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Abstract: We recall the classical tree-cotree technique in magnetostatics. (1) We extend it in the1

frame of high-order finite elements in general domains. (2) We focus on its connection with the2

question of the invertibility of the final algebraic system arising from a high-order edge finite3

element discretization of the magnetostatic problem formulated in terms of the magnetic vector4

potential. With the same purpose of invertibility, we analyse another classically used condition, the5

Coulomb gauge. (3) We conclude by underlying that the two gauges can be naturally considered6

in a high order framework without any restriction on the topology of the domain.7

Keywords: magnetic vector potential; high order edge finite elements; tree gauge; Coulomb gauge8

9

1. Introduction10

We extend, in an easy way, the classical tree-cotree technique in the frame of high-11

order finite elements (FEs). We focus on magnetostatics as it represents a significative12

problem where this technique is usually applied. Particular attention is given to the13

magnetic vector potential formulation of such a problem. This problem admits infinite14

solutions hence its discretization by Whitney edge FEs yields to a singular algebraic15

system.16

The techniques that are generally adopted in magnetostatics to eliminate the matrix17

nullspace are described in two seminal works, one by Albanese and Rubinacci [1] and the18

other by Cendes and Manges [2]. Albanese and Rubinacci showed that one converts the19

singular systems, resulting from low-order edge-based discretizations of magnetostatic20

problems, into nonsingular ones by setting to zero the vector potential circulations21

on a spanning tree edges of the FE mesh graph. Manges and Cendes underlined the22

relation between the tree-cotree approach proposed by Albanese and Rubinacci and the23

imposition of the Coulomb gauge in a discrete manner.24

With classical edge FEs, the degrees of freedom (dofs) are the circulations of the25

approximated vector field along the edges of the FE mesh [3]. Hence, tree-cotree tech-26

niques are perfectly adapted to this type of discretizations since there is a one-to-one27

correspondence between edges, listed in the tree or cotree sets, and dofs.28

In a high order FE discretization of the same problem, the dofs introduced in [4],29

the so-called weights, have again a physical signification. For edge discretizations, they30

have the meaning of circulations on suitable edges of a fictitious refinement of the FE31

mesh. This fact allows to rely in a very natural way on tree-cotree techniques. These32

new dofs were born from using the same geometrical approach, proposed by Whitney33

[5] to construct low order polynomial representations of differential forms, on a finer34

simplicial complex of the computational domain mesh. These weights do coincide with35

Whitney edge FE dofs in the low-order case.36

In these pages, by relying on linear algebra, we analyse the fundamental work ac-37

complished in the 90s on tree-cotree techniques and show that it is still of actuality in the38
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high order case when fields are reconstructed in the discrete space by using their weights.39

40

We thus start by considering an open bounded connected polyhedral domain
Ω ⊂ R3 with boundary ∂Ω. We indicate by (∂Ω)j, for j = 0, ..., p, the connected
components of ∂Ω (in particular, (∂Ω)0 is the external one). We denote by g the number
of independent non-bounding cycles in Ω. Note that b1(Ω) = g and b2(Ω) = p are,
respectively, the first and the second Betti numbers of Ω. For a domain Ω ⊂ R3, the 0th
Betti number b0(Ω) is equal to m, the number of connected components of Ω. If Ω is
connected, as assumed in these pages, m = 1. The third Betti number b3(Ω) = 0 in the
present case. Betti numbers describe the topology of Ω and provide a way of computing
its Euler-Poincaré characteristic as the number χ(Ω) = b0 − b1 + b2 − b3. We introduce
the space

Hµ(m; Ω) = {w ∈ (L2(Ω))3, curl w = 0, div (µ w) = 0, µ w · n∂Ω = 0 on ∂Ω}.

Note that dim (Hµ(m; Ω)) = g (= b1(Ω)). The magnetostatic problem in its most basic
form reads: find the magnetic induction field B due to prescribed compatible currents J
and defined by the field equations and conditions

curl (µ−1B) = J, in Ω,
div B = 0, in Ω,

B · n|∂Ω = 0, on ∂Ω,∫
Ω µ−1B ·w = 0, ∀w ∈ Hµ(m; Ω).

