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1. An increasing number of ecological monitoring programs rely on photographic capture-recapture of individuals to study distribution, demography and abundance of species. Photo-identification of individuals can sometimes be done using idiosyncratic coat or skin patterns, instead of using tags or loggers. However, when performed manually, the task of going through photographs is tedious and rapidly becomes too time consuming as the number of pictures grows.

Computer vision techniques are an appealing and unavoidable help to tackle

this apparently simple task in the big-data era. In this context, we propose to revisit animal re-identification using image similarity networks and metric learning with convolutional neural networks (CNNs), taking the giraffe as a working example.

3. We first developed an end-to-end pipeline to retrieve a comprehensive set of re-identified giraffes from about 4, 000 raw photographs. To do so, we combined CNN-based object detection, SIFT pattern matching, and image similarity networks.

We then quantified the performance of deep metric learning to retrieve the identity of known individuals, and to detect unknown individuals never seen in the previous years of monitoring. 4. After a data augmentation procedure, the re-identification performance of the CNN reached a Top-1 accuracy of about 90%, despite the very small number of images per individual in the training data set. While the complete pipeline succeeded in re-identifying known individuals, it slightly under-performed with unknown individuals. 5. Fully based on open-source software packages, our work paves the way for further attempts to build automatic pipelines for re-identification of individual animals, not only in giraffes but also in other species.

Introduction

In many respects, population and behavioural ecology have immensely benefited from individual-based, long term monitoring of animals in wild populations [START_REF] Clutton-Brock | Individuals and populations: the role of long-term, individual-based studies of animals in ecology and evolutionary biology[END_REF][START_REF] Hayes | Long-term field studies of mammals: what the short-term study cannot tell us[END_REF]. At the heart of such monitoring is the ability to recognize individuals. Individual identification is often achieved by actively marking animals, such as deploying ear-tags or leg rings, cutting fingers or feathers, or scratching scales in reptiles [START_REF] Silvy | Wildlife marking techniques[END_REF]. In some species, however, individuals display natural marks that make them uniquely identifiable. For instance, many large African mammals such as leopard (Panthera pardus), zebra (Equus sp.), kudu (Tragelaphus strepsiceros), wildebeest (Connochaetes taurinus) or giraffe (Giraffa camelopardalis), all present idiosyncratic fur and coat patterns particularly useful for non-invasive and reliable recognition of individuals. Individual identification in the wild has long been known to be feasible from comparisons of the distinctive coat patterns of individuals [START_REF] Estes | The behavior guide to african mammals: including hoofed mammals, carnivores[END_REF]. As the number of individuals to identify increases, however, people-based visual comparisons of pictures can rapidly become overwhelming. With the recent move to digital technologies (namely digital cameras and camera traps), the problem becomes even more acute as the number of pictures to process can easily reach the thousands or ten of thousands.

Over the last decade, the use of computer vision rapidly spread into biological sciences to become a standard tool in animal ecology for many repetitive tasks [START_REF] Weinstein | A computer vision for animal ecology[END_REF]. In a seminal publication, [START_REF] Bolger | A computer-assisted system for photographic mark-recapture analysis[END_REF] first presented computer-aided photo-identification, initially for giraffes but more recently applied to dolphins [START_REF] Ren Ó | A sift-based software system for the photo-identification of the risso's dolphin[END_REF]. The underlying computer technique is a feature matching algorithm, the Scale Invariant Feature Transform operator (SIFT; [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF]), where each image is associated to the k-nearest best matches. The current use of SIFT for ecologists requires human intervention to validate the proposed candidate images within a graphical interface [START_REF] Bolger | Wild id user guide: pattern extraction and matching software for computer-assisted photographic mark[END_REF]. In the same vein, other feature-based proposals were developed in the last decade to apply computer vision to different types of idiosyncrasies [START_REF] Hartog | Interactive individual identification system (i3s)[END_REF][START_REF] Moskvyak | Robust re-identification of manta rays from natural markings by learning pose invariant embeddings[END_REF]. A drawback of the method frequently arises when two images are considered similar not because of similar skin or coat patterns of animals, but because of similarities in the backgrounds (presence of distinctive tree for instance), hence leading to false positive matches. For the best results with computer vision, all images should be cropped before, so that only the relevant part of the animal appears in the images to be analyzed and compared (for instance, excluding most of the neck, head, legs and background for large herbivores). Until now, this cropping operation was most often done manually [START_REF] Halloran | Applying computer-aided photo-identification to messy datasets: a case study of t hornicroft's giraffe (g iraffa camelopardalis thornicrofti)[END_REF], despite being a highly time-consuming task when processing thousands of images.

