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ABSTRACT: Stochastic rainfall generators aim to reproduce the main statistical features of rainfall at small spatial and

temporal scales. The simulated synthetic rainfall series are recognized as suitable for use with impact analysis in water,

agricultural, and ecological management. Convection-driven precipitation, dominant in certain regions of the world such as

the intertropical belt regions, presents properties that require specific consideration when modeling: (i) strong rainfall

intermittency, (ii) high variability of intensities within storms, (iii) strong spatiotemporal correlation of intensities, and (iv)

marked seasonality of storm properties. In this article, improvements for an existing stochastic generator of rainfall fields

that models convective storms are presented. Notable novelties include (i) the ability to model precipitation event timing,

(ii) an improved temporal disaggregation scheme representing the rainfall distribution at subevent scales, and (iii) using

covariates to reflect seasonal changes in precipitation occurrence andmarginal distribution parameters. Extreme values are

explicitly considered in the distribution of storm event intensities. The simulator is calibrated and validated using 28 years of

5-min precipitation data from the 30-rain-gauge AMMA-CATCH network in the Sahelian region of southwest Niger. Both

large propagative systems and smaller local convective precipitation are generated. Results show that simulator im-

provements coherently represent the local climatology. The simulator can generate scenarios for impact studies with ac-

curate representation of convective precipitation characteristics.

KEYWORDS: Convective storms/systems; Mesoscale systems; Precipitation; Stochastic models; Intraseasonal variability

1. Introduction

Stochastic rainfall generators (SRGs) aim to simulate real-

istic rainfall series by reproducing key statistical features of

rainfall variability. As SRGs can generate long-term rainfall

sequences at fine resolutions for a given climatology, they are

useful in many applications, including risk assessment studies

to estimate the return periods of rare events (Evin et al. 2018;

Arnaud et al. 2016) and assessment of rainfall estimation un-

certainties and their propagation into impact models (Renard

et al. 2011; Borgomeo et al. 2014). These statistical models are

complementary to physical atmospheric or climate models as

they can be used in climate change impact studies as a means to

downscale, correct bias, and disaggregate coarse-resolution

climate model rainfall outputs (Wilks 2010; Peleg et al. 2015;

Sørup et al. 2016; Peres and Cancelliere 2018). For these rea-

sons, stochastic rainfall models are recognized as useful tools in

numerous areas of environmental sciences for which rainfall is

of major influence, for instance hydrology, agronomy, and

ecology.

An aim of SRGs is to produce rainfall series at spatial

and temporal resolutions compatible with those required

as inputs to impact models. These resolutions can some-

times be less than 1 km in space and on the order of 1 min

in time (e.g., Wilson et al. 1979; Troutman 1983). As SRGs

are data driven, the development of increasingly accu-

rate rain measurement instrumentation (from networks

of recording rain gauges, radar data, satellite data) com-

bined with dedicated statistical advances has enabled the

development of high-resolution stochastic simulations

(e.g., Benoit et al. 2018a; Peleg et al. 2017; Guilloteau et al.

2018; Peleg et al. 2020).

At kilometric and subdaily scales, SRGs attempt to

capture the high intermittency of rainfall fields, the high

variability of precipitation within rainy zones, and the de-

pendence in time and space of rainfall fields. These char-

acteristics form the common core of space–time SRGs.

Existing statistical approaches can be divided into two main

classes: multisite and random fields models. The first are an

extension of single-site stochastic models over several dis-

tant locations (often corresponding to rain gauges). They

are mainly based on nonparametric resampling methods; on

parametric point processes based on the successive use of

statistical rainfall occurrence and a statistical rainfall

amount model; or on cluster point processes (Cowpertwait

et al. 1996; Wilks 1998). The second category focuses on

continuously simulating (on regular grids) the spatial var-

iability of rainfall. This family includes rain cell models

(Féral et al. 2003), scale invariance models (Serinaldi 2010;

Lombardo et al. 2017; Raut et al. 2018), and meta-Gaussian

random fields (Guillot 1999; Leblois and Creutin 2013;

Benoit and Mariethoz 2017; Benoit et al. 2018a; Vaittinada

Ayar et al. 2019).

Among the diversity of stochastic rainfall models, some

challenges remain concerning the simulation of certain rainfall

regime characteristics. The seasonality of rainfall is most often

taken into account through parameter calibration by rain type

(e.g., Benoit et al. 2018a), weather type (Vaittinada Ayar et al.

2019), month bymonth (e.g., Vischel et al. 2009; Paschalis et al.

2013; Peleg et al. 2017), or season by season, which often im-

plies an arbitrary discretization of the seasonal continuity.
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Modeling spatial intermittency remains another issue. It is

based either on an explicit separation of rainy and nonrainy

simulated areas (e.g., Leblois and Creutin 2013; Paschalis et al.

2013), which can sometime lead to abrupt discontinuities at

dry/wet transitions (e.g., Schleiss et al. 2014), or it can be di-

rectly inserted as an accumulation of null values in the rain

intensity marginal distribution which often leads to simulating

only the most spatially consistent events (Stehlík and Bárdossy
2002; Guillot and Lebel 1999b; Vischel et al. 2009). Extreme

rainfall has particular pertinence when conducting risk as-

sessment. However, rainfall extremes are not explicitly taken

into account in rainfall stochastic generators except in some

rare studies (e.g., Wilks and Wilby 1999; Baxevani and

Lennartsson 2015; Evin et al. 2018).

While major advances have been made allowing genuine

flexibility in the high-resolution stochastic rainfall models

(Paschalis et al. 2013; Peleg et al. 2017; Benoit et al. 2018a,b),

their implementation often requires advanced measurement

devices allowing accurate documentation of spatiotemporal

dependencies of finescale rainfall fields and/or differentiation

of rainfall types. A direct consequence is that the majority of

the regions of application of high-resolution SRGs concern

developed countries that have extensive measurement net-

works (Breinl et al. 2017).

Developing countries have two major obstacles that impede

them from benefiting from high-resolution SRGs: (i) two-

thirds of them are located in the intertropical belt where

rainfall, mainly from convective storms, is very intermittent

and variable in time and space on a very fine scale, and (ii) the

lack of dense instrumentation networks for hydrometeoro-

logical monitoring limits the possibility of documenting rainfall

characteristics at fine space–time scales.

