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Abstract. The present paper applies the approximate Bayesian computation (ABC) for parameter estimation and
uncertainty quantification in an SEIR-type model with data of hospitalisation and deaths from the city of Rio de
Janeiro. The analysed model considers eight compartments: susceptible, exposed, infectious, asymptomatic, hos-
pitalised, recovered and deceased (SEIAHRD). ABC is employed to update the prior probability density function
of the model parameters, where a two objective optimisation problem is formulated (data of healthcare and deaths)
and eleven parameters are identified. The transmission rate is allowed to vary over time (to change its baseline).
The applied model seems to be consistent with the available data.
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1 Introduction

Since the COVID-2019 outbreak in December 2019 [1] many researchers have contributed with a variety
of models to deal with COVID data and the epidemic spread understanding and predictions. We are particular
interested in susceptible–exposed–infectious–removed (SEIR) compartment models [2]. These models are helpful
to analyse different scenarios, to make predictions, and to support decisions. They have a good balance between
simplicity (fast to run simulations) and complexity (good to represent the physics of the problem).

Pacheco et al. [3] analysed an SEIR-type model and investigated different scenarios for Brazil. The impor-
tance of social isolation and hospital infrastructure was highlighted. Vyasarayani and Chatterjee [4] studied an
SEIR model with and an additional compartment for quarantine. They considered time delays for latency and an
asymptomatic phase. Yu et al. [5] proposed a fractional SEIR model based on the coupling effect of inter-city
networks. None of the above investigations detail the calibration procedure or consider a stochastic model to
propagate uncertainties.

Kucharski et al. [6] analysed an SEIR model incorporating uncertainty in case observation using a Poisson
observed process (newly symptomatic cases, reported onsets of new cases, reported confirmation of cases) and a
binomial observation process (infection prevalence on evacuation flights). The calibration process is not detailed.
He et al. [7] analysed an SEIR model with hospitalisation and quarantine. The model parameters are identi-
fied using the particle swarm optimisation (PSO) algorithm which is a population-based stochastic optimisation.
Stochastic infection is considered introducing a white Gaussian noise. Jha et al. [8] considered a multiple coupled
partial differential equations governing the evolution of susceptible, exposed, infectious, recovered and deceased
individuals. The Bayesian learning approach is implemented to calibrate the model parameters. They considered
additive Gaussian noise to construct the likelihood function and assumed log-Normal priors.

Uncertainties play a major role in epidemiological models. Model parameters, the model itself, and data are
uncertain. It is crucial to take into account uncertainties and perform a robust calibration procedure. Probability
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theory might be used in this endeavour [9], and the Bayesian learning strategy [10, 11] is convenient because prior
knowledge is updated consistently with data and uncertainty quantification occurs automatically.

This paper applies the approximate Bayesian computation (ABC) [12] to calibrate the parameters and quan-
tify uncertainties in an SEIR-type model [13]. The analysed model considers eight compartments: susceptible,
exposed, infectious, asymptomatic, hospitalised, recovered and deceased (SEIAHRD) [14].

ABC is a Bayesian likelihood-free strategy where the prior probability density function of the parameters
is updated with data. It can be used to propagate uncertainty throughout the model and compute probabilistic
envelopes of the response. ABC is employed to update the prior Uniform probability density function of the
model parameters. A two-objective optimisation problem is formulated (healthcare and deaths data) and eleven
parameters are identified. The transmission rate is allowed to vary over time (to change its baseline). Data from
the city of Rio de Janeiro are used to test the new methodology.

The paper is organised as follows. Section 2 depicts the SEIR deterministic and stochastic models. ABC is
presented in section 3. The results are shown in section 4: sensitivity analysis, parameter calibration, uncertainty
quantification, and other simulations.

2 SEIARHD COVID-19 model

The SEIR model presented here is taken from [14] and was inspired in [15]. Infection spreads via direct con-
tact between a susceptible and infectious individual. Delay is modelled as an exposed group: there is a latent period
until an infected person becomes able to transmit. Among the infectious, most individuals are asymptomatic; only
a fraction display symptoms after incubation. Disease-related deaths are considered when infectious.