Meanwhile, the Deep Learning (DL) revolution was underway in computer vision, showing breakthrough performance improvements [START_REF] Christin | Applications for deep learning in ecology[END_REF]. In particular, convolutional neural networks (CNNs) are now the front-line computer technique to deal with a large range of image processing questions in ecology and environmental sciences [START_REF] Lamba | Deep learning for environmental conservation[END_REF]. Many recent studies tackle the general problem of re-identification using CNNs, which has been mostly developed and extensively used for humans [START_REF] Wu | Deep learning-based methods for person re-identification: A comprehensive review[END_REF]. Technically, re-identification consists in using a CNN to classify images of different individuals, some of them being not necessarily seen before, i.e. unknown individuals. However, despite the availability of proven and efficient techniques [START_REF] Zheng | Person re-identification: Past, present and future[END_REF], and several successful attempts to apply the method to non-human species [START_REF] Barz | Towards automatic identification of elephants in the wild[END_REF][START_REF] Hansen | Towards on-farm pig face recognition using convolutional neural networks[END_REF][START_REF] Moskvyak | Robust re-identification of manta rays from natural markings by learning pose invariant embeddings[END_REF][START_REF] Bouma | Individual common dolphin identification via metric embedding learning[END_REF][START_REF] Schofield | Chimpanzee face recognition from videos in the wild using deep learning[END_REF][START_REF] He | Distinguishing individual red pandas from their faces[END_REF][START_REF] Bogucki | Applying deep learning to right whale photo identification[END_REF][START_REF] Schneider | Similarity learning networks for animal individual re-identification-beyond the capabilities of a human observer[END_REF][START_REF] Chen | A study on giant panda recognition based on images of a large proportion of captive pandas[END_REF][START_REF] Ferreira | Deep learning-based methods for individual recognition in small birds[END_REF], re-identification remains a challenging task when applied to animals in the wild where re-observations are limited in number to train the model satisfactorily sensu largo [START_REF] Schneider | Past, present and future approaches using computer vision for animal re-identification from camera trap data[END_REF].

In practice, current CNN-based approaches have to be tailored to the needs of field ecologists interested in using these tools for individual recognition. For instance, batches of new images are regularly added to the reference database following yearly fieldwork sessions because of the recruitment of newborns or of immigrants if the study population is demographically open. Therefore, we expect the re-sighting of known individuals, as well as the observation of individuals never seen before. In other words, this standard sampling design implies to solve the re-identification in a mixture of known and unknown individuals. [START_REF] Chen | A study on giant panda recognition based on images of a large proportion of captive pandas[END_REF] referred to this problem as the "open set" identification problem, and they proposed to identify images from unknown individuals and to assign them a single "unknown" label. Automatically identifying currently unknown individuals speeds up the picture sorting process, and facilitates adding them to the database of individuals whose life history is monitored.

A classical CNN classifier can re-identify already known individuals (usually with a softmax last layer) but will fail to identify new individuals because the number of predicted classes must match the number of known individuals. We therefore crucially need a CNN-based approach that can filter out individuals unknown at the time of the analysis. We propose to rely on deep metric learning (DML, see [START_REF] Hoffer | Deep metric learning using triplet network[END_REF] as an ideal candidate to solve the "open set" identification problem. DML consists in training a CNN model to embed the input data (input images) into a multidimensional Euclidean space such that data from a common class (for instance, images of a given individual) are, in terms of Euclidean distance, much closer than with the rest of the data.

Here we addressed the problem of photo-identification with an updated, open-source, and end-to-end automatic pipeline applied to the case of the iconic, endangered giraffe (Giraffa camelopardalis). In a first step, we applied state-of-the art techniques for object detection with CNNs [START_REF] Lin | Focal loss for dense object detection[END_REF] to automatically crop giraffe flanks of about 4,000 raw photographs shot in the field at Hwange National Park, Zimbabwe. Indeed, the most recent CNN approaches clearly outperformed other approaches [START_REF] Girshick | Rich feature hierarchies for accurate object detection and semantic segmentation[END_REF], including the Histogram of Oriented Gradients (HOG) approach that was recently used with giraffes too [START_REF] Buehler | An automated program to find animals and crop photographs for individual recognition[END_REF]. Second, following [START_REF] Bolger | A computer-assisted system for photographic mark-recapture analysis[END_REF], we used the SIFT operator to calculate a numeric distance between all pairs of giraffe flanks. From the n × n calculated distances, we followed the new framework of image similarity network [START_REF] Wang | Network enhancement as a general method to denoise weighted biological networks[END_REF] and applied unsupervised learning to retrieve different clusters of images coming from different individuals, hence removing any human intervention in the process of individual identification. Third, we manually validated a subset of our results to build a ground-truth data set of different individuals (n = 82). Using this data set as a training set, we developed a supervised learning strategy using CNNs and evaluated its predictive accuracy with a cross-validation procedure.

2

Material and Methods

Photograph database

We carried out this study in the northeast of Hwange National Park (HNP), Zimbabwe.

