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Abstract 

 

The natural environment of the free-living nematode Caenorhabditis elegans is rich in 

pathogenic microbes. There is now ample evidence to indicate that these pathogens 

exert a strong selection pressure on C. elegans, and have shaped its genome, 

physiology and behaviour. In this short review, we concentrate on how C. elegans 

stands out from other animals in terms of its immune repertoire and innate immune 

signalling pathways. We discuss how C. elegans often detects pathogens because of 

their effects on essential cellular processes, or organelle integrity, in addition to direct 

microbial recognition. We illustrate the extensive molecular plasticity that is 

characteristic of immune defences in C. elegans and highlight some remarkable 

instances of lineage-specific innovation in innate immune mechanisms. 
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Introduction 

 

The nematode Caenorhabditis elegans has emerged in recent years as a tractable 

model for dissecting innate immune mechanisms and host-pathogen interaction. There 

have been many reviews of the field in the last couple of years (e.g. (Garcia-Sanchez 

et al. 2021; Harding and Ewbank 2021; Kim and Flavell 2020; Martineau et al. 2021; 

Miles et al. 2019; Penkov et al. 2019; Radeke and Herman 2021; Singh and Aballay 

2020; Wani et al. 2020; Willis et al. 2021)) and we will not attempt to be exhaustive 

here. Rather we will mainly take an evolutionary perspective to examine in what ways 

innate immunity in C. elegans resembles that of other animals and in what ways it 

differs. We will purposely emphasise the ways in which C. elegans has its own 

fashion to defend itself against infection. 

 Any such discussion of conservation and innovation needs to be framed by 

phylogeny. In the case of nematodes, this remained contested for many years. Some 

argued, initially on the basis of morphology, that nematodes were fairly distant 

relatives of insects, while others, citing their shared developmental moulting, placed 

the two together in the clade Ecdysozoa. Surprisingly, this often-intense debate 

continued even after the first representative genome sequences were available (e.g. 

(Blair et al. 2002)). There is now, however, a relatively broad acceptance of the 

Ecdysozoan schema (Edgecombe et al. 2011), in which, for example, the fruitfly 

Drosophila melanogaster and C. elegans share a common ancestor on the 

Protostomial branch. Thus, it is assumed that any gene found in both humans and 

insects would have been present in this ancestral Ecdysozoan, and an absence from 

C. elegans reflects an event of gene loss. Conversely, any gene found in C. elegans 

but not in insects or mammals is expected to be a lineage-specific acquisition (Figure 

1). From this perspective, as far as the innate immune system is concerned, and as 

described below, nematodes like C. elegans would appear to have lost many key 

genes, foregoing several central conserved mechanisms, while gaining alternative 

means to detect and respond to pathogens. This is expected to reflect the strong and 

unrelenting selective pressure that species, like free-living nematodes, that inhabit 

microbe-rich environments are likely to be subjected to. 

 

A wild world 
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Despite C. elegans having been used in laboratories as a genetic model for several 

decades (Brenner 2009; Nigon and Felix 2017), very little was known of its life in 

natural habitats until recently. A series of ecological surveys, coupled with extensive 

sampling and genotyping of isolates from different locations world-wide1 gave a 

picture of natural population structure and dynamics, and revealed both local genetic 

diversity and surprising uniformity between strains from around the globe. It was 

suggested that the current populations arose following successive chromosome-scale 

selective sweeps, so that four of the worm’s six chromosomes are unexpectedly 

similar among many of the populations that have been sampled worldwide. The most 

recent such event is estimated to have occurred 600–1200 generations ago. Assuming, 

conservatively, just 6 generations per year (20-times slower than under optimal lab 

conditions), this would correspond to a time in the last two centuries. That led to the 

hypothesis that these selective sweeps were a consequence of human activity 

(Andersen et al. 2012), in line with the observation that more divergent strains can be 

found in remote locations (Crombie et al. 2019). It is also possible that the sweeps 

resulted from a global pandemic, if certain haplotypes were associated with enhanced 

susceptibility or resistance to infection. There are plenty of examples from other 

species of such effects, including in humans (Quintana-Murci 2019). Further, there is 

no shortage of natural pathogens for C. elegans. Indeed, environmental sampling 

suggests that life-shortening infections are the common lot of C. elegans 

(Schulenburg and Félix 2017). 

