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This article presents some proposals for interpreting negative group delay

(NGD) phenomenon through electrical circuitry applications. The main idea

comes from the normalization process which seems not innocuous. We first

recall basic observations about NGD circuits before listing the fundamental

properties of these circuits. Then, the way the normalization step influences

the NGD procedure is questioned in terms of energy, concluding to its influence

and effect on the NGD measurements. A final discussion is proposed regarding

the potential prospects in relation with our explanation.

Introduction

The superluminal and negative group delay (NGD) phenomena [1-17] are the most debated

topics by scientist and physicist breakthroughs through centuries. The NGD phenomenon in-

terpretation disturbs the common physical feeling about time causality [8-10]. So, the scientist

breakthrough was wondered about information speed. Many discussions were initiated about

the possibility to overcome the celerity of light or not. But it seems to us that this is not the

problem. To verify the existence of the counterintuitive NGD phenomena, many demonstrations

signaling this confirmation have been done [2-16] in different domains. In 1950s, Sommerfeld
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and Brillouin [18-20] showed theoretically that in the frequency band of anomalous dispersion,

the medium group velocity vg can exceed the vacuum light velocity c and even, can become

negative. This last effect was developed by Garrett and McCumber in 1970 [1], who empha-

sized that in this case, the peak of the output Gaussian pulse can leave this output face of this

medium before the input one entering. This prediction was validated firstly, in 1982, by Chu

and Wong, in 1985, by Macke and Segard, and several experiments in optics wavelengths [2-3].

Despite the empirical investigation at optical wavelengths, the NGD phenomenon understand-

ing question remains an open debate. The main debated point was the physical significance of

the realm quantity evolution, such as signal or information interpretation by interacting with the

NGD medium or system. So, the first question is “is there more than one referential in the NGD

experiment?”. Then what is the physical process leading to the NGD measurements? Then, our

question may become “is it possible to keep the NGD effect between any referential?” To deal

with to the phenomenological problem, experimentations referring to the mathematical presen-

tation of physical variables such as current, voltage, ... were performed [2-17]. The negative

GV (NGV) phenomenon was widely investigated with artificial medium constituted by nega-

tive refractive index (NRI) metamaterials ng = c/νg, with c is the speed of light [2-6,15-20].

The negative permittivity and negative permeability-based metamaterial theoretical concept was

physically inspired by Veselago in late 1960s [21]. The NRI metamaterial verification was ex-

perimented in early 2000s by the teams of Pendry and Smith [23-24]. Then, the NRI concept

was also investigated at microwave wavelengths. By analogy between the transfer function of

resonant atomic systems and electronic circuits which are based on the operational amplifier in

negative feedback, Chiao and his co-worker demonstrated these circuits are capable to generate

a NGD [8-10]. Indeed, the NGD can be interpreted by the propagation time [21-25], of the

Gaussian pulse peak through the NGD circuit, well matched and downstream cascaded with a

vacuum medium is less than that through the last one denoted. In this way, the NGD topology
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introduced by the team of Chiao [8-13] is not a good candidate due to the frequency limitation

only about some hundreds of kHz. Otherwise, another passive circuit was proposed which can

operate up to GHz [14-17]. But, the metamaterial NRI [21-24] is technically limited in terms

of applications due to its inherent excessive losses systematically associated to the apparition

of a significant NGD. To pass the technical limitation, NGD active topologies susceptible to

operate at microwave frequencies were introduced [14-17]. In order to transpose this topol-

ogy in base band frequencies, different topologies can be elaborated via the innovative NGD

theory inspired from linear filter theory [25-31]. Topologies of low-pass [25-28], high-pass [25-

26, 29], bandpass [25-26, 30], stop-band [25-26] and all-pass [25-26, 31] NGD circuits were

innovatively initiated. It is very interesting to underline that the unfamiliar NGD circuits are

promising for very interesting applications which expect approbation from end user companies