In this manuscript, we propose a high spatial–temporal

resolution (on the order of kilometers and minutes) SRG

‘‘Stochastorm’’ whose foundations have been motivated by the

possibility to meet applications in developing countries.

Although it is usable in other contexts, Stochastorm aims to

(i) respond to the specificities of climates characterized by

convective rainfall regimes, i.e., a succession of storms that

produce highly intermittent and spatially correlated rain-

fall fields at fine spatiotemporal scales, and

(ii) adapt to situations where high spatiotemporal resolution

data are scarce, with limited possibilities of directly esti-

mating finescale spatiotemporal structures or defining

rainfall typologies in a systematic way.

Stochastorm derives its structure from the two constraints

cited above by separating the simulation process into three

stages of simulation: (i) the arrival of a storm, (ii) the simula-

tion at high spatial resolution of cumulative rainfall fields un-

der the trace of a storm, and (iii) the temporal disaggregation

of rainfall fields at fine time steps based on a propagative

hyetograph model.

The dissociation of the simulation at the event scale (storm

accumulation scale, steps i and ii in the previous paragraph)

and the intra-event simulation step iii aims at facilitating the

estimation of the model parameters in a context of scarce

rainfall data or data at time steps that only allow to estimate the

cumulative rainfall under the storm (typically daily or hourly

data). It is based on the empirical hypothesis that the temporal

disaggregation scheme, despite its simplicity, makes it possible

to reproduce the main characteristics of rainfall at fine scales.

Stochastorm builds on an SRG initially proposed by Lebel

et al. (1998). It includes several new features and statistical

developments that significantly improve the latest version of

Vischel et al. (2009). The originality of the approach lies first of

all in the simulation of storm cumulative rainfall due to the

integration of (i) the seasonality of rainfall simulated by the

integration of temporal covariates that continuously reflect

seasonal changes in the statistical distribution of occurrence

and rainfall intensities; (ii) the intermittency of rainfall within

the marginal distribution based on Gaussian fields with cen-

sored likelihood, which lift the limitation of simulating only the

most consistent storms; and (iii) the extreme values in the

marginal distribution of storm totals by placing themselves

within the framework of extreme value theory for the marginal

distribution. Stochastorm is in this sense an original contribu-

tion to the family of meta-Gaussian SRGs.

The paper also proposes a temporal disaggregation frame-

work specific to propagative storms, including a convective and

stratiform trailing structure whose internal separation is

sometimes blurred in the absence of ground-based mea-

surements and/or weather radar data. Although specific to

convective storms, the approach and statistical develop-

ments proposed to describe the temporal disaggregation

pattern can be adapted to other types of rainfall.

The objective of the paper is therefore to describe the

methodological specificities implemented within Stochastorm

to simulate rain fields at high spatiotemporal resolutions. Here,

Stochastorm is evaluated in the Sahel. This region in West

Africa is a relevant case study as its rainfall regime is charac-

terized by highly variable and intermittent seasonal monsoon

storms. We make use of a dataset from a network of 30 rain

gauges covering an area of 10 000 km2 in southeastern Niger

and providing 5-min rainfall records over a 28-yr period (1990–

2017) (AMMA-CATCH 1990). This dataset allows assessing

Stochastorm’s capabilities and robustness to transcribe the

different aspects of the rainfall regime in the Sahel, whether

prescribed or not in the model, from event to subevent scales

up to 5 min.

Section 2 presents the model, particularly with regard to

previous versions which provide the basis of the current model.

Section 3 presents the newdevelopments for the current version.

Section 4 details how themodel was implemented in theAfrican

Monsoon Multidisciplinary Analysis–Coupling the Tropical

Atmosphere and the Hydrological Cycle (AMMA-CATCH)

Niger study site. Section 5 presents the results of model cal-

ibration and simulation. Finally, section 6 presents our con-

cluding remarks.

2. Stochastorm presentation

The main principles of the generator were initially proposed

by Lebel et al. (1998) and further developed in Guillot (1999),

Guillot and Lebel (1999a), Balme et al. (2006), Onibon et al.

(2004), and Vischel et al. (2009). The above articles demonstrated
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that the precipitation model globally represented both the

spatial distribution and marginal distribution of precipitation

events, which are important characteristics for evaluating hy-

drological impacts (Vischel et al. 2009).

The following section describes the rainfall simulator (Lebel

et al. 1998; Guillot 1999; Vischel et al. 2009) in the state it was in

before the most recent developments presented in section 3.

a. Occurrence

The previous rainfall simulator did not explicitly model

when events occurred. An event simulation meant that a storm

passed over the study/simulation window, but without a spe-

cific time or date assigned to the event. As rainfall event oc-

currence is a major characteristic of a given rainfall regime,

there is a need to simulate it in the rainfall generator.

b. Event-based rain fields

An event-based rain field is defined here as the cumulative

rainfall left by the passing of convective rainfall systems over

the study site. The stochastic simulation of event-based rain

fields is achieved within the framework of meta-Gaussian

random functions (Benoit and Mariethoz 2017). Here, it con-

sists of deriving non-Gaussian random fields from Gaussian

random fields by using an anamorphosis function (Guillot

1999). Gaussian fields have well-known properties and can be

generated more easily than spatial fields with other distribu-

tions (Emery 2002).

The transformation/anamorphosis of Gaussian to non-

Gaussian fields is the main difficulty of the meta-Gaussian

framework. In particular, the appropriate spatial structure of

the random Gaussian fields must be prescribed in order to

reproduce the expected spatial structure and marginal distri-

bution of the non-Gaussian fields after anamorphosis. In case

of discontinuous processes, like intermittent event-based rain

fields which contain a mass of zero values in their marginal

distribution, there is no analytical solution to assess the spatial

structure function of Gaussian random fields (Guillot 1999;

Guillot and Lebel 1999a; Emery 2002).

In the first version of the generator, Lebel et al. (1998)

used the turning band method. Guillot and Lebel (1999b)

implemented it with a nested anisotropic covariance function

that displayed a more suitable simulation of the diversity of

storms structures than in Lebel et al. (1998). Onibon et al.

(2004) proposed to generate Gaussian fields by using the

sequential method which, coupled with an acceptation–

rejection algorithm, allows conditioning the simulations by

surface average values. While an empirical trial and error

approach was used in the first version, Vischel et al. (2009)

proposed a Gibbs sampling algorithm to assess the spatial

structure function of Gaussian fields represented by a nested

anisotropic variogram.

