
HAL Id: hal-03426543
https://hal.science/hal-03426543v1

Submitted on 12 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sandwich: An Algorithm for Discovering Relevant Link
Keys in an LKPS Concept Lattice

Nacira Abbas, Alexandre Bazin, Jérôme David, Amedeo Napoli

To cite this version:
Nacira Abbas, Alexandre Bazin, Jérôme David, Amedeo Napoli. Sandwich: An Algorithm for Discov-
ering Relevant Link Keys in an LKPS Concept Lattice. ICFCA 2021 - 16th international conference
on formal concept analysis, Jun 2021, Strasbourg /Virtuel, France. pp.243-251, �10.1007/978-3-030-
77867-5_15�. �hal-03426543�

https://hal.science/hal-03426543v1
https://hal.archives-ouvertes.fr


Sandwich: an Algorithm for Discovering Relevant Link
Keys in an LKPS Concept Lattice

Nacira Abbas1, Alexandre Bazin1, Jérôme David2, and Amedeo Napoli1?

1 Université de Lorraine, CNRS, Inria, Loria, F-54000 Nancy, France
Nacira.Abbas@inria.fr, Alexandre.Bazin@loria.fr, Amedeo.Napoli@loria.fr
2 Université Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG, F-38000 Grenoble, France

Jerome.David@inria.fr

Abstract. The discovery of link keys between two RDF datasets allows the iden-
tification of individuals which share common key characteristics. Actually link
keys correspond to closed sets of a specific Galois connection and can be dis-
covered thanks to an FCA-based algorithm. In this paper, given a pattern concept
lattice where each concept intent is a link key candidate, we aim at identifying the
most relevant candidates w.r.t adapted quality measures. To achieve this task, we
introduce the “Sandwich” algorithm which is based on a combination of two dual
bottom-up and top-down strategies for traversing the pattern concept lattice. The
output of the Sandwich algorithm is a poset of the most relevant link key candi-
dates. We provide details about the quality measures applicable to the selection
of link keys, the Sandwich algorithm, and as well a discussion on the benefit of
our approach.

1 Introduction

Linked data are structured data expressed in the RDF (Resource Description Frame-
work) model where resources are identified by Internationalized Resources Identifiers
(IRIs) [7]. Data interlinking is a critical task for ensuring the wide use of linked data.
It consists in finding pairs of IRIs representing the same entity among different RDF
datasets and returning a set of identity links between these IRIs. Many approaches have
been proposed for data interlinking [11,9,8,10]. In this paper, we focus on the discovery
of link keys [2]. Link keys extend the notion of a key as used in databases and allow
the inference of identity links between RDF datasets. A link key is based on two sets
of pairs of properties and a pair of classes. The pairs of properties express sufficient
conditions for two subjects, instances of the classes, to be the identical. The link key

k = ({〈designation,titre〉},{〈designation,titre〉,〈author,auteur〉},〈Book,Livre〉)

states that whenever an instance a1 from the class Book and an instance b1 from the class
Livre have the same values for the property designation and for the property titre,
and that a1 and b1 share at least one value for the properties author and auteur, then
a1 and b1 denote the same entity. We say that a link key k generates the identity link
〈a1,b1〉.
? This work is supported by the French ANR Elker Project ANR-17-CE23-0007-01.
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Link keys are in general not provided and they have to be discovered in the datasets
under study. The discovery of link keys consists in extracting link key candidates from
a pair of datasets and then to evaluate their relevance for the interlinking task. The
relevance of a given link key is measured w.r.t. two criteria, (i) correctness, and (ii)
completeness.