(1)

Here above, n|∂Ω is the outward going unit normal to ∂Ω and µ the magnetic perme-41

ability of the material contained in Ω. It is assumed that µ ∈ L∞(Ω) is symmetric and42

positive definite, bounded from below, namely, µ ≥ µ0 > 0 for a real number µ0 (that co-43

incides with the magnetic permeability of the air). The last condition of L2-orthogonality44

to the spaceHµ(m; Ω) is of key importance to guarantee the solution uniqueness. Indeed,45

when J = 0, the first three equations in (1) give µ−1 B ∈ Hµ(m; Ω) that, together with46

the last condition , yields µ−1 B = 0, that means B = 0, due to the properties of µ (see47

more details in [6]). For compatible currents, we mean J such that div J = 0 in Ω and48 ∫
(∂Ω)j

J · n|∂Ω = 0, for any jth (out of p + 1) connected component (∂Ω)j of ∂Ω.49

The paper layout is as follows. In section 2, we reformulate problem (1) in terms of50

the magnetic vector potential and its weak formulation. We thus define the high-order51

FE approximation space and write the discrete problem together with its matrix form52

in section 3. In section 4 we present the tree-cotree approach and the analysis of the53

linear system to solve in the block form dictated by the tree. Section 5 is dedicated to54

the Coulomb gauge. We briefly discuss in Section 6 about the other formulation of the55

magnetostatic problem and on its connection with the tree-cotree approach. We conclude56

in Section 7 by analysing differences and similarities between the presented gauges.57

2. The magnetic vector potential problem58

A way to exactly satisfy the solenoidality condition div B = 0 on the magnetic
induction field B is to represent B in terms of a vector potential, namely a vector A
such that B = curl A. This magnetic potential A is not uniquely defined as the vector
Ã = A + grad V, for V a scalar function, still verifies B = curl Ã. A classical way to
ensure the uniqueness of A is to prescribe a gauge condition on A, e.g., the Coulomb
gauge div (µ A) = 0. We introduce the space

Hµ(e; Ω) = {w ∈ (L2(Ω))3, curl w = 0, div (µ w) = 0, w× n∂Ω = 0 on ∂Ω}.
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Note that dim (Hµ(e; Ω)) = p (= b2(Ω)). The magnetostatic problem (1) thus reads:
given a compatible J, find a vector A satisfying the field equations

curl µ−1curl A = J in Ω,
div (µ A) = 0 in Ω,
A× n|∂Ω = 0 on ∂Ω,∫

(∂Ω)j
µ A · n∂Ω = 0 ∀ j = 0, ..., p .

(2)

Note that from the condition A×n|∂Ω = 0 follows curl A ·n|∂Ω = 0 hence B ·n|∂Ω = 0. It59

is possible to show (see again [6]) that grad (zj) ∈ Hµ(e; Ω) for each function zj ∈ H1(Ω)60

that is solution of div (µ grad zj) = 0 in Ω, with boundary conditions (zj)|(∂Ω)i
= δij,61

for i, j = 0, ..., p (here δ.. is the Kronecker symbol). If J = 0, we have curl A = 0. If62

div (µ A) = 0 and
∫

Ω µ A · grad zj = 0 then
∫
(∂Ω)j

µ A · n∂Ω = 0, for each j = 0, ..., p.63

In view of using FEs, we need to rewrite problem (2) in weak form. We multiply
the first equation of (2) by a test function v ∈ H0(curl; Ω) where H0(curl; Ω) = {u ∈
(L2(Ω))3, curl u ∈ (L2(Ω))3, u × n|∂Ω = 0}. We then integrate by parts over Ω to
obtain ∫

Ω
µ−1curl A · curl v =

∫
Ω

J · v, ∀ v ∈ H0(curl; Ω). (3)

Condition div (µ A) = 0 yields the following characterisation for A in Ω:∫
Ω

div (µ A) ϕ = 0 , ∀ ϕ ∈ C∞
c (Ω), (4)

being C∞
c (Ω) the space of smooth functions with compact support in Ω. By integration

by parts and applying a density argument, we can write∫
Ω

µ A · grad ϕ = 0 , ∀ ϕ ∈ H1
0(Ω) , (5)

and (5) yields div (µ A) = 0 in Ω (in the sense of distributions). When p > 0, the second
and fourth equations in problem (2) can be imposed by using (5) with ϕ ∈ H1

∗(Ω) =
{ ϕ ∈ H1(Ω), ϕ|(∂Ω)j

= cj, ∀ j = 0, ..., p} where c ∈ Rp+1 is a constant vector. In fact,

taking zi ∈ H1
∗(Ω), with cj = δij for all i, j = 0, ..., p, we have

0 =
∫

Ω
µ A · grad zi = −

∫
Ω

div (µ A) zi +
∫

∂Ω
µ A · n∂Ω zi =

∫
(∂Ω)i

µ A · n∂Ω.