The model considers the dynamics of susceptible (S), exposed (E), infectious (I), asymptomatic (A), hospi-
talised (H), recovered (R) and deceased (D) individuals. Variable C is the cumulative infected individuals. The
model has eight parameters:

• N0 - initial susceptible population (number of individuals)
• β - transmission rate (days−1)
• α - latent rate (days−1)
• fE - symptomatic fraction (non-dimensional)
• γ - recovery rate (days−1)
• ρ - hospitalisation rate (days−1)
• δ - death rate (days−1)
• κH - hospitalisation recovery-factor (non-dimensional)
The deterministic dynamic model with constant parameters is written as [14]

Ṡ(t) = −βS(t)(I(t) +A(t))/N(t) ,

Ė(t) = βS(t)(I(t) +A(t))/N(t)− αE(t) ,

İ(t) = fEαE(t)− (γ + ρ+ δ)I(t) ,

Ȧ(t) = (1− fE)αE(t)− (γ + δ)A(t) ,

Ḣ(t) = ρI(t)− (γ + κHδ)H(t) ,

Ṙ(t) = γ(I(t) +A(t) +H(t)) ,

Ḋ(t) = δ(I(t) +A(t) + κHδH(t)) ,

Ċ(t) = αE(t) ,

N(t) = N0 −D(t) ,

(1)

with initial conditions {S0, E0, I0, A0, H0, R0, D0, C0}.
The parameters {β, α, fE , γ, ρ, δ, κH , N0} are modelled as random variables {β̂, α̂, f̂E , γ̂, ρ̂, δ̂, κ̂H , N̂0} that

must be identified. Furthermore, β̂ is described with the aid of an underling time dependent function as will be
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detailed further in this section. The stochastic model with time dependent transmission rate is written as

Ṡ(t) = −β̂(t)S(t)(I(t) + A(t))/N(t) ,

Ė(t) = β̂(t)S(t)(I(t) + A(t))/N(t)− α̂E(t) ,

İ(t) = f̂Eα̂E(t)− (γ̂ + ρ̂+ δ̂)I(t) ,

Ȧ(t) = (1− f̂E)α̂E(t)− (γ̂ + δ̂)A(t) ,

Ḣ(t) = ρ̂I(t)− (γ̂ + κ̂H δ̂)H(t) ,

Ṙ(t) = γ̂(I(t) + A(t) + H(t)) ,

Ḋ(t) = δ̂(I(t) + A(t) + κ̂H δ̂H(t)) ,

Ċ(t) = α̂E(t) ,

N(t) = N̂0 − D(t) ,

(2)

where the boldface represents random responses. As the disease spreads, the parameter β might change, and it will
be taken in account by the following expression (taken from [16]):

β(t) = β1 +
β2 − β1

2

(
1 + tanh

(
ρβ
t− tβ
2

))
, (3)

where β1 is the initial value of β, β2 the final value, ρβ defines how fast β reaches β2, and tβ is the transition
time (when t = tβ then β = (β1 + β2)/2). There is a total of eleven random variables to be calibrated: ϕ =

{β̂1, β̂2, ρ̂β , t̂β , α̂, f̂E , γ̂, ρ̂, δ̂, κ̂H , N̂0}.

3 Approximate Bayesian computation for parameter estimation and uncertainty quan-
tification

3.1 Approximate Bayesian computation

The approximate Bayesian computation (ABC) [12] does not assume a likelihood function and so the usual
assumption of additive independent Gaussian noise is not necessary. The model prediction (with parameter ϕ∗)
and the experiment are directly compared; for instance

error(y,ym(ϕ∗)) = αer
||yhosp − ym,hosp(ϕ

∗)||2

||yhosp||2
+ (1− αer)

||ydeaths − ym,deaths(ϕ
∗)||2

||ydeaths||2
, (4)

where ϕ∗ is the set of parameters of the model, ym is the model prediction, y is the available data. Data from hos-
pitalised individuals yhosp and deaths ydeaths are considered, and αer ∈ [0, 1] is the weight put to the hospitalisation
data. If αer = 0.5 data from healthcare and deaths have the same weight.

