
𝑗 ∈𝐽 𝑡 𝑗 and ∀𝑗 ∈ 𝐽 . Γ, 𝑦 : 𝑡 𝑗 ⊢I term(Δ′, 𝑥) : 𝑠 𝑗

with 𝑠 ≃ ∨
𝑗𝑖𝑛𝐽

𝑠 𝑗 . As Γ, (𝑥 : 𝑠) ⊢I 𝒆 : 𝑡 and ∀𝑗 ∈ 𝐽 . 𝑠 𝑗 ≤ 𝑠 , we know by monotonicity (D.19)

that ∀𝑗 ∈ 𝐽 . Γ, (𝑥 : 𝑠 𝑗) ⊢I 𝒆 : 𝑡 ′𝑗 with 𝑡
′
𝑗 ≤ 𝑡 . By induction, we can deduce ∀𝑗 ∈ 𝐽 . Γ, 𝑦 : 𝑡 𝑗 ⊢I

term(Δ′, 𝒆) : 𝑡 ′𝑗 . We can derive Γ ⊢I term(Δ, 𝒆) :

∨
𝑗 ∈𝐽 𝑡

′
𝑗 by using the rule [∨2-Int].

□

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

13:66 Giuseppe Castagna, Mickaël Laurent, Kim Nguyễn, and Matthew Lutze

LemmaD.23. If Γ, (𝑥1 : 𝑠) ⊢I term(Δ2, 𝑥2) : 𝑡 and Γ ⊢I term(Δ1, 𝑥1) : 𝑠 , then Γ ⊢I term((Δ1;Δ2), 𝑥2) :

𝑡 ′ with 𝑡 ′ ≤ 𝑡 .
Proof. Straightforward application of the previous lemma with 𝒆 = term(Δ2, 𝑥2). □

Property D.24. If Γ ⊢I 𝒆 : 𝑡 then Γ ⊢I term(J𝒆K) : 𝑡 ′ with 𝑡 ′ ≤ 𝑡 .
Proof. We proceed by structural induction on the expression 𝒆.

𝑐 Trivial.

𝑥 Trivial.

𝜆𝑥. 𝒆 The last rule of the derivation of Γ ⊢I 𝒆 : 𝑡 is [→I-Int]. By induction on its premises, we get

∀𝑗 ∈ 𝐽 . Γ, 𝑥 : 𝑡 𝑗 ⊢I term(J𝒆K) : 𝑠 ′𝑗 with 𝑠
′
𝑗 ≤ 𝑠 𝑗 . We can derive Γ ⊢I term(J𝜆𝑥. 𝒆K) :

∧
𝑗 ∈𝐽 𝑠

′
𝑗 by

applying the rules [→I-Int] and [∨2-Int].

𝜋1𝒆 The last rule of the derivation of Γ ⊢I 𝒆 : 𝑡 is [×E-Int]. By induction on its premise, we get

Γ ⊢I term(J𝒆K) : 𝑡 ′ with 𝑡 ′ ≤ 𝑡 ≤ 1 × 1 (we use the same variable names as the rule). Let us

note (Δ, 𝑥) =
def J𝒆K. We can trivially derive Γ, 𝑥 : 𝑡 ′ ⊢I term((𝑥◦ ↦→ 𝜋𝑖𝑥), 𝑥◦) : 𝜋1 (𝑡 ′). Thus, by

applying D.23, we can deduce Γ ⊢I term((Δ;𝑥◦ ↦→ 𝜋𝑖𝑥), 𝑥◦) : 𝜋1 (𝑡 ′).
𝜋2𝒆 Similar to the previous case.

𝒆1𝒆2 The last rule of the derivation of Γ ⊢I 𝒆 : 𝑡 is [→E-Int]. By induction on its premises, we get

Γ ⊢I term(J𝒆1K) : 𝑡 ′
1
with 𝑡 ′

1
≤ 𝑡1 ≤ 0 → 1, and Γ ⊢I term(J𝒆2K) : 𝑡 ′

2
with 𝑡 ′

2
≤ 𝑡2 ≤ dom(𝑡1)

(we use the same variable names as the rule). By monotonicity (D.19) we also have Γ, 𝑥1 :

𝑡 ′
1
⊢I term(J𝒆2K) : 𝑡 ′

2
. Let us note (Δ1, 𝑥1) =

def J𝒆1K and (Δ2, 𝑥2) =
def J𝒆2K. We can trivially derive

Γ, 𝑥1 : 𝑡 ′
1
, 𝑥2 : 𝑡 ′

2
⊢I term((𝑥◦ ↦→ 𝑥1𝑥2), 𝑥◦) : 𝑡 ′

1
◦ 𝑡 ′

2
. Thus, by applying D.23, we can deduce

Γ, 𝑥1 : 𝑡 ′
1
⊢I term((Δ2;𝑥◦ ↦→ 𝑥1𝑥2), 𝑥◦) : 𝑡 ′

1
◦ 𝑡 ′

2
. By applying D.23 again, we can finally deduce

Γ ⊢I term((Δ1;Δ2;𝑥◦ ↦→ 𝑥1𝑥2), 𝑥◦) : 𝑡 ′
1
◦ 𝑡 ′

2
.

(𝒆1, 𝒆2) Similar to the previous case.

(𝒆◦∈𝜏) ? 𝒆1 : 𝒆2 The last rule of the derivation of Γ ⊢I 𝒆 : 𝑡 can be [0-Int], [∈1-Int] or [∈2-Int]. We

will only focus on the [∈1-Int] case here, but the other cases use the same ideas.

By induction on the premises of the [∈1-Int] rule, we get Γ ⊢I term(J𝒆◦K) : 𝑡 ′◦ ≤ 𝑡◦ ≤ 𝜏 and
Γ ⊢I term(J𝒆1K) : 𝑡 ′

1
≤ 𝑡1 (we use the same variable names as the rule). By monotonicity (D.19)

we also have Γ, 𝑥◦ : 𝑡 ′◦ ⊢I term(J𝒆1K) : 𝑡 ′
1
. Let us note (Δ◦, 𝑥◦) =

def J𝒆◦K, (Δ1, 𝑥1) =
def J𝒆1K and

(Δ2, 𝑥2) =
def J𝒆2K.We can trivially derive Γ, 𝑥◦ : 𝑡 ′◦, 𝑥1 : 𝑡 ′

1
⊢I term((Δ2;𝑥 ↦→ (𝑥◦∈𝜏) ?𝑥1 :𝑥2), 𝑥) :

𝑡 ′
1
(we use the rule [∨1] to skip the definition Δ2). Thus, by applying D.23, we can deduce

Γ, 𝑥◦ : 𝑡 ′◦ ⊢I term((Δ1;Δ2;𝑥 ↦→ (𝑥◦∈𝜏) ?𝑥1 :𝑥2), 𝑥) : 𝑡 ′
1
. By applying D.23 again, we can

finally deduce Γ ⊢I term((Δ◦;Δ1;Δ2;𝑥 ↦→ (𝑥◦∈𝜏) ?𝑥1 :𝑥2), 𝑥) : 𝑡 ′
1
.

bind𝑥 = 𝒆1 in 𝒆2 If the last rule of the derivation of Γ ⊢I 𝒆 : 𝑡 is [∨1-Int], we can derive Γ ⊢I
term(J𝒆2K) : 𝑠 ′ with 𝑠 ′ ≤ 𝑠 by induction on the premise. We can easily derive Γ ⊢I term(J𝒆K) :

𝑠 ′ from that by using the [∨1-Int] rule.