As C. elegans can be cryopreserved, a single strain, called N2, is used in all 

laboratories, and its genome is taken as a reference. N2 was derived from a strain 

collected in Bristol, UK, that was cultured for many years before being frozen. This 

period of domestication was associated with the fixation of a number of alleles, not 

seen in wild strains, principally related to adaptation to the higher oxygen 

concentrations found in a Petri dish, rather than in the mildly anaerobic natural 

environment (Frezal and Felix 2015). Some of them affect the worm’s interaction 

with pathogens (Chang et al. 2011; Sterken et al. 2015). Beyond this, very recent 

evidence suggests that in some cases, N2 lacks genes found in wild strains. Indeed, 

more than 350 non-overlapping genomic regions have been identified, that are hyper-

																																																								
1 See, for example, The C. elegans Natural Diversity Resource, and Félix lab websites 
[https://www.elegansvariation.org/; https://www.justbio.com/tools/worldwideworms/] 
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divergent from the reference isotype N2. They range in size from 9 kb to 1.35 Mb and 

behave as if inherited as large haplotype blocks (Lee et al. 2021a). 

In one such region, N2 contains 11 protein-coding genes, while many other isotypes 

contain 20. The extra genes appear to have arisen by duplication and diversification of 

existing C. elegans genes, and include several encoding G-protein coupled receptors 

(GPCR), a class of proteins known to be important for host-pathogen interactions (see 

below), as well as nematode-specific proteins. One, F40H7.12, also called ifas-1, for 

“Inducible FAScin Domain containing”, has been the focus of our attention recently 

as its expression is induced by natural fungal infection (Omi et al. 2021), and appears 

to be part of a poorly characterised innate immune defence mechanism (Zhang et al. 

2021b). Another hyper-divergent region encompasses a cluster of paralogous genes 

that encode antimicrobial peptides (AMPs) of the NLP class, that show inter-species 

variability indicative of positive selection (Pujol et al. 2012; Pujol et al. 2008b) and, 

as explained below, play multiple important roles in innate immunity against natural 

fungal infection (Harding and Ewbank 2021). These observations corroborate the 

notion that these hyper-divergent regions are crucial for the capacity of C. elegans to 

adapt to its environment (Lee et al. 2021a). 

There is one striking example of N2 retaining a defence pathway that has been lost 

from many of the C. elegans strains sampled in Europe. In common with most 

species, RNA interference (RNAi) is central to efficient antiviral defence in 

C. elegans. It requires the RIG-I homologue, DRH-1, but many strains carry a 

deletion polymorphism in the drh-1 gene that compromises antiviral immunity (Ashe 

et al. 2013). The reasons for this widespread loss of an essential defence mechanism 

is far from clear. Viral infections in natural C. elegans populations are not that 

frequent (Felix and Wang 2019), so the selective impact of the drh-1 deletion could 

be neutral. Or the loss could be a consequence of hitchhiking with a closely linked 

beneficial mutation (Ashe et al. 2013). Alternatively, loss of its RNAi pathway could 

be beneficial to C. elegans under particular environmental conditions. It should be 

noted that in fungi, RNAi has been lost in many independent lineages, including 

Saccharomyces cerevisiae (Billmyre et al. 2013). It appears that eliminating RNAi 

allows the yeast to harbour double-stranded RNA “killer viruses” and this conveys a 

compensatory advantage (Drinnenberg et al. 2011). What C. elegans might gain from 

loss of drh-1 remains an open question. 
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In additional to these observations, and in silico support for the expansion and 

diversification of specific gene families involved in innate immunity across 

Caenorhabditis species (e.g. (Pujol et al. 2008b; Thomas 2006)), there is experimental 

support for negative frequency-dependent selection (i.e. phenotypic/genotypic fitness 

is inversely correlated to prevalence) concerning resistance to infection (Schulenburg 

and Ewbank 2004). This is generally taken to reflect co-evolutionary arms races 

between hosts and pathogens. Taken together, one can conclude that natural 

pathogens are undoubtedly an important factor shaping the C. elegans genome. As 

intra-species differences in defence mechanisms are only just starting to be studied, in 

the remainder of this review, for an inter-species comparison, we will use the well-

characterised N2 genome as our reference. And although there is an ever-increasing 

number of Caenorhabditis genome sequences (Stevens et al. 2019), providing the 

basis for the investigation of evolutionary variation at the genus level, here will 

principally address changes across much greater phylogenetic distances, comparing 

C. elegans to non-nematode species. 

 

What has been lost 

 

Pathogen defences come at a high selective cost. It is energetically demanding to 

regulate, produce, and in some cases secrete, immune effector proteins, and if these 

effectors have relatively generic functions, they can cause collateral self-damage. For 

example, saposins are membrane-disrupting proteins active against pathogens, but 

also capable of damaging host cells. They are first synthesised as inactive pro-

proteins, with an inhibitory sapA domain that is only cleaved off when needed. 

