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A B S T R A C T

In this study the authors propose to take into account the nonlinear effects induced by the presence of a
transverse crack to carry out vibratory monitoring and detect transverse cracks in rotating systems subject to
model uncertainties. More precisely, we focus more particularly on the global complexity of the nonlinear
dynamic behaviour of cracked rotors and the evolution of their harmonic components as a function of
the parameters of a transverse breathing crack (its position and depth) when numerous uncertainties are
considered. These random uncertainties correspond to random geometric imperfections (two disc thicknesses),
random material properties (Young modulus and material density) and boundary conditions uncertainty (two
bearing stiffnesses). The objective of the present work is to identify robust indicators capable of determining
the presence of a crack and its status even though numerous uncertainties are present.

To conduct such a study, an advanced surrogate modelling technique based on kriging and Polynomial
Chaos Expansion (PCE) is proposed for the prediction of both the critical speeds and the harmonic components
𝑛× during passage through sub-critical resonances. An extensive study to ensure the validation of the surrogate
models and a relevant choice of both the parametric and random Design of Experiments (i.e. kriging DoE and
PCE DoE) is proposed. The proposed methodology is applied on a flexible rotor with a transverse breathing
crack and subjected to random geometric imperfections and fluctuations in material properties of the rotor
system.
1. Introduction

Numerous works on the dynamic behaviour of cracked rotors have
been performed in the past and a number of reviews for crack detection
from changes in the measurement of linear and nonlinear vibrations
have been published on this topic. The interested reader can refer to
the following state-of-the-art papers (Wauer, 1990; Dimarogonas, 1996;
Sinou, 2009b; Kumar and Rastogi, 2009; Bachschmid et al., 2010; Fan
and Qiao, 2011; Bovsunovsky and Surace, 2015) for more details and
comprehensive overviews on this subject.

Some approaches emphasise methodologies based on linear mea-
surements and coupling vibration measurements of a rotating cracked
shaft. The use of coupled vibrations is based on the fact that when
a crack is present in a structure, the response to an excitation is
not only observed in the direction of the excitation but also in other
directions. For example various studies have shown the effectiveness of
such a technique based on the coupling phenomena of longitudinal and
bending vibrations (Papadopoulos and Dimarogonas, 1987a; Collins
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et al., 1991) or bending and torsional vibrations (Papadopoulos and
Dimarogonas, 1987b; Ostachowicz and Krawczuk, 1992). Studies have
also shown that using coupling of longitudinal, torsional, and bending
vibrations as an identification tool for cracked rotors is effective even
for small cracks (Papadopoulos and Dimarogonas, 1992; Giannopoulos
et al., 2015). However, it is necessary to make sure that the detected
vibration coupling is not due to other undesirable phenomena such as
external excitation on the rotor for example.

In addition, many developments based on the appearance and track-
ing of the nonlinear behaviour of cracked rotors have been proposed to
allow a more efficient and robust detection or identification of cracks in
complex rotor systems. The first contributions were proposed by Gasch
(1976, 1993), Henry and Okah (1976) and Mayes and Davies (1976).
They demonstrated that the appearances of new resonance peaks when
the rotational speeds of the rotor reach 1
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key indicators for the detection of crack in rotating systems. Subse-
quently, many studies have proposed to detect damage by considering
not only the nonlinear response and appearances of new sub-critical
resonances, but also the evolution of each harmonic component for 𝑛×
orders (Schmied and Kramer, 1984; Liao and Gasch, 1992; Darpe et al.,
2004b; Sinou and Lees, 2005; Sinou, 2008a; Al-Shudeifat et al., 2010;
Jun, 2012). Some experimental and numerical studies have also shown
that one of the direct consequences of the evolution of the nonlinear
response during passage through sub-critical resonances leads to the
appearances of the loops phenomena for rotating structures (Henry
and Okah, 1976; Schmied and Kramer, 1984; Adewusi and Al-Bedoor,
2002; Sinou and Lees, 2007; Sinou, 2009a; Al-Shudeifat et al., 2010;
Al-Shudeifat and Butcher, 2011; Guo et al., 2017). These phenomena
result in a change of the rotor orbit shape from a single loop to a
double loop (triple loop, respectively) when the rotational speed passes
through half (one third, respectively) of a critical speed. The double and
triple loops are related to the presence of the second and third harmonic
components due to damage (Schmied and Kramer, 1984; Sinou and
Lees, 2007). Moreover the distortion of the orbit as well as the sizes
of the inside and outside loops are drastically affected by the crack
depth (Sinou, 2009a). Other research has focused on the appearances
of multi-harmonics frequencies by adding periodic or impulse external
excitation to detect crack in rotors (Iwasubo et al., 1992; Darpe et al.,
2002, 2004a; Ishida and Inoue, 2006; Darpe, 2007; Sawicki et al.,
2011; Guo et al., 2017). On the other hand, some authors investigated
the evolution of the transient vibrational response of a cracked rotor
according to the increasing or decreasing of the rotor speed and the
use of transient signals and wavelet transform to detect the presence
of damage (Sekhar and Prabhu, 1998; Adewusi and Al-Bedoor, 2001;
Sekhar, 2003a,b; Zou and Chen, 2004; Sinou, 2008b; Lin and Chu,
2009). These researches show in a very convincing way that the evo-
lution of the transient response when the rotor is passing through
one-half of critical speeds can be a very efficient indicator for crack
detection. This change in the vibrational responses is directly related
to the evolution of the second harmonic component as a function of
the rotor speed.

So nowadays, a precise monitoring of the nonlinear dynamic be-
haviour of a rotor and the use of the appearances of the nonlinear
harmonic components are considered as one of the most efficient and
robust indicator for crack detection in rotating machinery. However,
in practice, vibration monitoring in rotating systems is done classi-
cally on a rotor for which certain physical parameters are not known
beforehand. As a result, the detection of the presence of cracks and
their propagation can be more difficult due to a lack of knowledge of
the healthy rotor system and the associated dynamic behaviour. The
present study therefore proposes to answer this point and to examine
the potential of some indicators based on the evolution of the linear
and nonlinear vibration signatures to detect a crack in a rotor. Indeed
very little research has been performed to analyse the efficiency of the
approaches based on a tracking process of the nonlinear behaviour of
cracked rotors to detect cracks in the presence of uncertainties or lack
of knowledge of the physical parameters of the system in question.
The only recent studies on the subject are limited to examining and
discussing the impact of uncertainties on the nonlinear dynamics of
the rotor with a breathing crack for given sizes and positions (Sinou
and Faverjon, 2012; Fu et al., 2018, 2019; Yongfeng et al., 2019;
Fu et al., 2020). The possibility of conducting a complete study to
investigate the evolution of the nonlinear dynamics of a cracked rotor
as a function not only of the size and position of a crack but also in
the presence of uncertainties is indeed too complex to realise with
classical techniques such as Monte Carlo Simulation (MCS) because
of the prohibitive computational time associated with such study.
Faced with these observations, one of the original contributions of
the present study is to illustrate the capacity of a previously devel-
oped approach based on meta-modelling techniques to address the
2

possibility of investigating in details the effects of crack parameters
(position and size) on the nonlinear dynamics of a cracked rotor in
the presence of modelling uncertainties. One of the novelties of the
proposed research work is to propose the combination of a nonlinear
method, namely the Harmonic Balance Method (HBM), with an original
advanced kriging-PCE surrogate modelling technique for predicting the
nonlinear responses of a cracked rotor. One of the aims of this study is
also to illustrate a comprehensive engineering approach to demonstrate
the effectiveness of the proposed surrogate modelling technique by
providing a full convergence study for the kriging and PCE Design of
Experiments (DoE) and a final validation of the full hybrid meta-model.
In addition, scientific contributions in the field of crack detection in
rotors are proposed : one of the major issues is not only to highlight the
impact of uncertainties on the evolution of critical speeds and harmonic
components but also to define which indicators, based on the linear
or nonlinear vibration signature, are the most robust for the detection
of a defect on a rotor system with uncertainties. To be noted that
some studies have already highlighted the use of a kriging surrogate
model in a context of crack parameters identification for operating
rotors (Wang et al., 2018; Lu et al., 2019) or crack identification of
beams and cantilever plates (Gao et al., 2012, 2013). However, in
the present study, additional uncertain parameters related to uncertain
physical parameters are present and must be considered for different
crack parameters. If the latter are parametric, the former are usually
modelled with random parameters and a Probability Density Function
(PDF). Thus, the authors propose to employ a strategy based on the
combination of kriging surrogate model and the Polynomial Chaos
Expansion (PCE) (Denimal et al., 2018; Denimal and Sinou, 2021b),
which allows to model both random and parametric uncertainties in
a single surrogate model and has already proved to give satisfactory
results for the study of uncertain rotors (Denimal and Sinou, 2021b).
To the authors’ knowledge, no study has been proposed concerning the
use of both kriging surrogate models and PCE (in combination with
HBM) to determine the evolution of uncertainties in the dynamical
rotor system for various crack parameters and when there is proba-
bilistic uncertainties in the rotor physical parameters. The use of such
surrogate model speeds up the simulations and numerous uncertain
parameters can be considered and the impact of the uncertainties on
the indicators for crack detection can finally be assessed.

The paper is organised as follows: firstly, a brief description of the
cracked rotor as well as the resolution of the associated equation of
motion and a brief reminder of the main nonlinear dynamic charac-
teristics of a rotor with a breathing crack are proposed. Secondly, the
uncertainty propagation methodology based on a hybrid formulation
combining kriging and PCE is discussed. Special attention is paid to
the validation of the surrogate models and the associated convergence
study of both the kriging and PCE DoEs. Finally, simulations are
presented and the possibility of crack detection in the presence of
uncertainties is discussed in detail.