Now we can suppose that the last rule of the derivation of Γ ⊢I 𝒆 : 𝑡 is [∨2-Int]. By induction

on its premises, we get Γ ⊢I term(J𝒆1K) : 𝑡 ′ with 𝑡 ′ ≤ ∨
𝑗 ∈𝐽 𝑡 𝑗 , as well as ∀𝑗 ∈ 𝐽 . Γ, 𝑥 : 𝑡 𝑗 ⊢I

term(J𝒆2K) : 𝑠 ′𝑗 with 𝑠
′
𝑗 ≤ 𝑠 𝑗 . Let us note (Δ1, 𝑥1) =

def J𝒆1K and (Δ2, 𝑥2) =
def J𝒆2K. We can trivially

derive Γ, 𝑥1 : 𝑡 ′ ⊢I term(𝑥 ↦→ 𝑥1, 𝑥) : 𝑡 ′. Moreover, from ∀𝑗 ∈ 𝐽 . Γ, 𝑥 : 𝑡 𝑗 ⊢I term(J𝒆2K) : 𝑠 ′𝑗 ,
we can derive by monotonicity (D.19) ∀𝑗 ∈ 𝐽 . Γ, 𝑥 : 𝑡 𝑗 ∧ 𝑡 ′ ⊢I term(Δ2, 𝑥2) : 𝑠 ′′𝑗 with 𝑠 ′′𝑗 ≤ 𝑠 ′𝑗 .
Thus, by using the rule [∨2-Int], we can derive Γ, 𝑥1 : 𝑡 ′ ⊢I ((𝑥 ↦→ 𝑥1,Δ2), 𝑥2) :

∨
𝑗 ∈𝐽 𝑠

′′
𝑗 . By

applying D.23, we can deduce Γ ⊢I ((Δ1, 𝑥 ↦→ 𝑥1,Δ2), 𝑥2) :

∨
𝑗 ∈𝐽 𝑠

′′
𝑗 .

□

Property D.25 (Eqivalence of MSC-forms). If𝜿1 and𝜿2 are two MSC-forms and ⌈𝜿1⌉ ≡𝛼 ⌈𝜿2⌉,
then 𝜿1 ≡𝜅 𝜿2.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

On Type-Cases, Union Elimination, and Occurrence Typing 13:67

Proof. Let 𝑒 ≡𝛼 ⌈𝜿1⌉ ≡𝛼 ⌈𝜿2⌉. Without loss of generality, we can suppose that every variable in

𝑒 has a unique name (we can always alpha-rename a variable when there is a conflict). We also

suppose that every variable in 𝜿1 and 𝜿2 (from bindings and abstractions) have a unique name. Let

us consider the set 𝑆 of all the distinct subexpressions of 𝑒 .

To each binding bind𝑥 =𝑎 in𝜿 in𝜿1 or𝜿2, we associate the expression 𝐸 (𝑥) obtained by starting
from 𝑎 and recursively inlining the definitions of the variables used (for variables that come from a

binding). In other word, we associate to every bound variable the unwinding of its definition.

As 𝜿1 and 𝜿2 are in MSC-form, we know according to the property 4 of the MSC-form that every

binding is used later. Thus, for every binding bind𝑥 =𝑎 in𝜿 , we know that 𝐸 (𝑥) will appear in 𝑒
and thus 𝐸 (𝑥) ∈ 𝑆 .
From the properties 1 and 2 of the MSC-form definition, we can deduce that for every binding

bind𝑥 =𝑎 in𝜿 in 𝜿1 or 𝜿2, 𝐸 (𝑥) is unique (there is no other binding bind𝑦 =𝑎′ in𝜿 ′ such that

𝐸 (𝑥) = 𝐸 (𝑦)). It can be easily proved by induction on the number of bindings in the context of

our binding bind𝑥 =𝑎 in𝜿 . From that, we can deduce that there is a one-to-one correspondence

between the bindings of 𝜿1 and the elements of 𝑆 , and between the bindings of 𝜿2 and the elements

of 𝑆 .

Thus, 𝜿1 and 𝜿2 have the exact same bindings modulo alpha-renaming (each binding correspond-

ing to an expression of 𝑆). Consequently, the only difference between 𝜿1 and 𝜿2 is the location of

these bindings. In particular, each binding is localized by:

• The lambda-abstraction it is in (if any) and

• The relative order of the binding (with respect to the other bindings) in this lambda-abstraction

(or at top-level)

The property 3 of the MSC-form definition ensures that every binding is located in the outermost

lambda-abstraction possible: a binding can only be nested inside a lambda-abstraction if its definition

depends (directly or not) on the variable introduced by this abstraction.

Finally, the only difference between 𝜿1 and 𝜿2 is the relative order between the independent

bindings that are in the same lambda-abstraction (or at top-level). This order can be rearranged

with the rewriting rule 22 of the equivalence relation ≡𝜅 , thus we have 𝜿1 ≡𝜅 𝜿2. □

Lemma D.26. Let 𝒆1, 𝒆2, C, Γ and 𝑡 . If ∀Γ◦∀𝑡◦. Γ◦ ⊢I 𝒆1 : 𝑡◦ ⇒ Γ◦ ⊢I 𝒆2 : 𝑡 ′◦ ≤ 𝑡◦ and if Γ ⊢I C[𝒆1] : 𝑡 ,

then Γ ⊢I C[𝒆2] : 𝑡 ′ ≤ 𝑡 .

Proof. We can transform the derivation Γ ⊢I C[𝒆1] : 𝑡 into a derivation for Γ ⊢I C[𝒆2] : 𝑡 ′:

(1) We replace the relevant occurrence of 𝒆1 by 𝒆2 at the root of the derivation.

(2) We propagate this change. We stop when we reach a subderivation of the form Γ′ ⊢I 𝒆1 : 𝑠

that should be transformed into Γ′ ⊢I 𝒆2 : 𝑠 .

(3) For each such subderivation Γ′ ⊢I 𝒆1 : 𝑠 , we replace it by a subderivation for Γ′ ⊢I 𝒆2 : 𝑠 ′ with
𝑠 ′ ≤ 𝑠 (we use the hypothesis ∀Γ◦∀𝑡◦. Γ◦ ⊢I 𝒆1 : 𝑡◦ ⇒ Γ◦ ⊢I 𝒆2 : 𝑡 ′◦ ≤ 𝑡◦).

(4) By monotonicity (D.19), we can propagate the changes on the resulting type and we get a

derivation for Γ′ ⊢I C[𝒆2] : 𝑡 ′ with 𝑡 ′ ≤ 𝑡 .
□

Property D.27. If Γ ⊢I 𝜿 : 𝑡 and 𝜿 ≡𝜅 𝜿 ′, then ∃𝑡 ′ ≤ 𝑡 such that Γ ⊢I 𝜿 ′ : 𝑡 ′.