Link key candidates correspond to closed sets of a specific Galois connection. For
this reason the question of using Formal Concept Analysis (FCA) [6] to discover link
keys was naturally raised [3]. In [4] authors proposed a formal context for the discovery
of link key candidates for a given pair of classes. However, when there is no alignment
between classes, the choice of the right pair of classes is not necessarily straightforward.
To overcome this limitation, a generalization of link key discovery based on Pattern
Structures [5] was proposed in [1]. The authors introduced a specific pattern structure
for link key candidate discovery over two datasets D1 and D2 called LK-pattern structure
without requiring an a priori alignment. An LKPS-lattice is the lattice of pattern concepts
generated from an LK-pattern structure. Each concept intent is a link key candidate and
each extent is the link set generated by the link key in the intent.

The size of an LKPS-lattice may be prohibitively large and not all link key candi-
dates are relevant for the interlinking task. Our purpose in this paper is to identify the
relevant link keys in the LKPS-lattice and to discard the irrelevant ones. The evaluation
criteria of a link key candidate, i.e., completeness and correctness, are based on adapted
evaluation measures that can be used for selecting the relevant link keys, i.e., the value
taken by a candidate for such a measure is above a given threshold. The evaluation
measures should also be monotone, i.e., increasing or decreasing, w.r.t. the order of the
LKPS-lattice. Moreover, completeness and correctness verify an “inverse” relationship,
as correctness tends to decrease when completeness increases. In this paper we rely on
this observation and we show that the upper part of an LKPS-lattice contains the most
complete but the least correct link keys, while the lower part of the LKPS-lattice contains
the most correct but the least complete link keys.

Starting from this observation, we introduce an original pruning strategy combining
a “bottom-up” and a “top-down” pruning strategies, while the most relevant link key
candidates are lying “in the middle” and achieve the best compromise between com-
pleteness and correctness. Accordingly, we propose the Sandwich algorithm that tra-
verse and prune the LKPS-lattice w.r.t. two measures estimating correctness and com-
pleteness. The input of this algorithm is an LKPS-lattice, a correctness measure and
a threshold, and as well a completeness measure and a threshold. The output of the
Sandwich algorithm is a poset of relevant link key candidates. To the best of our knowl-
edge, this is the first time that such an algorithm is proposed for selecting the best link
key candidates w.r.t. adapted measures. In addition, this is also an elegant way of taking
advantage of the fact that link key candidates correspond to the closed sets of a given
Galois connection which is made explicit in the following.

The organization of the paper is as follows. First we make precise definitions and
notations, and we briefly present the problem of link key discovery in a pattern structure
framework. Then we present the correctness and the completeness of link keys, and the
Sandwich algorithm for pruning an LKPS-lattice. Finally we discuss on the benefit of
our strategy.



The Sandwich Algorithm 3

2 The Discovery of Link Keys with Pattern Structures

2.1 A Definition of Link Keys

We aim to discover identity links among two RDF datasets D1 and D2. An identity
link is a statement of the form 〈s1,owl:sameAs,s2〉 expressing that the subject s1 ∈
S(D1) and the subject s2 ∈ S(D2) represent the same real-world entity. For example,
given D1 and D2 in Figure 1, the data interlinking task should discover the identity link
〈a1,owl:sameAs,b1〉 because the subjects a1 and b1 both represent the same vaccine
"Pfizer-BioNTech". For short, we write 〈a1,b1〉 and we call this pair a link. A link key
is used to generate such links.
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Fig. 1. Example of two RDF datasets. On the left-hand side, the dataset D1 populated with in-
stances of the classes: Vaccine and Organism. On the right-hand side, the dataset D2 populated
with instances of the classes: Drug, Virus and Bacteria.

Let us consider two RDF datasets D1 and D2, two non empty subsets of pairs of
properties, namely Eq and In, such that Eq ⊆ P(D1)×P(D2), In ⊆ P(D1)×P(D2),
Eq ⊆ In, two class expressions –conjunction or disjunction– C1 over D1 and C2 over
D2. Then k = (Eq, In,〈C1,C2〉) is a “link key” over D1 and D2. An example of a link
key is k = ({〈type,tech〉},{〈type,tech〉,〈name,designation〉},〈Vaccine,Drug〉).

