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Abstract

We consider a 3D-2D-1D mixed-dimensional diffusive model in a fractured porous
medium coupling the 1D model along the centerline skeleton of a tubular network, the
2D model on a network of planar fractures and the 3D model in the surrounding matrix
domain. The transmission conditions are based on a potential continuity assumption
at matrix fracture interfaces, and on Robin type conditions at the resolved interfaces
between the tubular network and the matrix and fracture network domains. The dis-
cretization of this mixed-dimensional model is formulated in the Gradient Discretization
framework [1919], which covers a large class of conforming and non conforming schemes
and provides stability and error estimates based on general coercivity, consistency and
limit-conformity properties. As an example of discretization fitting this framework, the
mixed-dimensional version of the Vertex Approximate Gradient (VAG) scheme is devel-
oped. It is designed to allow non conforming meshes at the interface between the 1D
and 3D-2D domains, to provide local flux expressions and to be asymptotic preserving
in the limit of high transfer coefficients. Numerical experiments are provided on analyt-
ical solutions for simplified geometries which confirm the theoretical results. Using its
equivalent Finite Volume formulation, the VAG discretization is extended to a drying
mixed-dimensional model coupling the Richards equation in a fractured porous medium
and the convection diffusion of the vapor molar fraction along the 1D domain. It is
applied to simulate the drying process between an operating tunnel and a radioactive
waste storage rock with explicit representation of the fractures in the excavated damaged
zone.

Keywords: Mixed-dimensional model, Discrete Fracture Matrix model, Tubular net-
work, Darcy flow, Drying model, Resolved interface method, Gradient Discretization,
Vertex Approximate Gradient scheme, Finite Volume.

MSC2010 classification:

1 Introduction

Efficient and accurate models describing flow and transport processes in porous media with
embedded tubular network systems are of utmost importance in several areas. A non ex-
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haustive list of applications includes liquid or gas flow between a well and a reservoir [2727, 1313],
blood flow through vascularized tissue [2525, 4444, 4848, 3535, 1515, 2626, 3737, 4343], the modelling of the
effect of steel components to reinforce concrete structures in civil engineering [4040], the source
reconstruction of electroencephalography [2020], or plant root system growing in soil [3131, 3434, 3636].
From a computational perspective, these applications are highly challenging to simulate due
to the scale disparity between the tubular and the surrounding domains.

To partially overcome this complexity, a reduction of dimension is usually performed
for tubular networks with large longitudinal dimension compared with their section size.
It leads to mixed-dimensional models coupling the 1D reduced model along the centerline
skeleton of the tubular network to the 3D model in the embedding bulk domain. Such mixed-
dimensional models differ in the way the coupling terms are modelled at the interface Γ
between the tubular network and the embedding bulk domain, based on transfer coefficients.
Implicit interface methods do not resolve the interface Γ and approximate the coupling terms
either as a line source [2929, 1515, 1414, 1212, 2828, 55], a surface source [3838, 3939] or a volumetric source
[3535]. These type of methods allow a simple meshing procedure of the bulk domain possibly
independent of the tubular network. They are adapted to highly complex networks but can
suffer from approximation errors in case of high gradients at the interface. On the other
hand explicit interface methods require to build a mesh resolving the interface but include
fewer modelling assumptions and can capture highly nonlinear behavior at the interface [3333].

This work focuses on explicit interface methods [3333]. This is motivated by our applica-
tion to drying processes at the interface between operating tunnels and radioactive waste
storage requiring a high resolution at a scale much smaller than the tunnel radius to cap-
ture accurately the liquid pressure gradient [1010]. This application also motivates to take
into account a network of fractures in the so-called excavated damaged zone (EDZ) at the
interface between the tunnel and the porous storage rock. We consider the reduced model
for which the fractures are represented as interfaces of codimension one immersed in the
surrounding matrix domain. To fix ideas, the solution is considered continuous at matrix
fracture interfaces assuming that the fractures act as drains [11, 22, 66, 4545, 77] as opposed to
discontinuous models at matrix fracture interfaces for fractures acting either as drains or
barriers [2424, 3030, 33, 88, 3232, 4242].

This leads to a mixed-dimensional model coupling the 3D model in the matrix, the 2D
model in the fracture network and the 1D model along the centerline skeleton. In order
to simplify the presentation and focus on the difficulties raised by the coupling with the
fractures, we consider in what follows a domain defined by an hollow cylinder with a single
cylindrical tube and a network of planar fractures. Note however that the framework and
discretization investigated in this work readily extend to more complex domains and tubu-
lar networks provided that a surjective mapping from the interface Γ to the 1D centerline
skeleton is defined; see [3333] and references therein.

The core of this work deals with the mixed-dimensional 3D-2D-1D diffusive model. We
first define the functional setting including the potential and the flux function spaces and
we state density results for their respective smooth function subspaces that will be used for
the subsequent numerical analysis. A key difficulty of this functional analysis framework is
related to the intersections between the fractures and the interface Γ. Then, the Gradient
Discretization (GD) of the mixed-dimensional model is defined. This framework introduced
in [1919] is based on abstract vector spaces of discrete unknowns as well as on abstract re-
construction operators for the functions and their gradients. Based on general coercivity,
consistency and limit conformity properties, it derives stability and error estimates for the
discrete variational approximation of the model. Note that the GD framework accounts for
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both conforming and non conforming approximations, which is a key feature in order to
include separate meshes for the porous and tubular domains.

As an example of GD, the 3D-2D-1D mixed-dimensional version of the Vertex Approxi-
mate Gradient (VAG) scheme is then derived. The VAG scheme was introduced in [2323] for
single phase Darcy flow and in [77, 88] for mixed-dimensional Darcy flow in fractured media.
The VAG scheme is roughly speaking a finite volume nodal approximation. Its main ad-
vantage compared with typical nodal finite volume schemes such as Control Volume Finite
Element (CVFE) methods [44] is to avoid the mixing of different material properties inside
the control volumes. This idea is here extended to take into account the coupling with the
1D domain using a 1D finite element mesh non necessarily matching with the porous medium
mesh. The coupling terms at the interface Γ between the 1D domain and both the matrix
and the fractures are discretized based on a simple interpolation operator. It is designed to
provide local flux expressions, leading to an easy extension to more complex physics such as
drying models and to preserve optimal convergence rates. It is also shown to be asymptotic
preserving in the limit of large (convective) transfer coefficients. This mixed-dimensional
VAG scheme is shown to meet the GD properties and to provide first order error estimates
on piece-wise smooth solutions. These theoretical results are investigated numerically based
on analytical solutions built on a simplified geometry including a single fracture either par-
allel or perpendicular to the 1D domain axis. Finally, the VAG discretization is extended
to a simplified drying model coupling the Richards equation in a fractured porous medium
with the convective diffusion of the vapor molar fraction along the tunnel.

The material is organized as follows. In Section 22, we introduce the continuous setting
and describe the equations that govern the mixed-dimensional model along with its weak
formulation. In Section 33 we introduce the discrete setting in the GD framework. In Sec-
tion 44, we formulate the VAG approximation. Section 4.44.4 contains the main theoretical
results of the VAG discretization and Section 55 contains an extensive numerical validation
of the method as well as its application to a nonlinear drying model. Finally, Section 77 is
dedicated to the proofs of theoretical results stated in Sections 33 and 4.44.4. Readers mainly
interested in the numerical recipe and results can skip this section at first reading.

2 The mixed-dimensional model

In this section, we introduce the strong and the weak formulations of the reduced model,
preceded by notation and functional settings.

2.1 Geometry settings

The computational domain represents an excavated tunnel imbedded in a fractured porous
medium. To simplify the notations and focus on the difficulties raised by the fracture net-
work, the porous geometrical domain is assumed to be an hollow cylinder (see Figure 11).
From a mathematical viewpoint, let ω and ωg ⊂ ω be two open, bounded, simply connected
polygonal sets of R2 with Lipschitz boundaries and L > 0 be the excavation length. The
porous medium can be seen as a cylindrical domain Ωp := (0, L)× (ω \ωg) with an axial hole
(0, L)×ωg corresponding to the excavated tunnel, along the x-axis for simplicity. The axis of
the tunnel is denoted by Ωg = (0, L)×{xg}, with xg the center of gravity of ωg to fix ideas.
The porous medium Ωp contains a fracture network Ωf , with Ωf =

⋃
i∈If Ωf,i where for all

i ∈ If , Ωf,i ⊂ Ωp is an open, bounded, simply connected polygonal set included in a plane Pi
of R3. For all i, j ∈ If , i 6= j, we assume that the angles of Ωf,i are strictly smaller than 2π,
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Figure 1: Illustration of the notations introduced in Section 2.12.1. with the 3D porous medium
domain Ωp, the 2D fracture network Ωf and the 1D axis Ωg of the excavated tunnel.

that Ωf,i∩Ωf,j = ∅ and that Ωf ∩∂Ωp = ∅. The matrix domain is denoted by Ωm := Ωp \Ωf .
The interface between the tunnel and the porous medium is denoted by Γ := (0, L) × ∂ωg.
We assume that Dirichlet boundary conditions are imposed on ΓD := ∂Ωp \ Γ. Concerning
the fracture network boundaries, let us set

ΣΓ := ∂Ωf ∩ Γ,

ΣD := ∂Ωf ∩ ΓD,

ΣN := ∂Ωf \ ΣΓ ∪ ΣD,

and let us also denote by Σ the fracture intersections excluding ΣΓ and ΣD (see Figure 11).
The tunnel axis Ωg is readily parametrized in the following by x ∈ (0, L). It results that

a surjective mapping from Γ to Ωg is implicitly defined in what follows by the x coordinate.
Note that an explicit definition of such surjective mapping is the key ingredient in order to
extend the framework to more complex geometries (see e.g. [3333]).

2.2 Functional settings

We denote by H1(Ωf ) the function space of scalar functions on Ωf whose restriction to Ωf,i,
i ∈ If , is in H1(Ωf,i) and whose traces on fracture intersections are continuous. We define
the trace operators γf : H1(Ωp) → L2(Ωf ) and γΓ : H1(Ωp) → L2(Γ), together with the
trace operators from H1(Ωf ) to L2(ΣΓ) and H1(Γ) to L2(ΣΓ), both denoted by γΣΓ

for
convenience. We also define the function space in the porous domain Ωp and its associated
subspace taking into account homogeneous Dirichlet boundary conditions on ΓD and ΣD as

V p := {vp ∈ H1(Ωp) | γfvp ∈ H1(Ωf )}, V p
0 := {vp ∈ V | vp = 0 on ΓD, γfvp = 0 on ΣD}.

The global function space together with its subpace enforcing strongly the homogeneous
Dirichlet boundary conditions are then defined by

V := V p ×H1(Ωg), V0 := V p
0 ×H

1
0 (Ωg).

For any v = (vp, vg) ∈ V , the jump operators across Γ and ΣΓ are denoted by

[[v]]Γ := γΓvp − vg ∈ L2(Γ), [[v]]ΣΓ
:= γΣΓ

γfvp − vg ∈ L2(ΣΓ), (1)

where vg is implicitely extended to Γ (resp. ΣΓ) using the x coordinate mapping from Γ to
Ωg (resp. from ΣΓ to Ωg).
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Denoting by ∇τ the tangential gradient operator, we equip the space V with the following
seminorm

‖v‖2V :=

∫
Ωm

|∇vp(x)|2dx+

∫
Ωf

|∇τγfvp(x)|2dτ(x)+

∫
Γ
[[v]]2Γ(x)dτ(x)+

∫
ΣΓ

[[v]]2ΣΓ
(x)dl(x)+

∫
Ωg

|v′g|2dx.

We can readily prove the following proposition which extends to more general boundary
conditions than the one considered here.