2. Model of the cracked rotor

The layout of the two-bearing flexible cracked rotor is shown in
Fig. 1. The system consists of a steel shaft of 0.5 m long and 0.01 m
diameter with two rigid circular discs. The first disc is located at the
middle of the shaft while the second disc is located at a quarter of
the left side. The rotor is excited by an out-of-balance force on each
disc of amplitude 𝑚𝑢𝑒𝑢. The bearings are elastically supported in both
horizontal and vertical directions at the ends of the shaft (bearing 1 is
at the left end, and bearing 2 at the right end of the shaft). The stiffness
may be different in the vertical and horizontal directions and are given
by 𝑘𝑥,𝑖 and 𝑘𝑦,𝑖 for the 𝑖th bearing. Values of the material properties and

dimensions of the rotor are given in Table 1.
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Fig. 1. Model of the cracked rotor.
2.1. Equation of motion of the uncracked rotor

The uncracked shaft is modelled by 20 beam elements with four
degrees of freedom (dof) per node (i.e. the horizontal and vertical
displacements and the two associated rotations). The axial and torsional
dof are not considered here. After assembling the shaft elements, the
two rigid discs and the bearing supports, the equations of the uncracked
rotor system dynamics write:

𝐌𝐱̈ + (𝐂 + 𝜔𝐆) 𝐱̇ +𝐊𝐱 = 𝐟 + 𝐪 (1)

where the matrices 𝐌 and 𝐆 combine the mass and gyroscopic contri-
butions of the shaft and the two rigid discs, respectively, such as:

𝐌 = 𝐌𝐬 +𝐌𝐝𝟏 +𝐌𝐝𝟐 (2)

𝐆 = 𝐆𝐬 +𝐆𝐝𝟏 +𝐆𝐝𝟐 (3)

where the subscripts 𝐬, 𝐝𝟏, 𝐝𝟐, refer to the contributions of the rotor
shaft and the first and second discs, respectively. Of course, the matrices
𝐌𝐝𝟏, 𝐌𝐝𝟐, 𝐆𝐝𝟏 and 𝐆𝐝𝟐 are non-null only at the dof associated with the
first and second discs, respectively. The matrix 𝐊 includes the stiffness
matrices of the shaft and the supports, together with the circulatory
matrix which accounts for the internal damping of the shaft, such as:

𝐊 = 𝐊𝐬 +𝐊𝐛𝟏 +𝐊𝐛𝟐 (4)

where the subscripts 𝐬, 𝐛𝟏 and 𝐛𝟐 refer to the contributions of the
rotor shaft and the first and second bearing supports, respectively. Here
again the matrices 𝐊𝐛𝟏 and 𝐊𝐛𝟐 are non-null only at the dof associated
with the first and second bearing supports, respectively. The vector 𝐪
contains the gravitational forces. The unbalance forces are located at
the position of the two rigid discs and are denoted by the vector 𝐟 .
To be noted that we apply a classical Rayleigh damping for the shaft.
This viscous damping model expresses the damping matrix 𝐂 as a linear
combination of the mass 𝐌𝐬 and stiffness 𝐊𝐬 matrices for the rotor shaft
(i.e. 𝐂 = 𝛼𝐌𝐬 + 𝛽𝐊𝐬 where 𝛼 and 𝛽 are constants of proportionality).
The two reference vibration modes selected for the calculation of the
two proportional damping coefficients are the first and fourth modes of
the rotor system (i.e. the first backward mode and the second forward
mode) with a damping ratio of 0.5%.
3

Table 1
Parametric values of the rotor system.

Notation Description Value

𝑅 Radius of the shaft 0.005 m
𝐿 Length of the shaft 0.5 m
𝜌 Density 7800 kg/m3

𝐸 Young’s modulus of elasticity 2 × 1011 N/m2

𝜈 Poisson ratio 0.3
𝛼 First Rayleigh damping coefficient 0.52
𝛽 Second Rayleigh damping coefficient 1 × 10−6

𝑅1 Outer radius of disc 1 0.025 m
𝑅2 Outer radius of disc 2 0.01 m
𝑡1 Thickness of disc 1 0.015 m
𝑡2 Thickness of disc 2 0.015 m
𝜌1 Density of disc 1 7800 kg/m3

𝜌2 Density of disc 2 7800 kg/m3

𝑚𝑢 Mass unbalance 0.001 kg
𝑒𝑢 Eccentricity of the mass unbalance 0.01 m
𝑘𝑥,1 Stiffness of the left support (vertical direction) 5 × 105 N/m
𝑘𝑦,1 Stiffness of the left support (horizontal direction) 7.5 × 105 N/m
𝑘𝑥,2 Stiffness of the right support (vertical direction) 5 × 105 N/m
𝑘𝑦,2 Stiffness of the right support (horizontal direction) 5 × 105 N/m

2.2. Modelling of the cracked element and the breathing mechanism

The modelling of the transverse crack is based on the variation of
the stiffness properties of the crack cross section, as proposed by Davies
and Mayes (1984) and Mayes and Davies (1984). This model considers
that a transverse crack introduces local flexibility due to strain energy
concentration in the vicinity of the tip of the crack under load. The
reduction of the second moment of area 𝛥𝐼 of the element that contains
the transverse crack can be defined by

𝛥𝐼 = 𝐼0

⎛

⎜

⎜

⎜

⎝

𝑅
𝑙
(

1 − 𝜈2
)

𝐹 (𝜇)

1 + 𝑅
𝑙
(

1 − 𝜈2
)

𝐹 (𝜇)

⎞

⎟

⎟

⎟

⎠

(5)

where 𝐼0, 𝑅, 𝑙, and 𝜈 are the second moments of area, beam radius,
length of the section and Poisson’s ratio, respectively. 𝜇 corresponds to
the non-dimensional crack depth defined by 𝜇 = ℎ

𝑅 where ℎ is the crack
depth of the beam, as illustrated in Fig. 1. 𝐹 (𝜇) defines the nonlinear
compliance as a function of variations in non-dimensional crack depth
𝜇. Davies and Mayes (1984), Mayes and Davies (1984) proposed to ob-
tain the evolution of 𝐹 (𝜇) through a series of experiments with chordal
cracks. The local flexibility due to the presence of one crack leads to
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an additional contribution stiffness denoted by 𝐊𝑐𝑟𝑎𝑐𝑘 at the crack’s
location. For the interested reader, the whole process to obtain the
complete expressions of the stiffness matrix 𝐊𝑐𝑟𝑎𝑐𝑘 are given in Sinou
and Lees (2005).

Assuming that the breathing mechanism of a crack in rotor is
mainly due to the shaft weight, two well-known models of cracks are
classically used, namely the switching and breathing crack models. The
switching model (also known as hinge model) considers that, based on
the consideration of the static deflection of the rotor, the stiffness of
the rotor switches directly from the fully closed crack (i.e. uncracked
shaft) to the fully open crack during one periodic rotation of the shaft.
One more realistic crack breathing model is defined by the fact that
the stiffness variations are synchronous with the rotational angles of
the rotor. In other words the breathing crack model closely imitates the
breathing behaviour of a real crack. By assuming that the gravity force
is much greater than the imbalance force, we use in this paper one of
the classical form describing the breathing crack (Gasch, 1976) (i.e. the
periodic opening and closing of the crack when a cracked rotor rotates).
In the present work, the breathing crack function is approximated by a
cosine function 𝑔(𝑡) (Mayes and Davies, 1984; Sinou and Lees, 2005)

𝑔 (𝑡) = 1 − 𝑐𝑜𝑠𝜔𝑡
2

(6)

here 𝜔 defines the rotational speed of the rotor. For 𝑔(𝑡) = 1, the crack
s fully open and for 𝑔(𝑡) = 0, the crack is totally closed and the cracked
otor stiffness is equal to the uncracked rotor stiffness (i.e. no effect
ue to the crack on the dynamic behaviour of the rotor system). Of
ourse, more precise models of the breathing mechanism exist and their
mpacts on linear and nonlinear vibrations of cracked rotors have been
roposed by researchers (Bachschmid et al., 2000, 2008; Al-Shudeifat
t al., 2010; Al-Shudeifat and Butcher, 2011; Spagnol et al., 2020;
anguly and Roy, 2021). In this study we assume that the well-known
reathing model defined in Eq. (6) is sufficient to approximate the
onlinear phenomena of a cracked rotor as a function of the crack size
nd position. Furthermore, the proposed advanced surrogate modelling
echnique can be adapted to other crack breathing models without
ifficulties or loss of generality in the proposed future conclusions on
he impact of uncertainties on the crack detection indicators.