Proof. First, let’s assume the equivalence rule of ≡𝜅 only applies at top-level (i.e. not under an

arbitrary context). We have a case for each rule:

22 (→) If the derivation Γ ⊢I bind𝑥1 = 𝒂1 in bind𝑥2 = 𝒂2 in𝜿 : 𝑡 uses the rule [∨1-Int] for at least

one of the two bindings, then the transformation into a derivation for

Γ ⊢I bind𝑥2 = 𝒂2 in bind𝑥1 = 𝒂1 in𝜿 : 𝑡 ′ is trivial.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

13:68 Giuseppe Castagna, Mickaël Laurent, Kim Nguyễn, and Matthew Lutze

Otherwise, we can use the following transformation:

[∨2-Int]

𝐴

Γ ⊢I 𝒂1 :

∨
𝑗 ∈𝐽 𝑡 𝑗

[∨2-Int]

𝐵 𝑗

Γ, 𝑥1 : 𝑡 𝑗 ⊢I 𝒂2 :

∨
𝑘∈𝐾𝑗

𝑡 ′
𝑗,𝑘

𝐶 𝑗,𝑘

Γ, 𝑥1 : 𝑡 𝑗 , 𝑥2 : 𝑡 ′
𝑗,𝑘
⊢I 𝜿 : 𝑠 ′

𝑗,𝑘

Γ, 𝑥1 : 𝑡 𝑗 ⊢I bind𝑥2 = 𝒂2 in𝜿 :

∨
𝑘∈𝐾𝑗

𝑠 ′
𝑗,𝑘
≃ 𝑠 𝑗

Γ ⊢I bind𝑥1 = 𝒂1 in bind𝑥2 = 𝒂2 in𝜿 :

∨
𝑗 ∈𝐽 𝑠 𝑗 ≃ 𝑡

↓

[∨2-Int]

Easily derived from any of the 𝐵 𝑗

Γ ⊢I 𝒂2 :

∨
𝑖∈𝐼 𝑢𝑖

[∨2-Int]

Easily derived from 𝐴

Γ, 𝑥2 : 𝑢𝑖 ⊢I 𝒂1 :

∨
𝑗 ∈𝐽 𝑡 𝑗

Easily derived by monotonicity from one of the 𝐶 𝑗,𝑘

Γ, 𝑥2 : 𝑢𝑖 , 𝑥1 : 𝑡 𝑗 ⊢I 𝜿 : 𝑣𝑖, 𝑗 ≤ 𝑠 𝑗
Γ, 𝑥2 : 𝑢𝑖 ⊢I bind𝑥1 = 𝒂1 in𝜿 :

∨
𝑗 ∈𝐽 𝑣𝑖, 𝑗 ≤ 𝑡

Γ ⊢I bind𝑥2 = 𝒂2 in bind𝑥1 = 𝒂1 in𝜿 :

∨
𝑖∈𝐼

∨
𝑗 ∈𝐽 𝑣𝑖, 𝑗 ≤ 𝑡

with {𝑢𝑖 }𝑖∈𝐼 = partition({𝑡 ′
𝑗,𝑘
| 𝑗 ∈ 𝐽 , 𝑘 ∈ 𝐾 𝑗 })

22 (←) Similar to the other direction (the rule is symmetric).

The general case (where the equivalence rule can apply under an arbitrary context) can be

deduced by an immediate application of the lemma D.26. □

Property D.28. If 𝜿 ≡𝜅 𝜿 ′, then ⌈𝜿⌉ ≡𝛼 ⌈𝜿 ′⌉.

Proof. First, let’s assume the rule 22 applies at top-level on the expression

bind𝑥1 = 𝒂1 in bind𝑥2 = 𝒂2 in𝜿 . As 𝑥1 ∉ fv(𝒂2) and 𝑥2 ∉ fv(𝒂1), we have 𝜿{𝒂1/𝑥1}{𝒂2/𝑥2} =

𝜿{𝒂2/𝑥2}{𝒂1/𝑥1} and thus the unwinding remains unchanged.

The general case can easily be deduced with the observation that ∀C,𝜿1,𝜿2. ⌈𝜿1⌉ ≡𝛼 ⌈𝜿2⌉ ⇒
⌈C[𝜿1]⌉ ≡𝛼 ⌈C[𝜿2]⌉ □

In the following, we use the notation 𝝋 to designate either an atom 𝒂 or a canonical expression 𝜿 .

Lemma D.29. If Γ ⊢I 𝝋 : 𝑡 and 𝝋 d 𝝋 ′, then ∃𝑡 ′ ≤ 𝑡 such that Γ ⊢I 𝝋 ′ : 𝑡 ′.

Proof. First, let’s assume that thed rule applies at top-level (i.e. not under an arbitrary context).

We have a case for each rewriting rule:

23 If the derivation Γ ⊢I bind𝑥1 = 𝒂1 in bind𝑥2 = 𝒂2 in𝜿 : 𝑡 uses the rule [∨1-Int] for at least one

of the two bindings, then the transformation into a derivation for Γ ⊢I bind𝑥1 = 𝒂1 in𝜿{𝑥1/𝑥2} :

𝑡 ′ is trivial.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

On Type-Cases, Union Elimination, and Occurrence Typing 13:69

Otherwise, we can use the following transformation:

[∨2-Int]

𝐴

Γ ⊢I 𝒂1 :

∨
𝑗 ∈𝐽 𝑡 𝑗

[∨2-Int]

𝐵 𝑗

Γ, 𝑥1 : 𝑡 𝑗 ⊢I 𝒂2 :

∨
𝑘∈𝐾𝑗

𝑡 ′
𝑗,𝑘

𝐶 𝑗,𝑘

Γ, 𝑥1 : 𝑡 𝑗 , 𝑥2 : 𝑡 ′
𝑗,𝑘
⊢I 𝜿 : 𝑠 ′

𝑗,𝑘

Γ, 𝑥1 : 𝑡 𝑗 ⊢I bind𝑥2 = 𝒂2 in𝜿 :

∨
𝑘∈𝐾𝑗

𝑠 ′
𝑗,𝑘
≃ 𝑠 𝑗

Γ ⊢I bind𝑥1 = 𝒂1 in bind𝑥2 = 𝒂2 in𝜿 :

∨
𝑗 ∈𝐽 𝑠 𝑗 ≃ 𝑡

↓

[∨2-Int]

𝐴

Γ ⊢I 𝒂1 :

∨
𝑖∈𝐼 𝑢𝑖

Easily derived by monotonicity from one of the 𝐶 𝑗,𝑘

Γ, 𝑥1 : 𝑢𝑖 ⊢I 𝜿{𝑥1/𝑥2} : 𝑣𝑖 ≤ 𝑡
Γ ⊢I bind𝑥1 = 𝒂1 in𝜿{𝑥1/𝑥2} :

∨
𝑖∈𝐼 𝑣𝑖 ≤ 𝑡

with {𝑢𝑖 }𝑖∈𝐼 = partition({𝑡 𝑗 } 𝑗 ∈𝐽 ∪ {𝑡 ′𝑗,𝑘 | 𝑗 ∈ 𝐽 , 𝑘 ∈ 𝐾 𝑗 })

24 If the derivation Γ ⊢I bind𝑥 = 𝒂 in𝜿 : 𝑡 uses the rule [∨1-Int] for the bind, then the transfor-

mation into a derivation for Γ ⊢I 𝜿 : 𝑡 is trivial.

