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Summary

The well-known tree-cotree gauging method for low-order edge finite elements is extended

to high-order approximations within the first family of Nédélec finite element spaces. The

key point in this method is the identification of degrees of freedom for edge and nodal

finite element spaces such that the matrix of the gradient operator is the transposed of

the all-node incidence matrix of a directed graph. This is straightforward for low-order

finite elements and it can be proved that it is still possible in the high-order case using

either moments or weights as degrees of freedom. In the case of weights, the geometrical

realization of the graph associated with the gradient operator is very natural. We recall in

details the definition of weights and present an algorithm for the construction of a spanning

tree of this graph. The starting point of the algorithm is a spanning tree of the graph

given by vertices and edges of the mesh (the so-called global spanning tree, that is the one

used in the low-order case). This global step, interpreted in the high-order sense, is enriched

locally, with a loop over the elements of the mesh, with arcs corresponding to edge, face

and volume degrees of freedom required in the high-order case.
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High-order edge elements, tree-cotree gauge, small simplices’ graph, incidence matrix.

1 INTRODUCTION

The aim of this work is to present the construction of a spanning tree of the graph associated with the degrees of freedom (dofs) of high-order
nodal and edge finite elements to extend the well-known tree-cotree gauging method. The idea of the tree-cotree gauge is to identify a set of dofs
for edge finite elements that spans the kernel of the curl operator. If the domain is simply connected, these dofs are identified on a spanning tree
of the graph whose nodes (arcs) are the dofs of nodal (edge) elements, respectively. Using the weights 1,2,3 as dofs for high-order edge and nodal
finite elements, the graph can be thought on a particular refinement (associated with the principal lattice ) of the elements of the initial mesh. The
small tetrahedra generated by this (virtual) refinement are affine contractions of those of the initial mesh and are called small elements. They are
not constructed actually (and in this sense they are virtual), however they allow for a geometrical localization of the previously referred graph and
thus for a suitable visualization of the dofs for high-order nodal and edge elements for any polynomial degree. The construction of a spanning tree
of this graph is not more involved than the construction of a spanning tree of the well-known vertex-edge graph of the original mesh. Indeed, the
visualization o the new selected arcs, namely those that do not result from the splitting of edges of the mesh, is the same in all the faces and at
the interior of all the tetrahedra of the mesh. If the domain is not simply connected, the kernel of the curl operator is bigger than the image of
the gradient operator. The spanning tree has to be enriched of one edge (called, the fastener) for each generator of the first homology group, thus
resulting on a “belted” spanning tree 4,5.

Whitney edge elements 6 are widely recognized as a useful tool for computational electromagnetism 5. They offer a simple construction of
polynomial differential forms on simplicial complexes 7,8. Their associated dofs have a very clear physical meaning (circulation of the approximated
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field on the edges of the element) 6. Because they model the curl kernel well, the matrix associated with the curl-curl operator is singular, and this
singularity is related to the graph whose geometrical realization is the finite element mesh. Specifically when the domain is simply connected, a
tree-cotree decomposition of the arcs of this graph is used to classify dofs into dependent and independent ones for the curl operator 9. In fact,
a vector potential with fixed values of its independent dofs (identified by means of the tree) is unique 10,11. This was successfully applied in a
three-dimensional magnetostatic problem 12 and also in a nonlinear eddy current problem 13.

In the development of high-order extensions ofWhitney edge elements, the classical approach 14,15,16 introduces moments to define the needed
dofs. Such a construction includes dofs associated with faces and tetrahedra that can not be interpreted as field circulations along edges and
consequently it does not allow for an immediate geometrical realization of its associated graph. The approach proposed in 1,17,18 generalizes to
higher orders the methodology of Whitney: if one finds a way to represent a manifold of dimension k by a k-chain (i.e., formal sum of mesh
simplices of dimension k) then by duality one knows how to represent a field by a finite weighted sum of basis fields (the Whitney forms).