A link key may or may not generate links among two datasets as made precise
here after. Let k = (Eq, In,〈C1,C2〉) be a link key over D1 and D2. The link key k
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generates a link 〈s1,s2〉 ∈ S(C1)×S(C2) iff 〈s1,s2〉 verifies the link key k, i.e. (i) p1(s1)
and p2(s2) should be non empty, (ii) p1(s1) = p2(s2) for all 〈p1, p2〉 ∈ Eq, and (iii)
p1(s1)∩ p2(s2) 6= /0 for all 〈p1, p2〉 ∈ In.

The set of pairs of subjects 〈s1,s2〉 ∈ S(C1)× S(C2) verifying k is called the link
set of k and denoted by L(k). As the properties in RDF are not functional, we compare
the values of subjects in two ways, (i) Eq are pairs of properties for which two sub-
jects share all their values, and (ii) In are those pairs of properties for which two sub-
jects share at least one value. Then 〈a1,b1〉 verifies k = ({〈type,tech〉},{〈type,tech〉,
〈name,designation〉},〈Vaccine,Drug〉), because 〈a1,b1〉 ∈ S(Vaccine)×S(Drug), and
type(a1) =tech(b1), and name(a1)∩designation(b1) 6= /0.

Algorithms for link key discovery [2,4,1] discover firstly the so-called “link key
candidates” and then evaluate each candidate using quality measures. The relevant link
key candidates are selected to generate identity links between datasets.

A link key candidate is defined in [4] as the intent of a formal concept computed
within a particular formal context for link key candidate discovery, given pair of classes
〈C1,C2〉 ∈Cl(D1)×Cl(D2). Actually, link keys are equivalent w.r.t. their link set, i.e.
if two link keys k1 and k2 generate the same link set then they are equivalent. Link key
candidates are maximal elements of their equivalence classes and thus correspond to
closed sets. Moreover, the set of links must not be empty for a link key candidate. This
explains the use of Formal Concept Analysis [6] in the discovery of link key candidate.

However, the pair of classes 〈C1,C2〉 ∈ Cl(D1)×Cl(D2) is not always known in
advance and thus a generalization of the existing algorithms based on Pattern Structures
was proposed in [1], as explained in the following.

2.2 A Pattern Structure for Link Key Discovery

In a pattern structure designed for the discovery of link key candidates over two datasets
[1], the set of objects is the set of pairs of subjects from the two datasets and the de-
scriptions of objects are potential link keys over these datasets. A link key candidate
corresponds to an intent of a pattern concept in the lattice generated from this pattern
structure. Moreover the link set of a link key candidate corresponds to the extent of the
formal concept. In the following, we do not provide any definition but we recall some
important results from [1]. Moreover, for simplicity, we consider only the In set of pairs
of properties in a link key, i.e. k = (In,〈C1,C2〉) (as Eq⊆ In).

The Lk-pattern structure for the datasets in Figure 1 is given in Table 1. The associ-
ated concept lattice, called an LKPS-Lattice, is displayed in Figure 2. An example of link
key candidate is given by k2 = ({〈name,designation〉,〈type,tech〉},〈Vaccine,Drug〉),
and the related link set is L(k2) = {〈a1,b1〉,〈a2,b2〉,〈a3,b3〉}.

