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Summary
The well-known tree-cotree gauging method for low-order edge finite elements is extended to

high-order approximations within the first family of Nédélec finite element spaces. The key point

in this method is the identification of degrees of freedom for edge and nodal finite element spaces

such that thematrix of the gradient operator is the transposed of the all-node incidencematrix of

a directed graph. This is straightforward for low-order finite elements and it can be proved that it

is still possible in the high-order case using either moments or weights as degrees of freedom. In

the case ofweights, the geometrical realization of the graph associatedwith the gradient operator

is very natural. We recall in details the definition of weights and present an algorithm for the

construction of a spanning tree of this graph. The starting point of the algorithm is a spanning

tree of the graph given by vertices and edges of the mesh (the so-called global spanning tree,

that is the one used in the low-order case). This global step, interpreted in the high-order sense,

is enriched locally, with a loop over the elements of the mesh, with arcs corresponding to edge,

face and volume degrees of freedom required in the high-order case.
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1 INTRODUCTION

The aim of this work is to present the construction of a spanning tree of the graph associated with the degrees of freedom of high-order nodal
and edge finite elements to extend the well-known tree-cotree gauging method. In the high-order case, the difficulty is that we do not have a one-
to-one correspondence between field unknowns and mesh edges, as we have more unknowns in each mesh tetrahedron. Using the weights 1,2,3

as degrees of freedom (dofs) for high-order edge finite elements, the graph can be thought on a particular refinement associated with the principal
lattice of the elements of the initial mesh. The small tetrahedra generated by this refinement that are affine contraction of those of the initial
mesh are called small elements. They are not constructed actually, but they allow for a geometrical localization of dofs for high-order edge finite
elements and thus for a visualization of the graph for any polynomial degree.

Whitney edge elements 4 are widely recognized as a useful tool for computational electromagnetism 5. They offer a simple construction of
polynomial discrete differential forms on simplicial complexes 6,7. Their associated dofs have a very clear physical meaning (circulation of the
approximated field on the edges of the element) 4. Because they model the curl kernel well, the matrix associated with the curl-curl operator is
singular, and this singularity is related to the graphwhose geometrical realization is the finite element mesh, i.e., the arcs of the graph are the edges of
the mesh and the nodes of the graph are the vertices of the mesh. Specifically, when the domain is simply connected, a tree-cotree decomposition
of the arcs of this graph, was shown to classify dofs into dependent and independent ones for the curl operator 8 in the sense that a vector potential
with fixed values of its independent dofs (identified by means of the tree) is unique 9,10. This fact was successfully applied in a three-dimensional
magnetostatic problem 11 and also in a nonlinear eddy current problem 12. Tree-cotree decomposition of the graph is also useful to constraint the
vector potential (without fixing to zero the independent dofs), this can be understood as the discrete version of the classical Coulomb gauge 13. In
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non simply-connected domains, the curl kernel is augmented with some elements that are not gradient of a scalar function. Hence, the spanning
tree is suitably extended into a belted spanning tree 5.

The high-order case is more involved. In the development of high-order extensions of Whitney edge elements, the classical approach 14,15,16

introduces moments to define the needed dofs. Such a construction includes dofs associated with faces and tetrahedra that can not be interpreted
as field circulations along edges and consequently it does not allow for an immediate geometrical realization of the graph. The approach proposed
in 1,17,18 generalizes to higher orders the methodology of Whitney: if one finds a way to represent a manifold of dimension k by a k-chain (i.e.,
formal sum of mesh simplices of dimension k) then by duality one knows how to represent a field by a finite weighted sum of basis fields (the
Whitney forms).