Proposition 2.1 (Norm ‖ · ‖V ). The functional ‖ · ‖V defines a norm on V0

The following density result has been proved in [77, Proposition 2].

Lemma 2.1. The function space defined by C∞
V p0

:= C∞(Ωp)∩ V p
0 is a dense subspace of V p

0

endowed with the norm
(∫

Ωm
|∇vp(x)|2dx+

∫
Ωf
|∇τγfvp(x)|2dτ(x)

) 1
2
.

We now define the function space for the porous medium fluxes

W p :=



qp = (qm, qf ) ∈ H(div; Ωm)× L2(Ωf )2 | (qm · nΓ)|Γ ∈ L
2(Γ),

(qf · nΣΓ
)|ΣΓ
∈ L2(ΣΓ) and there exists rf (qp) ∈ L2(Ωf ) such that∫

Ωm

(qm · ∇v + v div(qm))dx+

∫
Ωf

(qf · ∇τγfv + rf (qp)γfv)dτ(x)

−
∫

Γ
(qm · nΓ)γΓv dτ(x)−

∫
ΣΓ

(qf · nΣΓ
)γΣΓ

v dl(x) = 0 for all v ∈ V p
0


, (2)

and the flux space for the mixed-dimensional diffusion model

W :=



q = (qp, qg) ∈W p × L2(Ωg) | there exists rg(q) ∈ L2(Ωg) such that∫
Γ
(qm · nΓ)vg(x)dτ(x) +

∫
ΣΓ

(qf · nΣΓ
)vg(x)dl(x)

+

∫
Ωg

(qgv
′
g + rg(q)vg)dx = 0 for all vg ∈ H1

0 (Ωg)


, (3)

where nΓ (resp. nΣΓ
) is the unit normal vector to Γ (resp. ΣΓ) oriented outward to Ωm (resp.

Ωf ). In the definition (33) of the space W , the uniqueness of rg(q) is clear and the uniqueness
of rf (qp) is obtained using liftings from the function space C∞c (Ωf,i) to the function space
C∞
V p0

for all i ∈ If . The function space W is an Hilbert space endowed with the following

scalar product: for all (p, q) ∈W ×W

〈p, q〉W :=

∫
Ωm

(pm · qm + div(pm)div(qm)) dx

+

∫
Ωf

(
pf · qf + rf (pp)rf (qp)

)
dτ(x) +

∫
Ωg

(pgqg + rg(p)rg(q)) dx

+

∫
Γ
(pm · nΓ)(qm · nΓ)dτ(x) +

∫
ΣΓ

(pf · nΣΓ
)(qf · nΣΓ

)dl(x).

(4)

Note that the definition (33) of the space W incorporates the physical assumption that the
sum of the normal fluxes at fracture intersections Σ as well as the normal flux at the immersed
fracture boundary ΣN vanish.
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We now define a subspace of smooth functions in W . Let us denote by (x̂k)k∈SΣΓ
the

sequence of points x̂k ∈ Ωg such that the one-dimensional measure of the set ({x̂k}×∂ωg)∩ΣΓ

is nonzero, and for all k ∈ SΣΓ
, by Hk(·) the Heaviside step function on Ωg such that

Hk(x) = 0 if x < x̂k and Hk(x) = 1 otherwise. Then, we set

C∞W :=


(qm, qf , qg) | qm ∈ C∞(Ωm)3, qf ∈ C∞(Ωf )2,

qg −
∑
k∈SΣΓ

(∫
({x̂k}×∂ωg)∩ΣΓ

qf · nΣΓ
dl(x)

)
Hk(x) ∈ C∞(Ωg)

 . (5)

Here C∞(Ωm)3 is the space of smooth functions Ωm → R3 whose derivatives of any order
admit finite limits on both sides of Ωf , and C∞(Ωf )2 is the space of functions whose restric-
tions to each Ωf,i is in C∞(Ωf,i)

2 tangent to Ωf,i and satisfying normal flux conservation at
Σ and vanishing normal flux at ΣN .

Lemma 2.2. The function space C∞W is a dense subspace of W .

Proof. See Section 7.17.1.

2.3 Model problem

In the matrix domain Ωm (resp. fracture network Ωf ), we denote by Λm ∈ L∞(Ωp)
3×3 (resp.

Λf ∈ L∞(Ωf )2×2) the diffusion tensor (resp. tangential diffusion tensor) and assume that
there exist λm ≥ λm > 0 (resp. λf ≥ λf > 0) such that

λm|ξ|2 ≤ Λm(x)ξ · ξ ≤ λm|ξ|2 for all ξ ∈ R3 and for a.e. x ∈ Ωp,

(resp. λf |ξ|2 ≤ Λf (x)ξ · ξ ≤ λf |ξ|2 for all ξ ∈ R2 and for a.e. x ∈ Ωf ). On the tunnel side,
we denote by Λg ∈ L∞(Ωg) the longitudinal diffusion coefficient in the tunnel and assume
that λg ≤ Λg(x) ≤ λg for a.e. x ∈ Ωg with λg ≥ λg > 0 two positive constants. We denote

by df ∈ L∞(Ωf ) the width of the fractures, assumed to be such that df ≤ df (x) ≤ df for a.e.

x ∈ Ωf with df ≥ df > 0 two positive constants. The transfer coefficient at the interface Γ

is denoted by Hg ∈ L∞(Γ) and is assumed to verify Hg ≤ Hg(x) ≤ Hg for a.e. x ∈ Γ with

Hg ≥ Hg > 0 two positive constants.
We consider the following mixed dimensional linear diffusion model that consists in seek-

ing u = (up, ug) ∈ V0 and q = (qp, qg) ∈W such that

div(qm) = fm in Ωm,

rf (qp) = df ff in Ωf ,

rg(q) = |ωg|fg in Ωg,

qm = −Λm∇up in Ωm,

qf = −dfΛf∇τγfup in Ωf ,

qg = −|ωg|Λgu′g in Ωg,

(6)

with fm ∈ L2(Ωp), ff ∈ L2(Ωf ), and fg ∈ L2(Ωg) denoting the source terms in the matrix,
the fracture network and the tunnel, respectively. The problem (66) is closed by the following
interface conditions {

qm · nΓ = Hg[[u]]Γ on Γ,

qf · nΣΓ
= dfHg[[u]]ΣΓ

on ΣΓ,
(7)

relating the jumps of the potential at the interface to the porous medium fluxes.
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Remark 2.1 (Continuous model at the porous medium-tunnel interface as a limit case).
We notice that in the limit case Hg → +∞, the transmission conditions (77) reduce to{

[[u]]Γ = 0 on Γ,

[[u]]ΣΓ
= 0 on ΣΓ,

(8)

and recalling the definition (11) of the jump operators [[·]]Γ and [[·]]ΣΓ
, we obtain γΓup = ug

on Γ and γΣΓ
γfup = ug on ΣΓ corresponding to the continuity assumption at the porous

medium-tunnel interface. This is for instance a typical assumption for the gas pressure when
considering a gas free flow model along the tunnel.

The weak formulation of (66)-(77) amounts to find u = (up, ug) ∈ V0 such that∫
Ωm

Λm∇up · ∇vpdx+

∫
Ωf

dfΛf∇τγfup · ∇τγfvpdτ(x) +

∫
Ωg

|ωg|Λgu′gv′gdx

+

∫
Γ
Hg[[u]]Γ[[v]]Γdτ(x) +

∫
ΣΓ

dfHg[[u]]ΣΓ
[[v]]ΣΓ

dl(x)

=

∫
Ωm

fmvpdx+

∫
Ωf

df ff γfvpdτ(x) +

∫
Ωg

|ωg|fgvgdx,

(9)

for all v = (vp, vg) ∈ V0. The existence and uniqueness of a solution to (99) follows from
Proposition 2.12.1 and the Lax Milgram theorem.

3 Gradient Discretization Method

In what follows, for a given domain X of dimension d, we denote by ‖ · ‖X the usual inner
norm on L2(X)l for l ∈ {1, d} without ambiguity.

3.1 Discrete general settings

The gradient discretizationD for the model problem (99) is defined by a vector space of degrees
of freedom XD = XDp ×XDg , its subspace strongly enforcing homogeneous Dirichlet bound-
ary conditions X0

D, and the following set of linear operators: (i) three function reconstruction
operators: ΠDm : XDp → L2(Ωp), ΠDf : XDp → L2(Ωf ) and ΠDg : XDg → L2(Ωg), (ii) three
discrete gradient reconstruction operators: ∇Dm : XDp → L2(Ωp)

3, ∇Df : XDp → L2(Ωf )2

and ∇Dg : XDg → L2(Ωg), and (iii) two jump reconstruction operators: [[·]]D,Γ : XD → L2(Γ)

and [[·]]D,ΣΓ
: XD → L2(ΣΓ). The vector space XD is endowed with the seminorm

‖vD‖2D := ‖∇DmvDp‖2Ωm + ‖∇Df vDp‖
2
Ωf

+ ‖∇DgvDg‖2Ωg + ‖[[vD]]D,Γ‖
2
Γ + ‖[[vD]]D,ΣΓ

‖2ΣΓ
,

(10)
which is assumed to define a norm on X0

D. We now define coercivity, consistency, and limit
conformity properties for sequences of gradient discretizations (Dl)l∈N.

Let CD > 0 be defined by

CD := max
vD∈X0

D\{0}

‖ΠDmvDp‖Ωm + ‖ΠDf vDp‖Ωf + ‖ΠDgvDg‖Ωg
‖vD‖D

. (11)

Definition 3.1 (Coercivity). A sequence of gradient discretizations (Dl)l∈N is said to be
coercive if there exists CP > 0 such that CDl ≤ CP for all l ∈ N.
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We define SD : V0 ×X0
D → R such that, for all u = (up, ug) ∈ V0 and vD = (vDp , vDg) ∈

X0
D,

SD(u, vD) := ‖∇DmvDp −∇up‖Ωm + ‖∇Df vDp −∇τγfup‖Ωf + ‖∇DgvDg − u′g‖Ωg
+ ‖ΠDmvDp − up‖Ωm + ‖ΠDf vDp − γfup‖Ωf + ‖ΠDgvDg − ug‖Ωg
+ ‖[[vD]]D,Γ − [[u]]Γ‖Γ + ‖[[vD]]D,ΣΓ

− [[u]]ΣΓ
‖ΣΓ

,

(12)

and
SD(u) := inf

vD∈X0
D

SD(u, vD). (13)

Definition 3.2 (Consistency). A sequence of gradient discretizations (Dl)l∈N is said to be
consistent if for all u ∈ V0 one has lim

l→+∞
SDl(u) = 0.

Let us define WD : W × X0
D → R such that, for all w = (wm,wf , wg) ∈ W and

vD = (vDp , vDg) ∈ X0
D,

WD(w, vD) :=

∫
Ωm

(wm · ∇DmvDp + ΠDmvDp div(wm))dx

+

∫
Ωf

(wf · ∇Df vDp + ΠDf vDp rf (wp))dτ(x)

+

∫
Ωg

(wg∇DgvDg + ΠDgvDg rg(w))dx

−
∫

Γ
(wm · nΓ)[[vD]]D,Γdτ(x)−

∫
ΣΓ

(wf · nΣΓ
)[[vD]]D,ΣΓ

dl(x),

(14)

and

WD(w) := sup
vD∈X0

D\{0}

|WD(w, vD)|
‖vD‖D

. (15)

Definition 3.3 (Limit conformity). A sequence of gradient discretizations (Dl)l∈N is said
to be limit conforming if for all w ∈W one has lim

l→+∞
WDl(w) = 0.

