Nacira Abbas 
email: nacira.abbas@inria.fr
  
Alexandre Bazin 
email: alexandre.bazin@loria.fr
  
Jérôme David 
email: jerome.david@inria.fr
  
Amedeo Napoli 
email: amedeo.napoli@loria.fr
  
Sandwich: An Algorithm for Discovering Relevant Link Keys in an LKPS Concept Lattice

come   L'archive ouverte pluridisciplinaire

Introduction

Linked data are structured data expressed in the RDF (Resource Description Framework) model where resources are identified by Internationalized Resources Identifiers (IRIs) [START_REF] Heath | Linked Data: Evolving the Web into a Global Data Space[END_REF]. Data interlinking is a critical task for ensuring the wide use of linked data. It consists in finding pairs of IRIs representing the same entity among different RDF datasets and returning a set of identity links between these IRIs. Many approaches have been proposed for data interlinking [START_REF] Volz | Silk -A Link Discovery Framework for the Web of Data[END_REF][START_REF] Ngomo | LIMES -A Time-Efficient Approach for Large-Scale Link Discovery on the Web of Data[END_REF][START_REF] Nentwig | A survey of current Link Discovery frameworks[END_REF][START_REF] Symeonidou | BECKEY: understanding, comparing and discovering keys of different semantics in knowledge bases[END_REF]. In this paper, we focus on the discovery of link keys [START_REF] Atencia | Data interlinking through robust linkkey extraction[END_REF]. Link keys extend the notion of a key as used in databases and allow the inference of identity links between RDF datasets. A link key is based on two sets of pairs of properties and a pair of classes. The pairs of properties express sufficient conditions for two subjects, instances of the classes, to be the identical. The link key k = ({ designation, titre }, { designation, titre , author, auteur }, Book, Livre ) states that whenever an instance a 1 from the class Book and an instance b 1 from the class Livre have the same values for the property designation and for the property titre, and that a 1 and b 1 share at least one value for the properties author and auteur, then a 1 and b 1 denote the same entity. We say that a link key k generates the identity link a 1 , b 1 .

Link keys are in general not provided and they have to be discovered in the datasets under study. The discovery of link keys consists in extracting link key candidates from a pair of datasets and then to evaluate their relevance for the interlinking task. The relevance of a given link key is measured w.r.t. two criteria, (i) correctness, and (ii) completeness.

Link key candidates correspond to closed sets of a specific Galois connection. For this reason the question of using Formal Concept Analysis (FCA) [START_REF] Ganter | Formal Concept Analysis: Mathematical Foundations[END_REF] to discover link keys was naturally raised [START_REF] Atencia | What can FCA do for database linkkey extraction?[END_REF]. In [START_REF] Atencia | Link key candidate extraction with relational concept analysis[END_REF] authors proposed a formal context for the discovery of link key candidates for a given pair of classes. However, when there is no alignment between classes, the choice of the right pair of classes is not necessarily straightforward. To overcome this limitation, a generalization of link key discovery based on Pattern Structures [START_REF] Ganter | Pattern Structures and Their Projections[END_REF] was proposed in [START_REF] Abbas | Discovery of Link Keys in RDF Data Based on Pattern Structures: Preliminary Steps[END_REF]. The authors introduced a specific pattern structure for link key candidate discovery over two datasets D 1 and D 2 called LK-pattern structure without requiring an a priori alignment. An LKPS-lattice is the lattice of pattern concepts generated from an LK-pattern structure. Each concept intent is a link key candidate and each extent is the link set generated by the link key in the intent.

The size of an LKPS-lattice may be prohibitively large and not all link key candidates are relevant for the interlinking task. Our purpose in this paper is to identify the relevant link keys in the LKPS-lattice and to discard the irrelevant ones. The evaluation criteria of a link key candidate, i.e., completeness and correctness, are based on adapted evaluation measures that can be used for selecting the relevant link keys, i.e., the value taken by a candidate for such a measure is above a given threshold. The evaluation measures should also be monotone, i.e., increasing or decreasing, w.r.t. the order of the LKPS-lattice. Moreover, completeness and correctness verify an "inverse" relationship, as correctness tends to decrease when completeness increases. In this paper we rely on this observation and we show that the upper part of an LKPS-lattice contains the most complete but the least correct link keys, while the lower part of the LKPS-lattice contains the most correct but the least complete link keys.