In this work, we follow this approach that yields new dofs for high-order approximations, the so-called weights 3,19,20. In the case of nodal
elements, they are the classical functionals that associate with a function its values at the small vertices that are the nodes of the principal lattices
of the mesh elements. In the case of edge elements, they are functionals that associate with a field its circulations along the small edges, that are
the edges of the small tetrahedra 2,18. These weights are relevant, since they pop up naturally when we generalize Whitney construction to the
high-order case. Note that, each small edge can be localized either (i) on an edge of the mesh, or (ii) at the interior of a face of the mesh or (iii) at the
interior of an element of the mesh. The small edges for high-order extensions ofWhitney 1-forms are always linking adjacent points of the principal
lattice of the same order. They have the same orientation and are parallel to edges of the mesh.When dofs are weights, the matrix representative of
the gradient is an incidence matrix (between small edges and small vertices) for any polynomial degree 21. On the other hand, the duality property
between unisolvent dofs (circulations on small edges) and generators of the discrete finite element space is lost in the high-order case if all the
edges of the small tetrahedra are considered. Duality is recovered by choosing an appropriate subset 22 of the small edges. The resulting graph,
with the principal lattices of the mesh elements as nodes and this subset of small edges as arcs, is an oriented connected graph. Let us consider
the canonical basis of the nodal and edge finite element spaces for the weights supported on the nodes and arcs of this graph respectively. In this
context, we are interested in the matrix that represents the gradient as a linear operator between finite dimensional spaces. This means, the matrix
that computes the circulations along the small edges of a field that is the gradient of a nodal finite element function knowing the values of this
function at the nodes of the principal lattices of the mesh elements. It is easy to see that this matrix is the transposed of the all-node incidence
matrix of the graph. In the simply connected case the gradients of the nodal finite elements fill-in the kernel of the curl operator acting on edge
finite element functions. Then the selection of a spanning tree of this graph is a useful tool for the identification of high-order potentials 25 or for
the tree-cotree gauge within high-order approximations. In this contribution we propose an efficient algorithm for the construction of a spanning
tree of this graph.

The outline of this work is as follows. In Section 2 we introduce the fundamental notion of small simplices. In Section 3 we explain how to use
this notion to define basis and dofs for high-order Whitney finite elements and we introduce the high-order graph induced by the supports of
these dofs. We then relate this graph with the matrix that represents the gradient operator on the canonical bases. Finally in Section 4 we present
the algorithm for the construction of the spanning tree of the high-order graph and some considerations on its particularities.

2 SMALL SIMPLICES

Let T = (V,E, F, T ) be a tetrahedral mesh of the polyhedral domain Ω of R3, where V is the set of vertices, E is the set of edges, F is the set of
faces, and T is the set of tetrahedra of T . Let ∆d(T ) denote the set of d-simplices of the mesh, for d ∈ {0, 1, 2, 3}, thus ∆0(T ) = V , ∆1(T ) = E,
∆2(T ) = F , and ∆3(T ) = T . Let us fix an orientation on each edge, face, and tetrahedron of T . This can be done by choosing a total ordering of
the vertices inV = {vi}NV

i=1, wherevi denotes the (Cartesian) coordinates of the nodeni inR3, and by associatingwith each d-simplex of themesh,
S ∈ ∆d(T ), an increasing functionmS : {0, 1, . . . , d} → {1, . . . , NV }. The oriented d-simplex S is hence given by S = [vmS(0), . . . ,vmS(d)

].
For S ∈ ∆d(T ), we denote by ∆`(S) the set of `-simplices contained in S, for ` ∈ {0, . . . , d}. If Σ ∈ ∆`(S) with ` ∈ {0, . . . , d− 1}, then there

exists a unique increasing mapmSΣ : {0, . . . , `} → {0, . . . , d} such that, for each i ∈ {0, . . . , `},mΣ(i) = mS(mSΣ(i)).
For r, d ∈ N0 := N ∪ {0}, let us set

I(d+ 1, r) := {η = (η0, . . . ηd) ∈ Nd+1
0 : |η| = r} ,

being |η| :=
∑d
i=0 ηi. The cardinality of I(d+ 1, r) is equal to

(r+d
d

)
=

(r+d)!
r!d!