3.2 Application to the model problem

The gradient discretization D of (99) reads: Find uD = (uDp , uDg) ∈ X0
D such that∫

Ωm

Λm∇DmuDp · ∇DmvDpdx+

∫
Ωf

dfΛf∇DfuDp · ∇Df vDpdτ(x)

+

∫
Ωg

|ωg|Λg∇DguDg∇DgvDgdx+

∫
Γ
Hg[[uD]]D,Γ[[vD]]D,Γdτ(x)

+

∫
ΣΓ

dfHg[[uD]]D,ΣΓ
[[vD]]D,ΣΓ

dl(x)

=

∫
Ωm

fmΠDmvDpdx+

∫
Ωf

df ffΠDf vDpdτ(x) +

∫
Ωg

|ωg|fgΠDgvDgdx,

(16)

for all vD = (vDp , vDg) ∈ X0
D. , we get the following results ensuring the well posedness of

(1616) and providing a priori error estimates.
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Theorem 3.1 (Well-posedness). Let

D =
(
X0
D,∇Dm ,∇Df ,∇Dg ,ΠDm ,ΠDf ,ΠDg , [[·]]D,Γ , [[·]]D,ΣΓ

)
be a gradient discretization of the model problem (99), then the discrete formulation (1616) has
a unique solution uD ∈ X0

D. Moreover, the solution uD ∈ X0
D satisfies the a priori estimate

‖uD‖D ≤
CD

min(λm, λfdf , |ωg|λg, Hg, dfHg)

(
‖fm‖Ωm + ‖df ff‖Ωf + ‖|ωg|fg‖Ωg

)
.

Proof. For any solution uD ∈ X0
D of (1616), setting vD = uD in (1616), and using the Cauchy

Schwarz inequality, the definition (1111) of CD, and the assumption that ‖.‖D defines a norm on
X0
D, we obtain the a priori estimate and hence the existence and uniqueness of a solution.

Theorem 3.2 (Error estimates). Let u = (up, ug) ∈ V0 be the solution of (99) and let
us set q = (qp, qg) = (−Λm∇up,−dfΛf∇τγfup,−|ωg|Λgu′g) ∈ W . Let D be a gradient
discretization of (99), and let uD ∈ X0

D be the solution of (1616). Then, there exist two positive
constants C1, C2 > 0 depending only on the physical parameters such that

‖∇DmuDp −∇up‖Ωm + ‖∇DfuDp −∇τγfup‖Ωf + ‖∇DguDg − u′g‖Ωg
+ ‖[[uD]]D,Γ − [[u]]Γ‖Γ + ‖[[uD]]D,ΣΓ

− [[u]]ΣΓ
‖ΣΓ
≤ C1SD(u) + C2WD(q).

(17)

Moreover, there exist two positive constants C3, C4 > 0 depending only on CD and the physical
parameters such that

‖ΠDmuDp − up‖Ωm + ‖ΠDfuDp − γfup‖Ωf + ‖ΠDguDg − ug‖Ωg
≤ C3SD(u) + C4WD(q).

(18)

Proof. The two results (1717) and (1818) are obtained using the same arguments as in [1717, Section
1.2], therefore the proof is omitted for sake of brevity.

4 VAG discretization

We extend here the VAG discretization of [2323] for diffusion problem adapted to general
meshes and heterogenous anisotropic media to our model problem (99).

4.1 Mesh

4.1.1 The porous medium

The VAG method is built upon a polyhedral mesh of the domain Ωp defined by prescribing
a set of mesh elements M, a set of mesh faces F , a set of mesh edges E and a set of mesh
vertex indices V; we refer to [77, Definition 1] for a rigorous definition of those sets. For all
κ ∈ M, we denote by Fκ, Eκ and Vκ the set of faces, edges and vertex indices of the cell
κ, respectively. For all σ ∈ F , we denote by Mσ the set of cells sharing the face σ, and
by Eσ and Vσ the set of edges and vertex indices of the face σ, respectively. For all e ∈ E ,
we denote by Me and Fe, the set of cells and faces, respectively, sharing the edge e, and
by Ve the set of vertex indices of e. For all s ∈ V, we denote by Ms, Fs and Es the set of
cells, faces and edges sharing the vertex xs, respectively. Let hκ (respectively hσ) denot the
diameter of the mesh element κ ∈ M (respectively mesh face σ ∈ F). The porous medium
meshsize is defined by hM = maxκ∈M hκ.

9
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Figure 2: Illustration of notations introduced in Section 4.14.1.

Assumption 4.1 (Mesh regularity). We assume that for all κ ∈ M and all σ ∈ F , there
exist the so-called centers of κ and σ, respectively denoted by xκ ∈ κ and xσ ∈ σ, so that
both κ and σ are star-shaped with respect to their respective center.

Assumption 4.14.1 implies that the porous medium mesh admits a particular matching tetra-
hedral submesh T = {Tκ,σ,e}κ∈M,σ∈Fκ,e∈Eσ , where for any κ ∈ M, σ ∈ Fκ and e ∈ Eκ, the
tetrahedron Tκ,σ,e ∈ T is defined by the cell center xκ and the triangular base Tσ,e ⊂ σ,
which in turn is defined by the face center xσ and the vertices (xs)s∈Ve ; see Figure 22. The
families of tetrahedral submeshes will be assumed in the following to be shape regular in the
sense that the shape regularity parameter defined by

θT = max
T∈T

hT
ρT
,

remains uniformly bounded, where hT is the diameter and ρT is the insphere diameter of T .
Together with Assumption 4.14.1, the shape regularity of the mesh sequence also implies that
the maximum number of vertices of any mesh element remains bounded.

Assumption 4.2 (Geometric compliance). The porous medium mesh is assumed to be con-
forming with respect to the fracture network Ωf , to the Dirichlet boundary ΓD, and to the
interface Γ, i.e. there exist subsets Ff ,FΓ,FD ⊂ F and EΣΓ

, EΣD , EΣN ⊂ E such that

Ωf =
⋃
σ∈Ff

σ, Γ =
⋃
σ∈FΓ

σ, ΓD =
⋃

σ∈FD

σ, ΣΓ =
⋃

e∈EΣΓ

e, ΣD =
⋃

e∈EΣD

e, ΣN =
⋃

e∈EΣN

e.

We also define the following subsets of vertex indices:

Vf =
⋃
σ∈Ff

Vσ, VΓ =
⋃
σ∈FΓ

Vσ, VΣΓ
=
⋃
e∈EΓ

Ve, VD =
⋃

σ∈FD

Vσ \ VΓ.

Note that VD and VΓ must be such that VD ∩ VΓ = ∅ and that our choice above assumes
VD ∩ Γ = ∅ to fix ideas.

According to the context and with a slight abuse of notation, we will denote by |X| either
(i) the Lebesgue dX -dimensional measure of X when X ⊂ Ωp of dimension dX , or (ii) the
cardinal of X when X is a finite collection of objects.

4.1.2 The tunnel

On the tunnel side, the finite element method is built upon a nonconforming (with respect
to the interface nodes) one-dimensional mesh of Ωg defined prescribing a set of tunnel mesh
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elements G and a set of tunnel vertex indices VG . The set of tunnel mesh elements

G = {Im = (xm, xm+1)}m∈{0,··· ,mL},

denotes the finite collection of open disjoint line segments given by (mL + 2) vertices in Ωg

such that x0 = 0, xmL+1 = L and xm < xm+1 for all m ∈ {0, · · · ,mL}. The set of tunnel
vertex indices VG = {0, · · · ,mL+1} is a finite collection of indices m associated with vertices
xm. The dual mesh of G is denoted by

G? = {I?m = (xm−1/2, xm+1/2)}m∈{1,··· ,mL},

and defined by the finite collection of open disjoint line segments given by mL+ 1 vertices in
Ωg such that x1/2 = 0, xmL+1/2 = L and xm+1/2 = (xm+xm+1)/2 for all m ∈ {1, · · · ,mL − 1}.
Finally, we set hm = |xm+1 − xm| for all m ∈ {0, · · · ,mL} and hG = maxm∈{0,··· ,mL} hm.

Remark 4.1 (Nonconforming meshes at the interface Γ). We stress that we do not assume
here the geometric compliance at the interface Γ between the porous medium and the tunnel,
which would require that {xs | s ∈ VΓ} = {xm | m ∈ VG}. That way, the meshing procedure
of the porous medium and the tunnel can be carried out completely independently.

4.2 Discrete settings

In this section, we define the degrees of freedom (DOFs), mapping and direcrete reconstruc-
tion operators underlying the VAG method.

4.2.1 Degrees of freedom and mapping operators

We define the vector spaces of the porous medium and tunnel DOFs as

XDp :=
{(

(vκ)κ∈M, (vs)s∈V , (vσ)σ∈Ff
)
∈ R|M|+|V|+|Ff |

}
, XDg := {(vm)m∈VG ∈ R|VG |}.

(19)
Those DOFs are localized at the cell centers (xκ)κ∈M, fracture face centers (xσ)σ∈Ff and
nodes (xs)s∈V of the porous medium mesh, and at the tunnel vertices (xm)m∈VG . The global
vector space of DOFs is denoted by XD and is defined by the cartesian product of the vector
spaces

XD := XDp ×XDg . (20)

We also define the vector subspace of XD with strongly enforced homogeneous Dirichlet
boundary conditions on ΓD, ΣD and on the tunnel boundary nodes x ∈ {0, L}

X0
D := {vD ∈ XD | vs = 0 for all s ∈ VD, and v0 = vmL+1 = 0}. (21)

Then, we define the interpolation operators PDp : C0(Ωp) → XDp and PDg : C0(Ωg) → XDg
such that, for all ϕp ∈ C0(Ωp) and all ϕg ∈ C0(Ωg),

PDpϕp =
(
(ϕp(xκ))κ∈M, (ϕp(xs))s∈V , (ϕp(xσ))σ∈Ff

)
PDgϕg =

(
(ϕg(xm))m∈VG

) (22)

and we denote by PD : C0(Ωp)×C0(Ωg)→ XD the global operator defined such that PDϕ =
(PDpϕp,PDgϕg) for any ϕ = (ϕp, ϕg) ∈ C0(Ωp)× C0(Ωg).
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4.2.2 Discrete reconstruction operators

In this section we introduce the reconstruction operators underlying the VAG discretization.
The key ingredient lies in the definition of the discrete jump operators which must account
for the mesh nonconformity at the porous medium-tunnel interface. They are chosen such
that (i) they lead to local expressions of the interface fluxes, (ii) they are readily extended to
more complex geometries using the surjective mapping from Γ to Ωg, (iii) the limit scheme
obtained for Hg → +∞ provides a first order accurate discretization of the limit model (see
Remark 2.12.1).

Function reconstruction operators. First, we define the following partition of each cell
κ ∈M and each fracture face σ ∈ Ff

κ = ωκ
⋃  ⋃

s∈Vκ\(VD∪VΓ∪Vf )

ωκ,s

, σ = ωσ
⋃  ⋃

s∈Vσ\(VD∪VΓ)

ωσ,s

.
The piecewise constant function reconstruction operators are defined in the matrix ΠDm :
XDp → L2(Ωp), in the fracture network ΠDf : XDp → L2(Ωf ) and in the tunnel ΠDg :
XDg → L2(Ωg), and are such that

∀vDp ∈ XDp , ΠDmvDp(x) =

{
vκ for all x ∈ ωκ, κ ∈M,
vs for all x ∈ ωκ,s, κ ∈M, s ∈ Vκ \ (VD ∪ VΓ ∪ Vf ),

(23a)

ΠDf vDp(x) =

{
vσ for all x ∈ ωσ, σ ∈ Ff ,
vs for all x ∈ ωσ,s, σ ∈ Ff , s ∈ Vσ \ (VD ∪ VΣΓ

),
(23b)

∀vDg ∈ XDg , ΠDgvDg(x) = vm for all x ∈ I?m, I?m ∈ G?. (23c)

Note that ΠDmvDp does not depend on vs for all s ∈ Vf ∪ VΓ and that ΠDmvDf does not
depend on vs for all s ∈ VΣΓ

. This choice avoids the mixing of matrix and fracture quantities
in the control volumes located at nodes xs for all s ∈ Vf , as well as the mixing of porous
medium and tunnel quantities in the control volumes located at nodes xs for all s ∈ VΓ.
This a crutial property for the extension of the scheme to transport models such as the one
presented in Section 5.25.2.