Via the abovemethods, themarginal distribution and spatial

structure of cumulative event rainfall amounts are obtained.

The simulation outputs are punctual, with simulations recor-

ded on locations determined by the user on a regular or ir-

regular grid. The simulator as it was in Vischel et al. (2009) did

not explicitly consider extreme values in the marginal distri-

bution of cumulative event rainfall.

c. Temporal disaggregation

Temporal disaggregation, or simulating intensities at small

time intervals within an event, is conducted with the aim of

representing the physical properties of storms. This disaggre-

gation is based on a deterministic synthetic hyetograph of a

convective storm which consists of a symmetrical triangular

peak representing the convective front of the storm, followed

by a stratiform tail of lower intensity (Fig. 1). The hyetograph

parameters (maximal intensity and duration) depend entirely

on the total event rainfall via a relationship that evolved over

the different model versions, the most recent published in

Balme et al. (2006). The hyetograph shape can be adjusted

provided that the morphological parameters of the hyetograph

can be linked to the event accumulation to allow the temporal

disaggregation of the cumulative event rainfall. The temporal

disaggregation also includes a model of storm kinematics that

consists of defining a field of hyetograph time of arrival based

on prescribed storm propagation speed and direction.

3. New developments and technical definitions

The following sections detail the new features developed

in Stochastorm. Table 1 provides an overview of model

parameters.

Stochastorm has modules for adjusting model parameters to

rainfall data which are described in the following sections.

Note that in its current version, Stochastorm assumes that all

parameters are homogeneous over the simulation area. The

possibility to relax this assumption will be discussed in

section 6.

a. Season limits and intraseasonal variability

of parameters

The annual duration for which the rainfall regime is char-

acterized by convective rainfall may be limited within the year,

either because the rainfall typology changes along distinct

seasons (as is the case in some temperate regions) or because

the rainy season alternates with a dry season (as is the case in

the intertropical belt regions). Modeling the start and end of

FIG. 1. Standard hyetograph shape from Balme et al. (2006)

implemented in Stochastorm, consisting of convective and strati-

form parts.
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the wet season is thus an important feature to include in the

occurrence model. Start and end dates of the rainy season are

modeled in Stochastorm with a separate normal distribution

for each.

Several parameters in Stochastorm are permitted to vary

temporally over the rainy season according to the following

equation:

param(t)5 f
param

(t,u
param

), (1)

where t is the time covariate, fparam the selected function for

representing seasonality, and uparam the vector of coefficients

to be optimized for the function. The parameters that may vary

inmagnitude throughout the season are indicated in this article

with the symbol *.

As an exploratory initial step, the parameters that may vary

seasonally are first calibrated in amoving window over the data

and then plotted to visualize their nonstationarity. From these

plots, the types of possible functions for seasonal covariates are

estimated visually. Then, statistical distributions using the

different possible seasonal covariates are calibrated over the

entire dataset. The covariate models are compared using AIC

and likelihood ratio tests. The choice of seasonal covariates

may also be informed by knowledge about local climatology

in the study region.

Parameters are obtained by maximum likelihood estimation

unless otherwise noted.

b. Event occurrence

The event occurrence in the new version Stochastorm is

represented by the inter-event time (IET), which here is de-

fined as the time between the start times of two events.

The probability density function (PDF) of the gamma dis-

tribution is denoted fg(x, b, k) with a shape parameter k . 0

and a scale parameter b . 0:

f
g
(x,b, k)5

1

G(k)bk
xk21e2x/b . (2)

The gamma distribution can alternatively be formulated

using mean m and shape k parameters given the relationship

m 5 kb, or with shape k and rate r parameter given the rela-

tionship r 5 1/b.

The IET parameter follows a gamma distribution with x as

the IET value, modeled using the time-varying scale *bIET and

shape *kIET parameters.

c. Marginal distribution of cumulative event rainfall

The marginal cumulative distribution (CDF) Fcumul of cu-

mulative event rainfall at each station is defined by the

following:

F
cumul

(y)5

�
*p

0
1 (12 *p

0
)F

g
(y, *b

cumul
, *k

cumul
), if y, u ,

p
u
1 (12p

u
)F

GPD
(y,s

GPD
, j

GPD
), if y$ u ,

(3)

where

p
u
5 *p

0
1 (12 *p

0
)F

g
(u) , (4)

where y is the random variable of cumulative event rainfall at a

given site; Fg and FGPD are the gamma and the GPD distri-

butions, respectively; and *p0 is the proportion of zero values

in a spatial rain field. Events with cumulative rainfall below a

given threshold u are modeled by a gamma distribution as in

Eq. (2) with scale parameter *bcumul and shape parameter

*kcumul.

For events over the threshold u, the gamma distribution is

replaced by a GPD distribution with a scale parameter sGPD

and a shape parameter jGPD. See Baxevani and Lennartsson

(2015) and Furrer and Katz (2008) for similar approaches.

Since the gamma distribution only includes values below the

threshold u, the parameters fitted by maximizing a censored like-

lihood (Lc) on positive data. Let y be thematrix (yij)i51,. . .,N;j51,. . .,K

of the data, where i is the site (station) index, N the total

number of sites, j the event index, and K the total number of

events. The censored likelihood is then expressed as

Lc(y, *b
cumul

, *k
cumul

)5 P
0,yij,u

f
g
(y

ij
, *b

cumul
, *k

cumul
)

3P
yij$u

[12F
g
(u, *b

cumul
, *k

cumul
)], (5)

where Fg is the CDF of the gamma distribution and fg is the

PDF. Note that Eq. (5) considers that each site i is independent

as well as each event j.

While seasonal covariates are technically possible for GPD

parameters, it was chosen to keep the parameters stationary in

time as uncertainty is already high and it would decrease the

parsimony of the model. The sampling effect due to the rarity

of extreme events limits the detection of a signal.

In this study, the GPD is fitted by maximum likelihood es-

timation on values larger than u.

TABLE 1. Overview of model parameters. The asterisk symbol (*) indicates that the parameter is permitted to vary temporally over the

season.