.
For a point x in a d-simplex S ∈ ∆d(T ) (with d ∈ {1, 2, 3}), we denote by λS(x) = (λS

mS(0)
(x), . . . , λS

mS(d)
(x)) the vector of its barycentric

coordinates with respect to the vertices {vmS(0), . . . ,vmS(d)
} of S. Each function λS

mS(`)
: S → R satisfies the property λS

mS(`)
(vmS(j)) = δj,`,

with `, j ∈ {0, . . . , d}. The functions λS
mS(`)

are positive at the interior of S, and non negative on S. The barycentric coordinates also satisfy the
properties of representation of points and partition of unity, namely

x =

d∑
j=0

λSmS(j)(x)vmS(j) and
d∑
j=0

λSmS(j)(x) = 1 .
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Let t ∈ T , for each i ∈ {1, . . . , nV } we denote λi : Ω→ R

λi : x 7→ λi(x) =

 λt
mt(`)

(x) if x ∈ t and i = mt(`) with ` ∈ {0, . . . , 3}

0 otherwise.
The set of real valued polynomials defined on S of degree less than or equal to r is denoted by Pr (S) and the subspace of Pr (S) of homo-

geneous polynomials of degree r is denoted by P̃r (S). We have dimPr (S) =
(r+d
d

)
and dimP̃r (S) =

(r+d−1
d

)
. When S is reduced to a single

point, then Pr (S) = R for all r ≥ 0. For any S, if r < 0, then Pr (S) = {0}. It is known that the barycentric coordinate functions λS
mS(i)

consti-
tute a basis for P1 (S). Homogeneous polynomials of degree r in the d+ 1 barycentric coordinates are in 1-to-1 correspondence with polynomials
of degree ≤ r in the d Cartesian coordinates. For this reason, we have that Pr (S) = Spanα∈I(d+1,r){λα

S }. Given S, we define the continuous
function

λα
S : x 7→ λα

S (x) =

 Πdj=0

[
λS
mS(j)

(x)
]αj if α ∈ I(d+ 1, r)

0 otherwise.

Definition 1 (Principal lattice of order r + 1). Given S = [mS(0), . . . ,mS(d)] and an integer r ≥ 0, the principal lattice of order r + 1 in the
d-simplex S is the set of points

Lr+1(S) =

{
x ∈ S : λSmS(j) ∈

{
0,

1

r + 1
,

2

r + 1
, . . . ,

r

r + 1
, 1

}
, 0 ≤ j ≤ d

}
.

Equivalently,

Lr+1(S) =

x ∈ S : x =
1

|β|

d∑
j=0

βjvmS(j), ∀β ∈ I(d+ 1, r + 1)

 .

.

Definition 2 (Small k-simplex). Let S ∈ ∆d(T ) and α ∈ I(d + 1, r), for an integer r ≥ 0. The small d-simplex {α, S} is the d-simplex with
barycenter at the point of Cartesian coordinates

1

r + 1

d∑
j=0

[(
1

d+ 1
+ αi

)
vmS(j)

]
and 1/(r+1)-homothetic to S. For any Σ ∈ ∆`(S), the small `-simplex {α,Σ} is the `-simplex which is parallel, equally oriented to Σ and belongs
to the small d-simplex {α, S}.

The small simplices do not pave the d-simplex S. The holes left are not homothetic to S but the algorithm we present does not see the holes.
In Figure 1 is presented a triangle f = [n0, n1, n2] together with its principal latticeLr+1(f) for r = 2. In grey we have the corresponding family

of small simplices. In this case, the holes (in white) are 3 reversed triangles. In Figure 2 we have the small simplices associated with the principal
lattice L3(t) in a tetrahedron t = [n0, n1, n2, n3]. The resulting decomposition of t includes 10 small tetrahedra, and 5 holes (4 octahedra and 1

reversed tetrahedron). On each face of the boundary of t we can see 6 small-faces and 3 holes. Note that each edge of t is decomposed in 3 small
edges.

n0 = {(2, 0, 0), [n0]}

n1 = {(0, 2, 0), [n1]} n2 = {(0, 0, 2), [n2]}

{(0, 1, 1), [n0]}

{(0, 1, 1), [n1]} {(0, 1, 1), [n2]}

{(0, 1, 1), [n0, n1, n2]} {(0, 1, 1), [n0, n2]}

FIGURE 1 Principal lattice L3(f) in the face f = [n0, n1, n2], with the visualization of all the small simplices. The label of the small-simplex
{(0, 1, 1), [n0, n1, n2]} and of some of its sub-simplices are indicated for illustration.

