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Abstract
We answer a question posed by Michael Aissen in 1979 about the q-analogue

of a classical theorem of George Pólya (1922) on the algebraicity of (generalized)
diagonals of bivariate rational power series. In particular, we prove that the answer
to Aissen’s question, in which he considers q as a variable, is negative in general.
Moreover, we show that when q is a complex number, the answer is positive if and
only if q is a root of unity.
Mathematics Subject Classifications: 05A30, 30B10

1 Introduction

A beautiful but rather unknown theorem of Pólya [9] states the following:
Given two algebraic power series1 φ(x) and Φ(x), let A(i,j) be the coefficient
of xj in Φ(x)φ(x)i. Consider a straight line in the plane and let (pn)n⩾0 be the
sequence of non-negative integer lattice points in Z2 lying on this line. Then
F (x) = ∑

n⩾0 Apnxn is algebraic.
In particular, this theorem implies that the generalized diagonal ∆a,b of a bivariate

rational power series is algebraic, where for f(x, y) = ∑
i,j⩾0 fi,jx

iyj, we define ∆a,b(f) :=∑
n⩾0 fan,bnxn. For example, one finds

∆1,1

(
1

1 − x − y

)
= ∆1,1

∑
i,j⩾0

(
i + j

i

)
xiyj

 =
∑
n⩾0

(
2n

n

)
xn = 1√

1 − 4x
,
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1Recall that f(x) ∈ C[[x]] is called algebraic if there exists a bivariate non-zero polynomial P (x, z) in

C[x, z] such that P (x, f(x)) = 0. A non-algebraic series is called transcendental.
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and the latter is a root of P (x, z) = (1 − 4x)z2 − 1.
In Pólya’s formulation, this example is obtained by choosing Φ(x) = 1, φ(x) = 1 + x

and the main diagonal {x = y} of Z2. In fact, this special case is the main foundation for
the observation and question which led to this article.

There is a more combinatorial rephrasing of this example. Arrange Pascal’s triangle
in the following way

0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
... . . . . . .

0 1 2 3 4 5 6
and consider a line passing through infinitely many lattice points of the above triangle. If
we denote the resulting sequence of values on these lattice points by (uj)j⩾0, then Pólya’s
theorem ensures that the generating function f(x) = ∑

j⩾0 ujx
j is algebraic.

It is easy to see that the above condition on the line can be reformulated into the
existence of non-negative integers n, k, a, b with n ⩾ k, a ⩾ b, gcd(a, b) = 1 and that
either n − a < k − b or k − b < 0, such that uj =

(
n+aj
k+bj

)
. So this special case of Pólya’s

theorem simply asserts that∑
j⩾0

(
n + aj

k + bj

)
xj ∈ C[[x]] is algebraic.

It is well-known and easy to see that the binomial coefficient
(

x+y
x

)
counts lattice

paths from the origin to (x, y) ∈ Z2 with only North and East steps. The observation
above therefore implies that the generating function of the number of such paths, as (x, y)
increases on a line, is algebraic. Now recall the definition of the q-analogue of the binomial
coefficient, called the q-binomial coefficient:[

n

k

]
q

:= [n]q!
[k]q![n − k]q!

, where

[n]q! := (1 + q) · · · (1 + q + · · · + qn−1),

for a variable q and integers n, k with 0 ⩽ k ⩽ n. It is not difficult to check that
[

n
k

]
q

∈ Z[q]
is a polynomial in q of degree k(n − k). Arranged as in the figure above, these q-binomial
coefficients give rise to the so-called q-Pascal triangle.

Pólya showed [10] that the coefficient of qj in
[

x+y
x

]
q

counts lattice paths in Z2 from
the origin to (x, y) with same steps as before and with area underneath equal to j, see
also [1]. Aissen asked in [4, p. 585] the natural question whether the following q-analogue
of Pólya’s statement about algebraicity of such path generating functions holds:

the electronic journal of combinatorics 29 (2022), #P00 2



Fix integers n, k, a, b with n ⩾ k ⩾ 0, a ⩾ b ⩾ 0 and gcd(a, b) = 1. Moreover
assume that either n − a < k − b or k − b < 0. Let

F (x, q) :=
∑
j⩾0

[
n + aj

k + bj

]
q

xj ∈ C[q][[x]].

Is the power series F (x, q) algebraic? That is, does there exist a non-zero
polynomial P (x, q, z) ∈ C[x, q, z] such that P (x, q, F (x, q)) = 0?