In this work, we follow this approach that yields new dofs for high-order approximations, the so-called weights 3,19,20. In the case of nodal
elements, they are the classical functionals that associate with a function its values at the small vertices, that are the nodes of the principal lattices
of the mesh elements. In the case of edge elements, they are functionals that associate with a field its circulations along the small edges, that
are the edges of the small tetrahedra 2,18. These weights are relevant, since they pop up naturally when we generalize Whitney construction to
the high-order case. Note that, each small edge can be localized either (i) on an edge of the mesh, or (ii) at the interior of a face of the mesh or
(iii) at the interior of an element of the mesh. The small edges for high-order extensions of Whitney 1-forms are always linking adjacent points of
the principal lattice of the same order. They have the same orientation and are parallel to edges of the mesh. When dofs are weights, the matrix
representative of the gradient is an incidence matrix (between small edges and small vertices) for any polynomial degree 21. On the other hand, the
duality property between unisolvent dofs (circulations on small edges) and generators of the finite element space is lost in the high-order case if all
the edges of the small tetrahedra are considered. Duality is recovered by choosing an appropriate subset 22 of the small edges. The resulting graph,
with the principal lattices of the mesh elements as nodes and this subset of small edges as arcs, is an oriented connected graph. Let us consider
the canonical basis of the nodal and edge finite element spaces for the weights supported on the nodes and arcs of this graph respectively. In
this context, we are interested in the matrix that represents the gradient as a linear operator between finite dimensional spaces. This means, the
matrix that computes the circulations along the small edges of a field that is the gradient of a nodal finite element function, knowing the values of
this function at the nodes of the principal lattices of the mesh elements. It is easy to see that this matrix is the transpose of the all-node incidence
matrix of the graph. In the simply connected case, the gradients of the nodal finite elements fill-in the kernel of the curl operator acting on edge
finite element functions. Then the selection of a spanning tree of this graph is a useful tool for the identification of high-order potentials 23 or for
the tree-cotree gauge within high-order approximations. In this contribution we propose an efficient algorithm for the construction of a spanning
tree of this graph.

The outline of this work is as follows. In Section 2 we introduce the fundamental notion of small simplices. In Section 3 we explain how to use
this notion to define basis and dofs for high-order Whitney finite elements, and we introduce the high-order graph induced by the supports of
these dofs. We then relate this graph with the matrix that represents the gradient operator on the canonical bases. Finally in Section 4 we present
the algorithm for the construction of a spanning tree of the high-order graph and some considerations on its particularities.

2 SMALL SIMPLICES

Let T = (V,E, F, T ) be a tetrahedral mesh of the polyhedral domain Ω of R3, where V is the set of vertices, E is the set of edges, F is the set of
faces, and T is the set of tetrahedra of T . Let ∆d(T ) denote the set of d-simplices of the mesh, for d ∈ {0, 1, 2, 3}, thus ∆0(T ) = V , ∆1(T ) = E,
∆2(T ) = F , and ∆3(T ) = T . Let us fix an orientation on each edge, face, and tetrahedron of T . This can be done by choosing a total ordering
of the vertices in V = {vi}NV

i=1 and by associating with each d-simplex of the mesh, S ∈ ∆d(T ), an increasing function mS : {0, 1, . . . , d} →
{1, . . . , NV }. The oriented d-simplex S is hence given by S = [vmS(0), . . . ,vmS(d)

].
For S ∈ ∆d(T ), we denote by ∆`(S) the set of `-simplices contained in S, for ` ∈ {0, . . . , d}. For each Σ ∈ ∆`(S) with ` ∈ {0, . . . , d− 1}, if

S = [vmS(0), . . . ,vmS(d)
] and Σ = [vmΣ(0)

, . . . ,vmΣ(`)
], then there exists a unique increasing mapmSΣ : {0, . . . , `} → {0, . . . , d} such that, for

each i ∈ {0, . . . , `},mΣ(i) = mS(mSΣ(i)).
For r, d ∈ N, let us set

I(d+ 1, r) := {η = (η0, . . . , ηd) ∈ Nd+1 : |η| = r} ,

being |η| :=
∑d
i=0 ηi. The cardinality of I(d+ 1, r) is equal to

(r+d
d

)
=

(r+d)!
r!d!

.
For a point x in a d-simplex S ∈ ∆d(T ) (with d ∈ {1, 2, 3}), we denote by λS(x) = (λS

mS(0)
(x), . . . , λS

mS(d)
(x)) the vector of its barycentric

coordinates with respect to the vertices {vmS(0), . . . ,vmS(d)
} of S. Each function λS

mS(`)
: S → R satisfies the property λS

mS(`)
(vmS(j)) = δj,`,
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with `, j ∈ {0, . . . , d}. The functions λS
mS(`)

are positive at the interior of S, and non negative on S. The barycentric coordinates also satisfy the
properties of representation of points and partition of unity, namely

x =

d∑
j=0

λSmS(j)(x)vmS(j) and
d∑
j=0

λSmS(j)(x) = 1 .