Category Object Parameters

Season definition Start date Normal distribution N (mstart, sstart)

End date Normal distribution N (mend, send)

Occurrence IET Gamma distribution Fg(*bIET, *kIET)

Event rain field Marginal distribution Fcumul (*p0, *bcumul, *kcumul, u, sGPD, jGPD)

Spatial structure Covariance function (r) and parameters (ur)

Temporal disaggregation Propagation Speed and direction

Relationship Imax/P Linear or beta distribution (min, max, a, b)
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d. Spatial dependency: Gaussian fields with
censored likelihood

1) TRANSFORMATION OF DATA INTO CENSORED

GAUSSIAN DATA

The spatial covariance structure determines how much the

values at two different points vary together or not at a range of

distances in a given direction. As a prerequisite to determining

the spatial covariance structure, the non-Gaussian measured

rain fields are first transformed into the processH. The process

H is a version of the Gaussian processG but censored below a

certain limit due to the zero values within the rain field.

Let F denote the N (0, 1) distribution. The following

transformation is applied to the data for each event j ( j 2
{1, . . . K}):

h
ij
5F21[F

cumulj
(y

ij
)] , (6)

where h is the Gaussian version of y. In this way, K (total

number of events) realizations of a spatial process H are ob-

tained. For each event j, the Gaussian field realization hj is

censored below the Gaussian value c0j corresponding to 0 mm

in the observed rainfall field:

c
0j
5F21[F

cumulj
(0)] , (7)

where Fcumulj(0) is the equivalent of p0j. The value c0j is dif-

ferent for each realization due to the temporal dependence

of Fcumul on t.

2) ESTIMATING THE COVARIANCE FUNCTION

To simulate the process H, the covariance function r of the

process G must first be estimated. The Gibbs sampling al-

gorithm proposed in the last model version (Vischel et al.

2009) presented numerical convergence problems, espe-

cially for marginal distributions where the frequency of zero

values is high. Here, we propose an alternative approach

based on censored likelihood that is better suited to ele-

vated p0 values.

Let gij denote the values of the realizations of the processG.

Values of gij that exceed c0j are known. For the values that do

not exceed c0j, it is known only that gij # c0j. For this reason, a

classical likelihood calculation cannot be used to fit the model

on data. Instead, a censored version of the likelihood is

required.

Let Dj be the set of sites where it does rain during the

jth event:

D
j
5 fi 2 f1,Ngsuch that g

ij
. c

0j
g. (8)

Let ur be the parameters of the covariance function r that

is to be estimated. Assuming that events are independent

from one another, the censored likelihood of ur is

Lc(u
r
)5P

j

Lc
j (ur) . (9)

If every gij is observed for the jth event (i.e., if it rains at all sites

for the event j), then

Lc
j (ur)5 f

GP
(g

1j
, . . . , g

Nj
; u

r
), (10)

where fGP is the density of the Gaussian process with covari-

ance r.

If at least one site is censored (within c0), the likelihood becomes

Lc
j (ur)5f

GP
fg

ij
g
i2Dj

; u
r

� �
Pr fG

ij
# c

0
(t

j
)g

i;Dj
jfGij

5 g
ij
g
i2Dj

; u
r

� �
.

(11)

The probabilities are the CDF of a Gaussian process because

fG
ij
g
i;Dj

jfGij
5 g

ij
g
i2Dj

, (12)

is Gaussian with mean and variance given by

m5S
1,2
S21
2,2gDj

, (13)

var5S
1,1
2S

1,2
S21
2,2S

0
1,2, (14)

where gDj
is the vector formed by the elements of Dj and S is

the covariance matrix of the vector (gDj
, gDj

) with

S5

 
S
1,1

S
1,2

S
1,2

S
2,2

!
. (15)

The covariance r can be modeled with a variety of pos-

sible functions. Here an anisotropic covariance defined by a

sum of exponential functions is fitted for rainfall events,

given by

r(h)5 y exp

�
2
khk

anis

f
1

�
1 (12 y) exp

�
2
khk

anis

f
2

�
, (16)

where y is the proportion of the field variance associated with

the first exponential, andf1 andf2 are the range parameters of

the two structures.

The notation jj.jjanis denotes an anisotropic distance de-

fined as

khk2anis 5 ks
m
2 s

n
k2
anis

5 (s
m
2 s

n
)0M0M(s

m
2 s

n
) (17)

where

M5

�
cosc sinc

2a sinc a cosc

�
,

with a . 1 and c 2 [2p/2; p/2].

Parameter c is the angle between the x axis and the major

axis of the ellipse, and a is the ratio of the major axis length on

theminor axis length. The level lines of the covariance function

have an elliptical form.

See section 4c(4) for how the covariance structure was im-

plemented in the present study.

e. Temporal disaggregation

The temporal disaggregation step takes the cumulative

rainfall amounts and divides them into subevent intensities.

The arrival time of the storm at a given point is conducted as in

previous versions of the model (Guillot and Lebel 1999a),
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with a predetermined propagation speed and direction for each

event based on empirical data.

Three variables are used to disaggregate the total rainfall

at a siteP into the synthetic hyetograph in Fig. 1: the convective

portion of rainfall Pconv, the intensity of the stratiform tail Istrat,

and the maximum intensity Imax. Balme et al. (2006) proposed

the following relationships:

P
conv

5 ĉ
1
P1 ĉ

2
, (18)

I
strat

5 ĉ
3
, (19)

I
max

5 ĉ
4
P1 ĉ

5
. (20)

An alternative way of determining Imax instead of Eq. (20)

is evaluated and compared in this study: A four-parameter

beta distribution (two parameters from the standard beta

distribution plus maximum and minimum bounds) with co-

variates relating Imax to P. This theoretically makes the re-

lationship between the variables more flexible and more

representative of the variability present within the observed

rainfall systems.

The four-parameter beta PDF is defined as follows:

f
beta

(I
max

,min,max,a,b)5
(I

max
2min)

a21
(max2 I

max
)
b21

G(a)G(b)

G(a1b)
(max2min)a2b21

,

(21)

where Imax is the maximum event rainfall intensity during an

event, min is the lower bound of the distribution, max is the

upper bound of the distribution, and a and b are the two shape

parameters. All four parameters can potentially have cumu-

lative event rainfall as a covariate.

f. Simulation procedure

Once the parameters are obtained, the following simulation

steps are conducted (see Fig. 2 for an overview):

(i) Simulation of event start times.

1) Wet season start and season end dates are generated

from their respective calibrated normal distributions.