Curiously, in C. elegans, this auto-regulatory mechanism has been lost. As well as 

potentially being directly deleterious, this also renders worms susceptible to a specific 

counter-defence mechanism, with the nematophagous fungus Drechmeria coniospora 

producing sapA on its surface (Lebrigand et al. 2016). It is well known that host-

adapted pathogens can also subvert defence pathways, rendering them partially or 

fully ineffective; several examples have been reported for C. elegans (e.g. (Lee et al. 

2013; Vasquez-Rifo et al. 2020; Zhang et al. 2021b). Such diminished utility will 

lessen the selection pressure on the corresponding defence genes. It is thus 

conceivable that the absence from C. elegans of different immune pathways reflects 
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such processes, in addition to the more broad high selective costs of maintaining 

pathogen defences.  

Perhaps the best-known example of a “missing” gene concerns the key immune 

transcription factor, NF-κB, that became apparent when the first nematode and insect 

genomes were completed (Rubin et al. 2000). As more and more genomes are 

sequenced, the evolutionary history of NF-κB and the related Rel protein family 

becomes clearer. Rel homology domain (RHD) proteins appeared relatively early 

during evolution and are found not only in both Protostomes and Deuterostomes, but 

also in basal phyla, including Cnidaria, Porifera and even protists. Proteins bearing all 

the hallmarks of Rel family proteins can be found in several Ecdysozoan lineages, 

including the Priapulida Priapulus caudatus, but so far not in Nematoda or 

Nematomorpha (Williams and Gilmore 2020). On the other hand, a plausible Rel 

family member (gb|OWA53470.1|), most similar to nuclear factor of activated T-cells 

5 (NFAT-5) in vertebrates, has been described in the tardigrade Hypsibius dujardini 

(Yoshida et al. 2017). There are also homologues in the 2 other publicly available 

tardigrade genome sequences (Ramazzottius varieornatus [GAV04584], and 

Paramacrobiotus sp. [PARRI_0020628.p1 in the current annotation2]). Thus genes 

for Rel family proteins appear to have been lost in Nematoda, subsequent to their 

evolutionary divergence from the Tardigrada (Figure 1). 

One of the conserved canonical pathways that lead to activation of NF-κB starts with 

cell-surface receptors of the Toll family. In flies, Toll binds endogenous cytokine-like 

proteins, while in vertebrates, different members of the Toll-like receptor (TLR) 

family recognise a panoply of microbial moieties, including lipopolysaccharide and 

double-stranded RNA (dsRNA). In both cases, the result is an increased expression of 

genes encoding immune effectors that contribute to host defence (Kawai and Akira 

2010; Lemaitre and Hoffmann 2007). Although lacking NF-κB, there is one TLR 

gene in C. elegans, tol-1. In addition to an essential role in cell adhesion during early 

development ((Pujol et al. 2001) and NP, unpublished observations), tol-1 is required 

for the terminal differentiation of a class of CO2-sensing neurons that are involved in 

governing aversive behaviour in the presence of pathogenic bacteria (Brandt and 

Ringstad 2015; Pradel et al. 2007). C. elegans is sensitive to even small changes in 
																																																								
2 https://figshare.com/projects/Metazoan_TPS-TPP_gene_identification/36410; 
https://figshare.com/articles/dataset/Paramacrobiotus_sp_TYO_gene_pep_fa_gz/6854
120 
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the CO2/O2 balance (Carrillo et al. 2013), and the resulting neuronal signals feed into 

a neuropeptide circuit that also influences whether worms clump together or remain 

isolated (de Bono and Bargmann 1998). The responsiveness to O2 is modulated by 

interleukin signalling. Specifically, an IL17-like protein acts via its receptors (ILCR-1 

and ILCR-2) and the associated downstream pathway to alter O2-escape behaviours, 

as well as suppressing immunity. In this context, it is striking that homologues of 

proteins involved in TLR/NF-κB signal transduction in other species, such as ACT1, 

IκB, and the TIR-domain adapter protein SARM1, called in C. elegans ACTL-1, 

IKB-1 and TIR-1, respectively, are all required (Flynn et al. 2020). Further, there are 

conceptual similarities between this role for IL17 in C. elegans and its neuronal 

function in mammals (Rua and Pujol 2020). 