[32-38]. For example, some applications were proposed to integrate the NGD circuits in com-

munication system performance improvement [32], signal integrity enhancement [33-35], pulse

compression [36], and resonance effect reduction for electromagnetic compatibility (EMC) en-

gineering [37-38]. In this work, a proof-of-concept (PoC) constituted by lumped circuit network

excited by bi-exponential pulse will be considered. To interpret fundamentally the NGD signal

propagation, Lorentz’s transformation and Einstein’s invariant references are considered. The

referential system is based on the assumption that the light speed is an invariant and a limit for

dynamic systems. But this is not in contradiction with the NGD when it is looked in its own

referential as a static process. Then, it is organized as follows; The next section is consecrated to

the characterization of the first order linear physical system generating NGD where frequency-

and time-domains analysis of such system allowing to explore its causality is given. Afterwards,

we investigate the used NGD circuit. In the following section, we focus on the experimenta-

tion validating this proposal topic. It is ended by the discussions mainly concentrating to the

application of understudied system. Finally, we draw the conclusion about this work.
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A simple experience

Many publications [8-17] have already been done giving examples of simple electronic NGD

circuits. But we want here to support our discussion on one of these examples. First major

observations can be based on its study.

So, we consider a simple RC circuit described (Fig. 1).

Figure 1: A simple RC circuit

First of all, we attract attention on the fact that this circuit can be strictly realized with

real electronic components and facilities. In particular, the signal generator V1 has its own self

impedance R4. Rather than speaking of the circuit input and output, we voluntary call these

classical observation points: ports one and two. We come back on this fundamental notion in

the next paragraph. Using any electronic circuit solver we can find the results shown (Fig. 2).

For the moment, as waited, port 2 signal appears with a lower amplitude than port 1 one,

and its maximum level is established some time after the maximum level of port 1 voltage. This

first example allows us to define as accurate as possible some fundamental facts.

Propagation concept and referential definition

How may we decide if the elements of an experience are in the same referential or not? The

question is not so simple as we may think. We must first define what we consider to be a

4



Figure 2: Port1 and 2 voltages

referential. Then when a referential is different from another. And to end, to come back on our

first experience.

Referential definition

Once we have defined a configuration space S0 for a model attached to an experiment, we have

implicitly define our referential. If {a} is the set of observables of our problem, we make the

assumption that all these observables are strictly reachable to measurements. We mean that we

can affirm that we don’t need any physical modeling to ride up to their real values, except the

measurement errors. Or in other words, there are no propagation phenomenon constraining us

to consider any delays between the measurements of the various observables.

Let’s writing this in the case of the first circuit. It is made of 5 components (s is Laplace’s

operator): R4 + L1s, . . . R4, C1. Each of these components can be represented by a branch

in a cellular topology B1. A graph G is made of nodes, branches and meshes that belong

respectively to the spaces N1, B1, C1.

A bijective map f : bi
f−→ ~bi makes in correspondence each element bi ∈ N of B1 with the

component~bi of a vectorial space B1. Seeing graph G as an oriented and weighted graph, each
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branch is associated with a weight wi ∈ C. The orientation of one branch i is fixed by ~bi. A

flux vector ~w can be defined on this graph through the definition:

~w = wi~bi (1)

We create a connectivity C making the link between the branch space and the mesh space

C1. Previously, in our circuit, we can reduce the impedances in parallel R1, C1 to a single

impedance Laplace’s formalism (s is Laplace’s operator) z1 = R1/(1 + R1C1s). The circuit is

then made of 4 branches:

B1 = {b1, b2, b3, b4} (2)

We define C by:

wi = Ci
µJ

µ (3)

Each component of ~w appears as a linear combination of components Jµ. These components

are the components of a vector ~J belonging to the mesh vectorial space. There is also a bijective

map g : ci
g−→ ~ci making the correspondence between each mesh ci ∈ N chosen on the graph

(ci ∈ C1) and a basic vector of the mesh space ~cµ. The components Jµ ∈ C are the weights of

the mesh flux ~J : ~J = Jµ~cµ.