3 The Pruning of an LKPS-lattice

3.1 Correction and Completeness of a Link Key Candidate

Given an LKPS-lattice, we aim at identifying the most relevant link key based on a set
of adapted interest measures. Link key relevance depends on two main criteria, namely
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S(D1)×S(D2) In 〈C1,C2〉
〈a1,b1〉 {〈name,designation〉,〈type,tech〉} 〈Vaccine,Drug〉
〈a1,b2〉 {〈type,tech〉} 〈Vaccine,Drug〉
〈a2,b2〉 {〈name,designation〉,〈type,tech〉} 〈Vaccine,Drug〉
〈a2,b1〉 {〈type,tech〉} 〈Vaccine,Drug〉
〈a3,b3〉 {〈name,designation〉,〈type,tech〉} 〈Vaccine,Drug〉
〈a4,b4〉 {〈genus,gen〉,〈realm,realm〉} 〈Organism,Virus〉
〈a4,b5〉 {〈realm,realm〉} 〈Organism,Virus〉
〈a5,b5〉 {〈genus,gen〉,〈realm,realm〉} 〈Organism,Virus〉
〈a5,b4〉 {〈realm,realm〉} 〈Organism,Virus〉
〈a6,b6〉 {〈genus,gen〉,〈phylum,taxo〉} 〈Organism,Bacteria〉
〈a7,b7〉 {〈genus,gen〉,〈phylum,taxo〉} 〈Organism,Bacteria〉

Table 1. The Lk-pattern structure over the datasets D1 and D2 represented in Figure 1.

S(D1)×S(D2)

∗

k0

{〈a1,b2〉,〈a2,b1〉,〈a1,b1〉,〈a2,b2〉,〈a3,b3〉}
{〈type,tech〉}
〈Vaccine,Drug〉

k1

{〈a1,b1〉,〈a2,b2〉,〈a3,b3〉}
{〈name,designation〉,〈type,tech〉}

〈Vaccine,Drug〉

k2

{〈a4,b4〉,〈a5,b5〉,〈a6,b6〉,〈a7,b7〉}
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k3

{〈a4,b4〉,〈a5,b5〉}
{〈genus,gen〉,〈realm,realm〉}
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{〈a4,b5〉,〈a5,b4〉,〈a4,b4〉,〈a5,b5〉}
{〈realm,realm〉}
〈Organism,Virus〉

k6

{〈a6,b6〉,〈a7,b7〉}
{〈genus,gen〉,〈phylum,taxo〉}
〈Organism,Bacteria〉

k5

P(D1)×P(D2)

k7

Fig. 2. The LKPS-lattice generated from the Lk-pattern structure in Table 1. The different colors
distinguish the different pairs of classes.

“correctness” and “completeness”. The correctness of a link key is its ability to generate
correct links, while its completeness is its ability to generate all the correct links.

Firstly, we start from the hypothesis that the higher the number of pairs of properties
for which two subjects s1, s2 share a value is, the greater is the probability that the link
〈s1,s2〉 is correct. Then the size of the link key candidate k = (In,〈C1,C2〉) is |k|= |In|.
Moreover, the size of link keys is monotone w.r.t the intents of pattern concept intents
in an LKPS-lattice.

In [2], the measure of coverage was proposed to evaluate the completeness of a
link key candidate. The coverage of a link key k = (In,〈C1,C2〉) is defined as follows:
co(k) = |π1(L(k))∪π2(L(k))|/|S(C1)∪ S(C2)|, where π1(L(k)) = {s1|〈s1,s2〉 ∈ L(k)}
and π2(L(k)) = {s2|〈s1,s2〉 ∈ L(k)}. The coverage is locally monotone, i.e. when the
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link key candidates are associated with the same pairs of classes, the coverage is mono-
tone w.r.t extents of these candidates in the LKPS-lattice.

3.2 Sandwich: an Algorithm for Selecting the Most Relevant Link Key
Candidates

Given an LKPS-lattice, we propose the Sandwich algorithm for identifying the rele-
vant link key candidates (intents) and discarding the irrelevant candidates. The input
of Sandwich is a LKPS-lattice, a correctness measure σcor and a minimum threshold
µcor, and a completeness measure σcomp and a minimum threshold µcomp. The output
of Sandwich is the poset of all relevant link key candidates. It should be noticed that
a link key candidate may be relevant for a given pair of classes and not relevant for
another pair, i.e. a given link key candidate may generate all the correct links over a
pair of classes and no correct link over another pair. Accordingly, it is more appropri-
ate to identify relevant link keys associated with each pair of classes. Thus, in a first
step, Sandwich splits the lattice into sub-lattices where all intents are link key candi-
dates associated with the same pairs of classes. In a second step, Sandwich prunes the
sub-lattices based on correctness and completeness measures.