Otherwise, let us consider one of the premise Γ, 𝑥 : 𝑡 𝑗 ⊢I 𝜿 : 𝑠 𝑗 . As 𝑥 ∉ fv(𝜿), this derivation
does not use the rule [Ax-Int] on 𝑥 . Thus, we can easily transform it into a derivation of

Γ ⊢I 𝜿 : 𝑠 𝑗 .

25 If the derivation Γ ⊢I 𝜆𝑥.(bind𝑦 =𝑥 in𝜿) : 𝑡 uses the rule [∨1-Int] for the bind, then the

transformation into a derivation for Γ ⊢I 𝜆𝑥.(𝜿{𝑥/𝑦}) : 𝑡 ′ is trivial.
Otherwise, we can use the following transformation:

[→I-Int]

(∀𝑗 ∈ 𝐽)

[∨2-Int]

[Ax-Int]

Γ, 𝑥 : 𝑡 𝑗 ⊢I 𝑥 :

∨
𝑘∈𝐾𝑗

𝑡 ′
𝑗,𝑘

𝐴 𝑗,𝑘

Γ, 𝑥 : 𝑡 𝑗 , 𝑦 : 𝑡 ′
𝑗,𝑘
⊢I 𝜿 : 𝑠 ′

𝑗,𝑘

Γ, 𝑥 : 𝑡 𝑗 ⊢I bind𝑦 =𝑥 in𝜿 :

∨
𝑘∈𝐾𝑗

𝑠 ′
𝑗,𝑘
≃ 𝑠 𝑗

Γ ⊢I 𝜆𝑥.(bind𝑦 =𝑥 in𝜿) :

∧
𝑗 ∈𝐽 𝑡 𝑗 → 𝑠 𝑗 ≃ 𝑡

↓

[→I-Int]

(∀𝑖 ∈ 𝐼)
Easily derived by D.20 from some of the 𝐴 𝑗,𝑘

Γ, 𝑥 : 𝑢𝑖 ⊢I 𝜿{𝑥/𝑦} : 𝑣𝑖 ≤
∧{𝑠 𝑗 | 𝑗 ∈ 𝐽 s.t. 𝑢𝑖 ≤ 𝑡 𝑗 }

Γ ⊢I 𝜆𝑥.(𝜿{𝑥/𝑦}) :

∧
𝑖∈𝐼 𝑢𝑖 → 𝑣𝑖 ≤ 𝑡

with {𝑢𝑖 }𝑖∈𝐼 = partition({𝑡 𝑗 } 𝑗 ∈𝐽 ∪ {𝑡 ′𝑗,𝑘 | 𝑗 ∈ 𝐽 , 𝑘 ∈ 𝐾 𝑗 })

26 This case is similar to the case 23.

27 For the sake of simplicity, wewill consider a simplified version of this rule: 𝜆𝑥.(bind𝑦 = 𝒂 in𝜿) d
bind𝑦 = 𝒂 in 𝜆𝑥 .𝜿 . The regular rule can then easily be deducted from that by adding a top-

level binding on both sides:

bind𝑥◦ = 𝜆𝑥 .(bind𝑦 = 𝒂 in𝜿) in𝜿◦ d bind𝑥◦ = (bind𝑦 = 𝒂 in 𝜆𝑥 .𝜿) in𝜿◦
and then applying the property D.24 on the right side.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

13:70 Giuseppe Castagna, Mickaël Laurent, Kim Nguyễn, and Matthew Lutze

If the derivation Γ ⊢I 𝜆𝑥.(bind𝑦 = 𝒂 in𝜿) : 𝑡 uses the rule [∨1-Int] for the bind, then the

transformation into a derivation for Γ ⊢I bind𝑦 = 𝒂 in 𝜆𝑥.𝜿 : 𝑡 ′ is trivial.
Otherwise, we can use the following transformation:

[→I-Int]

(∀𝑗 ∈ 𝐽)

[∨2-Int]

𝐴 𝑗

Γ, 𝑥 : 𝑡 𝑗 ⊢I 𝒂 :

∨
𝑘∈𝐾𝑗

𝑡 ′
𝑗,𝑘

𝐵 𝑗,𝑘

Γ, 𝑥 : 𝑡 𝑗 , 𝑦 : 𝑡 ′
𝑗,𝑘
⊢I 𝜿 : 𝑠 ′

𝑗,𝑘

Γ, 𝑥 : 𝑡 𝑗 ⊢I bind𝑦 = 𝒂 in𝜿 :

∨
𝑘∈𝐾𝑗

𝑠 ′
𝑗,𝑘
≃ 𝑠 𝑗

Γ ⊢I 𝜆𝑥 .(bind𝑦 = 𝒂 in𝜿) :

∧
𝑗 ∈𝐽 𝑡 𝑗 → 𝑠 𝑗 ≃ 𝑡

↓

[∨2-Int]

Easily derived from any of the 𝐴 𝑗

Γ ⊢I 𝒂 :

∨
𝑖∈𝐼 𝑢𝑖

[→I-Int]

(∀𝑗 ∈ 𝐽)
Easily derived by monotonicity from one of the 𝐵 𝑗,𝑘

Γ, 𝑦 : 𝑢𝑖 , 𝑥 : 𝑡 𝑗 ⊢I 𝜿 : 𝑣𝑖, 𝑗 ≤ 𝑠 𝑗
Γ, 𝑦 : 𝑢𝑖 ⊢I 𝜆𝑥 .𝜿 :

∧
𝑗 ∈𝐽 𝑡 𝑗 → 𝑣𝑖, 𝑗 ≤ 𝑡

Γ ⊢I bind𝑦 = 𝒂 in 𝜆𝑥.𝜿 :

∨
𝑖∈𝐼

∧
𝑗 ∈𝐽 𝑡 𝑗 → 𝑣𝑖, 𝑗 ≤ 𝑡

with {𝑢𝑖 }𝑖∈𝐼 = partition({𝑡 ′
𝑗,𝑘
| 𝑗 ∈ 𝐽 , 𝑘 ∈ 𝐾 𝑗 })

The general case (where the rule can apply under an arbitrary context) can be deduced by an

application of the lemma D.26. □

Property D.30. Let 𝜿1, 𝜿2 such that 𝜿1 d𝜅 𝜿2. If Γ ⊢I 𝜿1 : 𝑡 then Γ ⊢I 𝜿2 : 𝑡 ′ ≤ 𝑡 .

Proof. Immediate application of D.27 and D.29. □

Property D.31. If 𝜿 d𝜅 𝜿 ′, then ⌈𝜿⌉ ≡𝛼 ⌈𝜿 ′⌉.

Proof. Straightforward: the proof is similar to the one of D.28. □

Property D.32 (Normalization). There is no infinite chain 𝜿1 d𝜅 𝜿2 d𝜅 · · ·

Proof. Let’s suppose such an infinite chain exists.