So, we look for A ∈ H0(curl; Ω) such that (3) holds together with the condition∫
Ω

µ A · grad ϕ = 0 , ∀ ϕ ∈ H1
∗(Ω) . (6)

3. The discrete problem and its matrix form64

Let τh = (V, E, F, T) be a simplicial triangulation over Ω and Ωh = ∪t∈Tt. Even if
τh is a simplicial triangulation of Ω, the topological properties computed on Ωh are the
same as those of Ω. For Ω connected, with g loops and p cavities, the Euler-Poincaré
characteristics χ(Ω) and χ(Ωh) are equal and we have

(χ(Ω) = b0 − b1 + b2 − b3 = ) 1− g + p = nV − nE + nF − nT (= χ(Ωh))

where nV , nE, nF, nT are, respectively, the cardinalities of the sets of vertices V, edges E,65

faces F and tetrahedra T of the mesh τh. Given a simplicial mesh τh over Ω̄, we denote by66

Wk
r+1 = P−r+1Λk(τh) the set of Whitney differential k-forms of polynomial degree r + 1,67

where k ∈ {0, 1, 2, 3} is the order of the form (see [7] for more details on the properties of68

these spaces). It is a compact notation to indicate space of polynomial functions which69

are well-known in finite elements. Indeed, for k = 0, we have W0
r+1 = Lr+1, the space of70
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continuous, piecewise polynomials of degree r + 1; for k = 1, we obtain W1
r+1 = Nr+171

the first family of Nédélec edge element functions of degree r + 1; for k = 2, we get72

W2
r+1 = RTr+1 the space of Raviart-Thomas functions of degree r + 1; for k = 3, we73

find W3
r+1 = Pr discontinuous piecewise polynomials of degree r. The spaces Wk

r+174

are connected in a complex by linear operators which can be represented by suitable75

matrices, namely G (k = 0), R (k = 1), D (k = 2) respectively, once a set of unisolvent76

dofs and consequently a basis in each space Wk
r+1 have been fixed. Note that the entries77

of these matrices are 0,±1, only for few bases of these spaces Wk
r+1 associated with dofs78

chosen as, for example, the weights of a physical field, intended as a differential k-form,79

on chains of k-simplices of the high-order FE mesh.80

For r = 0, the dimension of the space Wk
1 coincides with the number of k-simplices in81

the mesh, indeed dim L1 = nV , dim N1 = nE, dim RT1 = nF and dim P0 = nT . Moreover,82

the matrices G, R, D are, resp., the edge-to-node, face-to-edge and tetrahedron-to-face83

connectivity matrices taking also into account respective orientations. Dofs for fields in84

Wk
1 are, respectively, their values at the mesh nodes (k = 0), their circulations along the85

edges (k = 1), their fluxes across the mesh faces (k = 2) and their densities at the mesh86

tetrahedra (k = 3).87

For r > 0, as explained in [4], by connecting the nodes of the principal lattice of88

degree r + 1 in a n-simplex t ∈ T, we obtain a number of small n-simplices that are89

1/(r + 1)-homothetic to t. The small k-simplices, 0 ≤ k < n, are all the k-simplices90

that compose the boundary of the small n-simplices. Any small k-simplex is denoted91

by a couple {α, s}, with s a k-simplex of τh and α is a multi-integer (α0, . . . , αn) with92

∑n
i=0 αi = r, αi ∈ Z and αi ≥ 0. The term active is to indicate all couples {α, s} such that93

the function λαws belongs to a basis of Wk
r+1, where λα = λα0

0 λα1
1 · · · λ

αn
n and ws ∈ Wk

1 .94

Indeed, by considering all possible multi-indices α in the couples {α, s}, one generates95

more functions λαws than necessary. The dimension of the space Wk
r+1 coincides with the96

number of active small k-simplices in the mesh. The small k-simplices were born to define97

a set of unisolvent dofs, the weights
∫
{α,s} u, for functions u ∈Wk

r+1(t) when r > 0, that,98

differently from the classical moments, maintain a physical interpretation. About the99

weights, their definition was first given in [4] and unisolvence, despite redundancies,100

