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Abstract

The boundary slip error resulting from the interpolation/spreading non-reciprocity of the direct-forcing immersed-
boundary method is analyzed based on a simple and generic theoretical framework. In explicit implementations, the
slip error scales with the Courant number, as predicted by the analysis and confirmed by lattice-Boltzmann simulation
results. Using an analytical approximation of the non-reciprocity error, the immersed-boundary force can be corrected
in order to prevent boundary slip and flow penetration. This a priori correction leads to a major improvement of the
no-slip condition while avoiding any additional computational time or implementation effort.

1. Introduction

The immersed-boundary (IB) method is a popular approach to model fluid flows around curved, moving and/or
deformable solid walls. First introduced by Peskin [1], the method has motivated a number of developments and has
been applied to a variety of fluid flow problems [2, 3]. The key concept of the method relies on the introduction of a
space/time-dependant body force in the flow momentum equation, enforcing the no-slip condition on the wall. Differ-
ent strategies have been proposed concerning the transfer of information between the boundary and the fluid volume
or regarding the computation of the IB force, leading to the vast family of IB methods that one knows nowadays.

Among these methods, the direct-forcing approach is widely employed for configurations involving solid or flex-
ible walls [4, 5, 6, 7, 8, 9]. In the time-discretized equations, the IB force is generally determined on the immersed
boundary after the interpolation of a prediction flow velocity. The forcing is then distributed over the fluid volume
using the same interpolation kernel, an operation referred to as spreading. However, this explicit procedure can lead
to boundary slip and flow penetration, depending on the numerical and physical parameters [10]. Several strategies
have been proposed to overcome this problem, such as multi-direct-forcing methods [10] and implicit IB methods
[9, 11, 12]. While these methods are effective in correcting the slip error of the IB method, they involve additional
computational cost and/or implementation effort. In addition, a general theoretical analysis addressing the origin of
these errors is still missing.

In this brief note, we use simple theoretical arguments to quantify the IB error in terms of non-reciprocity between
the interpolation and spreading operators. Our analysis allows us to propose a generic correction of the direct-forcing
scheme that takes the form of a rescaled IB forcing. The method is implemented in a lattice-Boltzmann code and
applied to relevant test cases. The boundary slip predicted a priori is accurately reproduced in the numerical tests. A
major decrease of these errors is obtained when the corrected scheme is employed.

2. Theoretical analysis

In the two-dimensional (x, y) frame, consider the incompressible IB problem governed by the momentum equation

ρ
∂u(x, t)
∂t

= ∇ · F (x, t) + S[G](x, t), (1)
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where x is the position vector in the fluid volume Ω, u is the flow velocity, t is time, F represents the momentum
fluxes of the Navier-Stokes momentum equation, G is the IB force defined on the immersed boundary Γ and S is
the spreading operator distributing the force G over a small fluid volume around Γ. Any position on the immersed
boundary is represented by X(r, t), where r is a curvilinear coordinate. The spreading process is performed using a
regularized Dirac function δ(x), namely

S[G](x) =

∫
Γ

G(r)δ(x − X(r))∆S (r)dr, (2)

where ∆S is a characteristic width of the boundary, that is typically set to 1, in mesh units. The same kernel function
is used to define the interpolation operator,

I
[
φ
]
(r) =

∫
Ω

φ(x)δ(x − X(r))dxdy, (3)

which is used to compute a representative value of any quantity φ on the boundary.
The procedure employed to determine G is described in the time-discrete space. Time is discretized as tn = n∆t,

where ∆t is the time step. In many explicit IB implementations, the time-stepping procedure is decomposed into two
steps [9]. First, a prediction flow velocity u∗ is computed in the absence of IB forcing. Then, u∗ is interpolated on the
immersed boundary using equation (3), and the IB force is defined as

G =
ρ

∆t∗
(Ub − I[u∗]) , (4)

where Ub is the prescribed boundary velocity and ∆t∗ denotes an IB time step that depends on the employed numerical
scheme. Several strategies can be used to update the flow velocity as a function of G. Here, the IB properties are
illustrated on the basis of a simple explicit time integration, namely

un+1 = u∗ +
∆t∗

ρ
S[G]. (5)

The boundary slip resulting from the above model algorithm is determined hereafter. According to equation (5),
the interpolated velocity reads

I
[
u∗

]
= I[un+1] −

∆t∗

ρ
I [S[G]] . (6)