Starting from the graph G and its associated vectorial spaces (B1, C1), we can define an

exterior product applied on B1: ~bu∧~bv. Through this process, an invariant p which is the power

for the electrical circuits can be defined writing:

p =
1

2
zabw

a ∧ wb (4)

The 2-forms can be seen as normalized powers (similar to areas ∈ B2) and the zab are the

components of a skew symmetric tensor of rank q in a general coordinate system wα:

p =
1

q!
zαβ...σw

α ∧ wβ . . . ∧ wσ
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We could have quite easily verify that B1 has effectively a structure of vectorial space with the

two laws: summation “+” and external product “*”. The neutral element is ~0 a null branch, and

1~bi = ~bi.

We can define a dual space B̃1 with the elements b̂u defined by:

b̂u~bv = δuv (5)

The covector ê = eub̂
u is in relation with the invariant writing

1

2
eu ∧ wu = p

This leads to:

eµ = zµνw
ν (6)

eµ ∈ C can be called a force and seen as a source for the fluxes wi. But our previous relation

must be completed with a scalar ψ, as it remains true when we add such a scalar. It is a gauge

function, and the completed equation can be called Kirchhoff’s equation:

eµ = zµνw
ν + ψµ (7)

By applying the connectivity between the two vectorial spaces and their corresponding in

G, we obtain:

eµ = zµνC
ν
αJ

α + ψµ ⇒ Cµ
σeµ = Cµ

σzµνC
ν
αJ

α + Cµ
σψµ (8)

but as the mesh fluxes do not depend on ψ ⇒ Cµ
σψµ = 0, this leads to:

Eσ = ζσαJ
α (9)

As for B1 we may demonstrate that C1 has the structure of a vectorial space.

The 2-tensors z or ζ include the branches or meshes properties, i.e. their own impedances

and the coupling impedances between branches or meshes.
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The dimension of our problem is completely defined by Poincaré’s topological relation

D(C1) = D(B1)−D(N1)+D(R1), whereD() is the dimension of each subspace B1, N1, C1

and the number of referential D(R1). In the case of our first example, there is 1 referential, so

D(R1) = 1 and there is 1 graph G.

Using the correspondences:

b1 → R4 + L1s
b2 → R3

b3 → R1

R1C1s+1
+ L2s

b4 → R2

By using also ζσα = Cµ
σzµνC

ν
α, we find:

ζ =

[
R4 + L1s+R3 −R3

−R3 R3 +R2 +
R1

R1C1s+1
+ L2s

]
(10)

The circuit has 4 branches, 2 nodes and so 2 meshes in 1 referential. ζ is a 2× 2 tensor. We can

separate ζ in two tensors, one g including all the operators which involve the flux derivatives

(the inductances for an electrical circuit) and represent the kinetic energy (inertia) of the circuit;

and a second Q including all the dissipation or potential energies components (resistances and

capacitances).

With this decomposition, the circuit equation becomes:

Eσ −QσαJ
α = gσαsJ

α (11)

Eσ contains all the sources of energies (forces) for the circuit.

The circuit can be seen as a construction of both subcircuits {b1, b2} and {b2, b3, b4}, them-

selves constructed from B1. The connectivity C is an atlas for the manifoldM described by

equation (11).

To conclude, our configuration space describes the couple (G,M) in the referential R1.

Note that, as the circuit is completely described with lumped elements, and gives good

correlation with the measurements, it is completely coherent with the fact that it exists in an
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unique referential, with no time delay functions appearing in Q. We will see further than such

interactions involving time delays, cannot be represented with only one referential and need

specific time delay functions in Q.

We understand also that there are no input nor output in this circuit, as they exist in the same

space-time. That’s why we prefer to speak of ports rather than input / output accesses.

About the concept of propagation

Someone may say that “whatever the graph representation, there is a propagation delay over the

RLC circuit from port 1 to port 2”. Then there are no doubt to write when the measurements

re-cut perfectly the computation. The models are only models and any discussion on some

hypothetical “reality” is sterile. It is clear that if we increase the source speed, our model will

become false, and the NGD effect in the same time will disappear. We come back on these

arguments further. So factually, we consider that there is propagation process each time the

function exp (−x/vs) exists in the system equation.