Gradient reconstruction operators. We then define the global spaces of continuous
piecewise affine functions on the tetrahedral submesh T as P1(T ) :=

{
v ∈ C0(Ωp) | v|T ∈ P1(T ) ∀T ∈ T

}
and on the tunnel mesh G as P1(G) :=

{
w ∈ C0(Ωg) | w|Im ∈ P1(Im) ∀Im ∈ G

}
. The contin-

uous piecewise affine function reconstruction operators in the porous medium and in the
tunnel, respectively denoted by ΠT : XDp → P1(T ) and ΠG : XDg → P1(G), are defined such
that

∀vDp ∈ XDp , ΠT vDp(xκ) = vκ for all κ ∈M,

ΠT vDp(xs) = vs for all s ∈ V,

ΠT vDp(xσ) =

{
vσ for all σ ∈ Ff
|Vσ|−1

∑
s∈Vσ vs for all σ ∈ F \ Ff

,

∀Dg ∈ XDg , ΠGvDg(x) =
∑
m∈VG

ηgm(x)vm for all x ∈ Ωg,

(24)
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Figure 3: Example of lumped basis function supports for a face σ ∈ FΓ. The supports are
such that |σΓ,si ∩ σ| =

∫
σ η

p
si(x)dτ(x) for i ∈ {1, 2, 3}, where ηpsi is the nodal basis function

of ΠTXDp associated to si.

where, ηgm(·), m ∈ VG denotes the nodal finite element basis of the finite element space P1(G).
We then define the gradient reconstruction operators in the matrix ∇Dm : XDp → L2(Ωp)

3,
in the fracture network ∇Df : XDp → L2(Ωf )2 and in the tunnel ∇Dg : XDg → L2(Ωg) such
that

∀vDp ∈ XDp , ∇DmvDp := ∇ΠT vDp , (25a)

∇Df vDp := ∇τγfΠT vDp , (25b)

∀vDg ∈ XDg , ∇DgvDg(x) := (ΠGvDg)
′. (25c)

Jump reconstruction operators. Finally, we introduce the discrete counterparts of the
jump operators [[·]]Γ and [[·]]ΣΓ

. In the spirit of [88, Section 4.1] and in order to obtain a local
expression of the interface fluxes, the traces of the finite element basis functions are lumped
in order to define jump operators as piecewise constant function reconstructions on dual
meshes of FΓ and EΣΓ

. Let us denote by (σΓ,s)s∈VΓ
and (eΣΓ,s)s∈VΣΓ

the supports of the
lumped basis functions; see, e.g. Figure 33.

Note that the lumping of the basis functions is such that, for any vDp ∈ XDp

∫
σ

γΓΠT vDp −
∑
s∈VΓ

vs1σΓ,s

 dτ(x) = 0 ∀σ ∈ FΓ, (26a)

∫
e

γΣΓ
γfΠT vDp −

∑
s∈VΣΓ

vs1eΣΓ,s

dl(x) = 0 ∀e ∈ EΣΓ
, (26b)

where 1X denotes the characteristic function defined on X. Then, the jump operators are
defined by

[[vD]]D,Γ =
∑
s∈VΓ

(vs −ΠGvDg(xs))1σΓ,s , [[vD]]D,ΣΓ
=
∑

s∈VΣΓ

(vs −ΠGvDg(xs))1eΣΓ,s
, (27)

For all m ∈ VG and all s ∈ VΓ, we wil use the notation ηgm,s := ηgm(xs) for the evaluation of
the tunnel basis function ηgm(·) at the x-coordinate of the node xs = (xs, ys, zs).

4.3 Discrete variational and finite volume formulations

In this section, we derive the equivalent finite volume formulation of the VAG discretization
(1616). It will be used for the extension of the discretization to the drying model presented in
Subsection 5.25.2.
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4.3.1 Discrete variational formulation

The discrete variational formulation of the model problem (99) is directly given by (1616)
using the vector space of DOFs (2121), the function reconstruction operators (2323), the discrete
gradient reconstruction operators (2525) and the jump reconstruction operators (2727).

4.3.2 Finite volume formulation

In order to write the equivalent finite volume formulation of (1616), let us define for all uDp ∈
XDp the matrix fluxes

Vκ,ν(uDp) =
∑
ν′∈Ξκ

T ν,ν
′

κ (uκ − uν′), with T ν,ν
′

κ =

∫
κ

Λm∇ηpν · ∇η
p
ν′dx. (28)

connecting each cell κ ∈ M to its DOFs ν ∈ Ξκ := Vκ ∪ (Fκ ∩ Ff ). The transmissivities

T ν,ν
′

κ are defined above using the nodal finite element basis of ΠTXDp denoted by ηpν , ν ∈
M∪ V ∪ Ff . Similarly, the fracture fluxes defined by

Vσ,s(uDp) =
∑
s′∈Vσ

T s,s′
σ (uσ − us′), with T s,s′

σ =

∫
σ
dfΛf∇τγfηps · ∇τγfη

p
s′dτ(x), (29)

connect each fracture face σ ∈ Ff to its nodes xs with s ∈ Vσ. On the tunnel side, we
similarly define for all uDg ∈ XDg the fluxes

Vm,m+1(uDg) = Tm+ 1
2
(um − um+1), with Tm+ 1

2
=
|ωg|
h2
m

∫ xm+1

xm

Λg(x)dx, (30)

connecting the node xm to xm+1 for all m ∈ {0, · · · ,mL}. Setting

TΓ,s =

∫
σΓ,s

Hg(x)dτ(x), TΣΓ,s =

∫
eΣΓ,s

df (x)Hg(x)dl(x),

we obtain, for all s ∈ VΓ and all m ∈ VG , the fluxes

V Γ
s,m(uD) =

∑
m′∈VG

ηgm,sη
g
m′,sTΓ,s(us − um′) = ηgm,sTΓ,s

us − ∑
m′∈VG

ηgm′,sum′

,
and, for all s ∈ VΣΓ

and all m ∈ VG , the fluxes

V ΣΓ
s,m(uD) =

∑
m′∈VG

ηgm,sη
g
m′,sTΣΓ,s(us − um′) = ηgm,sTΣΓ,s(us −

∑
m′∈VG

ηgm′,sum′).

Figure 44 illustrates the configuration of these fluxes in the case of a given cell κ with one
fracture face σ.

Let us set for the source terms in the matrix

fm,κ =
1

|ωκ|

∫
ωκ

fm(x)dx, fm,κ,s =
1

|ωκ,s|

∫
ωκ,s

fm(x)dx,

and ακ,s =
|ωκ,s|
|κ| for all κ ∈ M and all s ∈ Vκ \ (VD ∪ VΓ ∪ Vf ). Similarly, we set in the

fracture network

ff,σ =
1

|ωσ|

∫
ωσ

df (x)ff (x)dτ(x), ff,σ,s =
1

|ωσ,s|

∫
ωσ,s

df (x)ff (x)dτ(x),

14



•

•

•

•

•

•

•
xκ

• xs2 = (xs2 , ys2 , zs2)

•

•
(xs1 , ys1 , zs1) = xs1(xs1 , ys1 , zs1) = xs1

•
xσ

•
xm(s1)

• •
xm(s1)+1

•
xm(s2)

• •
xm(s2)+1

xs1xs1 xs2xs2

× × × ×

Vκ,σVκ,σ

Vκ
,s

1

Vκ
,s

1

V
σ
,s

2
V
σ
,s

2

V
Γ

s 1
,m

(s
1
)

V
Γ

s 1
,m

(s
1
)

V
Σ

Γ
s 2
,m

(s
2
)

V
Σ

Γ
s 2
,m

(s
2
)

Figure 4: Geometric representation of the fluxes defined in Section 4.3.24.3.2. The in-
dex m(s) is such that xs ∈ [xm(s), xm(s)+1). The interface fluxes are defined by

V Γ
s1,m(s1) = ηgm(s1),s1

TΓ,s1

(
us1 − η

g
m(s1),s1

um(s1) − η
g
m(s1)+1,s1

um(s1)+1

)
and V ΣΓ

s2,m(s2) =

ηgm(s2),s2
TΣΓ,s2

(
us2 − η

g
m(s2),s2

um(s2) − η
g
m(s2)+1,s2

um(s2)+1

)
.

and ασ,s =
|ωσ,s|
|σ| for all σ ∈ Ff and all s ∈ Vσ \ (VD ∪ VΣΓ

). Then, the discrete formulation

(1616) is equivalent to find uD = (uDp , uDg) ∈ X0
D satisfying the discrete conservation equations

in the porous medium

∑
ν∈ΞK

Vκ,ν(uDp) = (1−
∑

s∈VK\(VD∪VΓ∪Vf )

ακ,s)|κ|fm,κ, ∀κ ∈M,∑
s∈Vσ

Vσ,s(uDp)−
∑
κ∈Mσ

Vκ,σ(uDp) = (1−
∑

s∈Vσ\(VD∪VΓ)

ασ,s)|σ|ff,σ, ∀σ ∈ Ff ,∑
κ∈Ms

−Vκ,s(uDp) =
∑
κ∈Ms

ακ,s|κ|fm,κ,s, ∀s ∈ V \ (VD ∪ VΓ ∪ Vf ),∑
κ∈Ms

−Vκ,s(uDp) +
∑

σ∈Ff,s

−Vσ,s(uDp) =
∑

σ∈Ff,s

ασ,s|σ|ff,σ,s, ∀s ∈ Vf \ (VD ∪ VΣΓ
),∑

κ∈Ms

−Vκ,s(uDp) +
∑
m∈VG

V Γ
s,m(uD) = 0, ∀s ∈ VΓ \ VΣΓ

,∑
κ∈Ms

−Vκ,s(uDp) +
∑

σ∈Ff,s

−Vσ,s(uDp)

+
∑
m∈VG

V Γ
s,m(uD) +

∑
m∈VG

V ΣΓ
s,m(uD) = 0, ∀s ∈ VΣΓ

,

(31)

coupled with the conservation equations in the tunnel for all m ∈ {1, · · · ,mL}

Vm,m+1(uDg)− Vm−1,m(uDg)−
∑
s∈VΓ

V Γ
s,m(uD)−

∑
s∈VΣΓ

V ΣΓ
s,m(uD) =

∫ xm+1/2

xm−1/2

|ωg|fgdx. (32)

4.4 Main results

In this subsection we report the main results of the analysis of the VAG discretization,
postponing the proofs to Section 7.27.2.

Proposition 4.1 (Gradient scheme). For any family of shape regular meshes, the VAG
discretization defined by (2020), (2323), (2525) and (2727) satisfies the Gradient scheme coercivity,
consistency and limit conformity properties in the sense of Definitions 3.13.1, 3.23.2 and 3.33.3.
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It results from Theorem 3.13.1 that the discrete variational formulation (1616), or equivalentely
the finite volume formulation (3131)–(3232) is well-posed. In addition, we have the following
proposition regarding the error estimates.

Proposition 4.2 (Error Estimates). The VAG discretization defined by (2020), (2323), (2525) and
(2727) satisfies the error estimates of Theorem 3.23.2 with SD(u) +WD(q) ≤ C(hM + hG) on
matrix cell-wise, fracture face-wise and tunnel cell-wise smooth solutions, with C depending
on the solution, the geometry, and on the mesh shape regularity parameter.