The small simplices are of key importance in the generalization of Whitney finite elements to higher order. Indeed, they allow to make a list of
the generators of any polynomial degree of the finite element spaces and constitute the support of new dofs, the weights, for the representation
of fields in these discrete spaces (together with a direct geometrical visualization of the tree-cotree structure that we discuss in the last part of the
present work).
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FIGURE 2 (Taken from reference [25]). Principal latticeL3(t) in the tetrahedron t = [n0, n1, n2, n3], with the visualization of all the small simplices.
Each face of the boundary of t is decomposed in 6 small-faces and 3 reversed triangles (highlighted on the left with red solid lines). The decompo-
sition of t includes 10 small tetrahedra, 1 reversed tetrahedron (highlighted at the center with red dashed lines) and 4 octahedra (one is highlighted
on the right in green).

3 HIGH-ORDERWHITNEY EDGE ELEMENTS AND THE HIGH-ORDER GRAPH

For a more compact presentation, we rely on the notation of the finite element exterior calculus. It is well known (see 23,20) that the proxy fields
of the space of trimmed polynomial differential forms usually denoted P−r+1Λk(T ) are the finite element space of Lagrange of degree r + 1 ≥ 1

if k = 0, the first family of Nédélec finite elements of order r + 1 conforming in H(curl; Ω) if k = 1, the first family of Nédélec finite elements of
order r + 1 conforming in H(div; Ω) if k = 2, and discontinuous elements of degree ≤ r if k = 3. Let d be the exterior derivative for differential
k-forms for k < d.

Definition 3 (Whitney k-forms). In a tetrahedron t, Whitney k-forms associated with S ∈ ∆k(t) are the fields

wS =

 λmS(0), with k = 0, S = [nmS(0)],∑k
j=0 (−1)jλmS(j)dwS−[nmS(j)]

, with k > 0, S = [nmS(0), . . . , nmS(k)].

In particular, for k = 1 the exterior derivative d corresponds to the gradient operator and Definition 3 yields

wS = λmS(0) grad λmS(1) − λmS(1) gradλmS(0).

Whitney k-forms of higher degree in each tetrahedron t can be associated with the principal lattice in t as recalled in the next Definition.

Definition 4 (Higher-order Whitney k-forms). In a tetrahedron t, Whitney k-forms of higher polynomial degree are the fields

ws = λα
t wS ,

for all the small k-simplices s := {α, S}, withα ∈ I(4, r) for r > 0, and S ∈ ∆k(t), being wS is the Whitney k-form associated with S. The space
of high-order Whitney k-forms in t is

P−r+1Λk(t) = Span {ws : s = {α, S},α ∈ I(4, r), S ∈ ∆k(t)} .

Fields in P−r+1Λk(t) are defined as products between a field in P−1 Λk(t) and the continuous function λα
t , α ∈ I(4, r). Therefore, fields in

P−r+1Λk(t) enjoy the same conformity properties as those in P−1 Λk(t) 3.

Definition 5 (Weights on small k-simplices). For a polynomial k-form u ∈ P−r+1Λk(t), with 0 ≤ k ≤ 3 and r ≥ 0, the weights are the reals∫
{α,S}

u, (1)

for all the small k-simplices {α, S}, with α ∈ I(4, r) and S ∈ ∆k(t).