2) Starting from the season start date simulated in the

above step, dates of event starts are sequentially

generated using the occurrence model of IET values

(section 3b) until the end date of the season is ex-

ceeded. The last event is kept or discarded accord-

ing to a Bernoulli distribution with p 5 0.5.

(ii) Simulation of cumulative event rainfall.

3) OneGaussian field [marginal distribution;N (0, 1)] is

simulated per simulated event start.

4) The marginal distribution N (0, 1) of the Gaussian

fields is transformed (anamorphosis) to the established

event marginal distribution Fcumul using the parameter

values at the covariate t of the event date.

(iii) Temporal disaggregation.

5) A speed and direction is determined for the event and

used to generate hyetograph time of arrival at each point.

6) Cumulative event rainfall per site is disaggregated into

the determined time step using the selectedmethod for

determining the Imax value of the hyetograph.

FIG. 2. Overview of simulation procedure for the Stochastorm model.
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4. Application to Sahelian storms

a. Sahelian hydroclimatology

The Sahel is a band located roughly between the 250- and

750-mm isohyetal lines of the sub-Saharan precipitation gra-

dient. Sahelian climate is driven by theWest Africanmonsoon,

which determines the magnitude and frequency of monsoon

storms and dictates a pronounced seasonal signal for the region

(Lebel et al. 2003; D’Amato and Lebel 1998). The rainy season

extends approximately from April to October, with peak

rainfall months in July and August and little to no rainfall

outside the rainy season. Monsoon storms are mainly derived

from large organized mesoscale convective systems that gener-

ally propagate from east to west at speeds on the order of 30–

50 kmh21. Local storms with little or no propagation may also

develop and represent less than 10% of themean annual rainfall

(Mathon et al. 2002). The average cumulative amounts and

variance of precipitation events are higher in the middle of the

season, with a lower percentage of null values (i.e., more large

storms in July–August) (Ali et al. 2003; Balme et al. 2006).

The consideration of extreme storms is of particular im-

portance in the Sahel. An increase in extreme precipitation

values has been documented (Taylor et al. 2017; Panthou et al.

2014, 2018). Given the recent series of catastrophic floods in

the region (Descroix et al. 2012; Sighomnou et al. 2013; Wilcox

et al. 2018), it is important to understand how changes in pre-

cipitation extremes may drive extreme hydrological events.

b. Data used: AMMA-CATCH network

The calibration and validation of the simulator is performed

with a subset of the AMMA-CATCH network of recording

rain gauges. AMMA-CATCH consists of ecohydrological data

collection at three mesoscale sites in West Africa. It is unique

for the region in both its spatial density and the length of

continuous data recording, since 1990 in Niger, 1999 in Benin,

and 2002 in Mali. The data are freely available from the

AMMA-CATCH database (AMMA-CATCH 1990).

Stochastorm was calibrated on the AMMA-CATCH study

site located in the Sahel near Niamey, Niger. The site features a

set of 30 rain gauges located within a 1203 160 km2 area (Fig. 3

providing 28 years of data (1990–2017) at the 5-min time step.

c. Model implementation

The following sections describe the implementation of the

Stochastorm model on the AMMA-CATCH dataset located

within the West African Sahel. Previous studies have shown

that the assumption of spatial stationarity is valid for our study

site [Ali et al. (2003) for the intermittence of rainfall events;

Vischel et al. (2009) for the marginal distribution (gamma);

Panthou et al. (2014) for the GPD distribution of extreme

values].

Table 2 provides a summary of parameter values.

1) EVENT DEFINITIONS

An event consists of the rainfall over the study window as an

individual storm passes. A rainfall event is considered to be

distinct when it is separated in time from other series of pre-

cipitation; here, we define an event as being separated by at

least 30 min of no precipitation at the station level, with at least

one time step (5 min) of no rain in the entire window of study.

The application of the previous version of the simulator in

Vischel et al. (2009) only considered the most consistent rainfall

events associated with organized and propagative mesoscale

convective systems. As a consequence, the simulations were

missing nearly 10% of the annual cumulative rainfall associated

with smaller and less propagative local convection events. These

small events are characterized by a strong intermittency (and

thus a high frequency of zero values in the event rainfall mar-

ginal distribution) that, in practice, limits the possibility of con-

vergence of the Gibbs sampling method to transform rainfall

into Gaussian values in the anamorphosis process.

Here we benefit from the use of the censored likelihood

approach that is much more efficient in handling zero values.

While Vischel et al. (2009) only selected rainfall events cov-

ering at least 10/30 of the AMMA-CATCH Niger rain gauge

network, here we define events as having at least 2/30 (or

an equivalent percentage) of the rain gauge network receive

more than 1 mm of cumulative rainfall.

Smaller events that did not meet the criterion were consid-

ered inconsequential; they may be due to erroneous data

(e.g., a false tipping bucket), or precipitation that is too sparse

to be organized into a storm. Measurements from events

that were not considered in the study contributed less than 0.01%

of the annual rainfall amount.

Once the initial event subset was created, the events were

then classed into ‘‘large’’ (propagative storms) and ‘‘small’’

(local convection) categories. A large event has 30% or more

of stations/data points registering rainfall. All other events

were labeled as small.

For the dataset used in this study, 64.6% of events are large

and 35.4% are small. Large events produce on average 95.7%

of the total cumulative annual rainfall.

FIG. 3. Location of automatic rain gauge stations for the

AMMA-CATCH network near Niamey, Niger.
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2) SEASON DEFINITION AND OCCURRENCE

Season limits are defined fromApril to October, a range that

captures the monsoon rainfall which primarily occurs between

June and September.

The seasonal covariate t is defined as follows: For central

Sahel, the season extends from 1 April (t 5 1) to 31 October

(t 5 215), with t being a decimal number. The integer digit of

this decimal indicates the day in the season of the event start

and the decimal part corresponds to the hour and minutes of

the event start.

For the Sahel, we would expect parameters that are non-

stationary over the rainy season, producing smaller IET values

(i.e., more frequent storms) in the middle of the season (July–

August).

The distribution of large and small events [section 4c(3)]

throughout the season is modeled empirically with a Bernoulli

distribution based on the input data. A spline is used to rep-

resent the proportion of small events throughout the season

(Fig. 4). The value of the spline at a given date provides the

parameter of the Bernoulli distribution at that point in the

season. For simulation, this Bernoulli distribution is used to

randomly generate large and small event labels at each simu-

lated event start day.