Let 𝑛 be the maximal number of nested lambdas in 𝜿1. We call depth of a binding the number of

nested lambdas it is into (the depth of a binding of 𝜿1 is at most 𝑛). Let 𝑁𝜿 (𝑖) be the number of

bindings of depth 𝑖 in an expression 𝜿 .
Let 𝑆 (𝜿) be the following n-uplet: (𝑁𝜿 (𝑛), 𝑁𝜿 (𝑛 − 1), · · · , 𝑁𝜿 (0)). Then, the chain 𝑆 (𝜿1), 𝑆 (𝜿2),
· · · is strictly decreasing with respects to the lexical order, which is impossible. □

Lemma D.33. If 𝜿 ̸d𝜅 , then 𝜿 satisfies the properties 1, 3 and 4 of MSC-forms, and satisfies this

weaker version of property 2 (aliasing):

if bind𝑥 = 𝒂 in𝜿 ′ is a sub-expression of 𝜿 , then 𝒂 is either not a variable or a variable in fv(𝜿).

Proof. Let us start with the property 3 (extrusion of bindings). We assume that there exists a

subexpression 𝜆𝑥 . 𝜿1 of 𝜿 and a subexpression bind𝑦 = 𝒂 in𝜿2 of 𝜿1 such that fv(𝒂) ⊆ fv(𝜆𝑥 . 𝜿1).
Then, the definition 𝒂 cannot depend on any variable defined inside 𝜆𝑥 . 𝜿1 (including 𝑥), otherwise

this variable would be in fv(𝒂) and not in fv(𝜆𝑥. 𝜿1). Thus, we can reorder the binding 𝑦 in the first

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

On Type-Cases, Union Elimination, and Occurrence Typing 13:71

position of its containing lambda-abstraction, and then apply the rule 27 on it, which contradicts

𝜿 ̸d𝜅 .

Now let’s assume that there are two bindingswith the definitions 𝒂1 and 𝒂2 such that ⌈𝒂1⌉ ≡𝛼 ⌈𝒂2⌉.
By structural induction on the context of these two bindings, we can easily find two bindings

with the definitions 𝒂′
1
and 𝒂′

2
such that 𝒂′

1
≡𝛼 𝒂′

2
. As we know that the property 3 is satisfied, we

know that every binding is located in the body of the outermost lambda-abstraction possible (or at

top-level), depending on the free variables of its definition. This means that our two definitions

of 𝒂′
1
and 𝒂′

2
are not separated by a lambda-abstraction. Thus, we can reorder them to be the one

next to the other, and then we can apply the rule 23 on them, which contradicts 𝜿 ̸d𝜅 . Thus, the

property 1 is also satisfied.

The property 4 is trivial: any binding that does not satisfy this property can directly be eliminated

with the rule 24.

We finish with the weaker version of the property 2. Let us assume that there is a binding

bind𝑥 =𝑦 in𝜿 ′ with 𝑦 ∉ fv(𝜿). It means that there exists a lambda abstraction or a binding that

introduce the variable 𝑦. As the property 3 is satisfied, we know that these two variables are

not separated by a lambda-abstraction, and thus we can reorder them to be the one next to the

other. We can then apply the rule 26 or 25 depending whether 𝑦 is introduced by a binding or a

lambda-abstraction, which contradicts 𝜿 ̸d𝜅 . □

Corollary D.34. If 𝜿 ̸d𝜅 and 𝜿 is closed (fv(𝜿) = ∅), then 𝜿 is in MSC form.

Proof. Direct application of D.33. □

Property D.35 (Confluence). Let 𝜿1, 𝜿 ′1, 𝜿2 and 𝜿 ′2 such that 𝜿1 ≡𝜅 𝜿 ′1, 𝜿1 d𝜅 𝜿2 and 𝜿 ′1 d𝜅 𝜿 ′2.
Then, there exists 𝜿3 and 𝜿 ′3 such that 𝜿3 ≡𝜅 𝜿 ′3, 𝜿2 d

∗
𝜅 𝜿3 and 𝜿 ′2 d

∗
𝜅 𝜿
′
3
.

Proof. Immediate application of D.32 (normalization), D.33 (terms that cannot be rewritten

usingd𝜅 are in MSC-form) and D.25 (equivalence of MSC-forms). □

Lemma D.36. Let Γ, 𝒆 and 𝑡 such that Γ ⊢I 𝒆 : 𝑡 . Let 𝜌 be a substitution that associates to each

variable in fv(𝒆) a new (unique) name. Let C be a context that defines, for each variable 𝑥 in fv(𝒆),
the binding bind 𝜌 (𝑥) =𝑥 in · · · (it defines an alias for all variables in fv(𝒆)).

Then, there exists 𝜿 an expression in MSC-form and 𝑡 ′ a type such that ⌈C[𝜿]⌉ ≡𝛼 ⌈𝒆⌉, Γ ⊢I 𝐶 [𝜿𝜌] :

𝑡 ′ and 𝑡 ′ ≤ 𝑡 . Note that all possible such expressions 𝐶 [𝜿𝜌] are equivalent with respect to ≡𝜅 .
Proof. From Γ ⊢I 𝒆 : 𝑡 , we apply D.24 and D.21 so that we get 𝜿 such that ⌈𝜿⌉ = ⌈𝒆⌉ and

Γ ⊢I 𝜿 : 𝑡 ′ ≤ 𝑡 .
Then we apply D.30, D.31 and D.33 to get C′ and 𝜿 ′ such that ⌈C′[𝜿 ′]⌉ = ⌈𝒆⌉ and Γ ⊢I C′[𝜿 ′] :

𝑡 ′′ ≤ 𝑡 , with 𝜿 ′ an MSC-form and C′ a context that optionally defines an alias for some variables in

fv(𝒆).
We can easily derive Γ ⊢I C[(C′[𝜿 ′])𝜌] : 𝑡 ′′ ≤ 𝑡 from that just by applying 𝜌 to the derivation

tree and by adding additional aliases at top-level for the new variables in 𝜌 (these additional bindings

can be typed using [∨1-Int] when the aliased variable is not in Γ, and otherwise using [∨2-Int]

with 𝐽 a singleton).

Now, we can derive Γ ⊢I C[𝜿 ′𝜌] : 𝑡 ′′′ ≤ 𝑡 by merging the aliases defined by C′ and those defined
by C using the rule 26 (see lemma D.29).

Finally, note that for a given C such as in the statement of the lemma, all the expressions

C[𝜿 ′𝜌] with 𝜿 ′ a MSC-form such that ⌈C[𝜿 ′𝜌]⌉ = ⌈𝒆⌉ are equivalent with respect to ≡𝜅 (quite

straightforward by using D.25). □

Theorem D.37 (Completeness of the MSC form). If ⊢I 𝒆 : 𝑡 and if 𝜿 is a maximal sharing

canonical form such that ⌈𝜿⌉ ≡𝛼 ⌈𝒆⌉, then ∃𝑡 ′ such that 𝑡 ′ ≤ 𝑡 and ⊢I 𝜿 : 𝑡 ′.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

13:72 Giuseppe Castagna, Mickaël Laurent, Kim Nguyễn, and Matthew Lutze

Proof. Direct application of D.36. □

Theorem D.38 (Completeness of the intermediate type system). If Γ ⊢ 𝑒 : 𝑡 then ∃𝒆′, 𝑡 ′ such
that ⌈𝒆′⌉ ≡𝛼 𝑒 , 𝑡 ′ ≤ 𝑡 , and Γ ⊢I 𝒆′ : 𝑡 ′

Proof. We apply all the normalization lemmas D.5, D.6, D.7 and D.8 to the derivation of the

judgement Γ ⊢ 𝑒 : 𝑡 , and we proceed by structural induction on it.