The inequality conditions n ⩾ k ⩾ 0 and a ⩾ b ⩾ 0 ensure that F (x, q) is well-
defined and not a polynomial. The condition gcd(a, b) = 1 means that the line passing
through the q-Pascal triangle does not “skip” terms; as we will see, it does not affect the
algebraicity of F (x, q). Also the condition n − a < k − b or k − b < 0 is just a translation
of the geometric picture that F (x, q) collects all terms on that line. Aissen noticed the
following fact: if the line is parallel to an edge of the q-Pascal triangle (i.e., if a = b or
b = 0), then F (x, q) is trivially algebraic, because it is actually a rational function of x
and q. Hence, in what follows, we will assume that a ̸= b and b ̸= 0. More precisely,
we will only consider admissible integers n, k, a, b, in the following sense: n ⩾ k ⩾ 0,
a > b > 0, gcd(a, b) = 1, and either n − k < a − b or k < b.

2 Results

Using elementary asymptotic estimates on the coefficients, we can show that the answer
to Aissen’s question is negative, because for any fixed z ∈ C of absolute value larger than 1
the coefficients of F (x, z) grow too fast for this series to be algebraic. However, we notice
that the same argument does not apply for the univariate power series hz(x) := F (x, z),
where z ∈ C with |z| ⩽ 1. In fact, our main result (Theorem 4 below) is that hz(x) is
algebraic if and only if z is a root of unity.

We start with a particular case of our main result and the answer to Aissen’s question:
the generating function of the central q-binomial coefficients is not algebraic.

Proposition 1. For n = k = 0 and a = 2, b = 1 the series F (x, q) is not algebraic.

Proof. Assume that F (x, q) is algebraic with minimal polynomial P (x, q, z). Then the
series h2(x) := F (x, 2) must be algebraic as well, since P2(x, z) := P (x, 2, z) ̸≡ 0 satisfies
P2(x, h2(x)) = 0. We have

h2(x) =
∑
j⩾0

(2j+1 − 1)(2j+2 − 1) · · · (22j − 1)
(2 − 1)(22 − 1) · · · (2j − 1) xj

= 1 + 3x + 35x2 + 1395x3 + 200787x4 + · · · .

Using the obvious inequality (2j+k − 1)/(2k − 1) > 2j, we see that the j-th coefficient of
h2(x) is greater than 2j2 . This growth rate is too fast for h2(x) to be algebraic, see e.g.,
Theorem D in [8], or Theorem 3 in [12].
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A more elementary way to see that the growth rate of the coefficients of h2(x) is
incompatible with algebraicity of the function is to notice that this rate is too fast even
for D-finite functions. Recall [15] that a power series f(x) = ∑

i⩾0 uix
i is called D-finite

if it satisfies a linear differential equation with polynomial coefficients:

pn(x)f (n)(x) + · · · + p0(x)f(x) = 0.

A classical theorem ensures that any algebraic function is D-finite [15, Thm. 2.1] (see
also [3]), whereas the latter class of functions is clearly much larger. An equivalent
characterization of D-finite series [15, Thm. 1.5] states that the coefficients sequence
satisfies a linear recurrence with polynomial coefficients:

uj+rcr(j) + · · · + ujc0(j) = 0, j ⩾ 0.

A sequence (uj)j⩾0 is called P-recursive if it satisfies a recurrence as above.
A simple estimation on the growth rate of such sequences shows that any P-recursive

sequence (uj)j⩾0 grows at most like a power of j! which is slower than 2j2 . We will use
the fact that the coefficient sequence of an algebraic function is necessarily P-recursive
again later.

We have just proved that the bivariate series F (x, q) cannot be algebraic for all ad-
missible n, k, a, b. In the same manner, we can prove that F (x, q) is not algebraic for any
admissible n, k, a, b. This is easily reduced to the following task: when is the univariate
power series hz(x) := F (x, z) (for a fixed z ∈ C \ {0}) algebraic? Obviously, the same
argument as in the proof of Proposition 1 applies for any z with |z| > 1: the growth
rate of zj2 is incompatible with algebraicity. However, for z = ω on the unit circle or for
|z| < 1 the same argument does not work; in fact we have the following result:

Proposition 2. Let n, k, a, b be admissible integers and ω ∈ C be a root of unity. Then
hω(x) is algebraic.