The weights of a high-order Whitney k-form u ∈ P−r+1Λk(t) along all the small k-simplices {α, S} of a mesh T are unisolvent 24, Proposition 3.14,
namely if u ∈ P−r+1Λk(t) is such that

∫
{α,S} u = 0 for all the small k-simplices s = {α, S} then u = 0. The small k-simplices can thus support the

dofs for fields u ∈ P−r+1Λk(t). Since the result on unisolvence holds true also by replacing t with Σ ∈ ∆`(t) (with k ≤ ` < 3), then the respective
trace of u over any Σ ∈ ∆`(t) (trace that lives in P−r+1Λk(Σ)) is uniquely determined by the weights localized on small k-simplices in Σ. We thus
can use the weights on the small k-simplex {α, S} as dofs for the fields in the finite element space P−r+1Λk(T ), being aware that their number is
greater than the dimension of the space.

The weights given in Definition 5 have a meaning as cochains and this relates directly the matrix describing the exterior derivative with the
matrix of the boundary operator. The key point is the Stokes theorem

∫
C du =

∫
∂C u, where u is a (k − 1)-form and C a k-chain. More precisely,
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if u ∈ P−r+1Λk(T ) then du ∈ P−r+1Λk+1(T ) and∫
{α,S}

du =

∫
∂{α,S}

u =
∑
{β,Σ}

B{α,S},{β,Σ}

∫
{β,Σ}

u, (2)

being B the boundary matrix with as many rows as small k-simplices, and as many columns as small (k − 1)-simplices. The small k-simplex {α, S}
inherits the orientation of the k-simplex S, so the coefficient B{α,S},{β,Σ} is equal to the coefficient BS,Σ of the boundary of the simplex S if
β = α and zero otherwise. Therefore, BS,Σ is 1 or −1 depending of whether the orientation of Σ matches or not with the orientation induced by
that of the k-simplex S on its (k−1)-faceΣ, and BS,Σ is zero whenΣ is not part of the boundary of S. This fact is straightforward if dim(Σ) > 0, but
also when dim(Σ) = 0 21. For k = 1, note that the matrix B{α,S},{β,Σ} is an incidence matrix between small edges and small vertices; moreover,
it is an all-node incidence matrix of a (non connected) graph, whose geometrical realization is shown on the right of Figure 3.

Remark: For k = 1, in order to have B an incidence matrix between small edges and small vertices, some points in the principal lattice have
different labels. The point 1

|η|
∑3
j=0

[[
1
4

+ ηj
]
vmt(j)

]
∈ L3(t), with η = (2, 0, 1, 0) has a label as the small vertex {(2, 0, 0, 0), [n2]} (the brown

point in the fragmented visualization) and also as the small vertex {(1, 0, 1, 0), [n0]} (the black point in the fragmented visualization). However,
the 0-forms associated with the different labels are the same. Indeed, {(2, 0, 0, 0), [n2]} corresponds with the 0-form λ2

mt(0)
wn2 = λ2

n0
λn2 and

{(1, 0, 1, 0), [n0]} with the 0-form λmt(0)λmt(2)wn0 = λn0λn2λn0 = λ2
n0
λn2 , and we can see that “both” 0-forms are actually the same.

FIGURE 3 (Taken from reference [21]). Visualization (on the left) of all the small simplices associated with the principal lattice L3(t) in the tetrahe-
dron t = [n0, n1, n2, n3]. The same set of small simplices in a fragmented visualization (on the right), a small tetrahedron in blue, a small face in
green, a small edge in red and small vertex in brown and also in black (the different labels for the same point in the principal lattice L3(t)).

We say that a set of unisolvent degrees of freedom for high-order Whitney edge finite elements is minimal if its cardinality is equal to the
dimension of the finite element space. In order to use a set of minimal unisolvent degrees of freedom for high-order Whitney edge finite elements
we have to disregard some small edges. In fact it can be proved 22 that to be unisolvent it is enough to consider on each face small edges parallel
to two of the three edges of the face and on each tetrahedra small edges parallel to three of the six edges of the tetrahedra. Proceeding in this
way the corresponding set of weights is unisolvent and minimal.