.3. General equation of motion of the cracked rotor and its resolution

The equations of the rotor system with a breathing crack writes

𝐱̈ + (𝐂 + 𝜔𝐆) 𝐱̇ +
(

𝐊 − 𝑔 (𝑡)𝐊𝑐
)

𝐱 = 𝐟 + 𝐪 (7)

where the global stiffness matrix 𝐊𝑐 due to the presence of the crack
situated at the 𝑖th beam location is given by

𝑑𝑖𝑎𝑔
(

𝐊𝑐
)

= (𝐎 ⋯ 𝐎 𝐊𝑐𝑟𝑎𝑐𝑘 𝐎 ⋯ 𝐎)
↑

𝑖th 𝑒𝑙𝑒𝑚𝑒𝑛𝑡
(8)

where 𝐎 defines the 8 × 8 null matrix.
Eq. (7) has time-dependent coefficients (i.e. parametric terms) due

to the breathing behaviour of the crack when the system rotates. A
very classical way to determine the periodic solutions of the cracked
rotor system is to assume that the dynamical responses can be approx-
imated by a truncated Fourier series of order 𝑚 with a fundamental
frequency (Sinou and Faverjon, 2012)

𝐱 (𝑡) = 𝐀0 +
𝑚
∑

𝑘=1

(

𝐀𝑘 cos (𝑘𝜔𝑡) + 𝐁𝑘 sin (𝑘𝜔𝑡)
)

(9)

where 𝐀0, 𝐀𝑘 and 𝐁𝑘 (with 𝑘 = 1,… , 𝑚) define the unknown coef-
ficients of the finite Fourier series. 𝜔 is the rotational speed of the
rotor system. The number of harmonic coefficients 𝑚 is selected on the
basis of the number of significant harmonics expected in the dynamical
response. In general, three or four harmonic components are sufficient
to describe the dynamics of the cracked rotor (Sinou and Faverjon,
4

2012). p
Then, the calculation of periodic solutions of Eq. (7) can be de-
termined by solving the problem in the frequency domain instead of
the time domain. The Harmonic Balance Method (HBM) is one of
the most popular frequency domain method for computing periodic
solutions of ordinary differential equations. The rewriting of Eq. (7) in
the frequency domain gives a set of (2𝑚+1)×𝑛 linear equations (where
𝑛 is the dof number of the rotor system)
(

Λ −Λ𝑐
)

Θ = Γ (10)

with Θ the unknown coefficients of the finite Fourier series for the
periodic solution such as

Θ =
[

𝐀0 𝐀1 𝐁1 ⋯ 𝐀𝑘 𝐁𝑘 ⋯ 𝐀𝑚 𝐁𝑚
]𝑇 (11)

To be noted that the unknown Fourier coefficients Θ can be found
directly by solving Eq. (10) due to the fact that the initial system in the
time domain corresponds to a system with time-dependent coefficients
(see Eq. (7)). Γ defines the contribution of the gravitational and unbal-
ance forces. The vector Γ is given by Γ =

[

𝐂𝑓
0 𝐂𝑞

1 𝐒𝑞1 𝟎 ⋯ 𝟎
]𝑇

due to the fact that the gravitational and unbalance forces can be
defined by finite Fourier series with constant components (i.e. 𝐟 = 𝐂𝑓

0 )
and first-order periodic components (i.e. 𝐪 = 𝐂𝑞

1 cos (𝜔𝑡) + 𝐒𝑞1 sin (𝜔𝑡)) in
the frequency domain, respectively. Λ corresponds to the contributions
of the mass, damping and stiffness matrices of the uncracked rotor
system such as

Λ = 𝑑𝑖𝑎𝑔
(

𝐊 Λ1 ⋯ Λ𝑘 ⋯ Λ𝑚
)

with

Λ𝑘 =
[

𝐊 − 𝑘2𝜔2𝐌 𝑘𝜔𝐃
−𝑘𝜔𝐃 𝐊 − 𝑘2𝜔2𝐌

] (12)

where 𝐃 is the global damping matrix including both the damping
matrix 𝐂 and the gyroscopic matrix 𝐆. The matrix Λ𝑐 defines the
contribution of the parametric terms 𝑔 (𝑡)𝐊𝑐 due to the presence of the
breathing crack. Λ𝑐 can be written in the previously predefined base
given in Eq. (11) in the form:

Λ𝑐 =
1
4

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2𝐊𝑐 −𝐊𝑐

−2𝐊𝑐 2𝐊𝑐 𝟎 −𝐊𝑐 𝟎
𝟎 𝟎 2𝐊𝑐 𝟎 −𝐊𝑐

⋱
−𝐊𝑐 𝟎 2𝐊𝑐 𝟎 −𝐊𝑐 𝟎
𝟎 −𝐊𝑐 𝟎 2𝐊𝑐 −𝟎 −𝐊𝑐

⋱
−𝐊𝑐 𝟎 2𝐊𝑐 𝟎
𝟎 −𝐊𝑐 𝟎 2𝐊𝑐

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(13)

onsidering this last expression, it can be noted that the crack leads
o direct interactions between the static deflection (i.e. 𝐀0) and some
ontribution of the first order (i.e. 𝐀1) and the second order (i.e. 𝐀2)
ue to the presence of the gravitational forces.

.4. Preamble — deterministic case

Before studying the problem of crack detection by investigating the
ffects of the two parameters of the crack (i.e. the crack depth 𝜇 and the
rack location 𝐿𝑐𝑟𝑎𝑐𝑘) and uncertainties in the rotor system parameters,
brief summary is given of the main nonlinear dynamic characteristics
f a rotor with breathing crack.

Fig. 2 shows the vertical nonlinear response for the cracked rotor
ystem according to the rotation speed of the cracked rotor, with a
reathing crack of depth 𝜇 = 1 and positioned at 𝐿𝑐𝑟𝑎𝑐𝑘=0.3 m. Firstly,
t is observed that the response is composed by not only the first
armonic component but also by the components of higher orders (in
he present case only the first four orders are shown in Fig. 2). The
nteraction between a rotating and breathing crack, gravity and the
resence of unbalances leads to the occurrence of super harmonics of
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Fig. 2. Nonlinear vertical amplitudes at 0.1 m from the left side of the rotor system with a breathing crack (𝜇 = 1 and 𝐿𝑐𝑟𝑎𝑐𝑘 = 0.3 m from the left side) (black = order 1, red =
rder 2, magenta = order 3, blue = order 4).
Table 2
Critical speeds of the uncracked rotor system and the rotor with a breathing crack (𝜇 = 1, 𝐿𝑐𝑟𝑎𝑐𝑘=0.3 m).
Case 𝑓1 (Hz) 𝑓2 (Hz) 𝑓3 (Hz) 𝑓4 (Hz)

(1st backward mode) (1st forward mode) (2nd backward mode) (2nd forward mode)

Uncracked rotor 49.0 49.2 252.3 266.1
Cracked rotor 48.1 49.0 250.4 265.3
s

order 𝑗× (with 𝑗 = 2,… , 4) leading to amplitude peaks during rotation
speeds equal to approximately 1

𝑗−𝑛 (with 𝑛 = 0,… , 𝑗 − 1) of the critical
speeds of the cracked rotor. For example we can clearly observe two
peaks corresponding to passages of sub-critical resonance peaks 1

2 and 1
3

for the first bending mode in the vertical direction (see the marks 3 and
2 in Fig. 2, respectively). Likewise, other peaks can also be seen (see
the marks 5, 6 and 7), corresponding to sub-critical resonance peaks
1
2 and 1

3 for the second backward and forward bending modes. The
resence of peaks at 1

4 of the critical speeds are also visible even if the
ssociated amplitudes remain low (see the marks 1 and 4). Amplitude
eaks of orders 𝑗× (with 𝑗 = 2,… , 4) are also present at the passages

of the critical speeds of the cracked rotor (see the marks 8, 9 and 10).
It is recalled that the response of the rotor without a breathing crack
is only composed of the first harmonic component (i.e. the vibratory
response of the healthy rotor is linear).

Secondly, the presence of the crack induces a small decrease in the
critical speeds of the rotor system (denoted by 𝑓𝑖 for 𝑖 = 1,… , 4) due
to the reduction in system stiffness, as indicated in Table 2. For the
interested reader, the associated natural frequencies of the rotor at rest
are given by 𝑓𝜔=0

1 = 49 Hz, 𝑓𝜔=0
2 = 49.2 Hz, 𝑓𝜔=0

3 = 256.3 Hz and
𝜔=0
4 = 262.3 Hz. Thus, by comparing these values to those of the
ritical speeds given in Table 2, it is clearly shown that the gyroscopic
ffects are noticeable for the second backward and forward modes. This
xample allows to put forward some conclusions classically admitted
or the detection of cracks in rotors. The critical speed differences
etween cracked and uncracked rotor configurations are generally too
mall to effectively detect the presence of a crack on a rotating system,
ven for a crack with a significant depth. A breathing crack generates
rominent frequency components of 2× and 3× near to one-half and
ne-third of the critical speeds, which are well known indicators for
etecting a transverse crack in a rotating system.

Nevertheless the crack depth and location can drastically affect both
he critical speeds of the cracked rotor and the vibrational amplitudes
f both the critical speeds and the sub-critical resonances. To briefly
5

illustrate this point, Fig. 3 shows the dependence of these outputs by
drawing the evolution surface of each of these quantities as a function
of the position and size of the crack (for an unbalance given in terms
of intensity and dephasing in relation to the front of the crack). The
figures in the left column in Fig. 3 illustrate this reduction in critical
speeds associated with the first four modes. An increase in the size
of the crack leads to a reduction of the critical speeds. The closer
the crack is to a vibration node, the more the critical speed of the
associated mode draws closer to the critical speed of a healthy rotor.
This result is also valid for sub-critical resonances (not presented here
for the sake of brevity). Other figures in Fig. 3 provide the results and
trends for the evolutions of amplitude peaks of orders 𝑗× at 1

𝑗 (with
𝑗 = 1,… , 3) for the first four critical speeds. Noted that the visualisation
of the horizontal vibration responses (the vertical vibration responses,
respectively) has been chosen for the backward modes 𝑓1 and 𝑓3 (the
forward modes 𝑓2 and 𝑓4). This choice is guided by the fact that these
configurations correspond to the largest amplitudes in the vertical and
horizontal directions for a specific quantity of interest and will be kept
for the rest of the study. The obtaining of the additional directions is
straightforward and results presented here could be easily extended.
It can be observed that the differences of evolution of amplitudes 𝑗×
(with 𝑗 = 1,… , 3) for the first two forward and backward modes are
characteristic of interactions between the crack (position and depth),
the unbalance and gravity. The presence of a crack introduces dis-
similar contributions according to the modes due to the evolution of
the centroid of the cracked element. The mechanism associated with
the dynamic behaviour of the crack is in fact directly linked to the
global nonlinear dynamic response (which depends on the unbalance
and gravity), leading to dissymmetry in the breathing effects of the
crack in the horizontal and vertical directions and therefore differences
in amplitudes when passing through critical speeds and sub-critical
resonances 1

𝑗 . For the rest of the study, the amplitude at one critical
speed will be denoted by 𝑋𝑓𝑖

1× where 𝑖 corresponds to the 𝑖th critical
peed (with 𝑖 = 1,… , 4) and the amplitude at one sub-critical resonance
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3

will be denoted by 𝑋𝑓𝑖
𝑗× where 𝑖 corresponds to the 𝑖th critical speed

with 𝑖 = 1,… , 4) and 𝑗 corresponds to the 𝑗th order (with 𝑗 = 2, 3).
However, caution is required regarding these initial observations,

ince the presence of uncertainties can make the detection of defects
ased on the evolution of the critical speeds and the nonlinear vibratory
ehaviour more delicate. Therefore, the major objective of the rest of
he study is to be able to provide an answer to this open question which
as never been addressed before.