Before proving it, we recall the q-Lucas theorem (see [6, p. 22] for an algebraic proof
and [13, p. 131–132] for a combinatorial proof). It is the q-analogue of the well-known
Lucas theorem, one form of which states that(

n

m

)
≡
(

⌊n
p
⌋

⌊m
p

⌋

)
·
(

n − p⌊n
p
⌋

m − p⌊m
p

⌋

)
mod p,

where p is a prime number and m, n are non-negative integers; here ⌊x⌋ denotes the integer
part of x, that is the largest integer at most equal to x.

Theorem 3 (q-Lucas Theorem). Let x, y be non-negative integers and ω ∈ C be a root
of unity of order s. Then [

x

y

]
ω

=
(

⌊x
s
⌋

⌊y
s
⌋

)
·
[
x − s⌊x

s
⌋

y − s⌊y
s
⌋

]
ω

.
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Now we can show that for roots of unity ω ∈ C, the series hω(x) is algebraic.

Proof of Proposition 2. Let s be the order of ω. We have

hω(x) =
∑
j⩾0

[
n + aj

k + bj

]
ω

xj =
s−1∑
r=0

∑
j⩾0

j≡r mod s

[
n + aj

k + bj

]
ω

xj.

Let us examine the s summands separately using the q-Lucas theorem:

∑
j⩾0

j≡r mod s

[
n + aj

k + bj

]
ω

xj =
∑
ℓ⩾0

[
n + a(ℓs + r)
k + b(ℓs + r)

]
ω

xj

=
∑
ℓ⩾0

(
⌊n+ar

s
⌋ + aℓ

⌊k+br
s

⌋ + bℓ

)[
n + ar − s⌊n+ar

s
⌋

k + br − s⌊k+br
s

⌋

]
ω

xj

=
[
n + ar − s⌊n+ar

s
⌋

k + br − s⌊k+br
s

⌋

]
ω

·
∑
ℓ⩾0

(
⌊n+ar

s
⌋ + aℓ

⌊k+br
s

⌋ + bℓ

)
xj.

By Pólya’s theorem (see Section 1) the last sum is an algebraic series, and therefore
obviously the whole last expression is also algebraic. Then, hω(x) is the sum of s algebraic
power series, hence it is algebraic as well.

In the remaining part of the article we will show that if 0 < |z| ⩽ 1 but z is not a root of
unity, then hz(x) cannot algebraic. This will prove our main theorem:

Theorem 4. Let n, k, a, b be admissible integers and let q ∈ C \ {0}. Then hq(x) is an
algebraic power series if and only if q is a root of unity.

A natural approach to prove this theorem is to use a result originating from Ramis’
work [11], see also [14, Corollary 2], or [2, Theorem 7.1]. It says that if a function f is
algebraic and at the same time satisfies a linear q-difference equation, that is, an equation
of the form

f(qmx) + bm−1(x)f(qm−1x) + · · · + b0(x)f(x) = 0
for some rational functions b0, . . . , bm ∈ C(x) not all zero and q ∈ C \ {0} not a root of
unity, then f is actually a rational function. Clearly, hq(x) satisfies a linear q-difference
equation. Hence, the result described above ensures that if hq(x) is algebraic, it must
already be a rational function. One can prove that for any non-zero q, hq(x) is rational if
and only if a = b or b = 0. Then, altogether, these facts imply Theorem 4.

It turns out that a simple modification of the proof that hq(x) is never rational for
admissible integers already implies a much more general fact which does not require the
theory of q-difference equations in order to prove our main theorem. More precisely, we
will prove directly the following stronger result.

Theorem 5. Let n, k, a, b be admissible integers and let q ∈ C \ {0}. Then hq(x) is
D-finite if and only if q is a root of unity.
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Recall that an algebraic function is always D-finite, therefore Theorem 5 along with
Proposition 2 will allow us to conclude the validity of Theorem 4.

We will make use of the following elementary proposition, that we suspect to be well-
known although we could not locate it in the literature.

Proposition 6. Let p(x, y) ∈ C[x, y] be a bivariate polynomial and assume that for some
q ∈ C \ {0} not a root of unity, we have p(j, qj) = 0 for all j ∈ N. Then p(x, y) = 0.

Proof. We distinguish three cases: |q| < 1, |q| = 1 and |q| > 1. For the first case,
write p(x, y) = p0(x) + r(x, y)yn for some natural number n and p0(x) = p(x, 0) ∈ C[x],
r(x, y) ∈ C[x, y] such that r(x, 0) ̸= 0. It follows that

0 = p(j, qj) = p0(j) + r(j, qj)qnj.