Depending on the last rule used (we use the variable names defined in this rule):

[Const] Trivial.

[Ax] Trivial.

[≤] Trivial (by induction on the premise).

[→I] By induction (application of the rule [→I-Int] with 𝐽 = {𝑡1}).
[→E] By induction on the premises, we get Γ ⊢I 𝒆1 : 𝑠1 ≤ 𝑡1 → 𝑡2 and Γ ⊢I 𝒆2 : 𝑠2 ≤ 𝑡1 with

⌈𝒆1⌉ ≡𝛼 𝑒1 and ⌈𝒆2⌉ ≡𝛼 𝑒2. According to the definition of ◦ (and by monotonicity), we have

𝑠1 ◦ 𝑠2 ≤ (𝑡1 → 𝑡2) ◦ 𝑡1 ≤ 𝑡2. Thus, we can conclude with an application of the rule [→E-Int].

[×I] By induction (application of the rule [×I-Int]).
[×E1] By induction on the premise, we get Γ ⊢I 𝒆 : 𝑠 ≤ 𝑡1 × 𝑡2 with ⌈𝒆⌉ ≡𝛼 𝑒 . According to the

definition of 𝜋1 (and by monotonicity), we have 𝜋1𝑠 ≤ 𝜋1 (𝑡1 × 𝑡2) ≤ 𝑡1. Thus, we can conclude

with an application of the rule [×E-Int].
[×E2] Similar to the previous case.

[∧+] Thanks to the lemma D.6, we know that the premises of this rule are applications of [→I].

Moreover, by induction, we have ∀𝑖 ∈ 𝐼 . Γ ⊢I 𝒆𝑖 : 𝑡 ′𝑖 ≤ 𝑡𝑖 with ⌈𝒆𝑖⌉ ≡𝛼 𝑒 .
By applying the lemma D.36, we can derive ∀𝑖 ∈ 𝐼 .Γ ⊢I 𝜿 : 𝑡 ′𝑖 ≤ 𝑡𝑖 with ⌈𝜿⌉ ≡𝛼 𝑒 and 𝜿 being

a MSC-form preceded by some aliasing. We can conclude with an application of the rule

[→I-Int] with 𝐽 = 𝐼 .

[∨+] We have 𝑒 = 𝑒◦{𝑒 ′/𝑥}. By induction on the premises, we have Γ ⊢I 𝒆′ : 𝑡 ′ ≤ ∨
𝑖∈𝐼 𝑡𝑖 with

⌈𝒆′⌉ ≡𝛼 𝑒 ′ and ∀𝑖 ∈ 𝐼 . Γ, 𝑥 : 𝑡𝑖 ⊢I 𝒆𝑖 : 𝑠𝑖 ≤ 𝑡 with ∀𝑖 ∈ 𝐼 . ⌈𝒆𝑖⌉ ≡𝛼 𝑒◦.
By applying the lemma D.36, we can derive ∀𝑖 ∈ 𝐼 .Γ, 𝑥 : 𝑡𝑖 ⊢I 𝜿 : 𝑠 ′𝑖 ≤ 𝑠𝑖 ≤ 𝑡 with ⌈𝜿⌉ ≡𝛼 𝑒◦
and 𝜿 being a MSC-form preceded by some aliasing.

By monotonicity (D.19), we have ∀𝑖 ∈ 𝐼 . Γ, 𝑥 : (𝑡𝑖 ∧ 𝑡 ′) ⊢I 𝜿 : 𝑠 ′′𝑖 ≤ 𝑡 .
Let us consider the intermediate expression 𝒆 = bind𝑥 = 𝑒 ′ in𝜿 . We have ⌈𝒆′⌉ ≡𝛼 𝑒 . More-

over, we can derive Γ ⊢ 𝒆 :

∨
𝑖∈𝐼 𝑠

′′
𝑖 ≤ 𝑡 by using the rule [∨2-Int].

[0] By induction (application of the rule [0-Int]).
[∈1] By induction (application of the rule [∈1-Int]).

[∈2] By induction (application of the rule [∈2-Int]).

□

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

On Type-Cases, Union Elimination, and Occurrence Typing 13:73

D.3 Algorithmic Type System
See 4 for the full intermediate system and A.9 for the full algorithmic system.

Theorem D.39 (Soundness of the algorithmic type system). If Γ ⊢A 𝜅 : 𝑡 then Γ ⊢I ⟨𝜅⟩ : 𝑡 .

Proof. This direction is trivial: all the rules of the algorithmic system have an equivalent in the

intermediate system. For the rules [∨2-Int] and [→I-Int], the splits {𝑡 𝑗 } 𝑗 ∈𝐽 to choose correspond

to the ones determined by the annotations in the corresponding rule [∨2-Alg] or [→I-Alg]. □

Lemma D.40. If Γ ⊢I 𝒆 : 𝑡 , then there exists a derivation of Γ ⊢I 𝒆 : 𝑡 ′ ≤ 𝑡 such that, for every

application of a rule [→I-Int] or [∨2I-Int], the set of types {𝑡 𝑗 } 𝑗 ∈𝐽 is disjoint (∀𝑗, 𝑗 ′ ∈ 𝐽 . 𝑗 ≠ 𝑗 ′ ⇒
𝑡 𝑗 ∧ 𝑡 𝑗).

Proof. Let us suppose there is an application of [→I-Int] or [∨2-Int] that uses a set of types

{𝑡 𝑗 } 𝑗 ∈𝐽 that does not satisfy the property. We will transform the derivation so that a new set of

disjoint types {𝑡 ′𝑗 } 𝑗 ∈𝐽 ′ will be used instead.

Let us consider {𝑡 ′𝑗 } 𝑗 ∈𝐽 ′ = partition({𝑡 𝑗 } 𝑗 ∈𝐽). These types are disjoint and cover the same

domain as before. Moreover, by monotonicity (D.19) and by using the lemma D.20, we can derive

∀𝑗 ′ ∈ 𝐽 ′. Γ, 𝑥 : 𝑡 ′
𝑗 ′ ⊢I 𝜅 : 𝑠 ′

𝑗 ′ ≤
∧
𝑗 ∈𝐽 s.t. 𝑠′

𝑗′ ≤𝑠 𝑗
𝑠 𝑗 from all the derivations ∀𝑗 ∈ 𝐽 . Γ, 𝑥 : 𝑡 𝑗 ⊢I 𝜅 : 𝑠 𝑗 .

Thus, we can update our application of [→I-Int] or [∨2I-Int] so that it uses the set of types

{𝑡 ′𝑗 } 𝑗 ∈𝐽 ′ . It might give a smaller resulting type, but by monotonicity we will still be able to deduce

Γ ⊢I 𝒆 : 𝑡 ′ ≤ 𝑡 .
Note that this transformation does not compromise the disjointness of the types of the other

applications of [→I-Int] and [∨2I-Int], thus we can apply it multiple times until all the rules

[→I-Int] and [∨2I-Int] use disjoint types. □

Theorem D.41 (Completeness of the algorithmic type system). If 𝜿 is a MSC-form and

Γ ⊢I 𝜿 : 𝑡 , then ∃𝜅 such that ⟨𝜅⟩ = 𝜿 and Γ ⊢A 𝜅 : 𝑡 ′ ≤ 𝑡

Proof. Note that the only difference between the algorithmic system and the intermediate one

is that the set of splits {𝑡 𝑗 } 𝑗 ∈𝐽 in the rules [→I-Alg] and [∨2-Alg] and the choice of whether to

use the rule [∨1-Alg] or [∨2-Alg] are determined by the annotations contained in 𝜅. Thus, the

challenge here will be to annotate 𝜅 so that it allows to "replay" the derivation tree of Γ ⊢I 𝜿 : 𝑡

with the algorithmic rules.