Some remarks are in order.

Remark 4.2. As stated in Remark 2.12.1, the limit model obtained for Hg → +∞ plays
an important role in practical applications. The limit scheme obtained by passing to the
limit Hg → +∞ in the VAG discretization just amount to restrict the discrete variational
formulation (1616) to the subspace

Xc,0
D = {vD ∈ X0

D | vs = ΠGvDg(xs) for all s ∈ VΓ}.

It is remarkable that this limit scheme can be shown, using similar techniques, to satisfy
coercivity, consistency and limit conformity properties (in the sense of the limit model) and
to be first order accurate on piecewise smooth solutions of the limit model. The proof relies on
a result similar to Lemma 7.47.4 for the Limit conformity property and on a stable lifting [4646]
for the Consistency property. This will be checked numerically in the following numerical
Section.

Remark 4.3. The Hybrid Mimetic Mixed (HMM) discretization is a family of first order
polytopal discretizations based on face and cell unknowns including Mimetic Finite Difference
(MFD) [1111] and Hybrid Finite Volume (HFV) [2222] schemes unified in [1818]. It is extended in
[77] to mixed-dimensional diffusion models including a network of fractures acting as drains.
It can be further extended to our 3D-2D-1D mixed-dimensional model and shown to fit the
Gradient Discretization Method of Section 33. This extension combines the HFV matrix and
fracture function and gradient reconstruction operators defined in [77] with the discretization
XDg , ΠDg , ∇Dg defined by (1919)-(2323)-(25c25c) in the tunnel together with the following jump
reconstruction operators:

[[vD]]D,Γ =
∑
σ∈FΓ

(vσ −ΠGvDg(xσ))1σ, [[vD]]D,ΣΓ
=
∑
e∈EΣΓ

(ve −ΠGvDg(xe))1e.

The proof of the Limit conformity property relies on estimates similar to the ones of Lemma
7.47.4.

5 Numerical results

We provide an extensive numerical validation of the method on a set of model problems.

5.1 Convergence

We start by numerical experiments on a simplified geometry that demonstrate the con-
vergence property of the method. We solve problem (3131)–(3232) using Ωp = (0, 1)3, L = 1,
Ωg = (0, L)×{(−1

2 ,
1
2)}, ω = (−1, 1)×(0, 1), ωg = (−1, 0)×(0, 1) and Γ = (0, 1)×{0}×(0, 1).
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We provide two analytical solutions for two different configurations where the porous medium
is crossed by a single fracture. We consider three mesh families to discretize the porous
medium Ωp, two composed respectively of tetrahedral and regular cubic cells, and one com-
posed of hexahedral cells, with are randomly perturbated nodes. On the tunnel side, we
consider a regular segmentation of Ωg. We monitor the following relative L2(Ωm)-, L2(Ωf )-
and L2(Ωg)-errors:

ε0m :=
‖up −ΠDmuDp‖Ωm

‖up‖Ωm
, ε0f :=

‖γfup −ΠDfuDp‖Ωf
‖γfup‖Ωf

, ε0g :=
‖ug −ΠDguDg‖Ωg

‖ug‖Ωg
,

together with the following relative H1(Ωm)-, H1(Ωf )- and H1(Ωg)-errors:

ε1m :=
‖∇up −∇DmuDp‖Ωm

‖∇up‖Ωm
, ε1f :=

‖∇τγfup −∇DfuDp‖Ωf
‖∇τγfup‖Ωf

, ε1g :=
‖u′g −∇DguDg‖Ωg

‖u′g‖Ωg
,

where u = (up, ug) ∈ V and uD = (uDp , uDg) ∈ XD are the unique solutions of (99) and
(3131)-(3232), respectively, with non homogeneous Dirichlet boundary conditions.

5.1.1 Longitudinal fracture

We consider the fracture Ωf = {x = (x, y, z) ∈ Ωp | z = 1/2} of constant thickness df = 1
intersecting the tunnel along ΣΓ = (0, 1) × {0} × {1/2}. We set the matrix diffusion tensor
Λm = I3, the fracture tangential diffusion tensor Λf = I2, the tunnel diffusion Λg = 1, and
the transfer coefficient Hg = 1. The exact solution is given by

up(x) =

{
ex+y+z + ug(x) if z ≤ 1/2

ex+y+1−z + ug(x) if z > 1/2
, ug(x) = sin(3x), (33)

for all x ∈ Ωp and all x ∈ (0, 1). The source terms are given by

fm(x) =

{
−3ex+y+z + 9 sin(3x) if z ≤ 1/2

−3ex+y+1−z + 9 sin(3x) if z > 1/2
∀x ∈ Ωm,

ff (x) = 9 sin(3x) ∀x ∈ Ωf ,

fg(x) = 9 sin(3x) + 2ex(1− e1/2)− ex+1/2 ∀x ∈ (0, 1).

(34)

We set the number of tunnel mesh elements proportionally to 3
√
|M|+ 1 so as to get non-

conformities at the interface nodes between the porous medium and the tunnel in the sense
of Remark 4.14.1. We display in Figure 55 the L2- and H1-error norms as a function of the
meshsize (hM + hG). For the discretization errors measured in H1-norms, we observe in the
porous medium and in the tunnel convergence rates of order 1 on the tetrahedral meshes
and a super-convergence of order 2 on the regular cubic meshes, except for the error along
the tunnel as a result of the nonconformity. For the perturbed cubic meshes, we observe in
the porous medium as in [77] a non smooth convergence due to the random perturbation of
the porous medium nodes. However, as expected, the convergence rate is globally of order
1. For the discretization errors measured in L2-norms, we observe a convergence of order 2
on the three meshes.
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Figure 5: Errors vs. (hM + hG) on different meshes for the test case of Section 5.1.15.1.1.

5.1.2 Orthogonal fracture

We pursue by considering the fracture Ωf = {x = (x, y, z) ∈ Ωp | x = 1/2} of constant
thickness df = 1 intersecting the tunnel along ΣΓ = {1/2} × {0} × (0, 1). We set the matrix
diffusion tensor Λm = I3, the fracture tangential diffusion tensor Λf = I2, the tunnel
diffusion Λg = (6 cos(3/2))−1(e3/2 − e1/2), and the transfer coefficient Hg = 1. The exact
solution is given by

up(x) =

{
ex+y+z + ug(x) if x ≤ 1/2

e1−x+y+z + ug(x) if x > 1/2
, ug(x) =

{
sin(3x) if x ≤ 1/2

sin(3(1− x)) if x > 1/2
, (35)

for all x ∈ Ωp and all x ∈ (0, 1). The source terms are given by

fm(x) =

{
− 3ex+y+z + 9 sin(3x) if x ≤ 1/2

−3e1−x+y+z + 9 sin(3(1− x)) if x > 1/2
∀x ∈ Ωm,

ff (x) = 6 cos(1/2) ∀x ∈ Ωf ,

fg(x) =

{
Λg9 sin(3x)− ex(e− 1) if x ≤ 1/2

Λg9 sin(3(1− x))− e1−x(e− 1) if x > 1/2
∀x ∈ (0, 1).

(36)

Also in this caseAs before, the number of tunnel mesh elements is proportional to 3
√
|M|+ 1

and the meshes are nonconforming at the interface Γ between the porous medium and the
tunnel. We display in Figure 66 the L2- and H1-error norms as a function of the meshsize
(hM + hG). For the discretization errors measured in H1-norms, we observe convergence
rates of order 1 on the tetrahedral meshes and a super-convergence of order 2 on the regular
cubic meshes, except for the error along the tunnel as a result of the nonconformity. For the
perturbed cubic meshes, we observe the same behavior as the test case of Section 5.1.15.1.1 with
a convergence rate globally of order 1. For the discretization errors measured in L2-norms,
we observe a convergence of order 2 on the three meshes.

5.1.3 Mesh conformity at the interface Γ

Next, we use conforming meshes at the interface Γ between the porous medium and the
tunnel in the sense that {xm,m ∈ VG} = {xs, s ∈ VΓ}. We consider the regular cubic mesh
family and the two latter configurations with longitudinal fracture and exact solution given
by (3333), and orthogonal fracture with exact solution given by (3535). We display in Figure 77
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Figure 6: Errors vs. (hM + hG) on different meshes for the test case of Section 5.1.25.1.2.
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Figure 7: Errors vs. (hM+ hG) on the regular cubic mesh family for the test case of Section
5.1.35.1.3.

the L2- and H1-error norms as function of the meshsize (hM + hG). In this case, we obtain
superconvergence for all the H1-error norms (including ε1g) independently of the fracture
orientation; see, as a comparison, Figure 55 for the longitudinal fracture and Figure 66 for the
orthogonal fracture.

5.1.4 One-sided mesh refinement

We now fix the meshsize of the porous medium or of the tunnel and proceed to a one-sided
mesh refinement on the other region, nonconforming at the interface Γ. We consider the
tetrahedral mesh family and the configuration with orthogonal fracture with exact solution
given by (3333). We first fix the tunnel meshsize hG ∈ {1/8, 1/32} and display in Figure 8a8a the
L2- and H1-error norms as function of the porous medium meshsize hM. As predicted by the
theoretical results, the errors ε0g and ε1g in the tunnel do not increase when the porous medium
mesh is refined. Then, we fix the porous medium meshsize hM ∈ {1.58 · 10−1, 7.32 · 10−2}
and display in Figure 8b8b the L2- and H1-error norms as function of the tunnel meshsize
hG . Also in this case, the errors ε0m and ε1m in the matrix, and ε0f and ε1f in the fracture do
not increase when we refine the tunnel mesh. Those two numerical results confirm that the
errors are not sensitive to the ratio between the tunnel and porous medium meshsizes.
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Figure 8: Errors vs. hM with fixed hG (top) and vs. hG with fixed hM (bottom) for the test
case of Section 5.1.45.1.4.
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5.1.5 Limit case Hg → +∞.

Finally, we study the behavior of the discrete solution when Hg → +∞, that is we set
Hg = 10i with 0 ≤ i ≤ 10. As mentioned in Remark 2.12.1, this limit case amounts to imposing
continuity of the solution at the interface in the sense that γΓup = ug on Γ and γΣΓ

γfup = ug
on ΣΓ. We consider the numerical experiment form [4949, Section 2.2.5] that we recall here
for the sake of completeness. The fracture is given by Ωf = {x = (x, y, z) ∈ Ωp | x = 1/2} of
constant thickness df = 1 intersecting the tunnel along ΣΓ = {1/2}×{0}×(0, 1). The matrix
diffusion tensor is given by Λm = I3, the fracture tangential diffusion tensor by Λf = I2

and the tunnel diffusion coefficient by Λg = (2 sin(1/2)ecos(1/2))−1(sin(1/2)ecos(1/2) − sin(3/2) +
sin(1/2)). The exact solution of the limit problem is given by

up(x) =

{
y cos(x+ y + z) + ecos(x+y) if x ≤ 1/2

y cos(1− x+ y + z) + ecos(1−x+y) if x > 1/2
, ug(x) = up(x, 0, 0), (37)

for all x ∈ Ωp and all x ∈ (0, 1). The source terms are given by

∀x ∈ Ωm, fm(x) =


2ecos(x+y)(cos(x+ y)− sin2(x+ y)) if x ≤ 1/2

+3y cos(x+ y + z) + 2 sin(x+ y + z)

2ecos(1−x+y)(cos(1− x+ y)− sin2(1− x+ y)) if x > 1/2

+3y cos(1− x+ y + z) + 2 sin(1− x+ y + z)

,

∀x ∈ Ωf , ff (x) = ecos(1/2+y)(cos(1/2 + y)− sin2(1/2 + y)

+ y cos(1/2 + y + z) + 2 sin(1/2 + y + z)

∀x ∈ (0, 1), fg(x) =


Λge

cos(x)(sin(x) + cos(x)− sin2(x)) if x ≤ 1/2

+ sin(x)− sin(x+ 1)

Λge
cos(1−x)(sin(1− x) + cos(1− x)− sin2(1− x)) if x > 1/2

+ sin(1− x)− sin(2− x)

(38)

We consider meshes of fixed size that are nonconforming at the interface Γ. We display in
Figure 99 the L2- and H1-error norms as a function of the transfer coefficient Hg on fixed
tetrahedral and Cartesian meshes of respective size hM = 3.84 · 10−2 and hM = 2.71 · 10−2.
On the tunnel side, we consider nonconforming meshes at the interface Γ and the tunnel
meshsize is hG = 8.93 · 10−3 for the tetrahedral porous medium mesh and hG = 1.28 · 10−2

for the cartesian porous medium mesh. In Figure 1010, we fix Hg = 1010 and display the value
of the L2- and H1-error norms as a function of the meshsize (hM + hG) on the tetrahedral
and cartesian mesh families, and set the number of tunnel mesh elements proportionally to
3
√
|M|+ 1 so as to get nonconformities at the interface nodes between the porous medium

and the tunnel. These results confirm as stated in Remark 4.24.2 that the limit scheme has
optimal convergence rates for the solutions of the limit model of Remark 2.12.1.