Since |q| < 1, we must have r(j, qj)qnj → 0 as j → ∞. Therefore, limj→∞ p0(j) = 0 and
we obtain that p0(x) = 0. Hence, r(j, qj) = 0 for j ⩾ 0. But r(x, y) = r0(x) + s(x, y)y for
some polynomial s(x, y) and non-zero r0(x). By the same argument, limj→∞ r0(j) = 0,
however this contradicts r0(x) ̸= 0.

If |q| = 1, write p(x, y) = p0(y) + p1(y)x + · · · + pd(y)xd for some natural number d
and polynomials p0(y), . . . , pd(y) ∈ C[y], such that pd(y) ̸= 0. We have

|pd(qj)|jd =
∣∣∣∣∣
d−1∑
k=0

pk(qj)jk

∣∣∣∣∣ . (1)

Now the idea is that for some sequence (jn)n⩾0, the terms |p0(qjn)|, . . . , |pd−1(qjn)| can
be bounded by a constant from above and |pd(qjn)| is bounded from below by a non-
zero constant – this contradicts (1) because the left-hand side becomes too large. More
precisely, choose ξ on the unit circle which is not a root of pd(x). Then there exists
ε > 0 such that |pk(ξ)| < 1/ε for all k = 0, . . . , d and also ε < |pd(ξ)|. Moreover, since
q is not a root of unity, Jacobi’s Theorem implies that the set {qj|j ∈ N} is dense on
the unit circle [7, Thm 3.13] (see also [5]), consequently there are infinitely many j such
that qj is arbitrarily close to ξ. Henceforth, there also exist infinitely many j for which
|pk(qj)| < 1/ε for all k = 0, . . . , d − 1 and ε < |pd(qj)|. However, at the sequence of
these j, this contradicts (1) since then the left-hand side grows at least like jdε and the
right-hand side is bounded by djd−1/ε.

Finally, if |q| > 1, write p(x, y) = r0(x) + r1(x)y + · · · + rn(x)yn for polynomials
r0(x), . . . , rn(x) ∈ C[x] and some natural number n. Clearly, if p(x, y) is non-zero, n must
be positive. But then we have

|r0(j) + r1(j)qj + · · · + rn−1(j)q(n−1)j| ⩽ cjm|q|(n−1)j,

for some constants c, m > 0. This contradicts

rn(j)qnj = −r0(j) − r1(j)qj − · · · − rn−1(j)q(n−1)j

for big enough j and finishes the proof.

the electronic journal of combinatorics 29 (2022), #P00 6



Remark 7. An alternative, purely algebraic, proof of Proposition 6 follows from the fact
that for any d ⩾ 0, writing D =

(
d+2

2

)
, the determinant of the D × D matrix

M(z) = (niznj)0⩽i+j⩽d,
1⩽n⩽D

is given by a constant times a power of z and a product of cyclotomic polynomials in z.
More precisely, assuming that the total degree of p(x, y) = ∑

i,j ci,jx
iyj is d, the equations

p(j, qj) = 0 for j = 1, . . . , D yield the following linear system of equations for the vector
of unknowns ci,j:

M(q) · (ci,j)0⩽i+j⩽d = 0.

To see why det M(z) only vanishes for z a root of unity, it is useful to write M(z) =
N(1, z, . . . , zd), where N(z0, . . . , zd) = (nizn

j )0⩽i+j⩽d,
1⩽n⩽D

. Then it remains to prove that
det N(z0, . . . , zd) is a constant times a product of zi’s times a product of (zi −zj) for i ̸= j.
This follows from the observation that the transpose of N is a generalized Vandermonde
matrix; more precisely, it is a matrix corresponding to the linear map from the space of
polynomials with no constant term and degree at most D to CD given by

P (x) 7→ (P (z0), . . . , P (zd), ϑP (z0), . . . , ϑP (zd−1), . . . , ϑdP (z0)),

where ϑ = x x
dx

is the Euler derivative. After a change of basis from the monomials to the
the basis 1, (x − z0), (x − z0)(x − z1), . . . , (x − z0)d−1(x − z1)d−1(x − z2)d−2 · · · (x − zd) the
matrix becomes lower-triangular and the determinant evaluation follows trivially. This
purely algebraic proof shows that in Proposition 6 one can replace “for all j ∈ N” by the
weaker condition “for j = 1, . . . , (d + 1)(d + 2)/2, where d is the total degree of p(x, y)”.
The proof also shows that the conclusion of the proposition holds as well if q ∈ C \ {0} is
assumed not to be a root of unity of order at most d.