In mice and flies, Akirin links RHD proteins to chromatin remodellers of the 

SWItch/Sucrose Non-Fermentable family. In flies, for example, Akirin acts 

downstream of peptidoglycan recognition proteins to regulate AMP gene expression 

(Tartey and Takeuchi 2015). Nematodes have lost peptidoglycan recognition proteins 

(Kurz and Ewbank 2003). In the epidermis of C. elegans, Akirin appears rather to act 

downstream of a GPCR, DCAR-1, and a p38 MAPK signalling cascade, described 

further below, and to bridge a POU-class transcription factor to the NuRD chromatin 

remodelling complex (Figure 2A), thereby controlling AMP gene expression upon 

fungal infection (Polanowska et al. 2018). 

Another prominent example of evolutionary bricolage concerns STAT signalling. 

Central to immune defences across animal species, STAT transcriptional activation 

typically relies on JAK, a kinase that has also been lost from nematodes. Instead, in 

C. elegans, one of its two STAT homologues, STA-2, associates with an atypical 

putative transceptor, SNF-12, via a large C-terminal domain conserved among 

nematodes, but unlike any SLC6 family proteins in other species. By a mechanism 

that has yet to be fully elucidated, this association is essential for AMP gene 

expression in the epidermis following fungal infection (Dierking et al. 2011; Taffoni 

et al. 2020). It is important to note that a quarter of the ca. 300 genes identified in a 

pan-genomic RNAi screen for positive regulators of this same antifungal response are 

nematode-specific (Zugasti et al. 2016), and a similar situation applies to effector 

genes too (Figure 2B). Collectively, these and other studies have provided 

considerable insight into the evolution of lineage-specific signalling pathways, 
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revealing a remarkable molecular plasticity in C. elegans innate immune signalling. 

Notably, STA-2 also appears to act as a transcriptional repressor for some genes, 

including ifas-1, mentioned above. A specific fungal enterotoxin from Drechmeria 

coniospora can antagonise STA-2 function, leading to decreased AMP gene 

expression but increased ifas-1 expression. This dual function for STA-2 may 

therefore represent an evolutionary-recent counter-defensive strategy against fungal 

enterotoxins (Zhang et al. 2021b), potentially restricted to Caenorhabditis nematodes. 

It is likely subject to on-going selective pressure in C. elegans, since wild isolates 

have different numbers of ifas-1 paralogues (Lee et al. 2021a). 

 

What has been retained 

 

These examples of lineage-specific gene loss do not mean that nematodes, including 

C. elegans, do not share some conserved immune mechanisms with other species. 

Indeed, the core of its AMP gene regulation in the epidermis, and defence gene 

expression in the gut, is a common, conserved, p38 MAPK signalling cascade that 

also involves TIR-1/SARM (reviewed in (Kim and Ewbank 2018)). There are 

parallels between this pathway and stress-response pathways even in yeast, including 

an important role for protein-protein interactions through SAM-domains (Pujol et al. 

2008a). The conservation with vertebrates extends beyond this, as the upstream 

pseudokinase NIPI-3 functions in concert with its binding partner, the bZIP 

transcription factor CEBP-1 (Kim et al. 2016; McEwan et al. 2016), as do their 

respective orthologues, Tribbles and C/EBP (CCAAT/enhancer-binding protein) in 

mammals (Eyers et al. 2017). 