Starting from this observation, we introduce an original pruning strategy combining a "bottom-up" and a "top-down" pruning strategies, while the most relevant link key candidates are lying "in the middle" and achieve the best compromise between completeness and correctness. Accordingly, we propose the Sandwich algorithm that traverse and prune the LKPS-lattice w.r.t. two measures estimating correctness and completeness. The input of this algorithm is an LKPS-lattice, a correctness measure and a threshold, and as well a completeness measure and a threshold. The output of the Sandwich algorithm is a poset of relevant link key candidates. To the best of our knowledge, this is the first time that such an algorithm is proposed for selecting the best link key candidates w.r.t. adapted measures. In addition, this is also an elegant way of taking advantage of the fact that link key candidates correspond to the closed sets of a given Galois connection which is made explicit in the following.

The organization of the paper is as follows. First we make precise definitions and notations, and we briefly present the problem of link key discovery in a pattern structure framework. Then we present the correctness and the completeness of link keys, and the Sandwich algorithm for pruning an LKPS-lattice. Finally we discuss on the benefit of our strategy.

The Discovery of Link Keys with Pattern Structures 2.1 A Definition of Link Keys

We aim to discover identity links among two RDF datasets D 1 and D 2 . An identity link is a statement of the form s 1 , owl:sameAs, s 2 expressing that the subject s 1 ∈ S(D 1 ) and the subject s 2 ∈ S(D 2 ) represent the same real-world entity. For example, given D 1 and D 2 in Figure 1, the data interlinking task should discover the identity link a 1 ,owl:sameAs,b 1 because the subjects a 1 and b 1 both represent the same vaccine "Pfizer-BioNTech". For short, we write a 1 , b 1 and we call this pair a link. A link key is used to generate such links. Let us consider two RDF datasets D 1 and D 2 , two non empty subsets of pairs of properties, namely Eq and In, such that Eq ⊆ P(D 1 ) × P(D 2 ), In ⊆ P(D 1 ) × P(D 2 ), Eq ⊆ In, two class expressions -conjunction or disjunction-C 1 over D 1 and C 2 over D 2 . Then k = (Eq, In, C 1 ,C 2 ) is a "link key" over D 1 and D 2 . An example of a link key is k = ({ type,tech }, { type,tech , name,designation }, Vaccine,Drug ).

A link key may or may not generate links among two datasets as made precise here after. Let k = (Eq, In, C 1 ,C 2 ) be a link key over D 1 and D 2 . The link key k generates a link s 1 , s 2 ∈ S(C 1 ) × S(C 2 ) iff s 1 , s 2 verifies the link key k, i.e. (i) p 1 (s 1 ) and p 2 (s 2 ) should be non empty, (ii) p 1 (s 1 ) = p 2 (s 2 ) for all p 1 , p 2 ∈ Eq, and (iii) p 1 (s 1 ) ∩ p 2 (s 2 ) = / 0 for all p 1 , p 2 ∈ In. The set of pairs of subjects s 1 , s 2 ∈ S(C 1 ) × S(C 2 ) verifying k is called the link set of k and denoted by L(k). As the properties in RDF are not functional, we compare the values of subjects in two ways, (i) Eq are pairs of properties for which two subjects share all their values, and (ii) In are those pairs of properties for which two subjects share at least one value. Then a 1 , b 1 verifies k = ({ type,tech }, { type,tech , name,designation }, Vaccine,Drug ), because a 1 , b 1 ∈ S(Vaccine) × S(Drug), and type(a 1 ) =tech(b 1 ), and name(a 1 )∩designation(b 1 ) = / 0. Algorithms for link key discovery [2,4,1] discover firstly the so-called "link key candidates" and then evaluate each candidate using quality measures. The relevant link key candidates are selected to generate identity links between datasets.