Let t ∈ T , for each i ∈ {1, . . . , nV } we denote λi : Ω→ R

λi : x 7→ λi(x) =

 λt
mt(`)

(x) if x ∈ t and i = mt(`) with ` ∈ {0, . . . , 3}

0 otherwise.
The set of real valued polynomials defined on S of degree less than or equal to r is denoted by Pr (S) and the subspace of Pr (S) of homo-

geneous polynomials of degree r is denoted by P̃r (S). We have dimPr (S) =
(r+d
d

)
and dimP̃r (S) =

(r+d−1
d

)
. When S is reduced to a single

point, thenPr (S) = R for all r ≥ 0. For any S, if r < 0, thenPr (S) = {0}. It is known that the barycentric coordinate functions λS
mS(i)

constitute
a basis for P1 (S). Given S ∈ ∆d(T ) and α ∈ I(d+ 1, r), we define the continuous function

λα
S : x 7→ λα

S (x) = Πdj=0

[
λSmS(j)(x)

]αj
.

It holds that Pr (S) = Spanα∈I(d+1,r){λα
S }.

Definition 1 (Principal lattice of order r + 1). Given S = [mS(0), . . . ,mS(d)] and an integer r ≥ 0, the principal lattice of order r + 1 in the
d-simplex S is the set of points

Lr+1(S) =

{
x ∈ S : λSmS(j)(x) ∈

{
0,

1

r + 1
,

2

r + 1
, . . . ,

r

r + 1
, 1

}
, 0 ≤ j ≤ d

}
.

Equivalently,

Lr+1(S) =

x ∈ S : x =
1

|β|

d∑
j=0

βjvmS(j), ∀β ∈ I(d+ 1, r + 1)

 .

In what follows, to give a general definition (in the sense of the ambient dimension q) of the small `-simplices (with 0 ≤ ` ≤ q), we consider a
mesh T̃ of a q-dimensional domain Ω̃, where S ∈ ∆q(T̃ ) is a triangle (resp. tetrahedron) when q = 2 (resp. q = 3).

Definition 2 (Small `-simplex). Let S ∈ ∆q(T̃ ) and α ∈ I(q + 1, r), for an integer r ≥ 0. The small q-simplex {α, S} is the q-simplex with
barycenter

1

r + 1

q∑
j=0

[(
1

q + 1
+ αi

)
vmS(j)

]
and 1/(r+1)-homothetic to S. For any Σ ∈ ∆`(S), the small `-simplex {α,Σ} is the `-simplex which is parallel, equally oriented to Σ and belongs
to the small q-simplex {α, S}.

It is worth noting that the small q-simplices do not pave the q-simplex S. In other words, depending on r, geometric shapes not homothetic to
S, such as octahedra or reversed tetrahedra (resp. reversed triangles) for q = 3 (resp. q = 2), appear together with the small q-simplices in each
S ∈ ∆q(T̃ ) to completely pave S (as detailed in Table 1).

Number and type of shapes associated with Lr+1(S)

in a tetrahedron S
(r+3

3

)
small tetrahedra

(r+2
3

)
octahedra

(r+1
3

)
reversed tetrahedra

in a triangle S
(r+2

2

)
small triangles

(r+1
2

)
reversed triangles

in a segment S
(r+1

1

)
small edges

TABLE 1 Number of small `-simplices, for ` > 0, and other shapes in a `-simplex S as a function of the polynomial degree r + 1, with r ≥ 0.

In Figure 1 is presented a triangle f = [n0, n1, n2] together with its principal lattice Lr+1(f) for r = 2. In grey we have the corresponding
family of small simplices. In Figure 2 we have the small simplices associated with the principal lattice L3(t) in a tetrahedron t = [n0, n1, n2, n3].
The resulting decomposition of t includes 10 small tetrahedra, and also 4 octahedra and 1 reversed tetrahedron. On each face of the boundary of
t we can see 6 small faces and 3 reversed triangles. Note that each edge of t is decomposed in 3 small edges.

The small simplices are of key importance in the generalization of Whitney finite elements to higher order. Indeed, they allow to make a list of
the generators of any polynomial degree of the finite element spaces and constitute the support of new dofs, the weights, for the representation
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n0 = {(2, 0, 0), [n0]}

n1 = {(0, 2, 0), [n1]} n2 = {(0, 0, 2), [n2]}

{(0, 1, 1), [n0]}

{(0, 1, 1), [n1]} {(0, 1, 1), [n2]}

{(0, 1, 1), [n0, n1, n2]} {(0, 1, 1), [n0, n2]}

FIGURE 1 Principal lattice L3(f) in the face f = [n0, n1, n2], with the visualization of all the small simplices. The label of the small simplex
{(0, 1, 1), [n0, n1, n2]} and of some of its sub-simplices are indicated for illustration.