Regarding correctness, Sandwich retains the link key candidates k for which the
score of correctness measure σcor(k)≥ µcor. The correctness measure should be mono-
tone w.r.t. the intents in the LKPS-lattice, and the larger intents are at in the “bottom
part” of the lattice (w.r.t. the standard concept lattice order). Therefore, the most correct
link keys are lying in the lower part of the considered given LKPS-lattice and a “bottom-
up pruning strategy” is carried out. The intents of the retained concepts correspond to
link key candidates k verifying σcor(k)≥ µcor.

The strategy for retaining the complete kink keys is roughly the same, i.e., Sandwich
retains link key candidates k for which the score of completeness measure σcomp(k) ≥
µcomp. However, by contrast, the most complete link keys are having the better covering
w.r.t. the extents of concepts, which are lying in the “upper part” of a given LKPS-sub-
lattice. This time, a “top-down pruning strategy” is carried out, and the extents of the
retained concepts correspond to link key candidates k verifying σcomp(k)≥ µcomp.

Finally, the Sandwich algorithm retains the concepts which are selected at the same
time by both pruning strategies.

For illustrating the pruning strategy3, let us consider the example of LKPS(D3,D4)
displayed in Figure 3. The correctness measure which is monotone w.r.t. intents is
the size of the link key and the threshold is set to µcor = 3 (minimum size). The
completeness measure which is monotone w.r.t extents is the coverage of a link key
and the threshold is set to µcomp = 0.9 (minimum coverage). For the pair of classes
〈Person,Personne〉, the bottom-up pruning strategy returns all the pattern concepts
whose intent size is greater than 3, i.e., {k5,k6,k7}. The top-down pruning strategy
returns all the pattern concepts whose coverage is above 0.9, i.e., {k4,k5}. Finally, the
best link key w.r.t. to both strategies is k5, and it can be used to find identity links over
the RDF datasets D3 and D4.

3 The datasets and the implementation generating the lattice can be checked at https://
gitlab.inria.fr/nabbas/sandwich\_algorithm
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∗

k0

{〈country,pays〉}
〈Newspaper,Journal〉
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co=0.92 size=1
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k4
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{〈citizen,nation〉,〈birth,ann〉,〈fName,prenom〉,〈name,nom〉}
〈Person,Personne〉

k5
co=1 size=4

{〈citizen,nation〉,〈birth,ann〉,〈fName,prenom〉,〈name,nom〉,〈phone,tel〉}
〈Person,Personne〉

k6
co=0.4 size=5

{〈citizen,nation〉,〈birth,ann〉,〈fName,prenom〉,〈name,nom〉,〈addr,adr〉}
〈Person,Personne〉

k7
co=0.4 size=5

P(D3)×P(D4)

k8

Fig. 3. The LKPS-lattice of link key candidate over the datasets D3 and D4.

4 Discussion and conclusion

In this paper, we have studied the problem of the discovery of link keys in an FCA
framework. We have proposed an algorithm based on pattern structures which returns
a pattern concept lattice where the intent of a pattern concept corresponds to a link
key candidate and the associated extent corresponds to the set of links related with the
link key candidate. Indeed, FCA and pattern structures are well adapted to study the
discovery of link keys above two datasets as link keys can be considered as “closed
sets”. Actually they are introduced as the maximum element in an equivalence class in
[4]. Making a parallel with equivalence classes of itemsets this emphasizes the fact that
a link key corresponds to a closed set.