proved in [8]. For the unisolvence of a minimal (i.e., without redundancies) set of such101

weights, we refer to [9].102

This work relies on the spaces W0
r+1 and W1

r+1. In particular, the meaning of the103

matrix G is the same as for the case r = 0 provided that we work with the active small104

k-simplices instead of the k-simplices of the mesh τh, with k = 0, 1. The weights for high105

order Lagrangian finite elements W0
r+1 are the values of the function at the points of the106

corresponding principal lattice of each tetrahedron of the mesh, and the weights for high107

order Nédélec finite elements W1
r+1 are the line integrals of the vector field along the108

active small edges connecting adjacent points of the principal lattice. The geometrical109

realization of the graph G associated with the gradient operator, is straightforward (see110

an example in triangles, for r + 1 = 4, in Figure 1, the picture in second position from111

the left). A spanning tree T G is a maximal subgraph of G (maximal because it visits112

all vertices of G) without closing circuits (this means that it is a tree). The remaining113

subgraph G \ T G is called the cotree. An example of spanning tree and associated cotree114

in triangles, for r + 1 = 4, is given in Figure 1, the last two pictures on the right. In a115

mesh, a similar construction is used to enrich a spanning tree of the verices-edges graph116

of the mesh.117
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x
1

x
0

x
2

Figure 1. For r + 1 = 4, in a mesh triangle t = [x0, x1, x2], from left to right, are drawn, respectively,
the small nodes of the principal lattice, the active small edges of the graph G associated with the
small-edge-to-small-node incidence matrix G, a spanning tree in G and its cotree.

The meaning of G as edge-to-node connectivity matrix is thus the same as that for118

the case r = 0, provided that we work with the active small edges of the high-order FE119

mesh in Ωh instead of the edges of τh. From now on, dL (resp. dN) denotes the cardinality120

of the set of nodes or small nodes (resp. edges or active small edges) whatever r ≥ 0 is,121

and the terms active and small for k-simplices are taken for granted. We now make for122

the discrete problem.123

Let {wj}j=1,...,dN be the (dual) basis for W1 = W1
r+1 ∩ H0(curl; Ω) (for simplicity,

we keep on denoting by dN the dimension of W1 and dL that of W0 = W0
r+1 ∩ H1

0(Ω))
with respect to the weights over the active small edges as dofs, i.e.,

∫
({ααα,e})`

wj = δj,` for
all ` = 1, . . . , dN . The discretization of the variational formulation (3) is stated as: find
Ah ∈W1, such that∫

Ω
µ−1curl Ah · curl vh =

∫
Ω

J · vh, ∀ vh ∈W1. (7)

If we write Ah = ∑dN
j=1 ajwj and select vh = wi for all i ∈ {1, . . . , dN}, the discrete

variational problem results in the linear algebraic system

Sa = b, (8)

where

Si,j =
∫

Ω
µ−1curl wj · curl wi, bi =

∫
Ω

J ·wi, aj =
∫
{ααα,e}j

A · τ j, (9)

and {ααα, e}j is the jth active small edge with unit tangent vector τ j. The discrete form of
condition (6) reads: ∫

Ω
µ Ah · grad ϕh = 0, ∀ ϕh ∈W0

∗ , (10)

with W0
∗ = W0

r+1 ∩ H1
∗(Ω). Condition (10) says that Ah is orthogonal to grad (W0

∗ ). With124

the help of the tree-cotree technique we will see, in a general domain, the conditions125

for the invertibility of system (8) imposed by the tree gauge and those by the dicrete126

Coulomb gauge (10).127

4. The tree-cotree decomposition to analyse the system S a = b128

To accomplish the first step, we characterize the nullspace of S, namely the set of
vectors a such that Sa = 0. Correspondingly, we have∫

Ω
µ−1curl Ah · curl vh = 0, ∀ vh ∈W1. (11)

Selecting vh = Ah, we write (11) as

0 =
∫

Ω
(curlAh)

>µ−1curl Ah ≥ C‖curlAh‖2
L2(Ω), (12)

where the constant C > 0 depends on µ. For this reason, from (12) we deduce that129

curlAh = 0. Then Sa = 0 ⇒ curlAh = 0 ⇒ Ra = 0, where R is the active small-130
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face-to-small-edge connectivity matrix. Since Sa = 0 if and only if Ra = 0, then S131

and R share the same nullspace Ker (S) = Ker (R), therefore, they are row equivalent132