We must combine the prior information about the parameters in a prior distribution π(ϕ), and define a toler-
ance ε. A simple rejection sample can be implemented, that is, a sample ϕ∗ drawn from the prior distribution is
accepted only if error(y,ym(ϕ∗)) < ε. Algorithm 1 shows the applied ABC strategy.

4 Numerical results

Figure 1 shows the response of the deterministic dynamic model considering the parameters: β = 0.5 (trans-
mission rate), 1/α = 9 days (latent period), fE = 0.15 (asymptomatic fraction), 1/γ = 14 days (recovery period),
1/ρ = 11 (hospitalisation period), 1/δ = 33 (death period), κH = 0.25 (hospitalisation recovery-factor). The
susceptible population is N0 = 25000 and the initial conditions are D0 = 0, R0 = 0, H0 = 0, A0 = 10, I0 = 5,
E0 = 1.

The number of exposed individuals increases fast and reaches its peak on the 63rd day. The other groups also
raise and then fall back to zero. The number of infectious individuals reaches its peak on the 68th day, asymp-
tomatic, recovered and deaths on the 71th, and hospitalised on the 77th. The ordinate axis shows the normalised
individuals: the number of individuals is divide by the susceptible population N0.
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Algorithm 1 ABC for parameter estimation and UQ

1: procedure ABC(π(ϕ),ym(ϕ∗), ε)
2: for i = 1 : nABC do
3: Sample a candidate set of parameters ϕ∗ from π(ϕ);
4: Compute the model prediction ym(ϕ∗);
5: Evaluate the results using error(y,ym(ϕ∗));
6: if error(y,ym(ϕ∗)) < ε then
7: Accept ϕ∗;
8: Save ϕ∗ and ym(ϕ∗);
9: else

10: Reject ϕ∗;
11: end if
12: end for
13: end procedure
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Figure 1. SEIAHRD model dynamic response.

4.1 Sensitivity analysis

Figures 2 and 3 show the sensitivity of the healthcare and death curves with respect to each parameter of the
model. A Uniform probability density function with ±40% of a reference value is considered for each one of the
eight parameters. The 95% probabilistic envelope of for healthcare and deaths number is plotted. A wide envelope
indicates that the system response is sensitive to the particular parameter analysed.

Figure 2(a) shows that the transmission rate β is the most relevant parameter of the model, yielding the wider
envelopes, and it is followed by the latent rate α (Fig. 2(b)). Figures 2(d), 3(b) and 3(d) show that the recovery
rate γ, the death rate δ and the initial susceptible population N0 also have a considerable impact at the healthcare
and deaths curves.

The model response is less sensitive to the hospitalisation recovery-factor κH , for the configuration analysed
(Fig. 3(c)). It is interesting to observe, Fig. 2(c) and 3(a), that the symptomatic fraction fE and the hospitalisation
rate ρ have a great impact on the hospitalisation curve, but little impact on the deaths curve.

4.2 Approximate Bayesian computation (ABC)

Data from healthcare and deaths were gathered for the period of 24th January 2020 to 28th July 2021 (156
days) from the Panel COVID-19 of the Rio de Janeiro city Government Health Department, http://painel.
saude.rj.gov.br/monitoramento/covid19.html.

Figure 4 shows the results for the ABC procedure where αer = 0.5 and the tolerance was fixed to ε = 0.15,
after some numerical tests. Only 4% of the two thousand Monte Carlo observations were accepted.

Figures 4(a) and 4(b) shows the ABC results, where the 95% probabilistic envelope (black lines) is plotted
together with data from Rio de Janeiro city. These envelopes are a consequence of the uncertain parameters (pos-
terior probability distribution). The model prediction could envelope most of the available noisy data. However,
the end of the healthcare curve, Fig. 4(a), escapes the model prediction.