FIGURE 2 (Taken from reference [25]). Principal latticeL3(t) in the tetrahedron t = [n0, n1, n2, n3], with the visualization of all the small simplices.
Each face of the boundary of t is decomposed in 6 small faces and 3 reversed triangles (highlighted on the leftwith red solid lines). The decomposition
of t includes 10 small tetrahedra, 1 reversed tetrahedron (highlighted at the center with red dashed lines) and 4 octahedra (one is highlighted on
the right in green).

of fields in these spaces (together with a direct geometrical visualization of the tree-cotree structure that we discuss in the last part of the present
work).

3 HIGH-ORDER WHITNEY EDGE ELEMENTS AND THE HIGH-ORDER GRAPH

For a more compact presentation, we rely on the notation of the finite element exterior calculus. It is well known (see 24,20) that the proxy fields of
the space of trimmed polynomial differential forms (usually denoted by P−r+1Λk(T )) are the finite element space of Lagrange of degree r+ 1 ≥ 1

if k = 0, the first family of Nédélec finite elements of order r + 1 conforming in H(curl; Ω) if k = 1, the first family of Nédélec finite elements of
order r + 1 conforming in H(div; Ω) if k = 2, and discontinuous elements of degree ≤ r if k = 3. Let d be the exterior derivative for differential
k-forms for k < d.

Definition 3 (Whitney k-forms). In a tetrahedron t, Whitney k-forms associated with S ∈ ∆k(t) are the fields

wS =

 λmS(0), with k = 0, S = [nmS(0)],∑k
j=0 (−1)jλmS(j)dwS−[nmS(j)], with k > 0, S = [nmS(0), . . . , nmS(k)].

In particular, for k = 1 the exterior derivative d corresponds to the gradient operator and Definition 3 yields

wS = λmS(0) grad λmS(1) − λmS(1) gradλmS(0).

Whitney k-forms of higher degree in each tetrahedron t can be associated with the principal lattice in t as recalled in the next Definition.

Definition 4 (High-order Whitney k-forms). In a tetrahedron t, Whitney k-forms of higher polynomial degree are the fields

ws = λα
t wS ,

for all the small k-simplices s := {α, S}, with α ∈ I(4, r) for r > 0, and S ∈ ∆k(t), being wS the Whitney k-form associated with S. The space
of high-order Whitney k-forms in t is

P−r+1Λk(t) = Span {ws : s = {α, S},α ∈ I(4, r), S ∈ ∆k(t)} .
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Fields in P−r+1Λk(t) are defined as products between a field in P−1 Λk(t) and the continuous function λα
t , with α ∈ I(4, r). Therefore, fields

in P−r+1Λk(t) enjoy the same conformity properties as those in P−1 Λk(t) 3.

Definition 5 (Weights on small k-simplices). For a polynomial k-form u ∈ P−r+1Λk(t), with 0 ≤ k ≤ 3 and r ≥ 0, the weights are the real numbers∫
{α,S}

u, (1)

for all the small k-simplices {α, S}, with α ∈ I(4, r) and S ∈ ∆k(t).

The weights of a high-order Whitney k-form u ∈ P−r+1Λk(t) along all the small k-simplices {α, S} of a mesh T are unisolvent 25, Proposition 3.14,
namely if u ∈ P−r+1Λk(t) is such that

∫
{α,S} u = 0 for all the small k-simplices s = {α, S}, then u = 0. The small k-simplices can thus support the

dofs for fields u ∈ P−r+1Λk(t). Since the result on unisolvence holds true also by replacing t with Σ ∈ ∆`(t) (for k ≤ ` < 3), then the respective
trace of u over any Σ ∈ ∆`(t) (trace that lives in P−r+1Λk(Σ)) is uniquely determined by the weights localized on small k-simplices in Σ. We thus
can use the weights on the small k-simplices {α, S} as dofs for the fields in the finite element space P−r+1Λk(T ), being aware that their number
is greater than the dimension of the space.