HNP park covers a 14,650 km 2 area (Chamaill é-Jammes et al., 2009). The giraffe sub-species currently present in HNP could be either G. c. angolensis or G. c. giraffa according to the IUCN [START_REF] Muller | Giraffa camelopardalis (amended version of 2016 assessment)[END_REF]. Here we used data from a regular monitoring of individuals conducted between 2014 and 2018. Each year for at least three consecutive weeks, we drove the road network daily within <60km of the HNP Main Camp station, and took photographs of every giraffe encountered. Pictures were taken with 200mm to 300mm lenses mounted on Nikon DSRL cameras (sensor resolution ranged between 16 and 40 Mpx). When taking photographs in the field the camera burst mode is often set on producing sequences of very similar photographs in the same second. For these sequences, we retained one single photograph per sequence yielding in total a set of n = 3,940 photographs.

Image cropping with CNN and transfer learning using RetinaNet

A range of CNN-based tools are now available for object detection and already used for animal detection [START_REF] Parham | An animal detection pipeline for identification[END_REF][START_REF] Schneider | Deep learning object detection methods for ecological camera trap data[END_REF][START_REF] Sadegh Norouzzadeh | A deep active learning system for species identification and counting in camera trap images[END_REF]. Among other options including YOLO [START_REF] Redmon | You only look once: Unified, real-time object detection[END_REF][START_REF] Bochkovskiy | Yolov4: Optimal speed and accuracy of object detection[END_REF] and Mask R-CNN [START_REF] He | Mask r-cnn[END_REF], RetinaNet [START_REF] Lin | Focal loss for dense object detection[END_REF]) is a CNN-based object detector able to detect a series of predefined object classes (e.g. different animal species) that returns the coordinates of a bounding box around these objects, and a confidence score as well. These two steps are performed at the same time with a single CNN, which makes RetinaNet a fast one-stage detector as opposed to two-stage detectors for which a first CNN searches for regions containing a potential object, and a second CNN classifies these regions [START_REF] Redmon | You only look once: Unified, real-time object detection[END_REF]. Moreover, RetinaNet allows for a better management of non informative objects' background [START_REF] Lin | Focal loss for dense object detection[END_REF]. Finally, it is known that the more heterogeneous the training data set is (various positions, backgrounds, scale or lighting), the most efficient a CNN is [START_REF] Beery | Recognition in terra incognita[END_REF], so we used data augmentation (flipping, rotation and color changes of photographs) to enhance our model performance.

For an efficient detection and classification of objects, a CNN has to be trained on a huge amount of images (usually > millions of images) to capture the most discriminant features associated with each class. Because of the limited number of photographs we have at hand, we relied on transfer learning [START_REF] Shin | Deep convolutional neural networks for computer-aided detection: Cnn architectures, dataset characteristics and transfer learning[END_REF].

Transfer learning is a specific method aiming at training a CNN on a small number of images that do no start CNN training "from scratch" with some random model parameters, but uses the parameters of a model previoulsy trained on a large data set and for similar tasks as the one of interest [START_REF] Willi | Identifying animal species in camera trap images using deep learning and citizen science[END_REF]. This approach works because the pre-trained model has already learnt a wide range of relevant and generic features.

We 

Identification of individuals using unsupervised learning

Using the Scale Invariant Feature Transform operator

We built on [START_REF] Bolger | A computer-assisted system for photographic mark-recapture analysis[END_REF] to achieve pattern matching between giraffe flanks with the SIFT operator [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF], currently the most commonly used computer vision approach to identify individuals [START_REF] Bellavia | Is there anything new to say about sift matching[END_REF]. The SIFT algorithm extracts characteristic features in photographs called key points that are invariant with respect to scale and orientation. Comparing two photographs, pairs of matching key points (i.e. having similar characteristics) are retrieved and ranked by the respective Euclidean distance between their feature vectors. Here, we selected the 25 closest pairs of key points. However, for better results, we had to assess the extent to which matching key points were consistent in the two giraffe flanks, i.e. if their location matched on the giraffe body. To find out relevant cases where matching key points were actual matches of coat patterns, we superimposed key points extracted from a pair of giraffe photographs with a geometrical transformation called homography. An homography is a perspective transformation between two planes, one for each image, that finds key points from the first image as close as possible from those of the second image. The homography preserves the relative positioning of key points but changes the perspective, i.e. the distance between points. Once retrieved from the 2 images, we superimposed the key points on a plane to compute the Euclidean distance between all pairs of key points in a pair of photographs, hence obtaining our SIFT-based distance. We used the implementation of SIFT and homography in the open source openCV library version 3.4 [START_REF] Bradski | The OpenCV Library[END_REF].