NGD mechanism and controlled distortion

Now we can add an operational amplifier (op-amp) to make port 2 level reaching port 1 level.

This is equivalent to the normalization process often evoked in NGD articles. Adding an oper-

ational amplifier, we design the circuit shown in Fig. 3.

which gives the response shown in Fig. 4.

The signal given on Port 3 is distorted in such a way that its front rise exists before the signal

front on Port 1. Through this normalization, applied here using an op-amp, some temporal

advance can be measured on Port 3 compare with respect to Port 1. But this temporal advance

comes from the wanted distortion, and definitely not from any time delay suppression removal.

It’s like is we have push left the rise and fall edge of the source signal. However there are here
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Figure 3: NGD circuit with op-amp

Figure 4: Ports results with op-amp

no time distortion or any particular phenomenon, but through this signal distortion we have

really gain some time interval compared to port 1 signal.

To reach this result we need some strict conditions:

1. an active circuit locally on port 2 (the ”normalization circuit”);

2. a source frequency band respecting the NGD band-pass conditions (the source signal must

be sufficiently slow compared to the NGD circuit typical time constant).
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Propagation speed in the single referential NGD circuit

The Fig. 5 shows the graph extracted from the classical normalized NGD circuit schematic.

Note that even if it doesn’t appear on the electrical schematic, any mesh must be accompanied

with an inductance. That’s why the output mesh is associated with L4 inductance. In the graph

each mesh is represented by a square and the shared rectangle on each frontier points out the

coupling function between meshes.

Figure 5: Normalized NGD graph

We can write the equation corresponding to the manifold of this circuit as follows:

1

s
(Eµ −QµνJ

ν) = gµνJ
ν (12)

with:

g =


L1 0 0 0
0 L2 0 0
0 0 L3 0
0 0 0 L4

 (13)

The right term in equation (12) represents the inertia or in other words a metric, while the left

term can be associated with the involved energies (thermal one, losses, sources, etc.). Taking the

square root of the left term should lead to a quantity in relation with the speed v (we associate
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the system to a fluid for which the energy is expressed by 1/2ρv2). So (with sqα = Jα, qα

being the mesh load):

v =

√
gµν

dqν

dt

dqµ

dt
(14)

Noting v2 = 1
s
(Eµ −QµνJ

ν), we come back to the first example to simplify the analysis of

this speed in this passive case. We can write its tensors under the form:

E =

[
e0
0

]
(15)

Q =

[
R0 + σf −σf
−σf σf +Rs + z1

]
(16)

g =

[
L1 0
0 L2

]
(17)

Taking into account the real values of the circuit components and the time variation of the

source (for example Lis becomes negligible) we can approximate the circuit to obtain these

results for its fluxes:

J1 =
e0
σf

(18)

J2 =
e0

z1 +Rs

(19)

We can know write the speed expression in this first case:

v =

√
L1

(
e0
σf

)2

+ L2

(
e0

z1 +Rs

)2

(20)

Due to the low frequency band of the excitation, we can approximate v with:

v =

√
L1

(
e0
σf

)2

+ L2

(
e0

R1 +Rs

)2

(21)

Now adding a normalization amplifier with β = (R1 +Rs)/σf , we obtain:

vβ =

√
L1

(
e0
σf

)2

+ β2L2

(
e0

z1 +Rs

)2

=
e0
σf

√
L1 + L2 (22)
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It is clear that vβ > v that’s why a time advance can be observed thanks to the normaliza-

tion process.

Adding interactions between two referentials

Keeping our first example we can lead two interesting experiments. We add a line between the

output of the source and the input of the NGD circuit. We then observe the voltage curve for

two line length values: 1 and 10 kilometers. These lengths remains relatively short compared

to the signal speed. Remember that the rise time is 0.96 ms. Thinking to a round trip defined

by 2r/c = 0.96 ms, we find a length r equal to 144 kilometers! We understand that our line of

some kilometers long seems very short at this scale. We will see on this new example that the

ratio between the line length and the signal speed is another key-point to understand the NGD

phenomenon.

adding a line before the NGD circuit

Fig. 6 shows the circuit equipped with a line of 1 km. The line is matched on its output and

after we find the same circuit as previously. This new structure is made of two parts: a first

circuit before the line and a second one after the line. These two circuits are connected by the

line which is a delay function.