First, we apply the transformation of the lemma D.40 to the derivation of Γ ⊢I 𝜿 : 𝑡 so that we get

a derivation 𝐷 of Γ ⊢I 𝜿 : 𝑡 ′ ≤ 𝑡 that satisfies the property described in the statement of this lemma.

Now, we start from an algorithmic expression 𝜅 similar to 𝜿 but with every binding and lambda

annotated by an empty annotation. Each time a rule [→I-Int] is applied in the derivation 𝐷 (with

Γ ⊢I 𝜆𝑥.(𝒆) : 𝑡◦ as conclusion), we add to the annotations of 𝑥 the splits {(Γ⊲𝑡 𝑗)} 𝑗 ∈𝐽 (with {𝑡 𝑗 } 𝑗 ∈𝐽
being the set of types used by the rule). We proceed similarly for the applications of [∨2-Int] in

order to annotate the bindings.

The term 𝜅 we obtain can be typed with the algorithmic type system: we obtain a derivation very

similar to 𝐷 (every rule application of the derivation 𝐷 is replaced by a similar application of the

corresponding rule of the algorithmic type system). The applications of [→I-Alg] and [∨2-Alg]

will use the same set of types {𝑡 𝑗 } 𝑗 ∈𝐽 as in the derivation 𝐷 , because:

⊇ We have added the annotations {Γ⊲𝑡 𝑗 } 𝑗 ∈𝐽 to the corresponding variable

⊆ Only these annotations will be selected: the annotations we might have added to this variable

because of the other applications of [∨2-Int] or [→I-Int] require a disjoint environment.

Indeed, the different applications of [∨2-Int] or [→I-Int] for a given variable are in different

branches and all branches use a disjoint environment Γ thanks to the lemma D.40.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

13:74 Giuseppe Castagna, Mickaël Laurent, Kim Nguyễn, and Matthew Lutze

□

D.4 Annotations Reconstruction Algorithm
See B.3 for the full annotations reconstruction algorithm.

We define the following function:

filterΓ (𝐴) = {(Γ′⊲𝑡 ′) | (Γ′⊲𝑡 ′) ∈ 𝐴, Γ′ ≤ Γ}

We extend this function so that it can take an algorithmic expression 𝜑 as argument and returns

the same expression 𝜑 where every annotation 𝐴 has been replaced by filterL (𝐴).

Lemma D.42. If Γ ⊢R 𝜑 : 𝑡 ⇒ {filterΓ (𝜑), {Γ}} then Γ ⊢A filterΓ (𝜑) : 𝑡 ′ ≤ 𝑡 .

Proof. For convenience, let us define 𝜑 ′ = filterΓ (𝜑). We proceed by induction on the deriva-

tion tree of Γ ⊢R 𝜑 : 𝑡 ⇒ {𝜑 ′, {Γ}}.
[Const] We trivially have Γ ⊢A 𝜑 ′ : b𝑐 ≤ 𝑡 .
[ConstUntypable] Impossible (it cannot return {𝜑 ′, {Γ}}).
[ProjEmpty] We trivially have Γ ⊢A 𝜑 ′ : 0 ≤ 𝑡 .
[Proj1] We know that {Γ [𝑥 :=

∧
𝑡𝑖×𝑠𝑖]}𝑖∈𝐼 = {Γ}. In particular, it means that Γ ∈ {Γ [𝑥 :=

∧
𝑡𝑖×𝑠𝑖]}𝑖∈𝐼

and thus ∃𝑖 ∈ 𝐼 . Γ(𝑥) ≤ 𝑡𝑖 × 𝑠𝑖 . As ∀𝑖 ∈ 𝐼 . 𝑡𝑖 × 𝑠𝑖 ≤ (𝑡 × 1), we can derive Γ ⊢A 𝜑 ′ : 𝑡 ′ ≤ 𝑡 .
[Proj2] Similar to the previous case.

[PairEmpty] We trivially have Γ ⊢A 𝜑 ′ : 0 ≤ 𝑡 .
[Pair] We know that {Γ [𝑥1 :=

∧
𝑡𝑖] [𝑥2 :=

∧
𝑠𝑖]}𝑖∈𝐼 = {Γ}. In particular, it means that

Γ ∈ {Γ [𝑥1 :=
∧
𝑡𝑖] [𝑥2 :=

∧
𝑠𝑖]}𝑖∈𝐼 and thus ∃𝑖 ∈ 𝐼 . Γ(𝑥1) ≤ 𝑡𝑖 and Γ(𝑥2) ≤ 𝑠𝑖 .

As ∀𝑖 ∈ 𝐼 . 𝑡𝑖 × 𝑠𝑖 ≤ 𝑡 , we can derive Γ ⊢A 𝜑 ′ : 𝑡 ′ ≤ 𝑡 .
[CaseEmpty] We trivially have Γ ⊢A 𝜑 ′ : 0 ≤ 𝑡 .
[Case] We know that {Γ [𝑥 :=

∧
𝑠] [𝑥1 :=

∧
𝑡], Γ [𝑥 :=

∧ ¬𝑠] [𝑥2 :=
∧
𝑡]} = {Γ}. In particular, it means that

Γ ∈ {Γ [𝑥 :=
∧
𝑠] [𝑥1 :=

∧
𝑡]} or Γ ∈ {Γ [𝑥 :=

∧ ¬𝑠] [𝑥2 :=
∧
𝑡]}. Let’s consider the first case. We can

deduce Γ(𝑥) ≤ 𝑠 and Γ(𝑥1) ≤ 𝑡 , and thus we have Γ ⊢A 𝜑 ′ : 𝑡 ′ ≤ 𝑡 (rule [∈1-Alg]). The second

case is similar (rule [∈2-Alg]).