TIR-1/SARM acts upstream of the MAP3K NSY-1. As well as directly controlling 

AMP expression in epithelial cells, NSY-1 plays roles in several processes that are 

related to the interaction of C. elegans with pathogens. It controls the exact nature of 

the nematode’s surface coat (Foley et al. 2019), which in turn determines whether or 

not a microbe can adhere and initiate an infection (e.g. (Gravato-Nobre et al. 2011; 

Rouger et al. 2014)). It is required for the normal left-right asymmetry of a pair of 

chemosensory neurons (called “AWC”). Unlike vertebrates that express a single 

chemoreceptor gene per neuron, C. elegans expresses several of its greatly expanded 

family (>1500) of chemoreceptor genes in a small number (<70) of chemosensory 

neurons. In the absence of NSY-1, worms lose the expression of some 



	 10	

chemoreceptors and hence the ability to sense the corresponding odours. As a 

consequence, their capacity to sense their environment and to distinguish between 

nutrients and potential pathogens will be compromised (Alqadah et al. 2016); 

smelling and tasting are vitally important for worms (Ferkey et al. 2021). Indeed, 

there are a growing number of examples where detection of a specific microbial 

metabolite either attracts or repels C. elegans, influencing its risk of infection 

(reviewed in (Kim and Flavell 2020)). NSY-1 is also required in another pair of 

chemosensory neurons (called ADF) for the upregulation of serotonin biosynthesis 

that can be triggered by pathogen exposure. Serotonin mediates food-odour 

associative learning (Nuttley et al. 2002) and is required for the aversive olfactory 

learning induced by pathogenic bacteria (Zhang et al. 2005). Surprisingly, in this 

context, it acts via a serotonin-gated cation channel, LGC-50, with ligand binding and 

ion selectivity properties different from previously described neurotransmitter 

receptors (Morud et al. 2021). Serotonin signalling will affect whether worms ingest 

harmful microbes and thus have a direct impact on survival. It also controls egg-

laying behaviour (Shivers et al. 2009), as well as protective gene expression in 

offspring (Das et al. 2020), so can affect future generations too. Notably, all these 

effects can be influenced by microbial metabolites that act as serotonergic agonists 

(Chen et al. 2020), opening a way for manipulation of host physiology by pathogens. 

Interestingly, for these different roles, the regulatory factors upstream and 

downstream of NSY-1 can differ (e.g. (Foster et al. 2020; Pagano et al. 2015)), which 

must place particular constraints on how the central MAPK cassette can evolve to 

deal with a changing microbial environment. 

 

What has been gained 

 

Selective pressures have also led to various types of gene acquisition. In addition to 

several genes encoding the type of lysozyme found in other invertebrate, C. elegans 

has a gene family coding for lysozymes that are most similar to those found in 

amoebae (Mallo et al. 2002; Schulenburg and Boehnisch 2008). These genes, several 

of which are induced by infection, were presumably acquired by horizontal gene 

transfer. The same is true for the sapA-domainless saposin mentioned above; it is 

most like amoeboid proteins (Lebrigand et al. 2016). For another class, the thaumatins 

that resemble plant proteins that inhibit fungal growth and sporulation, the 
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evolutionary history is less clear, as examples are found scattered across a range of 

Ecdysozoan species (Shatters et al. 2006). In other cases, there has been extensive 

gene duplication, both at the species level, or as outlined above, even in individual 

C. elegans lineages (Lee et al. 2021a), leading to large families encoding either 

effector proteins, or proteins potentially involved in pathogen recognition (Garcia-

Sanchez et al. 2021; Pees et al. 2016; Reboul and Ewbank 2016). The former category 

includes various classes of AMPs, including the neuropeptide-like (NLP) family, so 

called because of their similarity to phylogenetically more ancient bona fide 

neuropeptides. As well as possessing direct antimicrobial activity (Couillault et al. 

2004) these peptides play other physiological roles (Harding and Ewbank 2021), as 

described below, placing singular constraints on their potential evolutionary 

trajectories. 

 

Feeling sick 

 

We outlined above how the nervous system can mediate the responses of C. elegans 

to pathogens. It can also affect the nature of transcriptional response to infection- 

manifested by the intestine and epidermis (e.g. (Foster et al. 2020)) since it is the 

origin of a wide-range of secreted modulatory peptides and other small molecules that 

affect distant tissues. For example, biotic and abiotic factors that unbalance 

mitochondrial homeostasis, including bacterial toxins that disrupt oxidative 

phosphorylation, initiate the mitochondrial unfolded protein response (UPRmt). In 

addition to the expression of mitochondrial chaperones, activation of the UPRmt in the 

gut leads to the expression of antimicrobial proteins (Naresh and Haynes 2019), 

influenced by a complex network of both host and microbe factors (e.g. (Deng et al. 