A link key candidate is defined in [START_REF] Atencia | Link key candidate extraction with relational concept analysis[END_REF] as the intent of a formal concept computed within a particular formal context for link key candidate discovery, given pair of classes

C 1 ,C 2 ∈ Cl(D 1 ) × Cl(D 2 ).
Actually, link keys are equivalent w.r.t. their link set, i.e. if two link keys k 1 and k 2 generate the same link set then they are equivalent. Link key candidates are maximal elements of their equivalence classes and thus correspond to closed sets. Moreover, the set of links must not be empty for a link key candidate. This explains the use of Formal Concept Analysis [START_REF] Ganter | Formal Concept Analysis: Mathematical Foundations[END_REF] in the discovery of link key candidate.

However, the pair of classes

C 1 ,C 2 ∈ Cl(D 1 ) × Cl(D 2 )
is not always known in advance and thus a generalization of the existing algorithms based on Pattern Structures was proposed in [START_REF] Abbas | Discovery of Link Keys in RDF Data Based on Pattern Structures: Preliminary Steps[END_REF], as explained in the following.

A Pattern Structure for Link Key Discovery

In a pattern structure designed for the discovery of link key candidates over two datasets [START_REF] Abbas | Discovery of Link Keys in RDF Data Based on Pattern Structures: Preliminary Steps[END_REF], the set of objects is the set of pairs of subjects from the two datasets and the descriptions of objects are potential link keys over these datasets. A link key candidate corresponds to an intent of a pattern concept in the lattice generated from this pattern structure. Moreover the link set of a link key candidate corresponds to the extent of the formal concept. In the following, we do not provide any definition but we recall some important results from [START_REF] Abbas | Discovery of Link Keys in RDF Data Based on Pattern Structures: Preliminary Steps[END_REF]. Moreover, for simplicity, we consider only the In set of pairs of properties in a link key, i.e. k = (In, C 1 ,C 2 ) (as Eq ⊆ In).

The Lk-pattern structure for the datasets in Figure 1 is given in Table 1. The associated concept lattice, called an LKPS-Lattice, is displayed in Figure 2. An example of link key candidate is given by k 2 = ({ name,designation , type,tech }, Vaccine,Drug ), and the related link set is

L(k 2 ) = { a 1 , b 1 , a 2 , b 2 , a 3 , b 3 }.
3 The Pruning of an LKPS-lattice

Correction and Completeness of a Link Key Candidate

Given an LKPS-lattice, we aim at identifying the most relevant link key based on a set of adapted interest measures. Link key relevance depends on two main criteria, namely 1. Fig. 2. The LKPS-lattice generated from the Lk-pattern structure in Table 1. The different colors distinguish the different pairs of classes.

S(D 1 ) × S(D 2 ) In C 1 ,C 2 a 1 , b 1 { name,
S(D 1 ) × S(D 2 ) * k 0 { a 1 , b 2 , a 2 , b 1 , a 1 , b 1 , a 2 , b 2 , a 3 , b 3 } { type,tech } Vaccine,Drug k 1 { a 1 , b 1 , a 2 , b 2 , a 3 , b 3 } { name,designation , type,tech } Vaccine,Drug
"correctness" and "completeness". The correctness of a link key is its ability to generate correct links, while its completeness is its ability to generate all the correct links. Firstly, we start from the hypothesis that the higher the number of pairs of properties for which two subjects s 1 , s 2 share a value is, the greater is the probability that the link s 1 , s 2 is correct. Then the size of the link key candidate k = (In,

C 1 ,C 2 ) is |k| = |In|.
Moreover, the size of link keys is monotone w.r.t the intents of pattern concept intents in an LKPS-lattice.

In [START_REF] Atencia | Data interlinking through robust linkkey extraction[END_REF], the measure of coverage was proposed to evaluate the completeness of a link key candidate. The coverage of a link key k = (In, C 1 ,C 2 ) is defined as follows:

co(k) = |π 1 (L(k)) ∪ π 2 (L(k))|/|S(C 1 ) ∪ S(C 2 )|, where π 1 (L(k)) = {s 1 | s 1 , s 2 ∈ L(k)} and π 2 (L(k)) = {s 2 | s 1 , s 2 ∈ L(k)}.
The coverage is locally monotone, i.e. when the link key candidates are associated with the same pairs of classes, the coverage is monotone w.r.t extents of these candidates in the LKPS-lattice.