Image similarity network, community detection and clusters of images

Following the computation of distances between all pairs of giraffe flanks obtained with the SIFT operator approach, we searched for clusters of flank images that should come from one single individual giraffe. We first defined a network made of nodes and representing giraffe flank images, and of edges: we considered that two nodes were connected by an edge, i.e. two flanks were similar and came from the same giraffe individual if the SIFT-based distance between paired images felt below a given threshold (see below for more details). Therefore, the so-called connected components of this network should associate images from different individuals.

We estimated the distance threshold value by taking advantage of a property of complex networks called the explosive percolation [START_REF] Achlioptas | Explosive percolation in random networks[END_REF]. The explosive percolation predicts a phase transition of the network just above a threshold point. At this point, adding a small number of edges in the network, for example by slightly increasing the distance threshold [START_REF] Hayasaka | Explosive percolation in thresholded networks[END_REF], leads to the sudden appearance of a giant component encompassing the majority of nodes. In other words, at some point, a small increase of the distance threshold leads to considering that almost all images come from the same giraffe. We determined this threshold value graphically, selecting the transition point where the giant component starts to increase dramatically (Supp. An additional issue arose when different nodes were erroneously connected (example in Figure S1), i.e. when two flanks were erroneously considered similar.

Moreover, in some cases the body of two or more giraffes could overlap in one photograph. In this situation, two or more nodes might be linked by edges, when we actually should consider different giraffes. To solve this problem, we applied a network clustering algorithm called community detection, developed in network science [START_REF] Fortunato | Community detection in graphs[END_REF], to split -only when relevant -any connected component into different groups of nodes that are significantly much more connected between themselves than with the others, a so-called community. Indeed, the presence of many edges inside a group of images suggested it was consistent and taken from the same individual, whereas the absence of many edges between two groups clearly informed about their inconsistency and heterogeneity (i.e. from two different individuals). We applied the community detection with the InfoMap algorithm [START_REF] Rosvall | Maps of random walks on complex networks reveal community structure[END_REF]. The final product of the community detection algorithm was a set of clusters of images corresponding either to a connected component or to a community retrieved by InfoMap.

2.5

Re-identification of individuals, using supervised learning

Deep metric learning and triplet loss with CNN

The principle of deep metric learning is to find an optimal way to project images into an Euclidean space such that the Euclidean distance can be used for machine learning tasks. In this context, we trained a CNN model using the triplet loss [START_REF] Hermans | In defense of the triplet loss for person re-identification[END_REF] CNN-based distance) between any anchor and its positive image is minimal, while maximizing the distance between this anchor image with its negative counterpart. We used an improved algorithm called semi-hard triplet loss [START_REF] Schroff | Facenet: A unified embedding for face recognition and clustering[END_REF], that deals only with triplets where the positive and negative images are close (in other words, the "hard" cases), using the TripletSemiHardLoss function in TensorFlow Addons. After training completion, we computed the Euclidean distances between any pair of giraffe flank photographs, again using the vector composing the last layer of our CNN model.

Data augmentation, training and test data sets

We giraffes being seen under different conditions (time, season or location).The third condition is of upmost importance because errors in the data set would lead to sub-optimal performances of the machine learning approach. We therefore carefully checked, manually, that the SIFT-based clusters we used in the CNN were perfectly unambiguous. We achieved this high level of data quality by discarding all cases where two or more giraffes overlapped on the same frame, or when giraffes were indifferently oriented from the back to the front (orientation ambiguities).

We cropped all flank images to focus on the central part of the flank, keeping 80% of the original width and 60% of the height (in particular excluding the neck and its background). By doing so, we wanted to prevent our CNN model from capturing background noise. Additionaly, we homogenized contrast of images by normalizing the three colour channels using the Imagemagick package (normalize option;

https://imagemagick.org). In a final step, we resized all images to 224x224 pixels.

We ended up with five flanks per individual at least, and a median of seven ( 

Evaluation of CNN-based re-identification

To quantify the overall predictive performance of our CNN deep metric learning, we replicated the following procedure ten times. We first randomly selected 25% of the individuals of the data set and, for the purpose of the evaluation here, considered these as unknown individuals. Then, for each of them, we randomly selected two images, one in each of the sequences (see above). With this data set, we aimed to test the ability of the CNN model to detect unknown individuals. The remaining 75% individuals were considered known individuals. For these known individuals, we selected all photographs from the first sequence and used it to built a training data set for the CNN. We kept all images from the remaining sequences as the test data set for known individuals. This ensured a good independence between training and test data, mostly thanks to the one hour (at least) time lag between observations. Once the selection of individuals was completed, we performed transfer learning using the pre-trained model ResNetV2 readily available in Keras. We estimated the model parameters using the augmented training data set with 80 epochs with batches of size 42. We used the stochastic gradient descent optimizer with a rate of 0.2. Our pipeline was implemented with Keras 2.3.0.