The weights given in Definition 5 have a meaning as cochains and this relates directly the matrix describing the exterior derivative with the
matrix of the boundary operator. The key point is the Stokes theorem

∫
C du =

∫
∂C u, where u is a (k − 1)-form and C a k-chain. More precisely,

if u ∈ P−r+1Λk−1(T ) then du ∈ P−r+1Λk(T ) and∫
{α,S}

du =

∫
∂{α,S}

u =
∑
{β,Σ}

B{α,S},{β,Σ}

∫
{β,Σ}

u, (2)

being B the boundary matrix with as many rows as small k-simplices, and as many columns as small (k − 1)-simplices. The small k-simplex {α, S}
inherits the orientation of the k-simplex S, so the coefficient B{α,S},{β,Σ} is equal to the coefficient BS,Σ of the boundary of the simplex S if
β = α and zero otherwise. Therefore, BS,Σ is 1 or −1 depending of whether the orientation of Σ matches or not with the orientation induced by
that of the k-simplex S on its (k−1)-faceΣ, and BS,Σ is zero whenΣ is not part of the boundary of S. This fact is straightforward if dim(Σ) > 0, but
also when dim(Σ) = 0 21. For k = 1, note that the matrix B{α,S},{β,Σ} is an incidence matrix between small edges and small vertices; moreover,
it is an all-node incidence matrix of a (non connected) graph, whose geometrical realization is shown on the right of Figure 3.

Remark: For k = 1, in order to have B an incidence matrix between small edges and small vertices, some points in the principal lattice have
different labels. The point 1

|η|
∑3
j=0

[[
1
4

+ ηj
]
vmt(j)

]
∈ L3(t), with η = (2, 0, 1, 0) has a label as the small vertex {(2, 0, 0, 0), [n2]} (the brown

point in the fragmented visualization) and also as the small vertex {(1, 0, 1, 0), [n0]} (the black point in the fragmented visualization). However,
the 0-forms associated with the different labels are the same. Indeed, {(2, 0, 0, 0), [n2]} corresponds with the 0-form λ2

mt(0)
wn2 = λ2

n0
λn2 and

{(1, 0, 1, 0), [n0]} with the 0-form λmt(0)λmt(2)wn0 = λn0λn2λn0 = λ2
n0
λn2 , and we can see that “both” 0-forms are actually the same.

FIGURE 3 (Taken from reference [21]). Visualization (on the left) of all the small simplices associated with the principal lattice L3(t) in the tetrahe-
dron t = [n0, n1, n2, n3]. The same set of small simplices in a fragmented visualization (on the right), a small tetrahedron in blue, a small face in
green, a small edge in red and small vertex in brown and also in black (note the different labels for the same point in the principal lattice L3(t)).

We say that a set of unisolvent degrees of freedom for high-order Whitney finite elements is minimal if its cardinality is equal to the dimension
of the finite element space. In order to use a set of minimal unisolvent degrees of freedom for high-order Whitney edge finite elements, we have
to disregard some small edges. In fact, it can be proved 22 that to be unisolvent it is enough to consider on each face small edges parallel to two of
the three edges of the face, and on each tetrahedron small edges parallel to three of the six edges of the tetrahedra. Proceeding in this way, the
corresponding set of weights is unisolvent and minimal.
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We use the term active to indicate all the small k-simplices such that λα
t wS belongs to a basis of P−r+1Λk(T ). The dimension of the space

P−r+1Λk(T ) coincides with the number of active small k-simplices in the mesh T 23. We recall the following result 26, Proposition 6.4:

Proposition 1 (A basis of P−r+1Λk(t)). The set
{
λα
t wS : α ∈ I(4, r), S ∈ ∆k(t) andαj = 0 if j < mtS(0)

}
is a basis of P−r+1Λk(t).

A possible rule for selecting the active small vertices {α, [ni]} and set of active small edges {α, [nme(0), nme(1)]}, that induces minimal and
unisolvent weights, is the same given in Proposition 1 to select a basis of P−r+1Λk(t).

We denote by dL and dN the dimension of P−r+1Λ0(T ) and P−r+1Λ1(T ), respectively. We consider the graph Gho with nodes the set {q`}dL`=1

of active small vertices (the points of the principal lattices of the mesh elements) and arcs the set {em}dNm=1 of active small edges. Let {φh,i}dLi=1

and {ωh,j}dNj=1 be the canonical bases of the nodal and edge finite element spaces for the weights supported on the nodes and arcs of this
graph, respectively. This means that φh,i(q`) = δi,` and

∫
em
ωh,j = δj,m, where δ·,· is the Kronecker delta. For each active small edge em,

we denote by qm,ini and qm,fin its initial and final small nodes, respectively. It is well known that if the function ψh belongs to the space of
nodal Lagrangian finite elements of degree r + 1, then gradψh belongs to the first family of Nédélec finite elements of degree r + 1, and clearly∫
em

gradψh = ψh(qm,fin) − ψh(qm,ini). Therefore when using these canonical bases, the matrix that gives the circulations along the active
small edges of the gradient of a nodal finite element function (knowing the values of this function at the nodes of the principal lattices in each
mesh element) is the transposed of the all-node incidence matrix of the graph Gho.