As detailed in Ref. [13], the re-interpolation operator in (6) can be approximated as I [S[G]] ≈ κG, where κ =∫
δ(x)2dx only depends on the employed regularized Delta function. This analytical approximation is based on the

following assumptions: (i) the curvature of Γ is small enough so that it can be locally represented by a straight
wall and (ii) the variation of G along the boundary remains small. Combining (4) and (6), the velocity slip on the
boundary can be expressed as Ub − I[un+1] = (1 − κ)G∆t∗/ρ. Therefore, the boundary slip vanishes if κ = 1, i.e.
if the interpolation and spreading operators are reciprocal; however, since κ < 1 for usual kernel functions [13], a
substantial boundary slip typically emerges. Even though its detailed expression may depend on the time integration
scheme, such interpolation/spreading error is generally expected in IB methods. In order to satisfy the hydrodynamic
similarity principle, the magnitude of the IB force must scale as ∼ ρU2

0/∆n, where U0 is the reference flow velocity
and ∆n is the typical grid spacing. Consequently, in the present model algorithm, the normalized velocity-slip error
magnitude |E| = |Ub − I[un+1]|/U0 is expected to vary as

|E| ∼ U0∆t∗/∆n, (7)

i.e. the non-dimensional velocity slip scales with the Courant number C = U0∆t∗/∆n.
In order to enforce the no-slip condition on the boundary, the magnitude of the IB force can be corrected by

introducing a non-dimensional scaling coefficient γ, namely G∗ = γG. Using expressions (4)-(6), the correction
coefficient can be expressed as

γ =
∆t∗G∗2

ρ
(
Ub − I[un+1]

)
· G∗ + κ∆t∗G∗2

, (8)
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Figure 1: Evolution of the (a) slip and (b) penetration errors on a straight immersed boundary, for the standard (4) and corrected (9) IB forces, G
and G∗. The dashed line indicates the trend (D/∆n)−1.

where G∗2 = |G∗|2. If the no-slip condition I[un+1] = Ub is satisfied, the correction coefficient reduces to 1/κ.
Therefore, the corrected IB force should be expressed as

G∗ =
ρ

κ∆t∗
(Ub − I[u∗]) . (9)

The corrected direct-forcing algorithm is then obtained by substituting G by G∗ in Eq. (5). Note that, even if a
model temporal algorithm has been used in the present analysis, the expression of G∗ is not related to any specific
temporal scheme, as it generally ensures I[S(G∗)] ≈ G, correcting the boundary slip error emerging from interpola-
tion/spreading non-reciprocity. Expression (9) can be thought as an explicit analytical approximation of the implicit IB
corrections [9, 12] that otherwise require the resolution of a linear system to enforce the interpolation/spreading reci-
procity condition. As shown in the following, this a priori correction allows to drastically decrease the numerically-
observed boundary slip error.

3. Numerical results

The corrected IB scheme (9) is implemented in a two-relaxation-time lattice-Boltzmann code coupled to a direct-
forcing IB method. It is recalled that the analysis proposed in §2 is generic, since the choice of the fluid-flow solver
mainly impacts the computation of the prediction velocity u∗, while the direct-forcing immersed-boundary algorithm
remains mostly similar from one method to the other. Here, the lattice-Boltzmann method is thus employed only as
an example of numerical method for the resolution of the Navier-Stokes equations. Details on the present algorithm
are provided in Refs. [13, 14]. Note that the present implementation is equivalent to the time-stepping procedure
described by Eqs. (4)-(5), with ∆t∗ = ∆t/2. The employed Dirac function corresponds to κ = 1/2; values of κ
for various usual functions are provided in Ref. [13]. It is worth mentioning that the modification of the IB force
magnitude in equation (9) may alter the stability of the computations, depending on the physical configuration and
numerical parameters. This effect is expected due to the increased stiffness of the corrected method: since κ < 1 in
Eq. (9), the IB force magnitude generally tends to be locally higher when using the corrected scheme. The resulting
numerical stability might be flow-solver dependent. In the present simulations, this effect was mostly observed during
the first time steps after uniform-flow initializations, where significant oscillations of the IB force were observed. In
order to stabilize and accelerate the flow transition from initial conditions, these oscillations have been damped by
relaxing the IB force during the first time steps as Gn+1 = βG∗ + (1 − β)Gn, with β a relaxation parameter set to 0.6.