We use the term active to indicate all the small k-simplices such that λα
t wS belongs to a basis of P−r+1Λk(T ). The dimension of the space

P−r+1Λk(T ) coincides with the number of active small k-simplices in the mesh T 25. We recall the following result 26, Proposition 6.4:

Proposition 1 (A basis of P−r+1Λk(t)). The set{
λα
t wS : α ∈ I(4, r), S ∈ ∆k(t) andαj = 0 if j < mtS(0)

}
is a basis of P−r+1Λk(t).

A possible rule for selecting the active small vertices {α, [ni]} and set of small edges {α, [nme(0), nme(1)]} that induces minimal and unisolvent
weights is the same given in Proposition 1 to select a basis of P−r+1Λk(t).

We denote by dL and dN the dimension of P−r+1Λ0(T ) and P−r+1Λ1(T ), respectively. We consider the graph with nodes the set {q`}dL`=1 of
active small vertices (the points of the principal lattices of the mesh elements) and arcs the set {em}dNm=1 of active small edges. Let {φh,i}dLi=1

and {ωh,j}dNj=1 be the canonical bases of the nodal and edge finite element spaces for the weights supported on the nodes and arcs of this graph
respectively. This means that φh,i(q`) = δi,` and

∫
em
ωh,j = δj,m where δ·,· is the Kronecker delta. For each active small edge em we denote

qm,ini and qm,fin its initial and final small nodes respectively. It is well known that if the function ψh belongs to the space of nodal Lagrangian
finite elements of degree r + 1 then gradψh belongs to the first family of Nédélec finite elements of degree r + 1, and clearly

∫
em

gradψh =

ψh(qm,fin)−ψh(qm,ini). Therefore when using these canonical bases, the matrix that gives the circulations along the small edges of the gradient
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of a nodal finite element function knowing the values of this function at the nodes principal lattices of the mesh elements is the transposed of the
all-node incidence matrix of the graph with nodes the small vertices and arcs the active small edges.

Its geometrical realization in a tetrahedron is shown (in a fragmented version for a friendly visualization) in Figure 4. It is worthwhile to mention
that the set of active weights is proved to be unisolvent in 22. The structure shown in the Figure 4 has to be replicated on each tetrahedron t ∈ T .
After this operation, we obtain the high-order graph, Gho, over which we can construct the high-order spanning-tree, Sho.

FIGURE 4 (Taken from reference [25]). A fragmented visualization of the geometrical realization of the connected graph in a tetrahedron with the
active small edges (in red) as arcs and active small vertices as nodes.

4 ALGORITHM FOR THE CONSTRUCTION OF THE SPANNING-TREE (THE HIGH-ORDER CASE)

Thanks to additional information given by the geometrical localization of the connected graph formed by the active small vertices and the active
small edges shown in 4, we propose in the Algorithm 2 a suitable set of rules to construct a spanning-tree in the referred graph for each tetrahedron;
then we use this set of rules to construct a convenient global spanning-tree Sho, giving in this way a classification rule in the set of active small-
edges of the mesh T . The global algorithm has as input the connected and directed graph (V,E), and also a spanning-tree S of this graph. The
spanning tree S can be obtained by applying algorithms such as the Breadth-First search or Depth-First search in the graph G. The arcs of G that are
not in the spanning tree compose the cotree Sc. The global algorithm starts reading the arcs of the given spanning-tree S (Algorithm 1).

Algorithm 1 Initialization of Algorithm 2
Require: The mesh T = (V,E, F, T ), and a spanning-tree S of the graph (V,E).