3) MARGINAL DISTRIBUTIONS OF CUMULATIVE EVENT

RAINFALL

Each category (large/small) has its own set of associated

parameters for the marginal distribution of cumulative event

rainfall. The large storms are modeled with a gamma 1
GPD distribution as described in section 3c, whereas

small events are modeled only by a gamma distribution.

Large event gamma distribution parameters were permitted

to vary over the season, as the nonstationary model had

better fit than the stationary model. The gamma distribu-

tion for small events was modeled as constant over the

season due to the relatively small variability compared to

large events.

In this study, the threshold u for the GPD distribution is

fixed at 40mm of rainfall per event, approximately the quantile

0.97 as defined in Blanchet et al. (2018).

For the Sahel, we anticipate that the marginal distribution

parameters for cumulative rainfall values and p0 to have a

seasonal evolution that leads to larger events (in both size and

magnitude) in the middle of the season.

4) COVARIANCE FUNCTIONS USED TO MODEL

SPATIAL DEPENDENCY

The methods described in section 3d are used to fit covari-

ance functions on series of small and large events. There is one

TABLE 2. Equations for Stochastorm parameters calibrated on AMMA-CATCH 1990–2017 data. Parameter t is the start day

of the event (used for parameters that are modeled as nonstationary throughout the season, indicated by * within the text of the article),

and P represents the cumulative event rainfall amount for a given event.

Variable Equation Section

Season start date N (mstart, sstart)5N (19:88, 11:69) Section 3a

Season end date N (mend, send)5N (199:61, 6:88)

IET kIET(t)5 1:08 exp[22:51(1024)(t2 124:93)2]1 0:66 Section 3b

mIET(t)5 8:552 0:11t1 0:000 46t2

Marginal distribution, large events p0(t)5 0:472 3:20(1024)t2 3:33(1025)t2 1 1:68(1027)t3 Section 3c

kcumul 5 0.86

rcumul(t)5 0:152 1:65(1023)t1 6:79(1026)t2

u 5 40 mm

sGPD 5 13.40

jGPD 5 0.12

Marginal distribution, small events p0 5 0.85 Section 4c(3)

kcumul 5 0.82

rcumul 5 0.16

Spatial structure ur,large: f1 5 9.91, f2 5 152.74, y 5 0.13, c 5 0.28, b 5 2.07 Section 4c(4)

ur,small: f 5 30.89, y 5 1

Base temporal disaggregation ĉ1 5 0:89, ĉ2 520:08, ĉ3 5 2 Section 3e

ĉ4 5 2:01, ĉ5 5 0:53 (mmh21)

Relationship Imax/P a5 0:301 1:07 log(P) Section 3e

Beta distribution b5 36:412 36:46 exp(20:021P)

FIG. 4. The proportion of small events throughout the season for

the AMMA-CATCH 1990–2017 dataset.
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spatial dependency structure for small events and one spatial

dependency structure for large events.

The covariance structure for large events is given in Eq. (16).

For small events, y in Eq. (16) is set to 1 which simplifies the

structure to an isotropic exponential covariance function.

Figure 5 displays the results for themodeled spatial structure

of precipitation. See Table 2 for the specific parameter values

after calibration on AMMA-CATCH data.

5) TEMPORAL DISAGGREGATION

The synthetic hyetograph [Fig. 1, Eqs. (18)–(20)] from

Balme et al. (2006) was implemented in the simulator (see

values in Table 2).

The present study aims to improve the estimation of the

maximum intensity Imax of the synthetic hyetograph via the

use of a four-parameter beta distribution [Eq. (21)]. An initial

exploratory analysis was conducted by calibrating beta dis-

tribution parameters on Imax over a moving window by rain-

fall amounts from AMMA-CATCH data (e.g., Imax values

sorted by magnitude of corresponding rainfall amount). The

analysis revealed strong evidence of nonstationarity, with

all four parameters increasing as rainfall amount increased.

The four parameters of the beta distribution in Eq. (21)

were thus determined to depend on cumulative event

precipitation.

A function of best fit was determined for each parameter.

The beta distribution upper bound (max) was modeled using a

two-part function (Fig. 6). For a lower range of cumulative

rainfall values, the total event rainfall was used as the value of

max. For larger values, max was defined as a log function that

must exceed 2 times the observed Imax values. The switch

between the two types of bounds was identified as the

intersection between the cumulative rainfall value and the

log function. We consider this to be a reasonable limit as

the highest max values are near the world record for 5-min

precipitation intensities (Burt 2007).

For the lower bound (min), linear segments that pass be-

neath the lowest observed values were used for smaller rainfall

values, then extrapolated with a log function at the same point

the log function starts for the max (Fig. 6).

For the a and b parameters, a log function and an expo-

nential function were chosen respectively to link their values

with the covariate of cumulative event rainfall. See Table 2 for

their specific equations.

FIG. 5. Modeled covariance structure for (a),(b) large events and (c),(d) small events. Panels (a) and (c) display

the contour lines of the distances at which r5 0.5. Panel (b) shows the evolution of r over distance for themajor and

minor axes for large events, and (d) shows the evolution of r over distance for any modeled direction.
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Speed and direction are determined using an input database

generated from AMMA-CATCH data. The recorded event

with the value of cumulative event rainfall (P) closest to a given

simulated cumulative rainfall amount is identified. Then, the

speed and direction that was measured for the recorded event

is used for the simulated event. This approach resembles the

selection of an analog event within the recorded data used in,

e.g., Chardon et al. (2014).

5. Evaluation of the model using AMMA-CATCH
data (Sahel)

From Stochastorm calibrated on AMMA-CATCH data, we

generated 30 realizations over a period of 28 years, equivalent

to that of the dataset. The model permits the user to select the

simulation sites; we chose to simulate at the locations of the 30

AMMA-CATCH measurement stations in order to compare

simulation results with observed data.

The following sections describe the ability of the model

simulations to reproduce both model parameters (i.e., whether

simulated outputs reflect calibrated parameters) and observed

characteristics of storms not directly prescribed in the model

(whether simulated outputs are coherent with observations).

a. Event occurrence

Figure 7a displays the simulation results for the first and last

days of the season. One can observe that both the model and

simulations closely match the data, and that the first and last

days of the season are well represented by a normal distribu-

tion. Note that although the season length was not explicitly

parameterized in the Stochastorm model, simulations accu-

rately represent the original data’s season length (Fig. 7b).