A simple test case is proposed to illustrate the theoretical analysis developed in §2. In a periodic computational
domain, a straight immersed boundary extends from the bottom left corner to the top right corner of the domain,
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Figure 2: (a,b) Velocity error on a cylinder immersed in a flow: (a) evolution of the streamwise velocity error as a function of Re and D/∆n and
(b) flow streamlines below/above the symmetry plane at Re = 40 and D = 40∆n, for the standard (4) and corrected (9) IB forces, G and G∗. (c,d)
Velocity error on a rotating cylinder, for α = 3 and D/∆n = 40: (c) evolution of the streamwise velocity error as a function of Re and (d) streamlines
near the cylinder obtained using the corrected IB force G∗ (9) at Re = 40.

reproducing a channel flow configuration. The flow is driven by a body force g, whose direction can be either parallel
(leading to Poiseuille flow) or normal (leading to hydrostatic equilibrium) to the wall, i.e. g = |g|t or g = |g|n, where
(t, n) is the frame aligned with the channel direction. The angle between t and x, denoted by θ, is set to θ ≈ 25◦ in
this example (i.e. avoiding singular cases as θ = 0◦ or θ = 45◦). The reference velocity is set to U0 =

√
|g|D, where

D is the channel width, and the Reynolds number is Re = U0D/ν ≈ 2, with ν the kinematic viscosity.
The evolution of the average slip error Es =< E · t >, where <> denotes the averaging over the IB markers and

E, defined in §2, is determined numerically by interpolating the corrected fluid velocity on the immersed boundary,
is analyzed in the case g = |g|t and depicted in figure 1(a). The mesh-unit channel width is varied while keeping
the Reynolds number constant, by varying either the mesh-unit velocity (i.e. Courant number) U0∆t/∆n ∼ (D/∆n)−1

or the mesh-unit fluid viscosity ν∆t/∆n2 ∼ D/∆n. As predicted by equation (7), a first-order mesh convergence is
obtained when the Courant number C is varied together with D/∆n; in contrast, the velocity error remains unchanged
when C is kept constant. For a given grid spacing, the slip error is decreased by two orders of magnitude when the
corrected IB scheme is used. The penetration error Ep =< E · n > exhibits the same evolution when g = |g|n (figure
1(b)), supporting that the boundary error varies as a function of G (whose magnitude is prescribed by the external
body force here) and does not depend on the flow details.

The present method is then applied to a circular cylinder of diameter D immersed in an oncoming flow with
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velocity U0x, as a typical configuration involving curved geometries, stagnation points, shear flows and possibly
detached and unsteady flows, depending on the Reynolds number. Velocity and pressure Dirichlet conditions are set
at the inlet and outlet of the domain, located at a distance of 20D upstream and 40D downstream of the body. Periodic
conditions are set at the two other boundaries, placed 20 diameters away from the cylinder. The flow velocity is fixed
to U0 = 0.05∆n/∆t to ensure optimal numerical accuracy and efficiency, i.e. the Courant number is kept constant. The
previously-observed IB properties are confirmed in the present configuration: on the considered range of Reynolds
numbers, the streamwise velocity error Ex =< E · x > is hardly affected by the grid spacing and it is decreased
by two orders of magnitude by the corrected direct-forcing method, as depicted in figure 2(a) and illustrated by the
streamlines in figure 2(b). When the corrected method is used, the boundary error tends to decrease as a function of
D/∆n, as expected since the estimation of κ is based on a plane-boundary approximation. It is shown however that
these variations are small compared to the difference of accuracy between the standard and corrected IB forces. The
fluid forces are also accurately predicted by the corrected method. At Re = 100 and D/∆n = 40, the non-dimensional
vortex-shedding frequency, time-averaged drag coefficient and peak lift coefficient are equal to 0.164, 1.37 and 0.34,
in agreement with the values 0.164, 1.32 and 0.32 issued from the high-resolution simulations performed by Bourguet
and Lo Jacono [15].

Finally, the rotating cylinder is considered as a typical test case involving non-zero boundary velocities. The
rotation rate α = ωD/2U0, with ω the angular velocity of the cylinder, is fixed to 3, the inflow velocity is set to
U0 = 0.05/α, and the cylinder diameter is D/∆n = 40. Figure 2(c) shows the evolution of the streamwise velocity
error as a function of the Reynolds number. The substantial improvement provided by the corrected scheme is also
clearly noted in this case, as the velocity error is globally decreased by two orders of magnitude by the corrected
method. The flow streamlines, plotted in figure 2(d) for the corrected-IB simulation at Re = 40, are well-aligned with
the cylinder surface and in good agreement with previously reported flow patterns [16].

4. Summary

Using a general theoretical framework, we have emphasized the existence of a boundary slip error intrinsic to the
direct-forcing IB method and emerging from the non-reciprocity of the interpolation and spreading operators. When
a simple explicit time integration is employed, the resulting slip error scales with the Courant number, as predicted
by the theory and accurately confirmed by lattice-Boltzmann simulation results. This error, whose exact magnitude
may depend on the implemented numerical schemes, can however be corrected through a simple and generic a priori
correction of the IB force, without any additional computational time or implementation effort.
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