Row (S)
⊕

Ker (S) = RdN = Row (R)
⊕

Ker (R)⇒ Row (S) = Row (R).133

Identifying the free variables corresponding to R ∈ RdRT×dN (with more columns
than rows, namely dN > dRT) is possible by a tree-cotree decomposition (e.g., as it was
done in the last row of [10, eqn. 3]). Namely, we set to zero all the variables associated
with a spanning tree T G of a suitable graph G∗ derived from the graph G of the gradient
operator G. The construction of the graph G∗ from G is done as follows. In the graph G,
since A× n|∂Ω = 0, for each j = 0, ..., p, we eliminate all the active small edges {α, e}
lying on the connected component (∂Ω)j. To do this, we collapse all their extremities
into a unique node, say x∗j . Accordingly, an active small edge, say {α, e} = [x0, x1],
with one extremity at a node x0 6∈ ∂Ω and the other extremity at a node x1 ∈ (∂Ω)j,
is deformed ( ) into an edge, still denoted by {α, e}, with extremity x0 and x∗j , that is
[x0, x1] [x0, x∗j ]. We thus get a modified graph G∗ = (N ∗, E∗) with vertices, the set

N ∗ = {x0 ∈ G, x0 6∈ ∂Ω}
⋃

j=0,...,p
{x∗j } ,

and arcs, the set defined as

E∗ = {[x0, x1], both x0, x1 6∈ ∂Ω }
⋃

j=0,...,p
{[x0, x1] [x0, x∗j ], x0 6∈ ∂Ω, x1 ∈ (∂Ω)j },

that is the set of small edges {α, e} edges of G with both extremeties not on ∂Ω together134

with the set of the deformed ones, namely those small edges of G with an extremity on135

∂Ω that has collaped into one of the nodes x∗j .136

Taking advantage of the row equivalence between R and S (following the ideas of
Manges and Cendes [2]), we decompose S into blocks, corresponding with a partition
of the active small edges in two sets, by relying on a spanning tree of the graph of the
gradient operator G of the high-order FE mesh. Dofs supported by small edges out of
the tree (thus on the so-called cotree), are numbered first, and dofs corresponding with
small edges on the tree are numbered second. The subscript ct (resp., t) indicates the
block of indices associated with small edges in the complement of the spanning tree
(resp., in the spanning tree), namely, a = [act, at]>. According to this decomposition. the
system (8) reads [

Sct, ct Sct, t
St, ct St, t

][
act
at

]
=

[
bct
bt

]
. (13)

Note that S is a singular matrix and this mimics the singularity of the continuous137

problem (2). The singularity of S raises two issues. First, compatibility, namely, which138

are the requirements on b so that b is in the range of S? Secondly, uniqueness, namely is139

there a way to ensure uniqueness for the solution of (8), under compatibility condition?140

4.1. Characterising the block of maximal rank in the system matrix141

The tree-cotree technique provides a way to define the set of indices ct (correspond-142

ing with dofs associated with the cotree) such that Sct,ct is maximal rank. Indeed, we143

have the following result.144

Theorem 1. The square block Sct,ct is invertible.145

Proof of Theorem 1. Let us denote by q the size of Sct,ct and let us consider a vector
z ∈ Rq such that z ∈ ker(Sct,ct). Hence, Sct,ct z = 0 and z> Sct,ct z = 0, too. We have

0 = z> Sct,ct z =
∫

Ω
µ−1 curl Zh · curl Zh ,
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where Zh = ∑j∈ct zj wj is an element of W1. Due to the requirement on µ, this gives
curl Zh = 0. As a consequence, Zh = grad ψh for a scalar field ψh ∈ W0

∗ . Let us check
that this yields Zh = 0. Indeed, each small edge {α, e}j of the cotree (j ∈ ct) closes,
together with other arcs {β, ε}k that all belong to the tree (k ∈ t), a circuit γ in the mesh
graph. Being Zh equal to the gradient of a scalar function, its circulation on circuits is
zero. Note Zh has the form Zh = ∑j∈ct zj wj + ∑k∈t 0 wk. We thus have∮

γ
Zh · τγ = 0 =

∫
{α,e}j

Zh · τγ +
∫

γ\{α,e}j

Zh · τγ = zj + 0.