Before going further in the study it is important to point out that
he computation time via the HBM can be very costly as the critical
peeds 𝑓𝑖 and the maximum amplitudes 𝑋𝑓𝑖

𝑗× (for 𝑖 = 1,… , 4 and 𝑗 =
,… , 3) must be identify accurately for the rest of the study. Therefore,
classical HBM computation over the whole rotational speed interval

f interest must be conducted with a very small rotational speed step,
hich represents a substantial number of simulations and so the major
rawback for this approach. As an illustration, it requires more than
0 min for a reference calculation in order to have sufficient accuracy
n the desired outputs. So, an iterative process with dichotomy over
welve pre-selected rotational speed intervals (i.e. one interval around
ach critical speed and also each sub-critical resonances 1

𝑗 with 𝑗 =
, 3) has been implemented to accurately identify the first four critical
peeds 𝑓𝑖 (with 𝑖 = 1,… , 4), the associated maximum amplitudes 𝑋𝑓𝑖

1×
or each critical speed, and the maximum amplitudes 𝑋𝑓𝑖

𝑗× at sub-critical
esonances (where 𝑗 corresponds to the 𝑗th order, 𝑗 = 2, 3). This
ichotomy procedure reduces drastically the calculation time for each
eference calculation as the rotational speed ranges of interest for each
f the quantities sought are reduced, giving a final computational time
f about 30 s.

. Uncertainty propagation methodology

.1. Uncertain parameters

In the present study, six parameters describing the rotor system are
onsidered as uncertain: the Young modulus and density of the shaft (𝐸
nd 𝜌), the thickness of the two discs (𝑡1 and 𝑡2) and the vertical and
orizontal stiffnesses of the right bearing support (𝑘𝑥,2 and 𝑘𝑦,2). Their
haracteristics and their contributions on the different matrices of the
otor system are given in Table 3. They are all modelled with a uniform
DF and vary up to 5% around their mean value for 𝐸 and 𝜌, and
0% around their mean value for 𝑡1, 𝑡2, 𝑘𝑥,2 and 𝑘𝑦,2. The choice of the
ncertain parameters is guided by the fact that the matrices impacted
y uncertainties are different according to the uncertain parameters,
aking a general framework to test the validity of our approach. To be
oted that the damping matrix 𝐂 that is defined by 𝐂 = 𝛼𝐌𝐬 + 𝛽𝐊𝐬 is
till estimated so that the calculation of the two proportional damping
oefficients 𝛼 and 𝛽 lead to a damping ratio of 0.5% for the first and
ourth modes of the rotor system. So, even if taking uncertainties into
ccount can modify the contributions of 𝐌𝐬 and 𝐊𝐬 and so the damping
atrix 𝐂, we choose to keep a constant damping ratio whatever the

rigin or the value of the uncertain parameters.
In addition, a parametric variation of both the crack depth 𝜇 and

rack location 𝐿𝑐𝑟𝑎𝑐𝑘 are considered. The crack depth 𝜇 and the crack
ocation 𝐿𝑐𝑟𝑎𝑐𝑘 can take values in [0.05; 1] (as a reminder 𝜇 = 1
orresponds to the loss of half the shaft area at the crack location) and
n [0;𝐿], respectively. The final objective is to assess the evolutions of
he first and second forward and backward critical speeds, denoted 𝑓1,
2, 𝑓3 and 𝑓4, and of the nonlinear amplitudes 𝑋𝑓𝑖

𝑗× (with 𝑖 = 1,… , 4
and 𝑗 = 1,… , 3) according to the position and depth of the crack and in
the presence of uncertainties. The main interest is to be able to decide
on the possibility of considering the evolution of nonlinear signatures
for the detection of a breathing crack on a rotor with uncertainties.
The different critical speeds 𝑓𝑖, 𝑖 ∈ [1, 4] and the nonlinear amplitudes
𝑋𝑓𝑖

𝑗×, 𝑖 ∈ [1, 4], 𝑗 ∈ [1, 3] depend on the crack parameters (location
6

𝐿𝑐𝑟𝑎𝑐𝑘 and depth 𝜇), that are parametric and grouped in the vector x = p
[𝐿𝑐𝑟𝑎𝑐𝑘, 𝜇], and they also depend on the random uncertain parameters
grouped in the vector 𝝃 = [𝜉𝐸 , 𝜉𝜌, 𝜉𝑡1 , 𝜉𝑡2 , 𝜉𝑘𝑥,2 , 𝜉𝑘𝑦,2 ]. To study the impact
of the uncertain parameters of the model on the signature of the
cracked rotor, one could consider doing Monte Carlo Simulation to
predict the evolutions of the critical speeds 𝑓𝑖(x, 𝝃) and the vibration
amplitudes 𝑋𝑓𝑖

𝑗×(x, 𝝃). This would however represents an unaffordable
omputation cost in practice, and so surrogate modelling techniques are
referred. It builds a meta-model (also called surrogate model) from a
imited number of runs of the reference model. Thus the objective is to
pproximate each critical speed 𝑓𝑖(x, 𝝃) and each amplitude 𝑋𝑓𝑖

𝑗×(x, 𝝃)

y the surrogate models 𝑓𝑖(x, 𝝃) and 𝑋𝑓𝑖
𝑗×(x, 𝝃), respectively. These sur-

ogate models will be built from a hybrid formulation coupling kriging
nd PCE. Their general mathematical background is briefly reminded to
he reader for the sake of concision. For an extended description of each
ethod, the reader could refer to Wiener (1938), Jones et al. (1998),

ophaven et al. (2002), Rasmussen (2003) and Blatman and Sudret
2011). The hybrid formulation has been introduced first in Denimal
t al. (2018).

.2. Kriging mathematical background

For parametric uncertainties, surface response methods proved to
e efficient in terms of numerical cost. The best unbiased predictor
s the kriging formulation (Jones et al., 1998), which has proven its
fficiency for many nonlinear problems. Let 𝛼 denotes the function to
e approximated of argument x ∈ R𝑛 (here 𝑛 = 2 and 𝐱 = [𝐿𝑐𝑟𝑎𝑐𝑘, 𝜇]). A
riging approximation 𝛼 of 𝛼 writes:

𝛼(x) =
𝑞
∑

𝑘=1
𝛽𝑘𝑔𝑘(x) +(x) (14)

here the (𝑔𝑘), 𝑘 ∈ [1, 𝑞] are 𝑞 real known regression functions and 𝜷 are
he regression coefficients to be determined. The functions are chosen

priori and often taken as polynomial functions of low order (up to
rder 2).  is a zero-mean Gaussian process of unknown variance 𝜎2.
ts covariance function is 𝐶(x, x′) = 𝜎2(𝜽, x, x′), where x and x′ are
wo points in R𝑛, and  the correlation function. The latter is usually
nknown and constructed as the tensor product of a 1D-kernel function
:

(𝜽, x, x′) =
𝑛
∏

𝑗=1
𝑘(𝜃𝑗 , 𝑑𝑗 ) (15)

ith 𝜃𝑗 the value of 𝜽 in dimension 𝑗, and 𝑑𝑗 = 𝑥𝑗 − 𝑥′𝑗 the distance
etween x and x′ in dimension 𝑗. For anisotropic kriging, 𝜃𝑗 is different
n each dimension and must be computed. Classical kernel functions are
he Gaussian kernel, the exponential kernel and the different Matèrn
/2 kernels (Rasmussen, 2003).

When constructing a kriging surrogate model, 𝑁 evaluations of
he model are required, i.e. a set of inputs

{

x(1),… , x(𝑁)} and their
valuations 𝐲 =

{

𝛼(x(1)),… , 𝛼(x(𝑁))
}

. This set of inputs and outputs is
sually called Design of Experiments (DoE). If 𝐆 denotes the regression
atrix of coefficients 𝐺𝑖𝑗 = 𝑔𝑗 (x(𝑖)) and 𝐑 the correlation matrix of

oefficients 𝑅𝑖𝑗 = (𝜽, x(𝑖), x(𝑗)), then 𝜽 is determined by solving a
aximum likelihood problem and 𝜷 and 𝜎2 are directly deduced (Jones

t al., 1998; Lophaven et al., 2002). The kriging predictor at a new
oint x0 writes:

𝛼(x0) = 𝐠𝑇0 𝜷 + 𝐫𝑇0 𝐑
−1 (𝐲 −𝐆𝜷) (16)

with 𝐠0 the vector of 𝑔𝑗 (x0) and 𝐫0 the vector of (𝜽, x(𝑖), x0). For
n extensive description of the kriging formulation and creation, the
nterested reader may refer to Jones et al. (1998) and Lophaven et al.
2002).