[AppREmpty] We trivially have Γ ⊢A 𝜑 ′ : 0 ≤ 𝑡 .
[AppLEmpty] We trivially have Γ ⊢A 𝜑 ′ : 0 ≤ 𝑡 .
[AppR] We know that {Γ [𝑥1 :=

∧ (𝑠𝑖 ∧ Γ(𝑥2)) → 𝑡] [𝑥2 :=
∧
𝑠𝑖]}𝑖∈𝐼 = {Γ}. In particular, it means

that Γ ∈ {Γ [𝑥1 :=
∧ (𝑠𝑖 ∧ Γ(𝑥2)) → 𝑡] [𝑥2 :=

∧
𝑠𝑖]}𝑖∈𝐼 and thus ∃𝑖 ∈ 𝐼 . Γ(𝑥1) ≤ (𝑠𝑖 ∧ Γ(𝑥2)) →

𝑡 and Γ(𝑥2) ≤ 𝑠𝑖 . We can deduce that Γ(𝑥1) ≤ Γ(𝑥2) → 𝑡 and thus we can derive Γ ⊢A 𝜑 ′ :

𝑡 ′ ≤ 𝑡 .
[AppL] If this rule apply, then we know that [AppR] cannot apply and thus either:

• Γ(𝑥1) ≰ 0 → 1, in this every 𝑠𝑖 is a strict refinement of Γ(𝑥1) and thus the rule cannot

return {𝜑 ′, {Γ}}, or
• The DNF of Γ(𝑥1) is a disjunction of at least 2 elements, in this case we know by minimality

of the DNF that every 𝑠𝑖 is a strict refinement of Γ(𝑥1) and thus the rule cannot return

{𝜑 ′, {Γ}}, or
• The DNF of Γ(𝑥1) is a disjunction of 0 element and thus the rule will return {𝜑 ′, {}}
In any case it is impossible for the rule to return {𝜑 ′, {Γ}}.

[Abs] In order for this rule to return {𝜑 ′, {Γ}}, we must have:

• 𝐴′ = filterΓ (𝐴): We can deduce that (Γ⊲𝐴) = {𝑠𝑖 }𝑖∈𝐼 and that ∀𝑖 ∈ 𝐼 . L𝑖 = {(Γ, 𝑥 : 𝑠𝑖)}.
• merge𝜅 ({𝜅𝑖 }𝑖∈𝐼) = filterΓ (𝜅): We can deduce that ∀𝑖 ∈ 𝐼 . 𝜅𝑖 = filter(Γ,𝑥 :𝑠𝑖) (𝜅)}.
• ⋃

𝑖∈𝐼
L′
𝑖 = {Γ}: (nothing more to deduce)

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

On Type-Cases, Union Elimination, and Occurrence Typing 13:75

Thus, by induction, we can deduce ∀𝑖 ∈ 𝐼 . Γ, 𝑥 : 𝑠𝑖 ⊢A 𝜅𝑖 : 𝑡 ′𝑖 ≤ 𝑡 ◦1 𝑠𝑖 . As dom(𝑡) =
∨
𝑗 ∈𝐽 𝑠 𝑗 ≤∨(Γ⊲𝐴) ≤ ∨

𝑖∈𝐼 𝑠𝑖 , we have
∧
𝑠𝑖 → (𝑡 ◦1 𝑠𝑖) ≤ 𝑡 . Consequently, we can derive Γ ⊢A 𝜑 ′ : 𝑡 ′ ≤ 𝑡

(rule [→I-Alg]).

Note that the final check

∨
𝑗 ∈𝐽 𝑠 𝑗 ≤

∨{𝑠 ′ | (Γ′⊲𝑠 ′) ∈ 𝐴′} of the [Abs] rule is not strictly
needed for the soundness, but it helps to detect an impossibility to obtain the type 𝑡 sooner

by checking if its domain can possibily be covered with the new annotations.

[AbsUntypeable] Impossible (it cannot return {𝜑 ′, {Γ}}).
[UndefinedVar] Impossible (it cannot return {𝜑 ′, {Γ}}).
[BindArgSkip] In order for this rule to return {𝜑 ′, {Γ}}, it is necessary to have 𝜅 ′ = filterΓ (𝜅)

as well as

L
= {Γ}. Thus, by induction on the second premise, we get Γ ⊢A 𝜅 ′ : 𝑡 ′ ≤ 𝑡 . With a

simple application of the [∨1-Alg] rule, we can derive Γ ⊢A 𝜑 ′ : 𝑡 ′ ≤ 𝑡 .
[BindArgUntyp] Similar to the previous case.

[BindArgRefEnv] Impossible (it cannot return {𝜑 ′, {Γ}} because L
≠ {Γ}).

[BindArgRefAnns] Impossible (it cannot return {𝜑 ′, {Γ}} because 𝑎′ ≠ 𝑎).
[Bind] In order for this rule to return {𝜑 ′, {Γ}}, we must have:

• ⋃
𝑖∈𝐼 𝐴𝑖 = filterΓ (𝐴): We can deduce that (Γ⊲𝐴) = {𝑠𝑖 }𝑖∈𝐼 and that ∀𝑖 ∈ 𝐼 . L′𝑖 = {(Γ, 𝑥 :

𝑠𝑖)}. This implies∀𝑖 ∈ 𝐼 . L𝑖 = {(Γ, 𝑥 : 𝑠𝑖)} because propagate can only refine environments.

• merge𝜅 ({𝜅𝑖 }𝑖∈𝐼) = filterΓ (𝜅): We can deduce that ∀𝑖 ∈ 𝐼 . 𝜅𝑖 = filter(Γ,𝑥 :𝑠𝑖) (𝜅)}.
• ⋃

𝑖∈𝐼
L′
𝑖 = {Γ}: (nothing more to deduce)

Thus, by induction, we can deduce ∀𝑖 ∈ 𝐼 . Γ, 𝑥 : 𝑠𝑖 ⊢A 𝜅𝑖 : 𝑡 ′𝑖 ≤ 𝑡 . Consequently, we can derive

Γ ⊢A 𝜑 ′ : 𝑡 ′ ≤ 𝑡 (rule [∨2-Alg]).

[Var] We know that {Γ [𝑥 :=
∧
𝑡]} = {Γ}. We can deduce Γ(𝑥) ≤ 𝑡 and thus we trivially have

Γ ⊢A 𝜑 ′ : 𝑡 ′ ≤ 𝑡 .
□

Theorem D.43 (Soundness of the reconstruction algorithm). If 𝜅 is a closed MSC-form and

R(𝜅) = 𝜅 ′, then ∅ ⊢A 𝜅 ′ : 𝑡 for some 𝑡 .

Proof. Immediate corollary of the previous lemma D.42. □

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 13. Publication date: January 2022.

	Abstract
	1 Introduction
	2 Source Language and Declarative Type System
	2.1 Types
	2.2 Terms
	2.3 Reduction Semantics
	2.4 Type System
	2.5 Type Soundness

	3 Intermediate system: Syntax-directed rules and Canonical Forms
	3.1 Expressions with Bindings
	3.2 Intermediate Typing Rules
	3.3 Maximal Sharing Canonical Forms

	4 Algorithmic system: adding type annotations
	4.1 Algorithmic Expressions and Typing Rules

	5 Algorithm for Reconstructing Annotations
	6 Implementation
	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Supplemental definitions
	A.1 Subtyping Relation
	A.2 Capture Avoiding Substitution
	A.3 Canonical Declarative Deductions
	A.4 Operators on Types
	A.5 Unwinding
	A.6 Reduction Semantics of the Intermediate Language
	A.7 Canonical Forms for the Intermediate Language
	A.8 Maximal Sharing Canonical Forms
	A.9 Algorithmic Typing Rules

	B Algorithm for Reconstructing Annotations
	B.1 Type Environment Refinements
	B.2 Auxiliary Definitions
	B.3 Annotations Reconstruction Rules

	C Extensions
	C.1 Let Bindings
	C.2 Records

	D Proofs
	D.1 Declarative Type System
	D.2 Intermediate Type System
	D.3 Algorithmic Type System
	D.4 Annotations Reconstruction Algorithm