To mimic re-identification per se, literally re-seeing known individuals, we considered that we had a "reference book" with five representative images per known individuals: these images were randomly drawn out of the training data set. We then calculated the CNN-based distance between these representative images and each image from the test data set. In essence, we expected small distances between test images and representative ones when they came from the same known individual.

Similarly, we calculated the CNN-based distance between representative images and images of the so-called unknown individuals. We also considered that two images can come from the same individual if their distance was below a given threshold. This distance threshold was a stringency condition that arbitrarily varied between 0 and 1.

We 

Results

3.1

From thousands of photographs to thousands of images of giraffe flank.

We trained the object detection method with RetinaNet [START_REF] Lin | Focal loss for dense object detection[END_REF] on a set of 400 photographs for which the cropping of the giraffe flank has been previously done manually.

Training took approximately 30 minutes on a Titan X card. When applying the automatic cropping procedure on our 3,940 photographs (see Figure 1a), we retrieved 5,019 images with associated bounding boxes, supposed to contain a single giraffe flank (see Figure 2a). The cropping failed for 186 photographs (failure rate: 4.7%), mostly due to foreground vegetation and, unusual and difficult orientation of giraffes in the photograph (see examples on Figure 1b). In a few cases, a bounding box could contain the bodies of two overlapping giraffes, one being partially in front of the other (see Figure 2a). Similarly, in some rare instances giraffes were standing very close to each other on a photograph, a situation where RetinaNet could fail in retrieving the exact boundaries of each giraffe flank (see the worst case that we experienced, from a partially blurry photograph in Figure 2b).

From thousands of images down to hundreds of identified individuals

Running the SIFT algorithm [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF] to compare all pairs of flanks took about 800 CPU hours of heterogeneous computing resources. We estimated the threshold value for the giant component (see Methods) at a distance of 340 (see Figure S2a), and obtained an image similarity network composed of 5,019 nodes and 11,249 edges, yielding 1,417 connected components among which 781 were singletons of one image.

Our network-based approach, relying on community detection, retrieved consistent clusters of flank images (different colors in Figure 3). The cluster size distribution is by definition more concentrated after network clustering (see Figure S3) with a maximal size of 35 instead of 373. Indeed, this very large connected component was clearly an artifact due to a chain of giraffe overlaps, and has been successfully split by our procedure (see Figure S4). We detected 316 clusters with more than 5 images, and 105 with more than 10 images. However, in rare cases, some images from the same individuals were found in different clusters (see Figure S4). Because these clusters arose from a single connected component, we could a posteriori check for consistencies by comparing clusters of the same component manually (such as performed for Figure S4).

From identified individuals to a deep learning approach for re-identification

To perform a fair evaluation of the CNN performance, we saved 82 human-validated, unambiguous SIFT-based clusters that contained at least two different sequences of photographs shot at least with a one hour interval (see Material and Methods). Those 82 clusters were made of 822 images of giraffe flanks from which we evaluated the performance of our re-identification pipeline based on deep metric learning. Once trained using data augmentation, the CNN returned a Top-1 accuracy (TP rate) of about 85% on average (Figure 5) for images of known individuals. However, eleven images were found to be repeatedly impossible to classify because of bad orientation of the giraffe body on the photograph, or because of the presence of conspicuous and disturbing elements at the forefront (Supp. Figure S6). Without these problematic images, we achieved a Top-1 accuracy >90%, on average. Interestingly, the associated false positive rate was close to 0 (Figure 5). In other words, when a Top-1 image existed below a given threshold (here 1. at most), this Top-1 image was almost always from the correct known individual (Supp. Figure S5 a).

With our deep metric learning approach, images were projected into an Euclidean space. We expected images from the same known individual to be close in this space, whereas images from unknown individuals should be distant from those of known individuals. This prediction was partly supported only. If, for small distance threshold values (d <= 0.1) the true negative rate was T N >95%, TN decreased markedly with the distance threshold (Figure 5). At the same time, the positive rate started from T P <70% for (d <= 0.1) but rapidly levelled off to 80% as the distance threshold increased (Figure 5). Hence, our CNN often predicted an unexpected small distance between a given image of unknown individual and another image of a known individual (Supp. Figure S5 b). Interestingly, a particular threshold value (d = 0.25; crossing point in Figure 5) where both TP and TN rates reached 80% offered the best compromise.