5.2 Application to a drying model

We extend the Finite Volume formulation (3131)–(3232) to the following drying model coupling
the Richards equation in the fractured porous medium with the convection diffusion of the
vapor molar fraction along the tunnel; see also [4141, 4747, 1616]. The physical domain represents
a quarter of a cylinder with an axial hole along the x-axis corresponding to the excavated
tunnel. Recalling definitions of Section 2.12.1, the porous medium is defined as Ωp = (0, L)×(ω\
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Figure 9: Errors vs. Hg on fixed tetrahedral (left) and cartesian (right) meshes for the test
case of Section 5.1.55.1.5 with fixed hM and hG .

10−1.4 10−1.2 10−1 10−0.8 10−0.6 10−0.4

10−5

10−4

10−3

10−2

10−1

1

1

1

2

Tetrahedral mesh

R
el

at
iv

e
er

ro
rs

ε0m ε0f ε0g ε1m ε1f ε1g

10−1 100
10−6

10−5

10−4

10−3

10−2

10−1

1

1

1

2

Cartesian mesh

Figure 10: Errors vs. (hM + hG) on different meshes for the test case of Section 5.1.55.1.5 with
Hg = 1010.

22



ωg) and the tunnel as Ωg = (0, L)×{xg}, with L = 20, ω = {(y, z) ∈ R∗+×R∗+ |
√
y2 + z2 <

12.5}, ωg = {(y, z) ∈ R∗+ × R∗+ |
√
y2 + z2 < 2.5} and xg = (0, 0). The fracture network is

composed of 10 slighlty inclined fractures, evenly distributed along the x-axis and at equal
distance from each other. The fluxes at the interfaces Γ = (0, L) × (∂ωg ∩ ω) between the
porous medium and the tunnel account for the turbulent boundary layer of the vapor molar
fraction.

We denote by pl : (0, tF ) × Ωp → R the liquid pressure in the porous medium and by
cg : (0, tF ) × Ωg → R the vapor molar fraction in the tunnel with tF = 100 years. Let
rt ∈ {m, f} denote the matrix or fracture rocktype. The liquid saturation as a function
of the liquid pressure is denoted by Slrt : R → R and the liquid relative permeability as
a function of the liquid saturation by klr,rt : R → R. The liquid molar density is fixed to

ζ l = 103/(1.8 · 10−2) mol.m−3 and the liquid dynamic viscosity to µl = 10−3 Pa·s. Using
the fixed gas pressure pg = 105 Pa and temperature T = 303 K, the gas molar density is set
to ζg = pg/RT mol.m−3 with R = 8.314 J.mol−1.K−1. In the matrix, the permeability is
assumed isotropic and set to Λm = 5 ·10−20 m2 and the porosity is φm = 0.15. The fractures
are assumed to be filled only by the gas and liquid phases, the porosity is hence set to φf = 1,
the fracture aperture to df = 1 mm and the tangential permeability is given by the Poiseuille

law Λf =
(df )2

12 . In the tunnel, we denote by v = 0.1 m.s−1 the constant gas velocity, by
Λg = 2 ·10−3 m2.s−1 the turbulent diffusion coefficient, and by Hg = 1.46 ·10−2 mol.m−2.s−1

the molar convective transfer coefficient computed from the Dittus Bolter correlation. The
function c : R→ R computes the vapor molar fraction at the interface Γ and ΣΓ as a function
of the liquid pressure. It is based on the liquid-gas thermodynamical equilibrium for water
assuming the vaporization of the liquid phase at the interface between the porous medium
and the tunnel:

c(pl) :=
psat(T )

pg
e−(pg−pl)/(ζlRT ),

with psat(T ) = 1.013 · 105exp(13.7− 5120/T ) Pa the saturated vapor pressure.
We consider the following mixed-dimensional model coupling the molar conservation

equations and constitutive laws

φmζ
l∂t(S

l
m(pl)) + div(qm) = 0 in (0, tF )× Ωm,

dfφfζ
l∂t(S

l
f (γfp

l)) + rf (qp) = 0 in (0, tF )× Ωf ,

ζg|ωg|∂tcg + rg(q) = 0 in (0, tF )× Ωg,

qm = − ζ
l

µl
klr,m(Slm(pl))Λm∇pl in (0, tF )× Ωm,

qf = −df
ζ l

µl
klr,f (Slf (γfp

l))Λf∇τγfpl in (0, tF )× Ωf ,

qg = ζg|ωg|(vcg − Λg∂xc
g) in (0, tF )× Ωg,

qm · nΓ = Hg(c(γΓp
l)− cg) on (0, tF )× Γ,

qf · nΣΓ
= dfHg(c(γΣΓ

γfp
l)− cg) on (0, tF )× ΣΓ,

(39)

where nΩm (resp. nΩf ) is the unit vector normal to ∂Ωm (resp. ∂Ωf ) and is oriented

outward to Ωm (resp. Ωf ). Initial conditions pl(t = 0) = 4 · 106 Pa in Ωm, pl(t =
0) = pg Pa on Γ, pl(t = 0) = pg Pa in Ωf , pl(t = 0) = pg Pa on ΣΓ, and cg(t =

0) = 1
2
psat(T )
pg mol.m−3 in Ωg along with the following Dirichlet and Neumann bound-

ary conditions pl = 4 · 106 Pa on (0, tF ) × ΓD, cg = 1
2
psat(T )
pg mol.m−3 on (0, tF ) × ∂ΩD

g ,
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Figure 11: Parallelepiped mesh used for the test case of Section 5.25.2.
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Figure 12: Relative humidity average on the interface Γ (left) on the tunnel Ωg (right) vs.
time (in years).

qm ·nΩm = 0 on (0, tF )×ΓN , qf ·nΩf = 0 on (0, tF )×ΣN and qg = 0 on (0, tF )×∂ΩN
g close

the problem, where ΓD := {x ∈ ∂Ωp |
√
y2 + z2 = 12.5}, ΓN := {x ∈ ∂Ωp | x ∈ {0, 20}},

∂ΩD
g := (0, 0, 0) and ∂ΩN

g := (L, 0, 0).
The spacial discretization is based on the Finite Volume formulation (3131) combined with

an upwind approximation of the mobilities in the matrix and fracture Richards equations
and of the convective term in the tunnel. A standard implicit Euler method with an adaptive
time step is used to discretize in time. The initial time step is set to 1 second and increases
by 20% for each convergence of the Newton’s algorithm. The simulation required 190 time
steps, and the Newton’s algorithm never failed to converge with an average of 4.2 iterations
by time step. We display in Figure 1111 the mesh used to discretize the geometry, composed
of 354354 parallelepipedic elements and where each fracture is composed of 585 mesh faces.
We depict in Figure 12a12a and 12b12b the relative humidity average as a function of time on Γ and
in Ωg, respectively, in Figure 1313 the relative humidity on Γ at different time, in Figure 1414
the vapor molar fraction on Ωgat different time, and in Figure 1515 the gas saturation in the
matrix and the fracture network at different time. We can identify four stages of drying:
(i) the first stage appears at the early stage of the simulation, where the relative humidity at
the interface is roughly constant and close to 1; (ii) in the second stage, the gas is entering
the matrix and the molar flow rate on the interface decrease but the fracture stay saturated;
(iii) the third stage is very short and corresponds to the desaturation of fractures that causes
a quick drop of humidity; (iv) the last stage corresponds to the gas spreading into the matrix
leading to convergence towards the steady state with a small but nonzero molar flow rate at
the interface and a relative humidity close to its initial value.
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Figure 13: Evolution of the relative humidity on Γ (time scale expressed in years).
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Figure 14: Evolution of the vapor molar fraction along the tunnel Ωg (time scale expressed
in years).
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Figure 15: Evolution of the gas saturation in the matrix (top) and the fracture network
(right). Displayed times are 0, 3.21 · 10−8, 2.25 · 10−2, 3.89 · 10−2, 6.73 · 10−2, 100 (in years).
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6 Conclusion

We introduced a mixed-dimensional 3D-2D-1D diffusive model accounting for the coupling
between an embedding matrix domain and embedded fracture and tubular networks. The
reduction of dimension for the tubular network is based on a resolved interface formulation.
The transmission conditions assume the continuity of the potential across fractures and
Robin type conditions across the interface Γ between the 3D-2D fractured porous medium
and the 1D centerline of the tubular network.

The discretization of the mixed-dimensional model is formulated in the abstract GD
framework accounting for both conforming and non conforming approximations. It allows
to derive stability and error estimates assuming that the GD verifies generic coercivity,
consistency and limit conformity properties. The VAG scheme, accounting for unstructured
polyhedral meshes, was previously developed for Discrete Fracture Matrix models. It is here
extended to the coupling with the 1D model using a 1D Finite Element discretization possibly
non conforming with the VAG discretization at the interface Γ. It is based on a simple
interpolation operator and a lumping of the VAG basis functions at the tubular interface.
Although the presentation assumes for readability a single cylindrical tube intersected by
the fracture network, the framework and the discretization can be readily extended to more
general tubular networks based on the definition of a surjective mapping from the tubular
network interface to its centerline. The VAG scheme is proven to meet the GD properties
and provide first order error estimates on piece-wise smooth solutions. It is also asymptotic
preserving in the limit of large transfer coefficients. These results are confirmed numerically
on analytical solutions using a simplified geometry based on a plane interface. Exploiting the
VAG equivalent Finite Volume formulation and the local flux expression, the discretization
is extended to a nonlinear drying model coupling the Richards equation in the fractured
porous medium to the convection diffusion of the vapor molar fraction along the 1D domain.
It is successfully applied to simulate the drying process between an operating tunnel and a
radioactive waste storage rock with explicit representation of the fractures in the excavated
damaged zone.

7 Proof of main results

This section gather technical proofs of the main results stated in Section 22 followed by the
ones of Section 4.44.4.

7.1 Proofs of Section 22

We start by proving the Lemma 2.22.2.

Proof of Lemma 2.22.2. We first prove that C∞W ⊂W .
Let us define the two sides ± of the fracture network and the corresponding unit normal

vectors n± on Ωf oriented outward to the sides ±. For all qm ∈ H(div; Ωm), we denote by
γn±qm the two normal traces on the fracture network Ωf .