Sandwich: an Algorithm for Selecting the Most Relevant Link Key Candidates

Given an LKPS-lattice, we propose the Sandwich algorithm for identifying the relevant link key candidates (intents) and discarding the irrelevant candidates. The input of Sandwich is a LKPS-lattice, a correctness measure σ cor and a minimum threshold µ cor , and a completeness measure σ comp and a minimum threshold µ comp . The output of Sandwich is the poset of all relevant link key candidates. It should be noticed that a link key candidate may be relevant for a given pair of classes and not relevant for another pair, i.e. a given link key candidate may generate all the correct links over a pair of classes and no correct link over another pair. Accordingly, it is more appropriate to identify relevant link keys associated with each pair of classes. Thus, in a first step, Sandwich splits the lattice into sub-lattices where all intents are link key candidates associated with the same pairs of classes. In a second step, Sandwich prunes the sub-lattices based on correctness and completeness measures.

Regarding correctness, Sandwich retains the link key candidates k for which the score of correctness measure σ cor (k) ≥ µ cor . The correctness measure should be monotone w.r.t. the intents in the LKPS-lattice, and the larger intents are at in the "bottom part" of the lattice (w.r.t. the standard concept lattice order). Therefore, the most correct link keys are lying in the lower part of the considered given LKPS-lattice and a "bottomup pruning strategy" is carried out. The intents of the retained concepts correspond to link key candidates k verifying σ cor (k) ≥ µ cor .

The strategy for retaining the complete kink keys is roughly the same, i.e., Sandwich retains link key candidates k for which the score of completeness measure σ comp (k) ≥ µ comp . However, by contrast, the most complete link keys are having the better covering w.r.t. the extents of concepts, which are lying in the "upper part" of a given LKPS-sublattice. This time, a "top-down pruning strategy" is carried out, and the extents of the retained concepts correspond to link key candidates k verifying σ comp (k) ≥ µ comp .

Finally, the Sandwich algorithm retains the concepts which are selected at the same time by both pruning strategies.

For illustrating the pruning strategy 3 , let us consider the example of LKPS(D 3 , D 4 ) displayed in Figure 3. The correctness measure which is monotone w.r.t. intents is the size of the link key and the threshold is set to µ cor = 3 (minimum size). The completeness measure which is monotone w.r.t extents is the coverage of a link key and the threshold is set to µ comp = 0.9 (minimum coverage). For the pair of classes Person,Personne , the bottom-up pruning strategy returns all the pattern concepts whose intent size is greater than 3, i.e., {k 5 , k 6 , k 7 }. The top-down pruning strategy returns all the pattern concepts whose coverage is above 0.9, i.e., {k 4 , k 5 }. Finally, the best link key w.r.t. to both strategies is k 5 , and it can be used to find identity links over the RDF datasets D 

Discussion and conclusion

In this paper, we have studied the problem of the discovery of link keys in an FCA framework. We have proposed an algorithm based on pattern structures which returns a pattern concept lattice where the intent of a pattern concept corresponds to a link key candidate and the associated extent corresponds to the set of links related with the link key candidate. Indeed, FCA and pattern structures are well adapted to study the discovery of link keys above two datasets as link keys can be considered as "closed sets". Actually they are introduced as the maximum element in an equivalence class in [START_REF] Atencia | Link key candidate extraction with relational concept analysis[END_REF]. Making a parallel with equivalence classes of itemsets this emphasizes the fact that a link key corresponds to a closed set. Then, given the pattern concept lattice including all link key candidates, one crucial problem is to select the best link keys, in the same way as one could be interested in some "good concepts" extracted from the lattice to be checked by a domain expert. For that we introduce a set of quality measures that can be used for checking two main properties, namely correctness and completeness of the link keys. As a (pattern) concept lattice is based on duality and two anti-isomorphic orders, the measures of correctness and completeness are also behaving in a dual way. Intuitively, the correctness of a link key measures the capability to generate correct links, and in this way, the largest link key will be among the best link keys (w.r.t. a reference pair of classes). Dually, the completeness of a link key measures the capability to generating the largest set of links, and such a link key will also be among the best link keys (w.r.t. a reference pair of classes). Furthermore, following the duality principle, designing an algorithm able to discover the best link keys, i.e. reaching the best compromise between correctness and completeness, amounts to exploring the pattern concept lattice in both and dual ways, namely top-down and bottom-up. This is precisely the work of the Sandwich algorithm which combines two pruning strategies, a top-down traversal and a bottom-up traversal, for reaching the most complete set of links and at the same time the most correct link key candidates. This is a straightforward illustration of the duality principle in a (pattern) concept lattice. Now, the Sandwich is generic and is able to work with different quality measures as soon as they are monotone or locally monotone. For the next step, we should improve the present research work in a number of directions. First, we should enlarge the collection of measures and include more current measures used in the FCA and data mining communities, such as "stability" or "lift" for example. They could provide interesting directions of investigations for characterizing link keys. Second, we should improve the global traversal strategy and combine the characterization of link key candidates at the construction of the pattern concept lattice if possible. In this way, each pattern concept could be tagged with its characteristics w.r.t. a pair of classes and some quality measures. Finally, we have run a complete set of experiments for validating the current proposal on a real-world basis, and as well check the foundations and improve the algorithmic part of the Sandwich algorithm.