Discussion

We propose two complementary approaches to re-identify individual giraffes from a set of photographs taken in the field. Based on the new framework of image similarity networks, our unsupervised method goes one step further compared to previous solutions from the literature since its end product is a comprehensive list of clusters of images, one cluster per identified individuals. Our supervised method, that relies on deep metric learning, achieves a very good re-identification of giraffes from a "reference book" of known individuals despite the rather small number of photographs per individuals available to train the model. remains an open question. Nevertheless fine tuning RetinaNet for a particular task and data set is within the reach of many researchers dealing with animal photographs thanks to the associated code we provide. Further perspectives now arise with contour segmentation methods [START_REF] He | Mask r-cnn[END_REF] than can extract contours of an object such as the whole body or any part of an animal by creating a so-called segmentation mask [START_REF] Brodrick | Uncovering ecological patterns with convolutional neural networks[END_REF]. Giraffe body contouring could possibly help for the individual re-identification by removing background residual noise, but building a training set by manually contouring hundreds of animal bodies remains a huge effort.

We then recast the animal identification problem from photographs into a statistical one, namely a clustering problem in an image similarity network. In other words, given a network that we build using a distance between pairs of images, we can efficiently retrieve the image set of a given individual as a cluster in a network. We computed a distance based on pattern matching between flanks with the well known SIFT operator [START_REF] Bellavia | Is there anything new to say about sift matching[END_REF] as used by [START_REF] Bolger | A computer-assisted system for photographic mark-recapture analysis[END_REF]. The proposed network-based approach was particularly useful and efficient to deal with false positive matches. False positive matches are a recurrent issue occurring when two images have very similar background. This situation is often found when the same tree appears on two images (see nodes 3 and 4 in Figure 3), when giraffe orientation perfectly matches (see Figure S1), or when the bodies of two giraffes overlap on the same image, which is the most frequent configuration we faced (see node 2 in Figure 3). In this latter case, this image linked two sets of images corresponding to the two overlapping individuals. Our network-based approach also handles false negative cases (e.g. two images of the same animal are declared different because of differences in lighting conditions or animal orientation) since community detection is robust to possibly missing edges: indeed, a missing edge can be compensated by the other edges inside a cluster. This step is fully reproducible and applicable to other animal species, as long as a feature matching algorithm can be used, be it SIFT or any other alternative methods such as Oriented FAST and rotated BRIEF (ORB [START_REF] Rublee | Orb: An efficient alternative to sift or surf[END_REF], or deep features [START_REF] Dusmanu | D2-net: A trainable cnn for joint description and detection of local features[END_REF][START_REF] Ma | Image matching from handcrafted to deep features: A survey[END_REF]).

We tackled the problem of animal re-identification, literally detecting and identifying previously seen animals, considering that we had a "reference book" with photographs of these known individuals. This fits the needs of field researchers that want to monitor the fate of animals by regularly adding new observations in time, for instance by collecting photographs with camera traps. To do so, we evaluated the possibility to use the rapidly developing convolutional neural networks in a supervised learning framework to achieve deep metric learning. Solving this problem was particularly challenging because of the size of our data set. Previous studies on animal re-identification with CNN indeed relied on a high number of photographs per individuals [START_REF] Schneider | Similarity learning networks for animal individual re-identification-beyond the capabilities of a human observer[END_REF][START_REF] Ferreira | Deep learning-based methods for individual recognition in small birds[END_REF]. In our case, we had to train the CNN with a few images per individuals only (see [START_REF] Snell | Prototypical networks for few-shot learning[END_REF] For instance, we got all distances in a minute with the CNN and about two hours with the SIFT operator when applied on the same test data set (see Table 2).

Our approach was also designed to deal with data sets where known and unknown 20 individuals were present. Dealing with unknown individuals is extremely challenging because no image of these new individuals are available in the training data set.

Indeed, most classical CNN-based approaches solve classification problems where the number of classes, the number of individuals for us, was fixed. We showed here that it was possible to filter out unknown from known individuals, while re-identifying a large fraction of known individuals at the same time with a success of 80% (for both TP and TN). However, this trade-off came at the cost of a lower Top-1 accuracy, which we acknowledge is not fully satisfying and already experienced by other authors [START_REF] Ferreira | Deep learning-based methods for individual recognition in small birds[END_REF]. Still, in most cases, we could validate the proposed identification by examining the Top-1 for each query image (i.e. checking its closest image) for both known and unknown individuals. Despite not being fully automated, our CNN approach would require little human intervention.

To what extent the performance of our CNN-based pipeline could be improved with more data? Since it is suitable to any species, further data analysis on other species will help answer this question. However, additional strategies would help including the integration of contextual information [START_REF] Beery | Context r-cnn: Long term temporal context for per-camera object detection[END_REF][START_REF] Terry | Thinking like a naturalist: Enhancing computer vision of citizen science images by harnessing contextual data[END_REF] such as time, GPS positioning or animal social context. Using accurate segmentation of animal body [START_REF] He | Mask r-cnn[END_REF][START_REF] Brodrick | Uncovering ecological patterns with convolutional neural networks[END_REF] will undoubtedly be a solution against side effects of rectangular cropping. Moreover, this pipeline can be used in an active learning strategy where the machine learning model is assisted by human intervention on some specific cases [START_REF] Norouzzadeh | A deep active learning system for species identification and counting in camera trap images[END_REF]. Indeed, using the proposed distance threshold in the Euclidean space, one can iteratively enrich the training data set after manual checking of the most confident Top-1 candidates (below a small distance threshold, to guarantee optimal TN rate) and re-run the estimation procedure.