.3. Polynomial Chaos mathematical background

Let 𝑌 (𝝃) be a second-order random parameter function, which de-

ends on 𝝃 a vector of 𝑚 independent random variable 𝜉𝑖, 𝑖 ∈ [1, 𝑚] (here
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Fig. 3. Evolution of the deterministic critical speeds 𝑓𝑖 (with 𝑖 = 1,… , 4), amplitudes 𝑋𝑓𝑖
1× at the critical speeds (with 𝑖 = 1,… , 4) and amplitudes 𝑋𝑓𝑖

𝑗× at sub-critical resonances 𝑛×
(with 𝑖 = 1,… , 4 and 𝑗 = 2,… , 3) for the first two forward and backward modes for different crack locations and depths.
Table 3
Random parameters description.
Parameter Notation % variation Law Contribution

Young modulus - shaft 𝐸 ±5% Uniform 𝐊𝐬
Density - shaft 𝜌 ±5% Uniform 𝐌𝐬 and 𝐪
Thickness - disc 1 𝑡1 ±10% Uniform 𝐆𝐝𝟏, 𝐌𝐝𝟏 and 𝐪
Thickness - disc 2 𝑡2 ±10% Uniform 𝐆𝐝𝟐, 𝐌𝐝𝟐 and 𝐪
Stiffness - right support (vertical direction) 𝑘𝑥,2 ±10% Uniform 𝐊𝐛𝟐
Stiffness - right support (horizontal direction) 𝑘𝑦,2 ±10% Uniform 𝐊𝐛𝟐
𝑚 = 6 and the random variables correspond to those given in Table 3).
According to the PCE theory (Wiener, 1938; Xiu and Karniadakis, 2002,
2003), it can be approximated by a convergent in mean expansion. For
numerical reasons, this expansion is truncated and writes:

𝑌 (𝝃) ≈
𝑃−1
∑

𝐽=0
𝛼𝐽𝛷𝐽 (𝝃) (17)

where 𝑃 is the number of terms in the expansion and corresponds to the
size of the PCE basis. 𝛷𝐽 , 𝐽 ∈ [0, 𝑃 − 1] is the multivariate orthogonal
polynomial basis and (𝛼𝐽 ), 𝐽 ∈ [0, 𝑃 − 1] are the weighting coefficients
to be determined.

Each random variable (𝜉𝑖), 𝑖 ∈ [1, 𝑚] is described by its PDF 𝑝𝑖
and the joined PDF of 𝝃 is 𝑝 =

∏𝑚
𝑖=1 𝑝𝑖. The multivariate orthogonal

polynomial 𝛷 are constructed by tensorisation of the 𝑚 mono-variate
7

𝐽

polynomial families
(

𝑃 (𝑖)
𝑑

)

, 𝑖 ∈ [1, 𝑚] orthogonal to the PDF 𝑝𝑖, where
𝑑 denotes the degree of the polynomial. It writes:

𝛷𝐽 (𝝃) =
𝑚
∏

𝑖=1
𝑃 (𝑖)
𝐽𝑖
(𝜉𝑖) (18)

where 𝐽 =
∑𝑚

𝑖=1 𝐽𝑖 is the degree of 𝛷𝐽 . The mono-variate orthogonal
polynomials

(

𝑃 (𝑖)
𝑑

)

, 𝑖 ∈ [1, 𝑚] are chosen based on the Askey-scheme,
which gives the correspondence between classical PDF and their asso-
ciated orthogonal polynomials family. Here, only the uniform law is
considered and so only sets of Legendre polynomials are used.

To truncate the PCE, one chooses the chaos order 𝓁 which corre-
sponds to the maximal polynomial degree to keep in the expansion.
It means that all polynomials that satisfy 𝐽 =

∑𝑚
𝑖=1 𝐽𝑖 ≤ 𝓁 are kept

in the expansion (17). The total number of terms 𝑃 in the expansion
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is equal to 𝑃 =
(𝑚+𝓁

𝓁

)

. One can clearly see here how the number of
terms explodes when either the dimension 𝑚 increases or when the
chaos order 𝓁 increases. Strategies have been developed to limit the
number of terms in the expansion. In the present work the hyperbolic
truncation scheme is adopted as it has proven to be efficient for
rotordynamics (Denimal and Sinou, 2021b). This truncation scheme is
based on the idea that models and physics are often driven by low order
interaction effects. This norm is defined based on the scalar 𝛾 ∈ [0, 1]
fixed, and polynomials kept in Eq. (17) are those for which the degree
satisfies (Blatman and Sudret, 2011):

‖𝐽‖𝛾 =

( 𝑚
∑

𝑖=1
𝐽 𝛾
𝑖

)1∕𝛾

≤ 𝓁 (19)

The coefficients (𝛼𝐽 ), 𝐽 ∈ [0, 𝑃 −1] are computed in a non-intrusive
ay here, based on the regression method (Sudret, 2008; Blatman and
udret, 2011). To do so, a set of 𝑀 inputs 𝛯 =

{

𝝃(1),… , 𝝃(𝑀)} and their
evaluations

{

𝑌
(

𝝃(1)
)

,… , 𝑌
(

𝝃(𝑀))} is generated. The (𝛼𝐽 ), 𝐽 ∈ [0, 𝑃 −1]
re determined by minimising in the least-square sense the distance
etween the random function 𝑌 (𝝃) and the PCE evaluation at the 𝑀

points.

3.4. Hybrid formulation

Each function 𝑓𝑖(x, 𝝃) and 𝑋𝑓𝑖
𝑗×(x, 𝝃) is approximated by a surrogate

model that couples kriging and PCE. First, the random part of each
function is decomposed on a PCE approximation:

𝑓𝑖(x, 𝝃) ≈ 𝑓𝑖(x, 𝝃) =
𝑃−1
∑

𝐽=0
𝛼𝐽 ,𝑓𝑖 (x)𝛷𝐽 (𝝃) (20)

𝑋𝑓𝑖
𝑗×(x, 𝝃) ≈ 𝑋𝑓𝑖

𝑗×(x, 𝝃) =
𝑃−1
∑

𝐽=0
𝛼
𝐽 ,𝑋𝑓𝑖

𝑗×
(x)𝛷𝐽 (𝝃) (21)

here the chaos coefficients
(

𝛼𝐽 ,𝑓𝑖
)

, 𝐽 ∈ [0, 𝑃 −1] and
(

𝛼
𝐽 ,𝑋𝑓𝑖

𝑗×

)

, 𝐽 ∈

0, 𝑃 − 1] depend on the parametric variables. As each PCE coefficient
epends on the parametric variable x, it can be approximated by
riging:

𝐽 ,𝑓𝑖 (x) = 𝐠(𝐽 )𝑓𝑖
(x)𝑇 𝜷(𝐽 )

𝑓𝑖
+(𝐽 )

𝑓𝑖
(x) (22)

nd similarly for the 𝛼
𝐽 ,𝑋𝑓𝑖

𝑗×
(x). By introducing these in Eqs. (20) and

21), it writes:

𝑖(x, 𝝃) ≈ 𝑓𝑖(x, 𝝃) =
𝑃−1
∑

𝐽=0

(

𝐠(𝐽 )𝑓𝑖
(x)𝑇 𝜷(𝐽 )

𝑓𝑖
+(𝐽 )

𝑓𝑖
(x)

)

𝛷𝐽 (𝝃) (23)

and a similar expression is obtained for 𝑋𝑓𝑖
𝑗×(x, 𝝃). The construction of

the hybrid surrogate model is based on a few evaluations of the expen-
sive function (here 𝑓𝑖(x, 𝝃) or 𝑋𝑓𝑖

𝑗×(x, 𝝃)). Two input sets are generated:
one of 𝑁 values x(𝑘) based on a Latin Hypercube Sampling (LHS) with
low discrepancy, and one of 𝑀 values of 𝝃(𝑘) based on an LHS. The
final input set is obtained by the tensorisation of the two sets and
is composed of 𝑁 × 𝑀 points. For each of those points, the critical
speeds 𝑓𝑖 and the amplitudes 𝑋𝑓𝑖

𝑗× are computed. For each 𝝃(𝑘), the
𝑀 evaluations of 𝑓𝑖 and 𝑋𝑓𝑖

𝑗× for different 𝝃 are used for the PCEs
construction. Thus, for each frequency and each amplitude, 𝑁 PCEs are
constructed and so 𝑁 values of each (𝛼𝐽 ), 𝐽 ∈ [0, 𝑃 − 1] are available
and used for the kriging construction. The full workflow is given in
Fig. 4. The method has been initially developed in Denimal et al.
(2018), and extended in Denimal and Sinou (2021a,b). The interested
reader could refer to these three references for more details.

3.5. PCEs coefficients exploitation

From the PCE coefficients, the stochastic moments of the consid-
ered output can be obtained directly. With the current modelling,
8

they directly depend on the parametric variable x and are directly
btained from the kriging evaluation without any expensive Monte
arlo Simulations (MCS). More precisely, the average writes:

[𝑓𝑖(x)] = 𝛼0,𝑓𝑖 (x) = 𝐠(0)𝑓𝑖
(x)𝑇 𝜷(0)

𝑓𝑖
+(0)

𝑓𝑖
(x) (24)

nd similarly for E[𝑋𝑓𝑖
𝑗×(x)]. The variance writes:

2
𝑓𝑖
(x) =

𝑃−1
∑

𝐽=1
𝛼𝐽 ,𝑓𝑖 (x)

2
‖𝛷𝐽‖

2 =
𝑃−1
∑

𝐽=1

(

g(𝐽 )𝑓𝑖
(x)𝑇 𝜷(𝐽 )

𝑓𝑖
+(𝐽 )

𝑓𝑖
(x)

)2
‖𝛷𝐽‖

2 (25)

nd similarly for 𝜎2
𝑋𝑓𝑖
𝑗×

(x).