2 Fig. 1 .

 21 Fig. 1. Example of two RDF datasets. On the left-hand side, the dataset D 1 populated with instances of the classes: Vaccine and Organism. On the right-hand side, the dataset D 2 populated with instances of the classes: Drug, Virus and Bacteria.

k 2 { a 4 , b 4 , a 5 , b 5 , a 6 , b 6 , a 7 , b 7 }{ 3 { a 4 , b 4 , a 5 , b 5 }{ 4 { a 4 , b 5 , a 5 , b 4 , a 4 , b 4 , a 5 , b 5 }{ 6 { a 6 , b 6 , a 7 , b 7 }{ 5 P(D 1 )

 244556677344554455444556667751 genus,gen } Organism,(Virus dl Bacteria) k genus,gen , realm,realm } Organism,Virus k realm,realm } Organism,Virus k genus,gen , phylum,taxo } Organism,Bacteria k × P(D 2 ) k 7

Fig. 3 .

 3 Fig. 3. The LKPS-lattice of link key candidate over the datasets D 3 and D 4 .

Table 1 .

 1 designation , type,tech } Vaccine,Drug a 1 , b 2 The Lk-pattern structure over the datasets D 1 and D 2 represented in Figure

		{ type,tech }	Vaccine,Drug
	a 2 , b 2	{ name,designation , type,tech } Vaccine,Drug
	a 2 , b 1	{ type,tech }	Vaccine,Drug
	a 3 , b 3	{ name,designation , type,tech } Vaccine,Drug
	a 4 , b 4	{ genus,gen , realm,realm }	Organism,Virus
	a 4 , b 5	{ realm,realm }	Organism,Virus
	a 5 , b 5	{ genus,gen , realm,realm }	Organism,Virus
	a 5 , b 4	{ realm,realm }	Organism,Virus
	a 6 , b 6	{ genus,gen , phylum,taxo }	Organism,Bacteria
	a 7 , b 7	{ genus,gen , phylum,taxo }	Organism,Bacteria

  3 and D 4 . * country,pays , designation,design , pubCity,villeEdit , fYear,dateF } citizen,nation , birth,ann , fName,prenom , name,nom } citizen,nation , birth,ann , fName,prenom , name,nom , phone,tel } citizen,nation , birth,ann , fName,prenom , name,nom , addr,adr } Person,Personne

	k0	
		k4
	k1 co=0.92 size=1	co=1 size=1
	{ country,pays } Newspaper,Journal	{ citizen,nation } Person,Personne
		k5
	k2	co=1 size=4
	co=0.92 size=3	
	{ country,pays , designation,design , pubCity,villeEdit }	Person,Personne
	Newspaper,Journal	
	k3	
	co=0.69 size=4	
	Newspaper,Journal	
		k6
	co=0.4 size=5
	Person,Personne

{ { { {

This work is supported by the French ANR Elker Project ANR-17-CE23-0007-01.

The datasets and the implementation generating the lattice can be checked at https:// gitlab.inria.fr/nabbas/sandwich\_algorithm