1: procedure Initialization(S ,E,F )
2: loop over the edges e ∈ E
3: tree-flag(e)← false.
4: visited-edge-flag(e)← false.
5: if e ∈ S then
6: tree-flag(e)← true. . Reading the spanning-tree S
7: end if
8: end loop
9: loop over the faces f ∈ F
10: visited-face-flag(f)← false.
11: end loop
12: end procedure

In Algorithm 1 the information on S is saved by mean of a flag associated with each edge of the mesh (if an edge is part of the spanning-tree S ,
the flag is set to true, otherwise is set to false); when the algorithm is initialised, the flag associated with each face is also set to false (we use
this flag to control the previously visited face in the loop over all elements of the mesh).
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The information saved in the flags is used within a loop over all the tetrahedra of the mesh, where the spanning-tree Sho is constructed; in each
cycle of the tetrahedra loop, the previously proposed set of rules is used conveniently. The spanning-tree S gives a selection criteria to put some
active small edges of the global graph in the spanning-tree Sho. More precisely, all the small edges on arcs of the spanning tree S and all but one
(in particular the last one) the small edges on arcs of the cotree Sc. Then the global spanning-tree Sho is further enriched with some active small
edges at the interior of each face (only those faces of the tetrahedra that have not been visited previously), and finally with some active small edges
at the interior of each tetrahedron. The proposed algorithm can be executed as part of pre-processing step. The algorithm requires as input G, S ,
Gho, also the faces and tetrahedra of the mesh; and gives as output the enriched spanning-tree Sho.

Algorithm 2 A spanning-tree of active small-edges
Ensure: A spanning-tree Sho of the graph with nodes: the active small vertices; and arcs: the active small edges.

13: procedure Construction of Sho(E,F ,T ,tree-flag,visited-edge-flag,visited-face-flag)
14: loop over the tetrahedra t← [na, nb, nc, nd] ∈ T
15: loop over the faces f ← [ni, nj , nk] ∈ ∆2(t)

16: if visited-face-flag(f) == false then
17: loop over the edges e← [np, nq ] ∈ ∆1(f)

18: if visited-edge-flag(e) == false then
19: if tree-flag(e) == true then
20: add to Sho the small-edges {α, e}, ∀ α ∈ I(4, r) with αmt

t−e
(0) = 0 and αmt

t−e
(1) = 0. . All the small-edges

{α, e} over the edge e.
21: else
22: add to Sho the small-edges {α, e} corresponding to the r − 1 first indices α ∈ I(4, r) with αmt

t−e
(0) = 0 and

αmt
t−e

(1) = 0. . first is always intended in the reversed lexicographical order.
23: end if
24: visited-edge-flag(e)← true
25: end if
26: end loop
27: for αmt

f (2) ← 1 to r − 1 do
28: add toSho the small-edges {α, [nmf (0), nmf (1)]} corresponding to the r−αmt

f (2) first indicesα ∈ I(4, r)withαmt
t−f

(0) =

0. . Adding small-edges {α, [nmf (0), nmf (1)]} of the interior of f to Sho.
29: end for
30: visited-edge-flag(f)← true
31: end if
32: end loop
33: for α3 ← 1 to r − 2 do
34: for α2 ← 1 to r − (α3 + 1) do
35: add to Sho the small-edges {α, [nmf (0), nmf (1)]} corresponding to the r − (α2 + α3) first indices α ∈ I(4, r). . Adding

small-edges {α, [nmt(0), nmt(1)]} of the interior of t to Sho.
36: end for
37: end for
38: end loop
39: end procedure

In Figure 5 we can see the structure of the spanning-tree Sho (in green) given by the Algorithm 2, considering the case r = 4 in a mesh with an
unique tetrahedron t = [n0, n1, n2, n3]; a red arc is in Sho if its respective (big) edge is in the given spanning-tree S , otherwise is out of Sho.

In Figure 6 we can see the structure of the spanning-tree Sho (in green and red) given by the Algorithm 2, considering the case r = 4 in a mesh
with two tetrahedra. It is worth noting that the red arcs in this figure correspond to the red arcs in Figure 5 belonging to Sho.