Table 1 shows the parameter bounds, the maximum a posterior (MAP) estimate obtained applying ABC.
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Figure 2. Probabilistic envelope (95%) of the system response for a Uniform input of the parameters β ∈ [0.3, 0.7]
(a), 1/α ∈ [5.4, 12.6] (b), fE ∈ [0.09, 0.21] (c) and 1/γ ∈ [8.4, 19.6] (d). Two thousand Monte Carlo samples.
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Figure 3. Probabilistic envelope (95%) of the system response for a Uniform input of the parameters 1/ρ ∈
[8.3, 20.0] (a), 1/δ ∈ [23.8, 55.5] (b), κH ∈ [0.15, 0.35] (c) and N0 ∈ [15000, 35000] (d). Two thousand Monte
Carlo samples.

Figure 5 shows the scatter plot of the ABC posterior (accepted) samples. The charts in the diagonal shows
the posterior marginal histograms. The original Uniform distributions are updated to distributions with different
shapes. Correlations between pairs of random variables can also be observed for the posterior distribution. The
prior distribution does not consider any correlation. The second chart of the first line (and the first chart of the
second line) shows that there is a positive correlation (0.72) between the transmission rate β and the latent period
(1/α).

Figure 6 shows the identified transmission rate function. Its value starts at 0.42 (high value) and then decreases
to 0.37. It has been reported that transmission rate can be high in the beginning of the disease spread and then
decreases. In most of the analysed models found in the literature this parameter is considered constant. Allowing
it to vary over time, permitted the model to better represent the problem and improve its fit to data.
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Figure 4. Probabilistic envelope (95%) of the system response for the identified model together with hospitalisation
and deaths data of Rio de Janeiro city; period of 24th January 2020 to 28th July 2021. Charts (a) and (b) are the
hospitalisation and deaths curves obtained with ABC.

Parameter Bounds ABC

β1 (-) [0.30,0.70] 0.50

β2 (-) [0.24,0.56] 0.44

ρβ (-) [0.06,0.14] 0.10

tβ (days) [30,70] 43

1/α (days) [4.2,9.8] 12.5

fE (-) [0.09,0.21] 0.17

1/γ (days) [9,21] 19.6

1/ρ (days) [8.3,20.0] 16.7

1/δ (days) [23.8,55.5] 28.5

κH (-) [0.15,0.35] 0.21

N0 (individuals) [15,35]×103 27.1×103

Table 1. Parameters, bounds and maximum a posterior estimate (MAP) obtained with ABC. Prior distribution
follows a Uniform distribution with bound ±40% of a reference value; only tβ considers a larger percent range.

Figure 5. Scatter plot of the posterior PDF of the parameters: β1, 1/α, fE , 1/γ, ρ, δ κH , β2, tβ , ρβ , and N0.

Figure 7 shows the cumulative normalised individuals evolution. Note that there is no fluctuations in the
data since the accumulation attenuates them. Healthcare and deaths data are compared with the model results
considering the identified parameters using ABC. The overall trend are similar, but the model cannot capture the
healthcare data tail of the healthcare data.
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Figure 6. Identified β(t).
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Figure 7. Cumulative individuals with the identified model, comparing data and ABC results.

5 Concluding remarks

In this paper, we apply the approximate Bayesian computation (ABC) to a SEIR-type model for the COVID
disease. The analysed model considers eight compartments: susceptible, exposed, infectious, asymptomatic, hos-
pitalised, recovered and deceased (SEIAHRD). Data from the city of Rio de Janeiro (healthcare and deaths) are
used in the calibration procedure. The results were consistent with the death data, but the tail of the healthcare data
could not be properly represented.

The next steps of this research are to refine the identification procedure to obtain more representative param-
eter values and analyse different scenariostr with the calibrated model.
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