Let q ∈ C∞W , setting

rf (qp) = divτ (qf )− γn+qm + γn−qm, (40)

with divτ denoting the tangential divergence operator on Ωf , using the density result from
[77, Proposition 3] and an integration by part formula, one has that qp ∈ W p. Then, let
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rg(q) ∈ D′(Ωg) be defined by∫
Ωg

rg(q)ϕdx = −
∫

Ωg

qgϕ
′dx−

∫
Γ
(qm · nΓ)ϕ dτ(x)−

∫
ΣΓ

(qf · nΣΓ
)ϕ dl(x), (41)

for all ϕ ∈ C∞c (Ωg), using implicitly the extension ϕ(x) = ϕ(x) for all x = (x, y, z) ∈ Γ.
From the definition (55) of C∞W , we deduce that rg(q) ∈ L2(Ωg). Using that C∞c (Ωg) is dense
in H1

0 (Ωg), it results that q and rg(q) satisfy (33).
We now prove that C∞W is dense in W . Let ξ ∈ W ′. From the Riesz representation

theorem, there exist am ∈ L2(Ωp), Am ∈ L2(Ωp)
3, af ∈ L2(Ωf ), Af ∈ L2(Ωf )2, ag ∈ L2(Ωg),

Ag ∈ L2(Ωg), and bm ∈ L2(Γ), bf ∈ L2(ΣΓ) such that for all q ∈W

〈ξ, q〉W ′,W =

∫
Ωm

(qm ·Am + am div(qm))dx+

∫
Ωf

(qf ·Af + rf (q)af )dτ(x)

+

∫
Ωg

(qgAg + rg(q)ag)dx−
∫

Γ
(qm · n)bmdτ(x)−

∫
ΣΓ

(qf · nΣΓ
)bfdl(x).

(42)

Let us assume that 〈ξ, q〉W ′,W = 0 for all q ∈ C∞W . Then, the density of C∞W in W is obtained
if this imply that 〈ξ, q〉W ′,W = 0 for all q ∈W . From the definition of W it suffices to prove
that am ∈ V p

0 , Am = ∇am, af = γfam, Af = ∇τaf , ag ∈ H1
0 (Ωg), Ag = a′g, bm = γΓam− ag

and bf = γΣΓ
am − ag. Using [77, Lemma 8], it holds that am ∈ H1(Ωp) with am = 0 on

ΓD, af ∈ H1(Ωf ) with af = 0 on ΣD, Am = ∇am, af = γfam and Af = ∇τaf . Taking
q = (0,0, qg) in (4242) for any qg ∈ C∞(Ωg), it follows that ag ∈ H1

0 (Ωg) with Ag = a′g. Next,

setting q = (qm,0, 0) in (4242) for any qm in C∞(Ωm)3, it follows from the definitions (4141)
and (4040) of rg(q) and rf (qp) that∫

Γ
(qm · n)(γΓam − ag − bm)dτ(x) = 0,

which implies that bm = γΓam − ag. Finally, setting q = (0, qf , 0) ∈ C∞W in (4242), recalling
the definitions (4040) and (4141) of, respectively, rf (q) and rg(qp), it follows that∫

ΣΓ

(qf · nΣΓ
)(γΣΓ

af − ag − bf )dl(x) = 0,

which implies bf = γΣΓ
af − ag, concluding the proof.

7.2 Proofs of Section 4.44.4

7.2.1 Preliminary results

We first recall approximation properties of the interpolators ΠT PDp and ΠGPDg , with ΠT
and ΠG defined in (2424), and PDp and PDg in (2222), stemming from the classical conforming
finite element approximation theory; see e.g. [2121].

Lemma 7.1 (Approximation properties of ΠT and ΠG). For all (ϕp, ϕg) ∈ C2(Ωp)×C2(Ωg),
there exist two positive constants CT (ϕp) and CG(ϕg) depending only on, respectively, ϕp
and the mesh regularity parameter, and ϕg, such that it holds

‖ϕp −ΠT PDpϕp‖Ωm + ‖γfϕp − γfΠT PDpϕp‖Ωf
+hM

(
‖∇ϕp −∇ΠT PDpϕp‖Ωm + ‖∇τγfϕp −∇τγfΠT PDpϕp‖Ωf

)
≤ CT (ϕp)h

2
M,

(43a)

‖ϕg −ΠGPDgϕg‖Ωg + hG‖ϕ′g − (ΠGPDgϕg)′‖Ωg ≤ CG(ϕg)h
2
G . (43b)
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We then recall approximation properties obtained in [99, Lemma 3.4] of the operators
ΠDm , ΠDf and ΠDg defined in (2323), noticing that the shape regularity of T implies the shape
regularity of the triangular submesh of Ωf .

Lemma 7.2 (Approximation properties of ΠDm , ΠDf and ΠDg). There exists three positive
constants Cm, Cf , and Cg depending only on the mesh regularity parameter such that, for
all vD = (vDp , vDg) ∈ XD, it holds

‖ΠDmvDp −ΠT vDp‖Ωm ≤ CmhM‖∇DmvDp‖Ωm (44a)

‖ΠDf vDp − γfΠT vDp‖Ωf ≤ CfhM‖∇Df vDp‖Ωf (44b)

‖ΠDgvDg −ΠGvDg‖Ωg ≤ CghG‖∇DgvDg‖Ωg (44c)

We also state the following Lemma on the equivalence between two gradient discretiza-
tions; see [77, Lemma 1] for a proof.

Lemma 7.3. Let D be the gradient discretization defined by (2020), (2323), (2525) and (2727), and
D̃ be the gradient discretization defined by (2020), (2424), (2525) and (2727). Then, it results from
(4444) that for any shape regular family of meshes, each property (coercivity, consistency or
limit conformity) for D is equivalent to the same property for D̃. In addition, from (4444),
the estimates of the consistency and limit-conformity terms differ only up a first order term
hM + hG.

7.2.2 Proofs of discrete results

From now on and for any mesh element X ∈ M ∪ F ∪ E , we define xX := min{xs | xs =
(xs, ys, zs) for all s ∈ VX} and xX := max{xs | xs = (xs, ys, zs) for all s ∈ VX}.

The following key Lemma compares the P1 Finite Element and piecewise constant recon-
structions of any vDg ∈ XDg on the interfaces Γ and ΣΓ.

Lemma 7.4. For all vDg ∈ XDg , one has the following estimates

‖ΠGvDg −
∑
s∈VΓ

ΠGvDg(xs)1σΓ,s‖Γ ≤ CΓhM‖∇DgvDg‖Ωg , (45a)

‖ΠGvDg −
∑

s∈VΣΓ

ΠGvDg(xs)1eΣΓ,s
‖ΣΓ
≤ CΣΓ

hM‖∇DgvDg‖Ωg , (45b)

with CΓ and CΣΓ
two positive constants independant of hM and hG.

Proof of Lemma 7.47.4. We first prove (45a45a). Let us consider the points (x̃k)0≤k≤NΓ
∈ Ωg

NΓ+1

such that x̃0 = 0, x̃NΓ
= L, x̃k+1 − x̃k = hM for all k ∈ {0, · · · , NΓ − 2}, and x̃NΓ

−
x̃NΓ−1 ≤ hM. We estimate the left-hand side of (45a45a) using the overlapping decomposition

of Γ defined by ∪NΓ−2
k=0 ((x̃k, x̃k+2)× ∂ωg). We define the set of faces FkΓ = {σ ∈ FΓ |σ ⊂

[x̃k, x̃k+2] × ∂ωg} for all k ∈ {0, · · · , NΓ − 2}, and set w = ΠGvDg for some vDg ∈ XDg ,
and for all k ∈ {0, · · · , NΓ − 2}, by wk = maxx∈Ik w(x) and wk = minx∈Ik w(x) with
Ik = {x̃k, x̃k+2} ∪ {(xm)m∈VG | x̃k < xm < x̃k+2}. Then, it holds

∑
σ∈FΓ

‖w −
∑
s∈VΓ

w(xs)1σΓ,s‖
2
σ ≤

NΓ−2∑
k=0

∑
σ∈FkΓ

|σ| (wk − wk)
2 ≤

NΓ−2∑
k=0

∑
σ∈FkΓ

|σ|

(∫ x̃k+2

x̃k

|w′(x)|dx

)2

.

(46)

28



Finally, using a Cauchy-Schwarz inequality in (4646) together with the fact that |x̃k+2 −
x̃k| ≤ 2hM and

∑
σ∈FkΓ

|σ| ≤ 2hM|∂ωg|, we obtain

∑
σ∈FΓ

‖w −
∑
s∈VΓ

w(xs)1σΓ,s‖
2
σ ≤ (2hM)2|∂ωg|

NΓ−2∑
k=0

∫ x̃k+2

x̃k

|w′(x)|2dx ≤ 2(2hM)2|∂ωg|
∫

Ωg

|w′(x)|2dx,

and the result follows from the definition (25c25c) of ∇Dg .
We now prove (45b45b). Let i ∈ If be a fracture index and w = ΠGvDg for some vDg ∈ XDg .

For all e ∈ EΣi,Γ , we define we = minx∈Ie w(x) and we = maxx∈Ie w(x) with Ie = {xe, xe} ∪
{(xm)m∈VG | xe < xm < xe}. Then, reiterating the same process as for the proof of (4646), we
can prove that

∑
e∈EΣi,Γ

‖w −
∑

s∈VΣΓ

w(xs)1eΣΓ,s
‖2e ≤

∑
e∈EΣi,Γ

|e|(we − we)2 ≤
∑

e∈EΣi,Γ

|e|

(∫ xe

xe

|w′(x)|dx

)2

.

We note, in passing, that if xe = xe, the approximation of the trace on e is exact since we =
we; see Remark 7.17.1. Using a Cauchy-Schwarz inequality and the fact that |e||xe−xe| ≤ h2

M,
it holds∑

e∈EΣi,Γ

‖w −
∑

s∈VΣΓ

w(xs)1eΣΓ,s
‖2e ≤ h2

M
∑

e∈EΣi,Γ

∫ xe

xe

|w′(x)|2dx ≤ h2
M‖∇DgvDg‖2Ωg .

where we used the definition (25c25c) of ∇Dg to obtain the last bound. Finally, summing over

all the fracture indices i ∈ If gives the expected result with CΣΓ
= |If |1/2.

Remark 7.1 (Exactness on ΣΓ). In the case where an edge e ∈ EΣΓ
is orthogonal to the

tunnel, i.e., that the vertices (xs)s∈Ve share the same x-coordinate, one can prove that for
any vDg ∈ XDg , it holds

‖ΠGvDg −
∑

s∈VΣΓ

ΠGvDg(xs)1eΣΓ,s
‖e = 0.

Indeed, in this case, denoting by Ve = {s1, s2}, it holds that (ΠGvDg)|e = ΠGvDg(xs1) =
ΠGvDg(xs2) =

∑
s∈Ve ΠGvDg(xs)1eΣΓ,s

∩e since (eΣΓ,s ∩ e)s∈Ve forms a partition of e.

We now prove the coercivity result of the discretization D.

Lemma 7.5 (Coercivity). The gradient discretization D defined by (2020), (2323), (2525) and
(2727) is coercive in the sense that CD in (1111) depends only on the geometry and on the shape
regularity parameter θT .