The physical model of a line which is a guided wave system was found by Branin, based

on the line theory and then included in the ATR formalism. Branin’s equations applied with an

input impedance R1, an output impedance R2 and a line of length x with a propagation speed c

and a characteristic impedance zc are:{
e1 = (zc +R1)J

1 + (R2 − zc) e−τsJ2

e1e
−τs = (R1 − zc) e−τsJ1 + (zc +R2)J

2 (23)

Here appears clearly the delay functions, both in the source covector or in the impedance

tensor. It means that a time delay exists between the input of the line and the output of the line.
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Figure 6: Adding a line to the NGD circuit

Noting R′ = R2R6/(R2 +R6) the impedance tensor of this new circuit is given by:

Q =


R′ + zc 0 0 0 0

0 R9 + zc −R9 0 0
0 −R9 R9 + z1 +R3 −R3 0
0 0 −R3 R3 +R7 β
0 0 0 β Rs +R1

 (24)

The metric being:

g =


L1s (R2 − zc)e−τs 0 0 0

(R′ − zc)e−τs L2s 0 0 0
0 0 L3s 0 0
0 0 0 L4s 0
0 0 0 0 L5s

 (25)

τ = x/c is the line time constant.

Fig. 7 shows the graph of the circuit (each mesh having two branches). We clearly see

the delayed interaction between port 1 frontier and port 2 frontier. The graph has 7 nodes, 10

branches and 2 referentials. It needs 5 meshes. Due to the fact that a time propagation delay

exists between meshes 1 and 2, each network on each side of this propagation zone cannot

explicitly know what’s happen in the opposite network until it receives its signal. The delay

function implies that each world on each side of the propagation belongs to a different referen-

tial. This is clearly pointed out by Poincaré’s relationB1−N1+R1 = C1. In this new problem,

we have two different referentials.
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Figure 7: NGD with line graph

If we sent an extremely short pulse as source. The time derivative of this pulse becomes

extremely tall. All the other terms seem small compared to this value. We can approximate our

problem to the equation Eµ = gµνJ
ν . The problem remains the same if we reduce the metric to

its two first terms:

g =

[
L1s (R2 − zc)e−τs

(R′ − zc)e−τs L2s

]
(26)

The current (output flux) on the line output is given by (β12 = (R2− zc), β21 = (R′− zc)):

J2 = − β21δe
−τs

L1L2s2 − β12β21e−2τs
(27)

δ being the input pulse. If s→∞, the output current tends to:

J2 = −β21δe
−τs

L1L2s2
(28)

because the second term of the denominator is negligible, even if delayed. If s→ 0, the output

becomes (keeping Q very small):

J2 → δ

β12
e2τs (29)

and exp(2τs) → 1. When the frequency tends to zero, the propagation delay tends to be zero

also. For a temporal signal covering all frequencies from the lower ones to the higher ones, the

low frequencies will propagate faster than the high frequencies, even arrive with zero delay. But

when we compute the Spectrum of a temporal signal, as the temporal domain is the dual of the

15



harmonic domain, globally t = 1/f . The higher the frequencies, the smaller the time duration.

It means that the high frequencies appear first in the time signal instantaneous spectrum. In other

word, the high frequency components are contained in the rise front of the temporal signal. How

all this will be translate in our NGD circuit. We have to recall two fundamental results about

Coulomb’s gauge and Fourier’s transformation.

Before to aboard these notions you can take a look to the results of the NGD circuit with

line Fig. 8 and to the zoom applied on the first instants Fig. 9. This is synthesized Fig.10.