Its geometrical realization in a tetrahedron is shown (in a fragmented version for a friendly visualization) in Figure 4. It is worthwhile to mention
that the set of active weights is proved to be unisolvent in 22. The structure shown in the Figure 4 has to be replicated on each tetrahedron t ∈ T .
We thus obtain the high-order graph, Gho, over which we can construct the high-order spanning tree, Sho.

FIGURE 4 (Taken from reference [25]). A fragmented visualization of the geometrical realization of the connected graph in a tetrahedron with the
active small edges (in red) as arcs and active small vertices as nodes.

4 ALGORITHM FOR THE CONSTRUCTION OF THE SPANNING TREE (THE HIGH-ORDER CASE)

Thanks to the additional information given by the geometrical localization of the connected graph Gho, formed by the active small vertices and the
active small edges (shown in Figure 4), we propose in the Algorithm 2 a suitable set of rules to construct a spanning tree in the referred graph Gho
for each tetrahedron; then we use this set of rules to construct a convenient global spanning tree Sho, giving in this way a classification rule in the
set of active small edges of the mesh T . The Algorithm 1 starts by reading the arcs of the spanning tree S . We recall that, in a topologically trivial
domain Ω, a spanning tree S can be obtained by applying algorithms such as the Breadth-First search or Depth-First search in the connected and
directed graph G= (V,E). The arcs of G that are not in the spanning tree compose the cotree Sc. For domains with no trivial topology, Algorithm
1 has to start from the arcs of a belted-spanning-tree Sb, that can be obtained by applying Algortihm 3.

In Algorithm 1 the information on S is saved by mean of a flag associated with each edge of the mesh (if an edge is part of the spanning tree S ,
the flag is set to true, otherwise is set to false); when the algorithm is initialized, the flag associated with each face is also set to false (we use
this flag to control the previously visited face in the loop over all elements of the mesh).

The information saved in the flags is used within a loop over all the tetrahedra of the mesh, where the spanning tree Sho is constructed; in each
cycle of the tetrahedra loop, the previously proposed set of rules is used conveniently. The spanning tree S gives a selection criteria to put some
active small edges of the global graph in the spanning tree Sho. More precisely, all the small edges on arcs of the spanning tree S and all but one
(in particular the last one) the small edges on arcs of the cotree Sc. Then the global spanning tree Sho is further enriched with some active small
edges at the interior of each face (only those faces of the tetrahedra that have not been visited previously), and finally with some active small edges
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Algorithm 1 Initialization
Require: The mesh T = (V,E, F, T ), and the first Betti number g ≥ 0 of Ω.
Ensure: Logical tree-flag, visited-edge-flag and visited-face-flag arrays.

1: if g == 0 then
2: Construct a spanning tree S∗ of the graph (V,E) by using a Breadth-First search.
3: Set S = S∗. . If Ω is simply connected
4: else
5: Construct a belted-spanning-tree Sb of the graph (V,E) by using Algorithm 3. . If Ω is not simply connected
6: Set S = Sb.
7: end if
8: loop over the edges e ∈ E
9: tree-flag(e)← false.
10: visited-edge-flag(e)← false.
11: if e ∈ S then
12: tree-flag(e)← true. . Reading the spanning tree S
13: end if
14: end loop
15: loop over the faces f ∈ F
16: visited-face-flag(f)← false.
17: end loop

FIGURE 5 The spanning tree Sho (in green) on a tetrahedron t = [n0, n1, n2, n3]. On the left, the subgraph corresponding to active small edges on
the edges and in the interior of the face f = [n0, n1, n2], and the corresponding part of the spanning tree Sho. The red arcs belong to the spanning
tree Sho, if and only if, its corresponding edge e belongs to the spanning tree S . On the right, the active small edges in the interior of t belonging
to Sho are visualized, (note that for a friendly visualization, some active small edges were omitted in the figure). In this example we are considering
r = 4.

at the interior of each tetrahedron. The proposed algorithm can be executed as part of pre-processing step. The algorithm requires as input the
mesh T and the first Betti number g of the domain Ω; it gives as output the previously mentioned flags.