Proposition 2. If Ω is simply connected, the number dSho
of small edges in Sho is (dL − 1).
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FIGURE 5 The spanning-tree Sho (in green) on a tetrahedron t = [n0, n1, n2, n3]. On the left, the subgraph corresponding to active small-edges
on the edges and in the interior of the face f = [n0, n1, n2], and the corresponding part of the spanning-tree Sho. The red arcs belong to the
spanning-tree Sho, if and only if, its corresponding edge e belong to the spanning tree S . On the right, the active small-edges in the interior of t
belonging to Sho are visualized, (note that for a friendly visualization, some active small-edges were omitted in the figure). In this example we are
considering r = 4.

FIGURE 6 The spanning-tree Sho (in green and red) on a mesh T with two tetrahedra. The arcs of the spanning tree S in blue. It is worth noting
that the red arcs in this figure correspond to the red arcs in Figure 5 belonging to Sho. In this example we are considering r = 4.

Proof. For r = 0, the small edges coincide with the mesh edges and their number in S is (NV − 1). Moreover, NV = dL, thus the property holds
true for r = 0.

For r > 0, we recall that dL can be rewritten as

dL = NV +NE dimPr−1(e) +NF dimPr−2(f) +NT dimPr−3(t)

where NV (resp., NE , NF , NT ) is the number of nodes (resp., edges e, faces f , tetrahedra t) in the mesh over Ω̄. By the proposed algorithm, the
number dSho

of active small edges in the spanning tree Sho can be counted as follows

dSho
= (r + 1) #S + r#Sc +NF

r−1∑
q=1

(r − q) +NT

r−2∑
q=1

[

r−(q+1)∑
s=1

r − (q + s) ]

with cardinalities #S = (NV − 1) and #Sc = NE − (NV − 1). Note that
r−1∑
q=1

(r − q) = r

r−1∑
q=1

1−
r−1∑
q=1

q = r(r − 1)−
r(r − 1)

2
=

r(r − 1)

2
= dimPr−2(f).
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Moreover, for the last term in dSho
we have

r−2∑
q=1

[

r−q−1∑
s=1

(r − q − s) ] =

r−2∑
q=1

[ (r − q)
r−q−1∑
s=1

1−
r−q−1∑
s=1

s ]

=
1

2

r−2∑
q=1

[ (r − q)(r − q − 1) ] =
1

2
[

r−2∑
q=1

q2 − (2r − 1)

r−2∑
q=1

q + r(r − 1)

r−2∑
q=1

1 ]

=
1

2
[

1

6
(r − 2)(r − 1)(2r − 3)−

1

2
(2r − 1)(r − 1)(r − 2) + r(r − 1)(r − 2) ]

=
1

2
(r − 1)(r − 2)[

r

3
−

1

2
+

1

2
− r + r] =

1

6
r(r − 1)(r − 2)

that is indeed dimPr−3(t). Summing up, we get

dSho
= NV − 1 + NE dimPr−1(e) +NF dimPr−2(f) +NT dimPr−3(t) = dL − 1,

thus the property.

Remark: If Ω is not simply connected, let g be the first Betti number of Ω, namely, the number of homologically independent non bounding cycles
in Ω. The algorithm can be easily generalized to this case by replacing the global spanning tree, S , with a global belted spanning tree, Sb that has
g additional arcs. Hence, the number of arc in the high-order belted spanning tree Sbho is dSb

ho
= dL − 1 + g.

At a first sight, the algorithm we present seems to work on a graph with much more nodes and arcs than the one associated with the mesh
used in the low-order case. In reality the high-order graph (and its incidence matrix) is not realised. We have used it only for visualization purposes.
However each arc in the high-order graph corresponds with a dof (and hence with an element of the canonical basis). Therefore any action on the
set of dofs can be "visualized" as an action on this fictive graph. In the algorithm we use only the low-order graph and make a local choice of dofs,
that it is done once on a reference element (as in Figure 5) and applied repeatedly on the elements of the mesh. The local choice has to guarantee
that the merge of all local spanning trees is a spanning tree of the (virtual) high-order graph, as illustrated in Figure 6. Algorithm 2 implements the
choice illustrated in the figures.
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