Results for the IET (Fig. 8) also show good coherence be-

tween the simulation outputs and the original calibration data.

Storms are reproduced at a frequency which matches that of

the recorded record, with more frequent storms (lower IET

values) in July–September and less frequent storms at the be-

ginning and end of the season. The main difference is toward

the end of the season, where the seasonal evolution in the

simulations appears to be underestimated relative to model

parameters. This could be explained by the use of the Bernoulli

law to decide whether or not to keep the final event of the

season, and by the low frequency of events at this part of

the season. The simulations remain relatively coherent with the

values from rain gauge data.

Although the number of events per season was also not

explicitly modeled, the number of simulated events generated

from the IET parameter are representative of the data (Fig. 8).

One can note however that the simulations have difficulty in

retranscribing certain values, such as that for 1994. Considered

as exceptional, notably because of an unusual occurrence of both

small and large events, this year shows that extreme values of

occurrence are not easy to reach by the proposed occurrence

model. While the simulator is technically capable of producing a

simulationwith the amount of events seen in 1994, with a gamma

distribution for IET values, it is unlikely to see such extreme

cases very often in the simulations. The model is still able to

replicate typical numbers of events and their variability.

b. Marginal distribution of rainfall

Figures 9a and 9b show the mean and variance of the cu-

mulative event rainfall amounts and Fig. 9c shows the evolu-

tion of p0. The seasonal signals of mean values and variance are

well represented.

Of note are the results for p0 (Fig. 9c), the event spatial

extent represented by the proportion of nonzero values. The

simulations were conducted separately for large and small

events. When the simulations are combined, the seasonal sig-

nal of p0 in the observed data is accurately reproduced. The

variability of the spatial extent of the events (as determined by

the proportion of stations measuring rainfall during the event)

is also well simulated (not shown). This is a notable result

coming from the ability of the censored likelihood to simulate

both large and small events. The arbitrary simulation of only

large events (imposed in the previous version of the model)

hindered the capacity of the simulator to reproduce the dis-

tribution of p0 found in the data. With the revised model, the

overall distribution of p0 is reproduced.

Figure 10 shows the quantile–quantile plot of the simulated

and observed rainfall values at event, hourly, and 5-min tem-

poral scales. The simulation outputs have good coherence with

the original data at both the event and hourly scales

(Figs. 10a,b). For many events most rainfall occurs within the

first hour (during the convective portion of the storm), which

explains why the results for event and hourly scales are similar.

In particular the extremes produced by the simulator fall

closely along the reference line. The very highest quantile is

somewhat underestimated (with the exception of an outlier)

but realistic, and the quantiles below match the data well.

In Fig. 10c, one can see that the simulations slightly over-

estimate smaller values (approximately 1–4 mm per 5 min) and

underestimate larger values. This is likely due to the hyeto-

graph used for the disaggregation which smooths the rain in-

tensities via its very simplified form. The bias, however,

FIG. 6. Upper and lower bounds of the underlying beta distri-

bution used to model maximum intensity Imax with cumulative

event rainfall as covariates for the beta distribution parameters.
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is relatively small, indicating that the methodology produces

results that are close to realistic despite the simplicity of the

disaggregation scheme.

c. Spatial structure

Figure 11 compares the observed and simulated empirical

variograms at different time scales. For large events, the sim-

ulations show a slight overestimation, especially for longer

distances. This could in part be explained due to the restricted

spatial area of the study, which means there is a lack of ob-

servations at longer distances. The simulations are more co-

herent with the observations over the major axis than over the

minor axis, which could be due to the more consistent orga-

nization of storms in the direction of propagation.

For small events, the values for the simulated variograms

were lower than those of the observed variogram. Some of the

biases displayed could in part be due to the capacity of the

model to simulate a small event using large event parameters

and vice versa.

The results were consistent between the hourly and event

time scales. At the 5-min time scale, the simulations under-

estimated the empirical variograms. This is again a mark of the

simplistic shape of the hyetograph which does not represent all

the variability of rainfall intensities at 5 min. This results in an

underestimation of the variance of the variogram. The un-

derestimation of the variance is however acceptable and the

general pattern of spatial structure is maintained.

d. Robustness

To determine the robustness of the model, the data used for

calibration was divided into two subsets: data from odd years

and data from even years. In comparing the data, it was

FIG. 7. (a) Distributions of beginning and end of season dates, with data, simulations, and

model (see histogram to left of plot). (b) Season length (number of days from first day with

precipitation to last day within the same year). See Table 2 for the specific parameter values of

the model used to generate season start and end dates.
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observed that essential features such as the seasonal rainfall

signal were preserved for both the magnitude and frequency

of events. Each dataset was then used to calibrate a set of

parameters in Stochastorm and subsequently generate rain-

fall event simulations. Figure 12 shows a summary of this

analysis. We did not find a significant difference in the sim-

ulations produced by each subset of data. This leads us to

conclude that the model is robust enough to be calibrated on

rainfall series of relatively short durations while keeping its

simulations skills.

e. Hyetograph model evaluation

Figure 13 compares observed data with the maximum in-

tensities generated from two methods of temporal disaggre-

gation. The overestimation of maximum intensities for larger

cumulative precipitation values when using the previous

method is corrected when using the newly implemented four-

parameter beta distribution (Fig. 13a). The beta distribution

method more realistically models both the average and natural

variability in maximum intensities; rather than having a set

maximum intensity that corresponds to a given cumulative

precipitation value as in the previous model, the maximum

intensities are generated from the underlying distribution,

leading to a variety of magnitudes which correspond more to

the behavior of the observations (Fig. 13b).

Figure 14 shows the hyetographs of events that have a given

cumulative precipitation value. Although only the peak event

intensity was specifically generated, the magnitudes of other

subevent intensities were well reproduced by the temporal

disaggregation method using the synthetic hyetograph. Both

the average hyetograph and the variability (confidence inter-

val) associated with a given cumulative value were reproduced.

This also ensures a good coherence of the temporal autocor-

relation of the hyetographs that we verified along different lags

(not shown).