At a first sight, the Algorithm 2 seems to work on a graph Gho with much more nodes and arcs than G (the one in the low-order case). In
reality the high-order graph Gho (and its incidence matrix) is not realized. We have used it only for visualization purposes. However, each arc in the
high-order graph Gho corresponds with a dof (and hence with an element of the canonical basis). Therefore any action on the set of dofs can be
"visualized" as an action on this fictive graph. In Algorithm 2 we use only the low-order graph and make a local choice of dofs, this is done once on
a reference element (as in Figure 5) and then applied repeatedly on the elements of the mesh. The local choice has to guarantee that the merge of
all local spanning trees is a spanning tree of the (virtual) high-order graph, as illustrated in Figure 6. Algorithm 2 implements the choice illustrated
in the figures.

In Figure 5 we can see the structure of the spanning tree Sho (in green) given by the Algorithm 2, considering the case r = 4 in a mesh with a
unique tetrahedron t = [n0, n1, n2, n3]; a red arc is in Sho if its respective (big) edge is in the spanning tree S , otherwise is out of Sho.

In Figure 6 we can see the structure of the spanning tree Sho (in green and red) given by the Algorithm 2, considering the case r = 4 in a mesh
with two tetrahedra. It is worth noting that the red arcs in this figure correspond to the red arcs in Figure 5 belonging to Sho.
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Algorithm 2 A spanning tree of active small edges
Require: The mesh T = (V,E, F, T ) and logical tree-flag, visited-edge-flag and visited-face-flag arrays.
Ensure: A (belted-) spanning tree Sho of the graph Gho with nodes: the active small vertices; and arcs: the active small edges.

1: loop over the tetrahedra t← [na, nb, nc, nd] ∈ T
2: loop over the faces f ← [ni, nj , nk] ∈ ∆2(t)

3: if visited-face-flag(f) == false then
4: loop over the edges e← [np, nq ] ∈ ∆1(f)

5: if visited-edge-flag(e) == false then
6: if tree-flag(e) == true then
7: add to Sho the small edges {α, e}, ∀ α ∈ I(4, r) with αmt

t−e
(0) = 0 and αmt

t−e
(1) = 0.

. All the small edges {α, e} over the edge e.
8: else
9: add to Sho the small edges {α, e} for the r − 1 first indices α ∈ I(4, r) with αmt

t−e
(0) = 0 and αmt

t−e
(1) = 0.

. first is always intended in the reversed lexicographical order.
10: end if
11: visited-edge-flag(e)← true
12: end if
13: end loop
14: for αmt

f (2) ← 1 to r − 1 do
15: add to Sho the small edges {α, [nmf (0), nmf (1)]} for the r − αmt

f (2) first indices α ∈ I(4, r) with αmt
t−f

(0) = 0.
. Adding small edges {α, [nmf (0), nmf (1)]} of the interior of f to Sho.

16: end for
17: visited-edge-flag(f)← true
18: end if
19: end loop
20: for α3 ← 1 to r − 2 do
21: for α2 ← 1 to r − (α3 + 1) do
22: add to Sho the small edges {α, [nmf (0), nmf (1)]} for the r − (α2 + α3) first indices α ∈ I(4, r).

. Adding small edges {α, [nmt(0), nmt(1)]} of the interior of t to Sho.
23: end for
24: end for
25: end loop

Proposition 2. If Ω is simply connected, the number dSho
of small edges in Sho is (dL − 1).

Proof. For r = 0, the small edges coincide with the mesh edges and their number in S is (NV − 1). Moreover, NV = dL, thus the property holds
true for r = 0.

For r > 0, we recall that dL can be rewritten as

dL = NV +NE dimPr−1(e) +NF dimPr−2(f) +NT dimPr−3(t)

where NV (resp., NE , NF , NT ) is the number of nodes (resp., edges e, faces f , tetrahedra t) in the mesh over Ω̄. By the proposed algorithm, the
number dSho

of active small edges in the spanning tree Sho can be counted as follows

dSho
= (r + 1) #S + r#Sc +NF

r−1∑
q=1

(r − q) +NT

r−2∑
q=1

[

r−(q+1)∑
s=1

r − (q + s) ]

with cardinalities #S = (NV − 1) and #Sc = NE − (NV − 1). Note that
r−1∑
q=1

(r − q) = r

r−1∑
q=1

1−
r−1∑
q=1

q = r(r − 1)−
r(r − 1)

2
=

r(r − 1)

2
= dimPr−2(f).
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FIGURE 6 The spanning tree Sho (in green and red) on a mesh T with two tetrahedra. The arcs of the spanning tree S in blue. It is worth noting
that the red arcs in this figure correspond to the red arcs in Figure 5 belonging to Sho. In this example we are considering r = 4.