Finally, this inter-disciplinary work provides guidelines about best practices to collect identification images in the field, if to be used later with an automated pipeline such as the one presented here. Better results can be achieved with simple framing rules of animals with cameras. First the field operator should try to avoid as much as possible overlaying bodies of two or more individuals as this was the most acute issue in our giraffe experience. Note that several but well separated individuals in the same photograph is not a problem at all thanks to the CNN cropping performed at the preliminary stage. Another point to pay attention to is the background which, if too similar on the same images (e.g. photographs shot from the very same spot) with obvious structures (tree, pond, rocks. . . ) will likely mislead the computer vision algorithm, even on cropped images because cropping is rectangular and do not delineate the animal body. This situation often arises while photographing animals moving in line, as giraffes and many others often do. A last point is the heterogeneity of situations under which animals were observed. We did our best to improve the training data set with data augmentation, however, photographing animals in as many different conditions as possible could improve the results. This includes light conditions (dawn, dusk, noon), orientation of individual or background (open vs. more densely vegetated areas). More specific to CNN re-identification is the need to have a greater number of pictures of photographs per individuals (> 50) than what is currently available, so a particular attention should be given, in the field under optimal shooting conditions, to the opportunity to take more photographs of each observed individual. q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 4 6 5 Node 2 is an image with two giraffes that we also have in images 1 and 3 respectively, acounting for why their two respective clusters (on the left) are connected. Clusters can sometimes be connected even if the flanks belong to two different giraffes. We illustrate this case with images 3 and 4, which are considered similar because of the presence of the same tree in the background. The same issue arises for images 5 and 6. We applied this method to re-identify giraffes from coat patterns on a collection of photographs taken at Hwange National Park, Zimbabwe, between 2014 and 2018. 
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  photograph clusters identified by the SIFT algorithm. We retained only those clusters fulfilling the following conditions: (i) the cluster contains a minimum of two sequences of images shot at least 1 hour apart; (ii) the cluster can be divided into a first set of sequences large enough to perform training (we imposed at least five images), and a second set of sequences; (iii) the cluster demonstrated a perfect and verified consistency. We used the first set of sequences for CNN training, and the second as an independent test data set to assess the model performance. The first condition ensured that we have complete independence between training and test data sets, i.e.

  quantified the predictive performance of the trained CNN model on the range of distance threshold values. First, we computed Top-1 accuracy for known individuals, consisting in checking for each query image if a representative image from the same individual was the one with smallest distance (i.e. the Top-1 image) and with a distance below the threshold. In the following, Top-1 accuracy was also called true positive (TP) rate. Then, we computed the false positive rate (FP), checking cases where the Top-1 image was from a different individual. Finally, we quantified the CNN ability to sort out images from unknown individuals. Again, over the range of distance threshold values, we checked if Top-1 image of unknown individual images felt below the threshold. If not, we considered that we successfully detected an unknown individual, hence computing the true negative (TN) rate.

  As a first step, we took advantage of the most recent computer vision techniques to perform object detection and crop the giraffe flanks before comparing coat patterns of giraffes. Image cropping proves to be particularly efficient when the body of several giraffes do not overlap in photographs. However, cascade of problems arises when overlapping occurs, including erroneous cropping and difficulties to assign a bounding box to a single individual because in this case, the coat patterns of two individuals are mixed. We show that a limited number of labeled photographs is needed to train RetinaNet (a few hundreds) with a very good performance on new photographs. To what extent our RetinaNet model parameters could be efficient in other study sites with different background vegetation (in "Terra Incognita", quoting[START_REF] Beery | Recognition in terra incognita[END_REF] 

  few shot learning methods) shot in the field with contrasting environmental and light conditions. This situation corresponds to many field studies, and particularly on large mammals (possibly with the exception of primates), for which population density and animal detection rate are low, limiting the expected number of photograph per individuals. To circumvent this problem, we developed a data augmentation strategy to increase artificially the variability of observation conditions encountered in the training data set, and improved the model performance substantially.In terms of overall predictive performance, we reached about 90% Top-1 accuracy, which is comparable to the previously reported performance in animal re-identification of known individuals (see[START_REF] Schneider | Past, present and future approaches using computer vision for animal re-identification from camera trap data[END_REF], for a review) but usually achieved with a much higher number of photographs. The combination of recent deep learning algorithm and data augmentation appears very competitive and efficient, with possible application to difficult practical cases like when working on endangered or elusive species living at very low abundance such as leopard (Panthera pardus) or the Iberian lynx (Lynx pardinus). Compared to the more robust SIFT operator, we found that the performance of the CNN is affected by the orientation of giraffe body and noticeably by deviation from perfect side shot. In terms of computing requirements, training our CNN remained time-consuming because the number of images to process is increased dramatically by the data augmentation. This problem is partially counter-balanced by the more computationally efficient calculation of CNN-based distances that increases linearly with the number of photographs (computing one projection per image), compared to the SIFT-based approach for which the computing time is proportional to the square of the number of photographs (computing one matching per image pair).