So, zj = 0 for each edge {α, e}j in the cotree, that yields z = 0 and the invertibility of146

Sct,ct.147

We wish to underline a property that will be widely applied in the following:148

149

Property: If Sct,ct has maximal rank q, then SΓ = St, t − St, ct S−1
ct,ct Sct,t = 0.150

Proof of the Property. If the first q lines (block ct) in (13) define the rank of S, the
remaining (dN − q) lines (block t) are linear combination of the first q ones. This means
that it exists a matrix C ∈ R(dN−q)×q such that[

St, ct St,t
]
= C

[
Sct, ct Sct,t

]
Therefore, SΓ = C Sct,t − C Sct, ct S−1

ct,ct Sct,t = C Sct,t − C Sct,t = 0.151

For a matrix M, the expression MΓ = [Mt, t − Mt, ct M−1
ct,ct Mct,t ] is well known in152

the frame of domain decomposition (DD) methods, indeed it coincides with the so-called153

Schur complement associated with M for the partition of indices into the sets ct and t.154

In the context of DD methods, it is not used to put in evidence the maximal rank block155

of M, since M in the DD context is an invertible matrix, but rather to solve Ma = b156

by going through the inversion of a finite number of better conditioned smaller linear157

systems (the interested reader can find more details in [11]).158

4.2. Requirements on the system right-hand-side for the existence of a solution159

We now focus on the compatibility condition for the right-hand-side of (13). It is160

an algebraic constraint for a vector b to be the right-hand-side of a linear system with161

matrix S, thus stating when b ∈ Im (S) = {S v, v ∈ RdN }.162

Theorem 2. b ∈ Im (S) if and only if bt = St ctS−1
ct ctbct.163

Proof of Theorem 2. The fact that b ∈ Im (S) implies b is in the columns space of S, so
b = S z for some z ∈ RdN . Written in partitioned matrix form[

bct
bt

]
=

[
Sct,ct Sct,t
St,ct St,t

][
zct
zt

]
(14)

This yields the equations

S−1
ct,ctbct = zct + S−1

ct,ctSct tzt and bt = St,ctzct + St,tzt. (15)

Thanks to the fact that rank (S) = rank (Sct,ct), we know that [St,t− St,ctS−1
ct,ctSct,t] = 0. By

eliminating zct in (15) and considering St,t = St,ctS−1
ct,ctSct,t in (15), we have the following

relation between the blocks of b:

bt = St,ctS−1
ct,ctbct, (16)

that is what we wished to prove.164
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Condition (16) has to be satisfied by b to be in the range of S, prior to solving (8).165

4.3. Characterising the nullspace of the system matrix166

Under a compatibility condition on the right-hand side b addressed in the previous167

section, the nullspace of S is responsible for the lack of uniqueness of the solution a. We168

thus characterise the nullspace of S, i.e., ker (S) = { v ∈ RdN , S v = 0}.169

Theorem 3. a ∈ ker (S) if and only if act = −S−1
ct,ct Sct,t at.170

Proof of Theorem 3. Let a ∈ ker (S). Under the form (13), the first block of lines in
the system S a = 0 reads Sct, ct act + Sct, t at = 0. Being Sct,ct invertible, we get act =
−S−1

ct,ct Sct,t at. The other way around, if act = −S−1
ct,ct Sct,t at, then the vector b = S a

reads[
bct
bt

]
=

[
Sct, ct Sct, t
St, ct St, t

][
−S−1

ct,ct Sct,t at
at

]
=

[
0

( St, t − St, ct S−1
ct,ct Sct,t ) at

]
.

Hence bct = 0 and bt = SΓ at with SΓ = ( St, t − St, ct S−1
ct,ct Sct,t ). We have that bt = 0,171

too, because SΓ = 0 since rank (Sct,ct) = rank (S). So a ∈ ker (S).172

If b verifies (16) then b ∈ (ker (S))⊥. Indeed, by a simple calculation, we have
b ·w = 0 for all w ∈ ker (S). In fact, b ·w = bct ·wct + bt ·wt. By relying on (16) and
Theorem 3 for w, we have

bct ·wct + bt ·wt = −b>ct S−1
ct,ct Sct,t wt + (St,ct S−1

ct,ct bct)
>wt = 0

since (S−1
ct,ct)

> = S−1
ct,ct and S>ct,t = St,ct.173

4.4. Generating solutions to the system174

From the previous results, we can state the following.175

Theorem 4. Given a vector b satisfying (16), all solutions of (8) look like a = [act, at]> with