2019; Mahmud et al. 2020)). When it is triggered in neurons, it spreads to peripheral 

tissues through the action of Wnt (Zhang et al. 2018) that is known to regulate 

defence gene expression in the gut (Labed et al. 2018). Remarkably, the UPRmt can 

also be associated with elevated levels of mitochondrial DNA that can be maternally 

inherited, so that there is the potential for a transgenerational transmission of a primed 

and protective state (Zhang et al. 2021a). Surveillance mechanisms that are tied to 

immune defence have been described for other organelles and cellular processes, 

including peroxisomes (Rackles et al. 2021), ribosomes (Vasquez-Rifo et al. 2020), 

the nucleolus (Tiku et al. 2018), translation (Troemel 2012) and purine metabolism 
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(Tecle et al. 2021). They undoubtedly interact during infection within a tissue and 

across tissues (see for example (Runkel et al. 2013)). But how they collectively 

contribute to resisting a given infection remains to be fully explored. 

Another major actor in regulating cellular and organismal homeostasis is insulin 

signalling (Murphy and Hu 2013). Insulin and insulin-like peptides (INS) have 

conserved functions in regulating ageing and immunity (Fabian et al. 2021), acting 

via the FOXO transcription factor, DAF-16. While humans have 10 insulin-like 

genes, there are four times as many in C. elegans, acting synergistically or 

antagonistically (Fernandes de Abreu et al. 2014; Ritter et al. 2013; Zheng et al. 

2018), affecting the physiology of C. elegans in many ways (Tissenbaum 2018). 

Here, we will only mention a few related to immunity. As a first example, the 

aversive olfactory learning referred to above is controlled by several ins genes. Some, 

like ins-6 and ins-7, are expressed in neurons. ins-6 promotes learning by stopping the 

expression of ins-7, an inhibitory factor (Chen et al. 2013). As worms grow old, a 

feed-forward mechanism modulates the expression of ins-7, thereby regulating 

immune ageing and behaviour (Lee et al. 2021b). Others, such as ins-11, are only 

expressed in adult worms following infection, either in the epidermis or the intestine, 

depending on the pathogen and its route of infection (Lee et al. 2018). Intestinal ins-

11 expression negatively regulates aversive learning, and has thus been suggested to 

play a role in a negative feedback loop connecting the gut and nervous system that 

allows C. elegans to navigate successfully in complex environments (Lee and 

Mylonakis 2017). Lastly, a recent report indicates that INS-31 levels are boosted by 

GABAergic signalling in neuromuscular junctions. As ins-31 inhibits resistance to 

infection, this means that there is a connection between muscle synapse activity and 

intestinal innate immunity (Zheng et al. 2021). Despite this progress, the large number 

of different ins genes still represents a significant challenge for any attempt to model 

comprehensively the effect of insulin signalling on the interaction of C. elegans with 

pathogens. 

This is made more difficult as other factors impact the same defence pathways. Thus, 

for example, neuronally-secreted TGF-β activates its receptor in the epidermis and 

this elicits secondary signalling, thereby inducing aversive learning (Zhang and Zhang 

2012). Further, peptides previously assumed to act as direct antimicrobial factors have 

recently been shown to have other activities. Thus, NLP-29, which was among the 
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first family of AMPs in C. elegans to be shown to be induced by fungal infection of 

the epidermis (Couillault et al. 2004), regulates both neurodegeneration (E et al. 2018) 

and sleep (Sinner et al. 2021). Importantly, expression of nlp-29 is controlled during 

development by a caspase that directly cleaves the p38 MAPK PMK-1, thereby also 

affecting the expression of hundreds of other genes, in what appears to be a 

mechanism to balance the opposing requirements for development and innate 

immunity (Weaver et al. 2020), mirroring the dual roles of NIPI-3 and CEBP-1 

(Tribbles/C/EBP) (Kim et al. 2016). There is thus a tangled web of intra- and inter-

cellular communication affecting multiple aspects of C. elegans biology (Harding and 

Ewbank 2021), impacting the nematode’s capacity to cope with pathogens. Once 

again, this raises fundamental questions regarding the evolvability of any particular 

immune gene, pathway or mechanism, when they are so intimately embedded in other 

physiological processes. 