.6. Creation and validation of the surrogate models

This next subsection is devoted to the calibration of the different
urrogate models and more specifically to the construction of the DoE.
ecause of the important computational time, doing a convergence
tudy of the DoE for the hybrid model directly is not affordable. For
his reason, the convergence of the PCE DoE and of the kriging DoE
re done separately. The choice of the final size of the DoE for each
ne is based on these separate convergence studies. To ensure that the
inal hybrid meta-model with the tensorized DoE is accurate enough,

final validation by comparison with some exact reference values is
one. The first part focuses on the parametric DoE (i.e. for kriging),
nd the second part on the random DoE (i.e. for the PCE).

.6.1. Convergence study of the kriging DoE
The size of the parametric DoE is chosen based on a convergence

tudy on the deterministic case, i.e. only the location and the depth of
he crack vary and all random parameters are set to their mean value.
his is based on the idea that if the kriging is accurate enough for
he deterministic case, it should also be accurate enough for each PCE
oefficient. This is especially true for the first one as it follows the mean
alue, which should be close to the deterministic case.

For the convergence study, different DoE sizes are considered. It is
orth noting here that the parameter 𝐿𝑐𝑟𝑎𝑐𝑘 is discrete as it can only

ake value at the centre of the elements. All DoE are created as the
nion between two sets: one generated by LHS whose size can vary
etween 5 and 200 points, and a second set of constant points. For the
atter, two strategies are considered and compared in the following.
he first one consists in adding 16 points homogeneously distributed
n the border of the design space: one at each angle and 3 equally
pread on each segment. The second strategy corresponds to this first
6 points set completed by 20 points added in staggered rows on the
ines 𝜇 = 0.9 and 𝜇 = 1. The addition of the first 16 points is based

on the fact that kriging experiences convergence issues on the domain
limits and by adding a few points, its performances are substantially
improved (Forrester et al., 2008). The addition of the 20 other points
comes from the fact that we know the crack has a strong influence on
the nonlinear signature when it is deep, and so large variations of the
amplitudes at sub-critical resonances and critical speeds are expected
for high values of 𝜇 (Sinou and Lees, 2007). Of course, the main idea
of this second strategy is to propose a better compromise between the
number of points retained and the quality of the approximate solution.
By densifying the DoE in this area, a higher efficiency of the kriging
is expected. The two strategies are illustrated for one case with a 20
points LHS in Fig. 5 where red points correspond to the constant set
and blue points to points generated by LHS.

From a practical point of view, the convergence of the kriging
w.r.t the DoE size is studied. The LHS can vary between 5 and 200
points, and for each size 100 LHS are generated and merged with one
of the two constant sets. To limit the computational time, reference
simulations are done on a 20 × 20 grid, and DoE are projected on it
so nonlinear simulations are done only once. For each physical output,

a kriging surrogate model is computed using a constant trend and a
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Fig. 4. General workflow of the method.
Matérn 5/2 correlation kernel. The latter is used to predict the physical
value on the 400 points of the 20 × 20 grid and the prediction error is
computed using the relative Mean Squared Error (MSE):

𝑒𝑟𝑀𝑆𝐸 =

𝑁𝑣𝑎𝑙
∑

𝑛=1
(𝑦𝑛 − 𝑦𝑛)2

𝑁𝑣𝑎𝑙
∑

𝑛=1
(𝑦𝑛 − 𝑦)2

(26)

where 𝑦𝑛 is the kriging prediction at point 𝑛 of the grid, 𝑦𝑛 is the
reference value at point 𝑛 and 𝑦 is the average over the 𝑁 = 400
9

𝑣𝑎𝑙
points. This error is defined for each critical speed 𝑖, and denoted
𝑒𝑟𝑀𝑆𝐸 (𝑓𝑖), and for each amplitude 𝑋𝑓𝑖

𝑗×, and denoted 𝑒𝑟𝑀𝑆𝐸 (𝑋
𝑓𝑖
𝑗×). For

each case, the average and the variance of this error over the 100 LHS
for each DoE size are computed. The average operator is denoted 𝐄
and the variance 𝐕𝐚𝐫. Their evolution is given in Fig. 6, where the first
sampling strategy is in solid lines and the second in dashed lines, and
where each colour corresponds to a mode. The shift between the two
sampling strategies comes from the different number of points added
to the LHS.

One can see that in all cases, when the DoE size increases then
the relative MSE decreases in average and variance. More precisely,
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Fig. 5. Illustration of the DoE construction for kriging where (∙) are generated by LHS and (∙) are fixed - (a) strategy 1: 16 points added - (b) strategy 2: 31 points added.
Fig. 6. Evolution of the average (top figures) and variance (bottom figures) of the relative MSE error w.r.t the DoE size for the critical speeds (a) and the nonlinear amplitudes
of the first order (b), second order (c) and third order (d). Mode 1 ( ), Mode 2 ( ), Mode 3 ( ) and Mode 4 ( ). First sampling strategy ( ) and second
sampling strategy ( ).
the precision of the kriging (average values) and its sensitivity to the
DoE (variance values) are improved of several orders of magnitude
(up to 8 orders of magnitude for the average and up to 14 orders of
magnitude for the variance). If for the critical speeds a convergence is
10
reached at about 160 points for all modes, no convergence is reached
for the vibration amplitudes (i.e. a continuous decrease is observed
with only a slight decrease in the slope of the curve) and so one must
make a compromise between the numerical cost and the accuracy.
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Comparing the two sampling strategies, it is clear that the second one
(dashed lines) improves substantially the kriging performances. Indeed,
in almost all cases the level of error is several order of magnitude lower
for the second sampling strategy than for the first sampling strategy (see
results for the first critical speed for all cases for example). As the error
is lower for both the average and variance it means that the kriging
performs better and is also less sensitive to the points distribution in the
input space. This means that when the amount of information is limited
(only a limited number of training points), it is better to use a priori
nowledge of the problem to place the training points intelligently.

Based on these results, in the following the second sampling strategy
s employed and the final DoE size is 92. The LHS is generated to
aximise the minimum distance between points by optimising the

(

𝜙𝑝
)

riterion (Pronzato and Müller, 2012). A specific attention has been put
o the fact that 𝐿𝑐𝑟𝑎𝑐𝑘 is discrete.

.6.2. Convergence study of the PCE DoE
In a second phase, the size of the DoE for the PCE has been

etermined with a convergence study. To do so, an LHS of 150 random
oints has been generated. Then, for each of the 92 points of the
arametric DoE, the 150 random points have been evaluated, which
epresents a total of 13,800 simulations. For each point of the paramet-
ic space (i.e. each of the 92 points) up to 120 points are used to create
PCE and the last 30 points are used for validation by comparison

etween reference values and predictions. The relative error 𝑒𝑟 for all
he PCE is computed (i.e. based on 𝑁 = 30 × 92 = 2760 validation
oints) for different sizes of the DoE. For a given DoE size, 10 different
HS are generated so the average and the variance of the relative
rror are computed and displayed in Fig. 7. Results are presented here
or a PCE of order 5 with a 𝛾-norm of 0.5 (40 terms in the PCE).
ifferent PCE properties have been compared and this one present the
est compromise between the PCE size and the accuracy and so is kept
or the rest of the study.

Looking at Fig. 7, one can see that the average and the variance
f the relative error decreases when the DoE size increases for each
ritical speed 𝑓𝑖 and each amplitude 𝑋𝑓𝑖

𝑗×. The level of error for the
ritical speeds and the 1× amplitudes are lower than for higher orders.
his is explained by the fact that amplitudes of higher orders take
xtremely small values, which tends to increase the relative error. The
onvergence is reached after 100 points in the DoE, and so 100 points
re taken in the following for the hybrid surrogate model creation.

.6.3. Final validation
To ensure that the hybrid meta-model is accurate enough with the

hosen tensorized DoE, a final validation is done by comparison with
eference values. To do so, 200 input values are generated randomly,
.e. 200 vectors [𝐸, 𝜌, 𝑡1, 𝑡2, 𝑘𝑥,2, 𝑘𝑦,2, 𝜇, 𝐿𝑐𝑟𝑎𝑐𝑘]. On the one hand, the
xact dynamic response is computed with the HBM, giving the output
𝑛 for the 𝑛th input point (𝑦 can be a critical frequency or an amplitude).
n the other hand, the hybrid surrogate models are evaluated for the
00 points, giving the predicted outputs 𝑦𝑛. They are finally compared,
nd the average absolute error over the 200 points is computed:

𝑓𝑖𝑛𝑎𝑙 =
1

𝑁𝑣𝑎𝑙

𝑁𝑣𝑎𝑙
∑

𝑘=1
|𝑦𝑛 − 𝑦𝑛| (27)

the errors are given in Table 4. One can see they are all very low. As
a visual validation, the comparisons between the references and the
predictions are given in Fig. 8 where the predictions are in red stars
and the reference in black circles. One can observe the predictions
are accurate and that the outputs are correctly predicted and so the
different hybrid surrogate models are trustful and can be used to
simulate the rotordynamics for a negligible numerical cost.

3.6.4. Computational time of the method
A few words must be said about the computational efficiency of the

approach. Simulation times are given for a basic laptop and for in-house
11
Table 4
Average absolute error of the hybrid surrogate model for the different critical speeds
𝑓𝑖 and different amplitudes 𝑋𝑓𝑖

𝑗×.