Fig. 1 Fig. 2

 12 Fig. 1 Performance of RetinaNet flank detection of giraffes from a set of 3,940 photographs taken at Hwange National Park, Zimbabwe, between 2014 and 2018. In total, we could extract 5,019 images of giraffe flanks automatically. (a) Number of identified flanks per image; (b) Manual classification of cropping problems encountered in 186 images where Retinanet failed to identify a giraffe flank in the photographs.

Fig. 3

 3 Fig. 3 Example of a connected component split into four clusters using the InfoMap algorithm (see Methods) to assign images of giraffe flank to a given individual for re-identification. Each cluster, representing one individual giraffe, is delineated by an ellipse of different color.Node 2 is an image with two giraffes that we also have in images 1 and 3 respectively, acounting for why their two respective clusters (on the left) are connected. Clusters can sometimes be connected even if the flanks belong to two different giraffes. We illustrate this case with images 3 and 4, which are considered similar because of the presence of the same tree in the background. The same issue arises for images 5 and 6. We applied this method to re-identify giraffes from coat patterns on a collection of photographs taken at Hwange National Park, Zimbabwe, between 2014 and 2018.
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 45 Fig.4Training a convolutional neural network (CNN) requires a large and varied set of images (here giraffe flanks) to achieve reasonable performance when applied on new cases. In this study, we took giraffe photographs at Hwange National Park, Zimbabwe, between 2014 and 2018 but in the field, the opportunity to shoot pictures of the same giraffe in a variety of situations in terms of location or light condition is very limited. Therefore, we performed image data augmentation by randomly changing orientation and size, adding blur, performing edge detection, adding noise and modifying colors or brightness using the imgaug Python library (see Methods). Here we show an example of data augmentation, with the original image (left) and four different modified versions used to train our CNN for giraffe re-identification.

Fig. S6

 S6 Fig. S6 11 problematic images out of the test data set, decreasing Top-1 accuracy because of bad orientation (1st row) or element at the forefront (vegetation or giraffe queue; 2nd row).

  

  

  , in line with recent studies on other species[START_REF] Moskvyak | Robust re-identification of manta rays from natural markings by learning pose invariant embeddings[END_REF][START_REF] Bouma | Individual common dolphin identification via metric embedding learning[END_REF]. The triplet loss principle relies on triplets of images composed by a first image called anchor and another positive image of the same class (same giraffe here) and a third negative image of another class (any different giraffe) (seeBouma et al., 2019, for details). The training step consists in optimizing the CNN model such that the Euclidean distance computed using the last CNN layer (hereafter called

Table 1 )

 1 in the training set. This particularly low number of images available to train the CNN

led us to consider the few shot learning framework, a class of problems where only a few images are available for training. We implemented a 10-fold data augmentation procedure where we made extensive use of image augmentation using the imgaug Python library (https://github.com/aleju/imgaug). For each image in the training data set, we performed a random set of transformations such as modifying orientation and size, adding blur, performing edge detection, adding Gaussian noise and modifying colors or brightness (details in the available Python code). We finally used this set of eleven images per original image to train our CNN model, i.e. the original one and ten modified versions of this image.

Table 1

 1 Flank images were selected to ensure independence of observation, and then used for individual giraffe re-identification from coat patterns with a convolutional neural network. We tabulated the average number (and the associated range in squared brackets) of images and sequences (i.e. separated by at least one hour interval) per individual in the train, test and unknown data sets over 10 trials.

		Nb. images	Nb. indiv. Nb. images Nb. sequences
				per indiv.	per indiv.
	Train	503 [479-529]	62	7 [5-24]	2 [1-5]
	Test	121 [118-126]	62	2 [1-5]	1 [1-4]
	Unknown indiv.	40	20	2	2

Table 2

 2 Computing time needed to compare 310 representative images vs. 121 test images (CNN-training with about 5500 images) extracted from giraffe photographs shot at Hwange National Park, Zimbabwe, between 2014 and 2018. The hardware we used for these calculations was an Intel Xeon CPU E5-2650 v4 2.30GHz (CPU) and Nvidia Titan X card (GPU).
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) and the SIFT-based distance between the two images is small and below the used threshold.
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