 

Recognising infection 

 

Although surveillance mechanisms play a central role in C. elegans defence, there has 

long been speculation about its capacity for direct and specific recognition of 

pathogens, in part because of the very distinct transcriptional responses triggered by 

different microbes (e.g. (Engelmann et al. 2011; Wong et al. 2007)). As alluded to 

above, however, C. elegans has lost many of the best-characterised pathogen-sensing 

receptors found in other organisms (Kurz and Ewbank 2003), including the cGAS-

STING antiviral system (Cai and Imler 2021). It has been suggested that some of the 

nematode’s expanded repertoire of 283 C-type lectin-like domain (CTLD) proteins 

might be involved in microbial detection (Pees et al. 2016; Schulenburg et al. 2004), 

especially as at least two of them can direct bind bacteria (Miltsch et al. 2014). 

Generally, however, although several CTLD proteins do play a role in resistance to 

infection, this appears not to involve direct pathogen recognition (Pees et al. 2017; 

Pees et al. 2021; Yunger et al. 2017). On the other hand, some very recent work 

suggests that there may be at least one exception (see below). 

A second class of proteins that can trigger immune responses in various invertebrates 

is GPCRs (Reboul and Ewbank 2016). In C. elegans, some appear to important for the 

recognition of specific signals produced by bacteria, including surfactants from 

Serratia marcescens (Pradel et al. 2007) and 1-undecene from Pseudomonas 
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aeruginosa (Prakash et al. 2021). In the latter case, 1-undecene can induce both a 

behavioural and a transcriptional response, tying together these two types of 

protective mechanisms. 

One of the many GPCRs, DCAR-1, is activated by the tyrosine-derivative 

hydroxyphenyllactic acid (HPLA), and structurally-related compounds, switching on 

the p38 MAPK pathway in the epidermis and expression of AMP genes. HPLA levels 

go up when worms are infected with Drechmeria coniospora, but also in mutants with 

defects in their cuticle. Since fungal infection involves penetration of the cuticle, it is 

assumed that although crucial for the capacity to respond to fungal infection, DCAR-1 

does not actually recognise the pathogen, rather its binding of the endogenous ligand 

HPLA is a type of surveillance mechanism (Zugasti et al. 2014). Indeed, AMP genes 

are also switched on when worms are injured (Belougne et al. 2020; Pujol et al. 

2008a; Taffoni et al. 2020). Interestingly, disruption of the cuticle causes at least 2 

other stress pathways to be activated, by a putative damage sensor that remains to be 

identified (Dodd et al. 2018; Pujol et al. 2008b). 

Infection of C. elegans by the oomycete Myzocytiopsis humicola has very distinct 

consequences, characterised by an induction in the expression of multiple chitinase-

like genes, as part of the oomycete recognition response (ORR). This alters the 

structure of the cuticle and reduces the capacity of M. humicola to attach, decreasing 

the pathogenic burden and favouring the worm’s survival (Osman et al. 2018). The 

ORR can be induced, via chemosensory neurons, by exposing worms to an innocuous 

extract derived from animals infected with M. humicola. In this case, contrary to 

initial indications for the involvement of a GPCR` (Fasseas et al. 2021), it now 

appears likely that two of the many worm C-type lectin domain proteins mediate this 

neuronal recognition of an oomycete-derived moiety (Michalis Barkoulas, personal 

communication). 

During infection by the single-stranded RNA Orsay virus, DRH-1, the worm RIG-I 

homologue mentioned above, appears to act as a sensor of viral RNA-dependent RNA 

polymerase activity (Sowa et al. 2020). RNA is also involved in a recently described 

and unprecedented form of precise pathogen recognition by C. elegans. Bacteria make 

a range of non-coding RNAs (ncRNAs). A particular 137-nt ncRNA called P11 that is 

specific to the genus Pseudomonas appears to be taken up by C. elegans, then 

processed by the intestinal Dicer and germline PIWI-interacting RNA machinery. P11 

has a short stretch of sequence that matches the gene maco-1. As a consequence of its 
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processing, P11 down-regulates maco-1 and this, indirectly, provokes pathogen 

avoidance. Remarkably, this adaptive response that keeps C. elegans out of harm’s 

way is transmitted to progeny over four generations (Kaletsky et al. 2020). Perhaps 

even more extraordinary, this propensity for pathogen avoidance can be transmitted 

from P11-exposed animals to naïve animals, altering behaviour in a heritable manner. 