Mode number 𝑓𝑖 𝑋𝑓𝑖
1× 𝑋𝑓𝑖

2× 𝑋𝑓𝑖
3×

1 1.41e−2 8.26e−06 4.26e−07 7.61e−08
2 1.45e−2 2.74e−07 1.29e−08 3.08e−10
3 6.18e−2 7.68e−06 1.76e−07 3.16e−08
4 7.24e−2 2.33e−06 9.39e−08 7.87e−09

algorithms that might not be the most efficient. As previously explained
in Section 2.4, the evaluation of the full model requires about 30 s for
one simulation performed via the HBM with a dichotomy process to
identify the sixteen quantities of interest. If a MC strategy with 500
points for each crack characteristic were adopted, the obtaining of the
mean and average would have required about 500 × 50 × 50 × 30 =
37500000 s ≃ 434 days for a 50 × 50 grid. The construction of the
hybrid surrogate models requires 9200 evaluations of the full model,
i.e. 276000 s ≃ 3.2 days. The construction of the hybrid surrogate
models takes about 10 s. Once they are constructed:

• the evaluation of one hybrid surrogate model for one point takes
about 7e-4 s;

• the construction of the map for the average and variance requires
only the kriging prediction part and takes about 0.375s for one
variable for a 50 × 50 grid;

• the construction of the 95% confidence interval requires an MCS
at each crack characteristic, here 500 points, which represents
about 3 min at the end for a 25 × 25 grid (12 min for a 50 × 50
grid).

One can see here the interest of the formulation when only stochastic
information is needed as no MCS is required on the surrogate model
(see the 0.375 s versus 12 min for same grid sizes). Finally, the interest
of using such approach and the efficiency of the approach is obvious:
the global simulation time is reduced from 434 days to about 3.2 days,
and so is divided by 135. Comparing the simulation time of the full
model to the prediction time of the hybrid surrogate model, it is divided
by 4.2e4 (30 s versus 7e-4 s).

4. Results and discussions

The objective of this section is to discuss the possibility to perform
a robust and reliable crack detection in a rotor system in an uncertain
context based on the analysis of the linear and nonlinear signatures
versus the parametric variation of both the crack depth 𝜇 and crack
location 𝐿𝑐𝑟𝑎𝑐𝑘 (with 𝜇 in [0.05; 1] and 𝐿𝑐𝑟𝑎𝑐𝑘 in [0;𝐿]) and more specif-
ically the evolution of the critical speeds 𝑓𝑖, the associated amplitudes
𝑋𝑓𝑖

1× and the maximum amplitudes 𝑋𝑓𝑖
𝑗× at sub-critical resonances. To

achieve this, the stochastic nonlinear response of the rotor is first
analysed for different crack depth 𝜇 and crack location 𝐿𝑐𝑟𝑎𝑐𝑘 (with
𝜇 in [0.05; 1] and 𝐿𝑐𝑟𝑎𝑐𝑘 in [0;𝐿]). To get an affordable computational
time, the hybrid surrogate models constructed previously are employed
to simulate the unbalanced response of the rotor, where parametric
parameters are the crack depth and location (influence through kriging)
and random parameters are the model uncertainties (influence through
PCE). The mean and variance of the critical speeds 𝑓𝑖 and of the
amplitudes 𝑋𝑓𝑖

𝑗× over the geometrical imperfections, random material
properties and uncertain boundary conditions are determined for a
parametric variation of the crack depth and location. From this, the
impact of the crack, in terms of depth and location, on the stochastic
response of the rotor are deeply analysed. Finally, the evolution of the
95% interval of these quantities (critical speeds 𝑓𝑖 and amplitudes 𝑋𝑓𝑖

𝑗×)
are computed in order to see if these critical speeds or these amplitudes
could be a reliable and robust indicator for crack detection when many

uncertainties are present.
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Fig. 7. Evolution of the average (a) and of the variance (b) of the average relative error for the PCE for different learning set sizes.
4.1. Evolution of the critical speeds and vibration amplitudes

The average and variance of the critical speeds 𝑓𝑖 and amplitudes
𝑋𝑓𝑖

𝑗× are directly computed from Eq. (24) and Eq. (25), respectively.
The mean values over the parametric space are given in Fig. 9 and the
variance values in Fig. 10. Looking at Fig. 9, the trends of the evolution
of the mean value for each quantity 𝑓𝑖 and 𝑋𝑓𝑖

𝑗× as a function of the size
and position of the crack are of course in agreement with the evolution
of the previous results presented in the deterministic case. For example,
an increase in the size of the crack for a given crack position, increases
the variation of the quantity considered compared to the healthy rotor.
Moreover, the most important variations of the critical speeds 𝑓𝑖 and
vibration amplitudes 𝑋𝑓𝑖

𝑗× are observed when the crack is located at an
anti-node of the considered mode. For the vibration responses of orders
2 and 3 (i.e. 𝑋𝑓𝑖

2× and 𝑋𝑓𝑖
3×), one can see that they are more sensitive to

the existence of a crack than the critical speeds 𝑓𝑖 and the amplitude
of first order 𝑋𝑓𝑖

1× as they experience larger variation in the presence of
a crack.

Considering the evolution of the variances given in Fig. 10, their
evolution is more complex than the averages and depends on each
critical speed and amplitude. Globally, variances are relatively large
for the critical speeds 𝑓𝑖 and represent a non-negligible influence of
the random parameters on the critical speeds, much larger than the
variations observed on average. For 𝑓1 and 𝑓2, the variance remains
almost constant over the parametric space with a small evolution
that follows approximately the same evolution as the mean (i.e. a
small increase of the variance when the crack size increases and the
maximum of the variance is observed for a crack in the middle of the
rotor). For 𝑓3 and 𝑓4, we can distinguish a non negligible evolution
but which is not continuous depending on the size or position of the
crack. Thus, these results indicate that the modelling uncertainties have
a non-negligible impact on the critical speeds.

To go into details and illustrate the complexity brought by the
addition of modelling uncertainties, one can observe that the variance
evolution of the vibration amplitudes 𝑋𝑓𝑖

𝑗× is completely different from
one case to another and that the impact of the modelling uncertainties
depends on the variable under consideration. For the vibration ampli-

𝑓2 𝑓3 𝑓4
12

tudes 𝑋1×, 𝑋1× and 𝑋1×, variances are relatively large in comparison
to the variations observed on average, with an almost constant value
over the parametric space for 𝑋𝑓2

1× and variations for 𝑋𝑓3
1× and 𝑋𝑓4

1×. More
specifically, for 𝑋𝑓3

1× and for 𝑋𝑓4
1×, the largest variations of the variance

when the crack depth increases are observed when the crack is located
at the anti-node of the modeshape, and the minimum of variation of
the variance are observed when the crack is located at a node of the
modeshape (for e.g. see the line 𝐿𝑐𝑟𝑎𝑐𝑘 = 0.25 m in Fig. 10(j) and
the constant value of the variance). For the second backward mode,
when the crack is located at an anti-node, the variance of 𝑋𝑓3

1× tends
to decreases when the crack becomes deeper, whereas for the forward
mode the variance of 𝑋𝑓4

1× tends to increase when the crack becomes
deeper. So depending on the mode, the system is more or less sensitive
to the modelling uncertainties in the presence of a crack. For the
other cases, the evolution of the variance are rather low compared to
the values of the associated mean. So for these cases, the modelling
uncertainties have a lower impact on the cracked rotor. The variances
experience strong variations with maxima reached in the vicinity of
the anti-node of the corresponding modeshape. For these cases, the
variance is also clearly affected by the increase in the crack size and
increases when the crack is deeper and located around an anti-node.

In conclusion, the presence of uncertainties in the system leads to
very different fluctuations of the mean and variance depending on
the quantities considered. This can make quite difficult at first sight
to find the quantities 𝑓𝑖 or 𝑋𝑓𝑖

𝑗× that represent robust indicators for
fault detection in a system with uncertainties. In fact it is of course
sufficient to combine the mean and variance and their evolution for a
given quantity 𝑓𝑖 or 𝑋𝑓𝑖

𝑗× in order to be able to examine the possibility
of detecting a crack in the presence of uncertainties for this selected
quantity. In the following paragraph we propose to develop this concept
through the construction of a Confidence Interval (CI).

4.2. Discussion on the possibility of crack detection in the presence of
uncertainties

Here, we focus on monitoring the nonlinear vibrations of a rotating
crack system and the detection of its associated crack by carrying out
a detailed analysis of the nonlinear dynamics involved in the presence

of uncertainties. The objective of this part is to show the characteristic
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Fig. 8. Comparison between the reference points (black) and the hybrid surrogate models predictions (red) for the different critical speeds 𝑓𝑖 and amplitudes 𝑋𝑓𝑖
𝑗×.
differences that make it possible to determine the presence of a crack
in a rotor in the presence of uncertainties, as well as the limitations and
precautions to be taken to avoid an erroneous diagnostic.

In order to achieve such an objective, we propose to build the
commonly used 95% Confidence Interval (CI) of the outputs. A 95%
confidence interval is a range of values for which there is 95% certainty
that it contains the true population mean. For each 𝐱 = [𝜇,𝐿𝑐𝑟𝑎𝑐𝑘], the
95% confidence interval is deduced from the simulation of an LHS of
1000 points. The 95% confidence intervals of the physical output 𝑎 is
denoted 𝐶𝐼𝑎

(

𝜇,𝐿𝑐𝑟𝑎𝑐𝑘
)

. The following interpretations of the confidence
interval can be given:

• if 𝐶𝐼𝑎
(

𝜇,𝐿𝑐𝑟𝑎𝑐𝑘
)

has little variation in terms of the two param-
eters 𝜇 and 𝐿𝑐𝑟𝑎𝑐𝑘, then the quantity 𝑎 is not a robust indicator
for the detection of a crack. Indeed, in this case, the presence
of uncertainties generates a confidence interval that includes the
proper variations of the quantity 𝑎 according to the two parame-
ters 𝜇 and 𝐿𝑐𝑟𝑎𝑐𝑘. In other words, the variation of the quantity 𝑎
due to uncertainties is greater than the variation of the quantity
𝑎 depending on the two parameters related to the presence of the
crack (i.e. 𝜇 and 𝐿𝑐𝑟𝑎𝑐𝑘), which makes the parameter 𝑎 ineffective
as a robust indicator of the crack detection in the presence of
uncertainties.
13
• if the variation of 𝐶𝐼𝑎
(

𝜇,𝐿𝑐𝑟𝑎𝑐𝑘
)

versus the two parameters 𝜇 and
𝐿𝑐𝑟𝑎𝑐𝑘 is visible, then 𝐶𝐼𝑎 evolves by a sufficiently large amount,
even in the presence of uncertainties, which makes it possible to
corroborate the evolution of the parameter 𝑎 with the presence of
a crack.