6. Discussion and conclusions

The above study presents the recent developments for the

SRG Stochastorm, a modeling and simulation tool that aims to

replicate the properties of convective storms. The simulator

can generate nonstationary intra-annual precipitation scenar-

ios at fine spatiotemporal scales.

Features include modeling of event occurrence dates via the

inter-event time (IET) parameter and simulation of rainy

season start and end dates. In addition, the model includes:

FIG. 8. (a),(b) Results for the IET and (c) number of precipitation events per season. See Table 2 for the specific

parameter values and formulations of the model used for IET.
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added parameters for seasonality (seasonal covariates for oc-

currence and the marginal distribution); explicitly modeled

event rainfall extremes in the marginal distribution; and the

use of censored likelihood to coherently transform Gaussian

fields into rainfall fields characterized by a large range of in-

termittency. Finally, the model features a new method of

temporal disaggregation which uses the four-parameter beta

distribution to relate maximum event intensity to cumulative

event precipitation.

Stochastorm was applied to the Sahel region of West Africa.

Specific adaptations included the categorization of small and

large events, with the ratio evolving throughout the season

(more large events during the peak precipitation months).

Results had good coherence with data, closely following the

seasonal signal and annual properties of rainfall. The occur-

rence of rainfall events was well reproduced, although the

current parameterization of the IET may not sufficiently sim-

ulate extreme values of annual number of events. The magni-

tude of events were remarkably reproduced including extreme

values that are explicitly taken into account by the model. The

spatial intermittency and spatial structure of rain fields were

also well replicated, in spite of the division into small and large

events for the Sahel. The model calibrated and validated on

two distinct sets of data produced comparable results,

demonstrating the robustness of the model. However, as

Stochastorm does not take long-term (decadal) temporal

nonstationarity into account, simulations may deviate from

the observations under the presence of nonstationarity in

the rainfall series.

The use of a simple temporal disaggregation scheme based

on a synthetic hyetograph maintained key rainfall character-

istics in the simulations at subevent scales (from hourly to

5 min), although a slight underestimation of the 5-min rainfall

variance has been noticed. The maximum intensity of the

storms and their variability were better simulated via the sto-

chastic beta distribution than the deterministic approach of the

previous generator versions.

In addition to these noticeable performances, the explicit

integration of seasonal variability in the parameters of occur-

rence and magnitude of events, the explicit representation of

FIG. 9. Results for cumulative event rainfall over the study area (30 stations/simulation points aggregated) with

50% confidence intervals. The models are generated from the nonstationary parameters calibrated to the data (see

Table 2 for the specific details of the model used to generate cumulative rainfall values.
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extremes in the marginal distribution and the possibility for

simulating a wide range of intermittency make it an original

contribution to recent advanced SRGs.

Stochastorm’s parsimony, which is made possible by

separating the simulation of cumulative events and their

subsequent temporal disaggregation, is another notable

asset in responding to simulation problems in regions

where the available data (daily or hourly rainfall data) only

provide access to storm accumulation structures but do not

allow a precise description of subevent spatiotemporal

structures. It is therefore a high-resolution SRG that has

potential for applications in poorly instrumented devel-

oping countries, many of which are prone to tropical

storms.

However, the simplified approach has some limits that

should be addressed in future developments. In particular the

case study pointed out the need to better simulate the vari-

ability of the number of annual events and 5-min rainfall

amounts. Other assumptions such as the spatial stationarity of

the parameters can also be reconsidered to allow simulations

on more complex terrains and/or rainfall typology than those

of the Sahelian case study.

The simulation results have implications for applications to

hydrological and agricultural modeling. Having simulation

outputs at fine scales with a coherent and representative spatial

structure is promising for implementation in hydrological

models (Li et al. 2017). A priority for future work is testing the

outputs of Stochastorm as inputs which drive a hydrological

model (Wilcox 2019).

Stochastorm can also be calibrated on general circulation

model (GCM) outputs, including future projections. The use of

GCMs as calibration data would allow Stochastorm to function

as a statistical downscaling tool (Ferraris et al. 2003) that can

translate the GCM into relevant information at hydrological

scales. This can provide a useful tool for evaluating potential

future impacts of climate change.

The model is limited in its ability to handle long-term non-

stationary, such as decadal trends. An example of ways to treat

FIG. 11. Observed and simulated variograms for large and small events at three temporal scales: event cumulative rainfall, hourly, and

5 min. There is one line per observation of 28 years or per simulation of 28 years (30 simulations total). The points represent the average

variogram for a given class of distances for all simulations.

FIG. 10. Quantile–quantile plot for simulated vs observed rainfall by station at three temporal scales: event cumulative rainfall, hourly, and

5 min. There is one line per observation of 28 years or per simulation of 28 years (30 simulations total).
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nonstationarity with stochastic weather generators can be

found in Verdin et al. (2018) and Benoit et al. (2018b). By in-

corporating nonstationary climate projections into the sto-

chastic weather generator and coupling it with a hydrological

model, one gains the capacity to perform water resource pro-

jections (Borgomeo et al. 2014).

Although the model was implemented in the Sahel, it is

based on precipitation characteristics that are common to

FIG. 13. (a) Comparison of the effect of the choice of disaggregation method on maximum event intensity.

(b) Comparison of maximum storm intensities from the original AMMA-CATCH data (heat map) with the in-

tensities simulated using the four-parameter beta distribution (black contours) (section 3e).

FIG. 12. (a) Q–Q plot and (b) empirical variograms of calibration and validation data and simulations.
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convective storms in other regions of the world, especially

semiarid ones. Stochastorm may be implementable in other

regions provided that event-based parameters can be tuned on

locally observed data and that an appropriate hyetograph

shape and its link with event cumulative rainfall can be de-

termined. This means that application to various study regions

is not necessarily straightforward for Stochastorm. However,

genericity is a problem that goes beyond the case of

Stochastorm and concerns all SRGs. All SRGs are based on a

given set of hypotheses, contexts, considerations, and data

which would not be applicable in all parts of the world. Some

future research directions would involve expanding the range

of situations in which Stochastorm can perform well. There

is also an interest to evaluate how other advanced high-

resolution space–time SRGs as for instance those developed

in Peleg et al. (2017) and Benoit et al. (2018a) would be able to

adapt the Sahelian case study presented here. More generally,

the question of genericity calls the community of high-

resolution space–time SRGs to gather around intercompari-

son experiments based on various datasets from various areas.
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