Moreover, for the last term in dSho
we have

r−2∑
q=1

[

r−q−1∑
s=1

(r − q − s) ] =

r−2∑
q=1

[ (r − q)
r−q−1∑
s=1

1−
r−q−1∑
s=1

s ]

=
1

2

r−2∑
q=1

[ (r − q)(r − q − 1) ] =
1

2
[

r−2∑
q=1

q2 − (2r − 1)

r−2∑
q=1

q + r(r − 1)

r−2∑
q=1

1 ]

=
1

2
[

1

6
(r − 2)(r − 1)(2r − 3)−

1

2
(2r − 1)(r − 1)(r − 2) + r(r − 1)(r − 2) ]

=
1

2
(r − 1)(r − 2)[

r

3
−

1

2
+

1

2
− r + r] =

1

6
r(r − 1)(r − 2)

that is indeed dimPr−3(t). Summing up, we get

dSho
= NV − 1 + NE dimPr−1(e) +NF dimPr−2(f) +NT dimPr−3(t) = dL − 1,

thus the property.

Remark: If Ω is not simply connected, let g be the first Betti number ofΩ, namely, the number of homologically independent non bounding cycles in
Ω. The algorithm can be easily generalized to this case by replacing the global spanning tree, S , with a global belted-spanning-tree 27,4, Sb that has g
additional arcs. Hence, the number of arc in the high-order belted-spanning-tree Sbho is dSb

ho
= dL−1+g. For more details on the computation of

g and the construction of a belted-spanning-tree, see 28,29,30,31,32. Note that Algorithm 2 has to start from the logical arrays tree-flag, visited-edge-
flag and visited-face-flag filled in considering the belted-spanning-tree Sb. The latter can be constructed as detailed in Algorithm 3. For example,
if Ω is an empty torus, we have g = 2 and a belted-spanning-tree is presented in Fig. 7 (right).
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FIGURE 7 The mesh (left), the 2 cycles (center) and the belted-spanning-tree (right) computed from Algorithm 3.
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Algorithm 3 Computing a belted-spanning-tree when Ω is not simply connected (g > 0)
Require: The mesh T = (V,E, F, T ).
Ensure: A belted-spanning-tree Sb.

1: Compute the g homologically independent not bounding cycles γ1, γ2, ..., γg in T .
.We assume that the g cycles γ1, γ2, ..., γg are mutually disjoint and without self-intersection.

. This can be done by relying on the Smith normal form in Z as explained in 29,32.
2: for i← 1 to g do
3: consider the i-th disjoint cycle γi =

∑
e∈E c

i
e e, with cie ∈ {−1, 0, 1}

4: select one edge, say ei ∈ γi, that does not belong to
⋃

1≤j≤i−1 γj

5: define γ̃i = γi \ {ei}
6: end for
7: complete the acyclic sub-graph corresponding to

⋃g
i=1 γ̃i to get a spanning tree S of the graph (V,E)

8: define the belted-spanning-tree Sb = S
⋃g
i=1{e

i}.

It has to be said that in the lowest order case, the conditioning of the linear system gets worse once the gauge is applied and somework has been
done to try to avoid it 33. For the high-order case, some tests on three-dimensional eddy current problems are done in 34 where the magnetic vector
potential based formulation is gauged by regularization instead of by the imposition of dofs associated with the arcs of a (belted) spanning tree.
Some numerical tests will be done to see how badly the fact of gauging affects the "effective conditioning" of the system matrix in the high-order
case, where effective conditioning means the ratio of eigenvalues of the matrix but not considering the (nearly) zero ones.

5 CONCLUSIONS

The weights, namely integrals over mesh sub-simplices, are natural dofs to adopt when the solution is a cochain on a simplicial mesh. They allow
to extend straightforwardly the classical tree-cotree techniques from the low-order to the high-order case, since there is a correspondence of dofs
with geometrical entities, the small simplices, that constitute a graph. In this work we have presented an algorithm for the construction of a (belted)
spanning tree of this graph. The construction is based on a (belted) spanning tree of the graph given by vertices and edges of the mesh (the so-
called global (belted) spanning tree). Then a loop by elements enriches this initial (belted) spanning tree with arcs corresponding to face dofs (only
those faces of the tetrahedra that have not been visited previously) and with the arcs corresponding to the volume dofs. The enrichment in each
element is the same for all elements. Gauging through such a tree-cotree approach (applied to the dual graph with the small triangles as vertices
and the small edges in common as arcs) has been successfully applied in the frame of high-order reconstructions of a Darcy flow in a 2D domain
starting from its weights on the small edges 35. Further numerical investigations are however necessary to analyze how this gauging influences the
conditioning of the final algebraic system associated with an electromagnetic problem.
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