∀ at , act = S−1
ct,ct(bct − Sct,tat). (17)

Proof of Theorem 4. All vectors a, with blocks defined in (17), verifies the first block
line of system (13). To get the second block line of (13), let us multiply act in (17) by St,ct
and rearrange the terms, we thus obtain

St,ct act + St,ct S−1
ct,ct Sct,t at = St,ct S−1

ct,ct bct. (18)

Then using St,t = St,ctS−1
ct,ctSct,t and the condition (16) for b, relation (18) becomes

St,ctact + St,tat = bt , (19)

that is the second line block of (13). The other way around, from the first line block of
(13) we can set act = S−1

ct,ct(bct − Sct,t at) since Sct,ct is invertible. We replace act in the
second line block of (13) and we have

−St,ct S−1
ct,ct Sct,t at + St,t at = bt − St,ct S−1

ct,ct bbc.

The right-hand-side b verifies (16) thus bt − St,ct S−1
ct,ct bbc = 0. Therefore we have176

SΓ at = 0 with SΓ = 0 thus at can be any vector in RdL+p.177
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To summarize, the infinite set of solutions to (8) with the form [ act , at ], is generated
by arbitrarily setting the entries of the block at and by computing act with the system

Sct,ctact = bct − Sct,tat. (20)

The solution of system (8) is thereby reduced to the components indexed out of a178

tree, namely to act, once the block at has been set. We say that we impose the classical tree179

gauge when we set at = 0. It is worth noting that these tree gauges are not a discretization180

of the Coulomb gauge stated in (5) or (6). We follow this way in the next section.181

5. The discrete Coulomb gauge182

We have seen that the dof block at of the magnetic vector potential Ah is set arbi-
trarily, eventually equal to zero, without affecting the corresponding field Bh = curlAh.
We now start from condition (10), that is, we restrict the solution a of S a = b to
verify a ∈ (ker (S))⊥ = Im(S). We thus have to look for a vector a = T> y where
T =

[
Sct,ct Sct,t

]
is the block ct of rows in S. In fact, according to Theorem 2, we have

a ∈ Im (S) if and only if a has the form[
act

St,ct S−1
ct,ct act

]
=

[
Ict

St,ct S−1
ct,ct

]
act =

[
Sct,ct
St,ct

]
︸ ︷︷ ︸

T>

S−1
ct,ct act︸ ︷︷ ︸

y

= T> y,

with Ict denoting the identity matrix for the block ct.183

Applying the discrete Coulomb gauge means to look for a vector y ∈ R[dN−(dL+p)]

such that S T> y = b. Using this change of variable a = T>y , from a to y, by relying on
the block definition of T and S, the relation S T>y = b can be written as[

T
M

]
T>y = b, M =

[
St,ct St,t

]
.

Hence, the discrete Coulomb gauge consists in looking for the solution of S a = b of the
form a = T> y with y solving the system

TT>y = bct. (21)

The ones of T are the rows of S with indices in ct and hence they span all the rowspace184

of S, since Sct,ct is maximal rank, namely Row (S) = Row (T). The matrix TT> is square,185

symmetric and positive definite, since T is full rank. It can be inverted by efficient, direct186

or iterative, techniques well-known in scientific computing.187

Under the compatibility conditions on b stated in Theorem 2, the lower part188

M T> y = bt of the system S T> y = b is redundant with the upper one given in189

(21). Let us perform the matrix products:190

(i) TT>y = bct that is (Sct,ctSct,ct + Sct,tSt,ct)y = bct.191

(ii) MT>y = bt that is (St,ctSct,ct + St,tSt,ct)y = bt.192

If b verifies (16), from (i) we get (ii). Indeed

(Sct,ctSct,ct + Sct,tSt,ct)y = bct,

(Sct,ct + S−1
ct,ctSct,tSt,ct)y = S−1

ct,ctbct,

(St,ctSct,ct + St,ctS−1
ct,ctSct,t︸ ︷︷ ︸
St,t

St,ct)y = St,ctS−1
ct,ctbct︸ ︷︷ ︸
bt

,

MT>y = bt.