Note that Proposition 6 immediately implies that the function f(x) = qx is transcen-
dental for any non-zero q ∈ C which is also not a root of unity, because an annihilating
polynomial P (x, z) would need to satisfy P (x, qx) = 0 and hence this would hold at all
integers x. In particular, this proposition contains the classical and well-known fact that
exp(x) is not algebraic.

Now we are ready to prove Theorem 5: we will show that hq(x) is D-finite (and hence
algebraic) if and only if q is a root of unity. This answers Aissen’s question completely.

Proof of Theorem 5. We already observed that if q is a root of unity, the series hq(x) is
algebraic and hence D-finite. Therefore, one direction is clear and we assume now that
q ∈ C \ {0} is not a root of unity.

Assume by contradiction that hq(x) = ∑
j⩾0 ujx

j is D-finite. Then (uj)j⩾0 is P-
recursive and there exist a positive integer r and c0(x), . . . , cr(x) ∈ C[x] with c0(x)cr(x) ̸=
0 such that

uj+rcr(j) + · · · + ujc0(j) = 0, for all j ⩾ 0. (2)
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A simple computation shows that

uj+1 = uj

∏a
ℓ=1(qn+aj+ℓ − 1)∏b

ℓ=1(qk+bj+ℓ − 1)∏a−b
ℓ=1(qn−k+(a−b)j+ℓ − 1)

.

Then it follows by iteration

uj+i = uj

i−1∏
m=0

∏a
ℓ=1(qn+a(j+m)+ℓ − 1)∏b

ℓ=1(qk+b(j+m)+ℓ − 1)∏a−b
ℓ=1(qn−k+(a−b)(j+m)+ℓ − 1)

= uj

∏ia
ℓ=1(qn+aj+ℓ − 1)∏ib

ℓ=1(qk+bj+ℓ − 1)∏i(a−b)
ℓ=1 (qn−k+(a−b)j+ℓ − 1)

.

Using this, we may rewrite equation (2) and obtain

uj

(
r∑

i=0
ci(j)

∏ia
ℓ=1(qn+aj+ℓ − 1)∏ib

ℓ=1(qk+bj+ℓ − 1)∏i(a−b)
ℓ=1 (qn−k+(a−b)j+ℓ − 1)

)
= 0, (3)

for all integers j ⩾ 0. Note that uj ̸= 0, since q is not a root of unity, hence already the
sum above is identical to 0 for all j ∈ N. We define

Pi(y) :=
ia∏

ℓ=1
(yaqn+ℓ − 1)

rb∏
ℓ=ib+1

(ybqk+ℓ − 1)
r(a−b)∏

ℓ=i(a−b)+1
(ya−bqn−k+ℓ − 1) ∈ C[y],

so that after multiplication with the common denominator, equation (3) implies that∑r
i=1 ci(j)Pi(qj) = 0. By Proposition 6 we now obtain that p(x, y) := ∑r

i=1 ci(x)Pi(y)
must be identically 0.

We will show however that p(x, y) cannot be the zero polynomial if the integers n, k, a, b
are admissible, more precisely if a > b > 0. Set first d := max(deg(ci(x)), i = 0, . . . , r)
and write ci(x) = ∑d

k=0 ci,kxk for some ci,k ∈ C. Moreover, let m be an integer such that
cr,m ̸= 0 and denote by pm(y) the coefficient of xm in p(x, y). We claim that pm(y) ̸= 0.
We namely have:

pm(y) =
r∑

i=0
ci,m

ia∏
ℓ=1

(yaqn+ℓ − 1)
rb∏

ℓ=ib+1
(ybqk+ℓ − 1)

r(a−b)∏
ℓ=i(a−b)+1

(ya−bqn−k+ℓ − 1),

and the exponent of y of the leading monomial of each summand is ia2 + (r − i)b2 + (r −
i)(a− b)2. Since we assume that a > b > 0, it follows that this expression is maximal only
for i = r, and hence the leading monomial of pm(y) is cr,mya2rqran+ra(ra+1)/2 ̸= 0.

Acknowledgements. We thank the anonymous referees for helpful suggestions.
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