Proof of Lemma 7.57.5. Let D̃ be the gradient discretization defined by (2020), (2424), (2525) and
(2727). From the continuity of the trace operator γf , a Poincaré-Friedrichs inequality on
H1(Ωm) and the Poincaré inequality in H1

0 (Ωg), one has for all vD ∈ X0
D

‖ΠT vDp‖2Ωm+ ‖γfΠT vDp‖2Ωf + ‖ΠGvDg‖2Ωg . ‖∇DmvDp‖
2
Ωm+

(∫
Γ
γΓΠT vDpdτ(x)

)2

+ ‖∇Df vDp‖
2
Ωf

+ ‖∇DgvDg‖2Ωg .
(47)
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Using (26a26a), a Cauchy-Schwarz inequality and recalling the definition (2727) of the discrete
jump operator [[·]]D,Γ, we get(∫

Γ
γΓΠT vDpdτ(x)

)2

≤
(∑
s∈VΓ

vs|σΓ,s|
)2
,

≤ 2|Γ|

‖[[vD]]D,Γ‖2Γ +

∫
Γ

∣∣∣∣∣∣
∑
s∈VΓ

ΠGvDg(xs)1σΓ,s

∣∣∣∣∣∣
2

dτ(x)

 .

(48)

Using that∫
Γ

∣∣∣∣∣∣
∑
s∈VΓ

ΠGvDg(xs)1σΓ,s

∣∣∣∣∣∣
2

dτ(x) ≤ ‖ΠGvDg‖2L∞(Ωg)|Γ| ≤ ‖(ΠGvDg)
′‖2Ωg |Γ|L, (49)

it follows that(∫
Γ
γΓΠT vDpdτ(x)

)2

≤ 2|Γ|
(
‖[[vD]]D,Γ‖2Γ + ‖(ΠGvDg)′‖2ΩgL|Γ|

)
. (50)

Gathering (5050) into (4747) proves that D̃ is coercive in the sense of (1111) with a constant
depending only on the geometry. Finally, invoking Lemma 7.37.3, we obtain that D is also
coercive in the sense of (1111) with a constant depending only on the geometry and on the
shape regularity parameter.

We then prove the consistency result.

Lemma 7.6 (Consistency). For all v ∈ C∞
V p0
× C∞(Ωg), there exists a constant CSD(v) > 0

depending on v, on the shape regularity parameter and on the geometry, such that

SD(v) ≤ CS(v)(hM + hG). (51)

Proof of Lemma 7.67.6. Let v = (vp, vg) ∈ C∞V p0 × C
∞(Ωg). Defining v̂D = (v̂Dp , v̂Dg) = PDv =

(PDpvp,PDgvg) ∈ X0
D, one has using triangle inequalities

SD̃(v) ≤ ‖∇ΠT v̂Dp −∇vp‖Ωm + ‖∇τγfΠT v̂Dp −∇τγfvp‖Ωf + ‖(ΠG v̂g)′ − v′g‖Ωg
+ ‖ΠT v̂Dp − vp‖Ωm + ‖γfΠT v̂Dp − γfvp‖Ωf + ‖ΠG v̂Dg − vg‖Ωg
+ ‖[[v̂D]]D,Γ − [[v]]Γ‖Γ + ‖[[v̂D]]D,ΣΓ

− [[v]]ΣΓ
‖ΣΓ

.

(52)

A direct application of Lemma 7.17.1 with (ϕp, ϕg) = (vp, vg) and of Lemma 7.27.2 with vD =
v̂D ensures the existence of a positive constant C > 0 depending on the mesh regularity
parameter and v such that

SD̃(v) ≤ C(hM + hG + h2
M + h2

G) + ‖[[v̂D]]D,Γ − [[v]]Γ‖Γ + ‖[[v̂D]]D,ΣΓ
− [[v]]ΣΓ

‖ΣΓ
. (53)

Let IΓ and IΣΓ
denotes two rightmost terms on the right-hand side of (5353). We first

focus on IΓ. Recalling the definitions (11) and (2727) of the jumps terms [[·]]Γ and [[·]]D,Γ, and
adding ±

∑
s∈VΓ

vg(xs)1σΓ,s , it holds after using triangle inequalities

IΓ ≤ ‖γΓvp −
∑
s∈VΓ

vp(xs)1σΓ,s‖Γ + ‖vg −
∑
s∈VΓ

vg(xs)1σΓ,s‖Γ

+ ‖
∑
s∈VΓ

(vg(xs)− (ΠGPDgvg)(xs))1σΓ,s‖Γ

≤ |Γ|1/2
(
hM

(
‖∇τγΓvp‖L∞(Γ) + ‖v′g‖L∞(Ωg)

)
+ h2

G‖v′′g‖L∞(Ωg)

)
,

(54)
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where we used the mean value and the Rolle theorems to pass to the second line.
We now move to IΣΓ

. Using the same arguments, one can prove that it holds

IΣΓ
≤ ‖γΣΓ

γfvp −
∑

s∈VΣΓ

vp(xs)1eΣΓ,s
‖ΣΓ

+ ‖vg −
∑

s∈VΣΓ

vg(xs)1eΣΓ,s
‖ΣΓ

+ ‖
∑

s∈VΣΓ

(vg(xs)− (ΠGPDgvg)(xs))1eΣΓ,s
‖ΣΓ

≤ |ΣΓ|
1/2
(
hM

(
‖(γΣΓ

γfvp)
′‖L∞(ΣΓ) + ‖v′g‖L∞(Ωg)

)
+ h2

G‖v′′g‖L∞(Ωg)

)
.

(55)

Finally, gathering (5454) and (5555) into (5353) and applying Lemma 7.37.3, (5151) follows.

Finally, we prove the limit conformity result.

Lemma 7.7 (Limit conformity). For all w ∈ C∞W , there exists a constant CW(w) > 0
depending only on w, the geometry and on the mesh regularity parameter such that

WD(w) ≤ CW(w)(hM + hG). (56)

Proof of Lemma 7.77.7. Let WD̃ : C∞W ×X0
D → R be such that, for all w = (wm,wf , wg) ∈ C∞W

and vD = (vDp , vDg) ∈ X0
D,

WD̃(w, vD) =

∫
Ωm

wm · ∇DmvDp + ΠT vDp div(wm)dx+

∫
Ωf

wf · ∇Df vDp + γfΠT vDp rf (w)dτ(x)

+

∫
Ωg

wg∇DgvDg + ΠGvDg rg(w)dl(x)−
∫

Γ
(wm · nΓ)[[vD]]D,Γdτ(x)

−
∫

ΣΓ

(wf · nΣΓ
)[[vD]]D,ΣΓ

dl(x).

(57)
Recalling the definition (55) of the space C∞W together with the definition (2727) of the jump
terms [[·]]D,Γ and [[·]]D,ΣΓ

, it holds for any w = (wm,wf , wg) ∈ C∞W and vD ∈ X0
D,

WD̃(w, vD) =
∑
σ∈FΓ

∫
σ
(wm · nΓ)(γΓΠT vDp −

∑
s∈VΓ

vs1σΓ,s)dτ(x)

+
∑
e∈EΣΓ

∫
e
(wf · nΣΓ

)(γΣΓ
γfΠT vDp −

∑
s∈VΣΓ

vs1eΣΓ,s
)dl(x)

+
∑
σ∈FΓ

∫
σ
(wm · nΓ)(

∑
s∈VΓ

ΠGvDg(xs)1σΓ,s −ΠGvDg)dτ(x)

+
∑
e∈EΣΓ

∫
e
(wf · nΣΓ

)(
∑

s∈VΣΓ

ΠGvDg(xs)1eΣΓ,s
−ΠGvDg)dl(x)

=: I1 + I2 + I3 + I4.

(58)

We first focus on I1 and I2. Setting wσ
m = |σ|−1

∫
σwm · nΓdτ(x) (resp. we

f = |e|−1
∫
ewf ·

nΣΓ
dl(x)) for all σ ∈ FΓ (resp. on e for all e ∈ EΣΓ

), recalling the definitions (26a26a) and
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(26b26b), one has that

∫
σ

wσ
m

γΓΠT vDp −
∑
s∈VΓ

vs1σΓ,s

 dτ(x) = 0 ∀σ ∈ FΓ, (59a)

∫
e

we
f

γΣΓ
γfΠT vDp −

∑
s∈VΣΓ

vs1eΣΓ,s

dl(x) = 0 ∀e ∈ EΣΓ
. (59b)

Subtracting (59a59a) for all σ ∈ FΓ to I1 (resp. (59b59b) for all e ∈ EΣΓ
to I2) followed by a

Cauchy-Schwarz inequality, it holds

I1 + I2 ≤

∑
σ∈FΓ

‖wm · nΓ − wσ
m‖2σ

1/2∑
σ∈FΓ

‖γΓΠT vDp −
∑
s∈VΓ

vs1σΓ,s‖
2
σ

1/2

+

 ∑
e∈EΣΓ

‖wf · nΣΓ
− we

f‖2e

1/2 ∑
e∈EΣΓ

‖γΣΓ
γfΠT vDp −

∑
s∈VΣΓ

vs1eΣΓ,s
‖2e

1/2

.

(60)
Using a Poincaré-Wirtinger inequality on σ for all σ ∈ FΓ (resp. all e ∈ EΣΓ

), we infer the
existence of C1,wm > 0 (resp. C2,wf

> 0) depending on wm (resp. wf ) such that∑
σ∈FΓ

‖wm · nΓ − wσ
m‖2σ ≤ C1,wmh

2
M,

∑
e∈EΣΓ

‖wf · nΣΓ
− we

f‖2e ≤ C2,wf
h2
M. (61)

The two remaining terms in the right-hand side of (6060) are bounded as follows. Let σ ∈ FΓ,
κ ∈Mσ and v = ΠT vDp . Setting vσ = mins∈Vσ v(xs) and vσ = maxs∈Vσ v(xs), it holds

‖γΓv −
∑
s∈VΓ

v(xs)1σΓ,s‖
2
σ ≤ |σ|(vσ − vσ)2 . h4

κ

(∑
s∈Vσ

|v(xs)− v(xκ)|
hκ

)2

. hM|Vσ||κ|
∑
s∈Vκ

(v(xs)− v(xκ))2

h2
κ

. hM‖∇DmvDp‖2κ,
(62)

where we used the fact that |σ| . h2
κ to pass to the second inequality, a Cauchy-Schwarz

inequality together with the fact that h4
κ . hM|κ| to pass to the second line, and [99, Lemma

3.2] to conclude. In (6262), all the hidden constants depend on the mesh regularity parameter.
We now let e ∈ EΣΓ

and σ ∈ Fe ∩Ff . Using the same arguments as for (6262), one can prove

‖γΣΓ
v −

∑
s∈VΣΓ

v(xs)1eΣΓ,s
‖2e . hM‖∇Df vDp‖

2
σ, (63)

Also in (6363), all the hidden constants depend on the mesh regularity parameter. Combining
(6161), (6262) and (6363) into (6060), it follows

I1 + I2 . h
3/2
M
(
‖∇DmvDp‖Ωm + ‖∇Df vDp‖Ωf

)
, (64)

with hidden constant inheriting previous dependencies. For I3 and I4, using a Cauchy-
Schwarz inequality together with Lemma 7.47.4 allow us to infer

I3 + I4 . hM‖∇DgvDg‖Ωg , (65)
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where the hidden constant has the same dependencies as in Lemma 7.47.4. Using (6464) and (6565)
in (5858) gives

WD̃(w, vD) . hM
(
‖∇DmvDp‖Ωm + ‖∇Df vDp‖Ωf + ‖∇DgvDg‖Ωg

)
. (66)

Recalling the definition (1010) of the ‖·‖D-norm and taking the supremum over all vD ∈ X0
D\{0}

gives WD̃(w) . hM from which (5656) is deduced using Lemma 7.37.3.

Proof of Proposition 4.14.1. It derives from Lemmae 7.57.5, 7.67.6, 7.77.7 and from the density results
of Lemmae 2.12.1 and 2.22.2.

Proof of Proposition 4.24.2. It is deduced from Theorem 3.23.2 and from the proofs of Lemmae
7.67.6, 7.77.7 showing that the first order estimates still hold for matrix cell-wise, fracture face-wise
and tunnel cell-wise smooth solutions.
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