The horizontal and vertical transfer of learned pathogen-avoidance behaviour appears 

to be mediated by secreted Cer1 retrotransposon particles that need to be present in 

both donor and recipient animals. Interestingly, not all wild C. elegans strains carry 

copies of Cer1 in their genome, so this precise capacity to share environmental 

information is not ubiquitous; other mechanisms may also exist. Although the exact 

nature of the signal transmitted by these virus-like particles has not been determined, 

it is assumed to be an RNA molecule (Moore et al. 2021). This then represents a 

novel paradigm for pathogen recognition, currently unique to C. elegans (Figure 3).  

 

Concluding remarks 

 

While some authors emphasise structural and functional conservation for genes and 

pathways involved in nematode innate immunity (e.g. (Fabian et al. 2021)), as we 

have tried to illustrate here, it is perhaps the differences between C. elegans and other 

branches of the animal phylogenetic tree that are most striking. Although this 

undoubtedly diminishes the relevance of C. elegans for clinically-oriented research, it 

offers rich ground for those interested in exploring fundamental questions related to 

the origins and evolution of host defence mechanisms at a time when rapid 

environmental changes are altering long-standing balances between pathogens and 

hosts; the worm has still much to teach us. 
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Figure legends 

 

Figure 1. Simplified phylogenetic tree showing the evolutionary position of 

C. elegans (in Nematoda, in bold) relative to selected Metazoan lineages. The black 

square marks the base of the Ecdysozoa, the red the Protostomia/Deuterostomia 

junction. Deuterostomia contains 2 clades, the chordates (e.g. vertebrates, including 

mammals) and ambulacrarians (e.g. echinoderms, including starfish). The dashed line 

leads to the Lophotrochozoa (not shown). The names of the branches that include 

species containing at least one predicted Rel homology domain (RHD) protein are in 

green. The pattern of conservation supports several independent losses of RHD genes, 

including one on the Nematoda lineage. 

 

Figure 2. (A) Comparing Akirin function in Drosophila and C. elegans. In Drosophila 

(left), binding of peptidoglycan to the appropriate peptidoglycan recognition protein 

(PGRP) activates the IMD pathway, leading to a Rel family transcription factor. 

Akirin bridges chromatin remodellers of the SWItch/Sucrose Non-Fermentable family 

(SWI/SNF) to the Rel protein and acts as a positive regulator of defence gene 

expression. In C. elegans, activation of a G-protein coupled receptor (GPCR) by an 

endogenous ligand (HPLA) triggers a downstream p38 MAPK cascade. Akirin here 

interacts with the NuRD chromatin remodelling complex, including the protein 

LIN-40, and a POU-class transcription factor. Akirin needs to dissociate from its 

target loci if defence genes are to be expressed. Figure modified from one kindly 

provided by O. Zugasti. (B) Clustering of 280 genes that act as positive regulators of 

the antifungal innate immune response (left) and of 144 genes that are up-regulated 

upon fungal infection (right; adapted from (Thakur et al. 2021)) on the basis of their 

patterns of conservation (red indicates the presence of an orthologue) across 113 

species (coloured bar at bottom), ranging from Archaea and bacteria grey; left) to 

chordates, including human (brown; right). Among the invertebrates (yellow), the 5 

Caenorhabditis species are indicated by the pink box. 

 

Figure 3. Three examples of innate immune recognition in C. elegans. Left: An as yet 

uncharacterised compound from pathogenic oomycetes acts via a pair of proteins 

containing C-type lectin domains that function non-redundantly in specific 

chemosensory neurons (M. Barkoulas, personal communication) to up-regulate the 
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expression of genes including a family of chitinase-like (chil) that alter the properties 

of the cuticle. Middle: a breach of the cuticle by physical injury, mutation of specific 

cuticle components, or by infection with Drechmeria coniospora, increases the level 

of HPLA. This activates the GPCR DCAR-1 and the downstream p38 MAPK 

pathway, leading to increased expression of AMPs such as NLP-29, and the insulin-

like protein INS-11. These contribute either directly to defence or signal to other 

tissues as part of a coordinated response to infection. Right: A specific small RNA 

(sRNA) called P11 and produced by Pseudomonas aeruginosa is taken up by 

intestinal cells and processed. This results in the generation and transmission of 

successive signal(s) to the germline and then from the germline to the neurons 

involved in pathogen aversive behaviour. The formation of virus-like particles by the 

Cer1 retrotransposon, hypothesised to carry a specific RNA molecule, allows a worm 

exposed to P11 to affect the behaviour of naïve worms and progeny through both 

vertical and horizontal transmission. 
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