We can fix some expressions. The original problem is to solve S a = b under the com-193

patibility condition on b. The tree allows to find Sct,ct invertible, thus to prepare S in194
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a block form. To impose a discrete Coulomb gauge on (13) means to select solutions of195

such a problem of the form a = T> y. To solve (13) under the discrete Coulomb gauge is196

equivalent to solve the gauged problem S T> y = b, in particular T T> y = bct since the197

rest of the equations (those with right-hand-side bt) are redundant.198

199

Remark: Note that the null space gauge was enforced by the change of variable from200

a to y, that actually enforces the orthogonality of a to the kernel of S (that is the same201

as the kernel of R). We have indicated previously that the kernel of R include all the202

gradients. In this sense, with the imposition of the discrete Coulomb gauge, we have203

computed a magnetic vector potential Ah that is orthogonal to all gradients of nodal204

functions in W0
∗ , namely, that fulfills (6).205

6. Other formulations in magnetostatics206

Alternative formulations, with respect to the magnetic vector potential one, exploit207

the zero divergence condition of the source J. The starting point is the magnetostatic208

problem in terms of the magnetic field H. Namely, assigned a solenoidal source current209

J with supp (J) ⊂ Ω, we wish to compute the magnetic field H defined in Ω from the210

equations curl H = J, div (µ H) = 0, with boundary conditions µ H · n∂Ω = 0 and211 ∫
Ω H · v = 0 for all v ∈ Hµ(m; Ω). As commonly done [1,12,13], the condition div J = 0212

is strongly satisfied via a curl-conforming source field, namely an electric vector potential213

T such that J = curl T. Again, the problem curl T = J is overdetermined, since the214

kernel of the curl operator includes the gradients. If Ω is not simply connected, there215

exist vector fields in H0(curl; Ω) = {w ∈ H(curl; Ω), curl w = 0} that are not gradients.216

Indeed, the dimesion of the quotient space H0(curl; Ω)/grad (H1(Ω)) coincides with217

b1(Ω). We can thus apply analogous gauging techniques as the ones we have analysed218

before to solve it. In this case, a belted tree is used (see, e.g., [14]).219

We have seen that a spanning tree on the graph of the gradient operator is involved220

in both the discrete version resolution of (1) and (2). There is however a difference221

between the construction of a spanning tree, say T G
b , when working in terms of B and222

that of say T G
a when working in terms of A. We have indeed that T G

b can be a belted223

tree, that takes into account b1(Ω), the first Betti number of Ω (e.g., [14]) whereas T G
a is a224

genuine spanning tree of a graph that pays attention to b2(Ω), the second Betti number225

of Ω. This is much related to the type of boundary conditions appearing in (1) and (2).226

The condition on A× n|∂Ω takes in the p + 1 connected components of ∂Ω. Here we227

work in terms of A, so T G is of type T G
a . Similar considerations can be stated for the228

graph to consider when we have to build a tree for the solution of the magnetostatic229

problem in either H or T.230

7. Discussion and concluding remarks231

Using, as dofs for the first family of Nédélec FEs, the weights, it is natural to232

extend the classical tree-cotree techniques to high-order approximations. The idea in this233

work is to recall the main problems where this type of techniques are applied. We pay234

particular attention to the generality of the domain from a topological point of view and235

the implication that this generality has on the graph (and consequently on the spanning236

tree) to be considered. We have considered in detail the use of the tree-cotree technique237

when looking for a solution of the magnetostatic problem in terms of a magnetic vector238

potential A in a general domain Ω. We have deeply analysed, in the high order FE239

context, the two different ways of performing a discrete gauge that were considered240

by Manges and Cendes in the low order case. We have recalled also briefly the use of241

this technique for the computation of an electric vector potential T when solving the242

magnetostatic problem in terms of the magnetic field H.243

In these pages, we have proved some properties for the linear system with matrix244

S associated with a high order edge FE discretization of the magnetostatic problem in245

terms of the magnetic vector potential A. By relying on a tree-cotree partition of the246
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components of the solution vector a, Theorem 2 states that a ∈ ker(S) if and only if247

act = −S−1
ct,ct Sct,t at. Then, to have a ∈ (ker(S))⊥, when imposing the discrete Coulomb248

gauge, we look for a solution of the form a = T>y. Under the compatibility condition on249

the right-hand-side of Theorem 2, both the tree and discrete Coulomb gauges allow to250

construct a solution of S a = b. The tree-cotree technique in Theorem 1 allows to define251

the block of maximal rank in S and thus to define T. The tree gauge chooses the solution252

a by fixing the entries of the block at = 0, in agreement with (17). However, these entries253

collected in at can be arbitrarily fixed and when they are different from zero, we have254

another gauge.255
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