Then, given the pattern concept lattice including all link key candidates, one crucial
problem is to select the best link keys, in the same way as one could be interested in
some “good concepts” extracted from the lattice to be checked by a domain expert.
For that we introduce a set of quality measures that can be used for checking two main
properties, namely correctness and completeness of the link keys. As a (pattern) concept
lattice is based on duality and two anti-isomorphic orders, the measures of correctness
and completeness are also behaving in a dual way. Intuitively, the correctness of a link
key measures the capability to generate correct links, and in this way, the largest link
key will be among the best link keys (w.r.t. a reference pair of classes). Dually, the
completeness of a link key measures the capability to generating the largest set of links,
and such a link key will also be among the best link keys (w.r.t. a reference pair of
classes).
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Furthermore, following the duality principle, designing an algorithm able to dis-
cover the best link keys, i.e. reaching the best compromise between correctness and
completeness, amounts to exploring the pattern concept lattice in both and dual ways,
namely top-down and bottom-up. This is precisely the work of the Sandwich algorithm
which combines two pruning strategies, a top-down traversal and a bottom-up traver-
sal, for reaching the most complete set of links and at the same time the most correct
link key candidates. This is a straightforward illustration of the duality principle in a
(pattern) concept lattice.

Now, the Sandwich is generic and is able to work with different quality measures
as soon as they are monotone or locally monotone. For the next step, we should im-
prove the present research work in a number of directions. First, we should enlarge the
collection of measures and include more current measures used in the FCA and data
mining communities, such as “stability” or “lift” for example. They could provide in-
teresting directions of investigations for characterizing link keys. Second, we should
improve the global traversal strategy and combine the characterization of link key can-
didates at the construction of the pattern concept lattice if possible. In this way, each
pattern concept could be tagged with its characteristics w.r.t. a pair of classes and some
quality measures. Finally, we have run a complete set of experiments for validating the
current proposal on a real-world basis, and as well check the foundations and improve
the algorithmic part of the Sandwich algorithm.

References
1. Abbas, N., David, J., Napoli, A.: Discovery of Link Keys in RDF Data Based on Pattern

Structures: Preliminary Steps. In: Proceedings of CLA. pp. 235–246. CEUR Workshop Pro-
ceedings 2668 (2020)

2. Atencia, M., David, J., Euzenat, J.: Data interlinking through robust linkkey extraction. In:
Proceedings of ECAI. pp. 15–20. IOS Press (2014)

3. Atencia, M., David, J., Euzenat, J.: What can FCA do for database linkkey extraction? In:
Proceedings of FCA4AI Workshop. pp. 85–92. CEUR Workshop Proceedings 1257 (2014)

4. Atencia, M., David, J., Euzenat, J., Napoli, A., Vizzini, J.: Link key candidate extraction with
relational concept analysis. Discrete Applied Mathematics 273, 2–20 (2020)

5. Ganter, B., Kuznetsov, S.O.: Pattern Structures and Their Projections. In: Proceedings of
ICCS. pp. 129–142. LNCS 2120, Springer (2001)

6. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer - Ver-
lag (1999)

7. Heath, T., Bizer, C.: Linked Data: Evolving the Web into a Global Data Space. Synthesis
Lectures on the Semantic Web, Morgan & Claypool Publishers (2011)

8. Nentwig, M., Hartung, M., Ngomo, A.N., Rahm, E.: A survey of current Link Discovery
frameworks. Semantic Web 8(3), 419–436 (2017)

9. Ngomo, A.N., Auer, S.: LIMES - A Time-Efficient Approach for Large-Scale Link Discov-
ery on the Web of Data. In: Proceedings of IJCAI. pp. 2312–2317. IJCAI/AAAI (2011)

10. Symeonidou, D., Armant, V., Pernelle, N.: BECKEY: understanding, comparing and dis-
covering keys of different semantics in knowledge bases. Knowledge-Based Systems 195
(2020)

11. Volz, J., Bizer, C., Gaedke, M., Kobilarov, G.: Silk - A Link Discovery Framework for the
Web of Data. In: Proceedings of the WWW2009 Workshop on Linked Data on the Web
(LDOW). CEUR Workshop Proceedings 538 (2009)