Figure 8: Result NGD with line

Figure 9: Zoom on the first moments
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Figure 10: Synthesis NGD with line

Coulomb’s gauge behavior in time

In the Coulomb’s gauge we chose: ~∇ · ~A = 0, which leads to:

∇2V = − ρ
ε0

(30)

While the vector potential is defined by:

1

c2
∂2 ~A

∂t2
−∇2 ~A = µ0

~J − 1

c2
∂

∂t
∇~V (31)

Quoting Martin and Rothen [39]: ”in all space point, V change instantaneously when ρ

changes. There is not here contradiction with the theory of relativity because only the electro-

magnetic field is limited in its propagation speed. Equation (31) is a propagation equation with

source. This is it which describes the radiation and which corresponds to the field dynamic

degrees of freedom”.

In Coulomb’s gauge, also called ”transverse gauge”, the potential vector is transverse to the

propagation line. The scalar potential is longitudinal. The coulomb’s gauge gives implicitly the
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transverse and longitudinal components of the field. We will understand speaking of Fourier’s

transformation that only the transverse part is submitted to the relativity rule.

Fourier’s transformation and DC component

Fourier’s transformation change a temporal description of a signal in a frequency description.

What is remarkable is that the average component A0 gives the 0 hertz component, and is in

relation with the temporal average value of the signal:

A0 =
1

T

∫
T

dtf(t) (32)

It is always possible to compute all the Fourier’s cœfficients A1 . . . An then to add or not

the average component. That’s why the temporal instant where we add the average component

doesn’t mind. The average component only change the continuous part of the signal. And this

continuous component can be created before the dynamic part exists, because in any case, the

temporal signal will be constructed and will exist only when the delayed dynamic part arrives.

The tempoal signal can be separate in its continuous value and its dynamic value. Writing:

f(t) = A0 +
∑
n6=0

Ancos

(
n2π

t

T

)
+Bnsin

(
n2π

t

T

)
(33)

we can always define:

fDC = A0 (34)

which is the continuous part of f , and

f̃(t) =
∑
n6=0

Ancos

(
n2π

t

T

)
+Bnsin

(
n2π

t

T

)
(35)

NGD circuit with line analysis

The two referentials previously described in the NGD circuit given Fig. 7 communicate by

exchanging delayed signals. We have seen that the propagation speed in the line is infinite
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when the frequency tends to zero. This is completely coherent with the spectrum Independence

versus the average value.

Let’s try to write this mathematically. We can take Fourier’s transform of the source signal

e(t) = ẽ(t) + eDC . We consider a simple circuit made of two meshes and with the complete

fundamental tensor ζ defined by:

ζ =

[
R1 + L1s 0
e−τs R2 + L2s

]
(36)

To simplify the analysis we consider a single delayed coupling function going from the input

to the output. Each mesh belongs to a separate referential. Our circuit is represented by the

equation: [
e(t)
0

]
=

[
R1 + L1

d
dt

0
δτ R2 + L2

d
dt

] [
J1(t)
J2(t)

]
(37)

We can explore the DC side of this equation:[
eDC
0

]
=

[
R1 0
1 R2

] [
J1
DC

J2
DC

]
(38)

and its dynamic side:[
ẽ(s)
0

]
=

[
R1 + L1s 0
e−τs R2 + L2s

] [
J̃1

J̃2

]
(39)

The solution of the system (38) can be solved independently of the time and it doesn’t

include the delay function exp(−τs), while the solution of the system (39) depends on time.

e(t) cannot exist without ẽ(t). Or more accurately speaking, eDC can exist instantaneously but

we cannot perceive it. From the moment we make a measurement, we create a dynamic signal

or interaction and so, we understand that it is in practice impossible to acquire the continuous

signal without a dynamic signal.

In our experience, the continuous component arrives immediately on the normalization am-

plifier. But if we focus on the start of the signal, as small as it is, we see that it arrives first (Fig.
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9 and 10). Then, this advance seems negligible because the amplifier immediately creates the

dynamic signal normalized which is many more steep than the original signal. This difference

of stiffness gives at lower frequencies a temporal advance of the normalized signal on the orig-

inal one. As the signal coming from these low frequencies is many more high than the signal

coming from the high frequencies, the whole signal seems to go faster than the light speed.
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