Fig. 11 gives the 95% confidence interval as a function of the posi-
tion and size of the crack for the critical speeds 𝑓𝑖 (with 𝑖 = 1,… , 4) and
the amplitudes 𝑋𝑓𝑖

𝑗× (with 𝑖 = 1,… , 4 and 𝑗 = 1,… , 3). The red surface
represents the lower bound and the blue surface the upper bound. The
black lines correspond to the projection of the minimum and maximum
values. First of all, it is observed that the quantities 𝐶𝑓𝑖 are almost
unchanged in terms of the two parameters 𝜇 and 𝐿𝑐𝑟𝑎𝑐𝑘. The evolution
of frequencies 𝑓𝑖 (for 𝜇 = [0.05; 1] and 𝐿𝑐𝑟𝑎𝑐𝑘 = [0; 0.5] m) previously
shown in Fig. 3 is totally included in the associated confidence interval
𝐶𝑓𝑖 . This has a substantial impact as it means that the decrease in
frequencies with increasing 𝜇 is too low to be used as a robust criterion
during the detection of a crack in a rotor system in the presence of
uncertainties.

Then regarding the validity of the amplitudes 𝑋𝑓𝑖
𝑗× for robust crack

detection, different conclusions can be drawn which can be classified
in three categories:
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Fig. 9. Evolution of the average value over the parametric space for the different critical speeds 𝑓𝑖 and amplitudes 𝑋𝑓𝑖
𝑗×.
• Category 1: some quantities lead to the same conclusions as for
the evolution of the frequencies 𝑓𝑖 with uncertainties (see more
specifically the evolutions of 𝐶

𝑋𝑓2
1×

, 𝐶
𝑋𝑓3
1×

and 𝐶
𝑋𝑓4
1×

). The variations
of the minimum and maximum bounds of confidence interval are
too small compared to the width of the latter. This means that
the quantities 𝑋𝑓2

1×, 𝑋𝑓3
1× and 𝑋𝑓4

1× cannot be used for the crack
detection in the presence of uncertainties.

• Category 2: some variables such as 𝑋𝑓1
1×, 𝑋𝑓3

2×, 𝑋𝑓4
2×, 𝑋𝑓3

3× and 𝑋𝑓4
3×,

can be used to detect a crack in an approximate way (i.e. these
indicators will only detect a crack without leading to a possibility
to identify the size of the crack for example). Indeed, the evo-
lutions of these quantities 𝑋𝑓𝑖

𝑗× versus the two crack parameters
are predominant in comparison with the width of the confidence
interval for non-negligible variations of 𝜇 and 𝐿𝑐𝑟𝑎𝑐𝑘. However,
for a small variation of one of these two parameters, the presence
of uncertainties implies that the evolution of the signature 𝑋𝑓𝑖

𝑗×
remains within the previous confidence interval.

• Category 3: some variables appear to be reliable indicators for
ensuring the detection of a crack (even of small size). The effect
of a crack on the monitoring of these super harmonic orders at the
passages of the associated sub-critical resonances can be seen very
clearly even in the presence of uncertainties. See for example the
evolutions of 𝐶

𝑋𝑓1
2×

, 𝐶
𝑋𝑓1
3×

, 𝐶
𝑋𝑓2
2×

and 𝐶
𝑋𝑓2
3×

as a function of 𝜇 and
14
𝐿𝑐𝑟𝑎𝑐𝑘 in Figs. 11. In addition two of them (i.e. 𝑋𝑓2
2× and 𝑋𝑓2

3×) can
be used in the presence of uncertainties even for a crack of small
size.

If we consider more specifically the quantities 𝑋𝑓𝑖
𝑗× falling into the

last two categories, notwithstanding the addition of uncertainties, we
also find some of the classical results of the dynamics of cracked
systems:

• increasing the crack size 𝜇 induces an increase of the amplitudes
which can be different from one quantity to another. For example,
a rapid evolution of the amplitudes 𝑋𝑓1

1× and 𝑋𝑓1
2× is observed when

the crack depth is close to 𝜇 = 1 while a more progressive and
continuous evolution as a function of the crack size is observed
in the other cases (see for example 𝑋𝑓2

2×, 𝑋𝑓2
3× and 𝑋𝑓4

2×).
• the closer the crack is to a vibration node of the mode 𝑖th, the

more the value of the associated amplitude 𝑋𝑓𝑖
𝑗× tends towards

zero. In other words, we find here the fact that when the crack is
located close to a node (for a given mode), the associated super
harmonic orders are affected only slightly by the presence of the
crack.

• the effect of a crack on the amplitude 𝑋𝑓𝑖
𝑗× is maximal when

the crack is located on one of the anti-nodes of the mode 𝑖th
considered.
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Fig. 10. Evolution of the variance over the parametric space for the different critical speeds 𝑓𝑖 and amplitudes 𝑋𝑓𝑖
𝑗×.
So the appearance of new peaks 𝑋𝑓𝑖
𝑗× (with 𝑗 ≥ 2) at passages

through the sub-critical resonances 1
𝑗 of a cracked rotor can be used

as a robust indicator of the presence of a crack, even if uncertainties or
lack of knowledge of the physical parameters of the rotor are accepted.
It is also interesting to note that even if some peaks 𝑋𝑓𝑖

𝑗× are not
predominant in relation to the complete nonlinear dynamic response of
the rotor system, their evolutions with increasing the crack depth can
be non negligible which constitutes an interesting and robust indicator
for detecting a crack on a rotor in the presence of uncertainties.
However, caution is required regarding these observations, since the
intensity of each of the super harmonic orders 𝑗× (with 𝑗 ≥ 2) depends
on the nonlinear efforts of the crack which correspond to a parametric
nonlinearity directly linked to the unbalances of the rotor, gravity and
thus implicitly to the dephasing of the latter regarding the front of the
breathing crack.

The global objective was to investigate the possibility to get reliable
and robust indicators for crack detection in rotors with numerous
uncertainties due to lack of knowledge or environmental variations.
The previous discussions have demonstrated that the tracking of the
critical speeds 𝑓𝑖 or the amplitudes 𝑋𝑓𝑖

1× for the health monitoring of
rotor systems with uncertainties is not an appropriate and efficient
15
strategy. However, the nonlinear signature could be used as an in-
dicator robust to these uncertainties. More specifically, the increase
of vibration amplitudes 𝑋𝑓𝑖

𝑗× (with 𝑗 ≥ 2) when passing through sub-
critical resonances 1

𝑗 can be used as robust indicators for detecting a
transverse crack in a rotating system and its evolution with time (due to
the increase of the crack depth with time for example). The monitoring
of super-harmonic orders 𝑗× (with 𝑗 ≥ 2) therefore appears the most
reliable criterion for ensuring the rapid detection of the occurrence of
a crack (even a small one). However, caution is necessary regarding the
amplitudes 𝑋𝑓𝑖

𝑗× to be selected as robust indicators in order to achieve
this.

5. Conclusion

The research and results presented in this paper show the essential
contribution of taking into account the nonlinear dynamic behaviours
of rotors to diagnose the presence of a transverse breathing crack in
rotating systems and permit better vibration monitoring of rotors in
the presence of uncertainties.

The monitoring of orders 𝑗× with 𝑗 ≥ 2 and more particularly
the evolutions of the associated amplitudes when passing through
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Fig. 11. Envelop of the 95% confidence interval (blue surface for upper bound and red surface for lower bound) over the parametric space for the different critical speeds 𝑓𝑖 and
amplitudes 𝑋𝑓𝑖

𝑗× and projection of the minima and maxima values (black lines).
sub-critical resonances provides indicators that can be used to de-
tect the occurrence of cracks in a rotating system in the presence
of uncertainties. The evolution of the resonance frequencies does not
provide interesting information for the detection of a breathing crack
because these evolutions are generally hidden by the variations of the
frequencies according to the uncertainties. Nonetheless, it appears that
the detection of a crack of small size and a precise estimation of the
characteristics associated with it (localisation and size) can be more
difficult to perform due to the presence of uncertainties in the system.
In the latter case, a fine selection of the amplitude indicators 𝑋𝑓𝑖

𝑗× to
be monitored is necessary. These results taken together also show the
considerable difficulty and complexity of interpreting the physical phe-
nomena observed and the identification of crack parameters (depth and
position) due to the influence of a large number of physical parameters
that can lead to variations of the different amplitudes 𝑗×. Also, although
it appears clearly possible to detect the presence of a crack for a rotating
system comprising uncertainties, the phase of identifying the position
and depth of a crack remains an open and difficult problem when
considering the presence of uncertainties or when gaps in knowledge
of the healthy system remain.

All these results and the resulting conclusions were made possible
by the use of an advanced computational technique based on kriging
and Polynomial Chaos Expansion for the prediction of the critical
speeds and the nonlinear signatures of the vibration responses of the
16
cracked rotor with uncertainties. Indeed, due to the high cost of com-
putational models with time-dependent coefficients and the resolution
based on the HBM for computing periodic solutions of ordinary differ-
ential equations, classical techniques such as Monte Carlo simulation
are not applicable.

Some non-exhaustive interesting outlooks for future research are as
follows:

• the proposed study uses a simplified breathing behaviour for the
crack based on the research work of Davies and Mayes (1984) and
Mayes and Davies (1984). It should be interesting to apply the
proposed advanced hybrid approach for more complex efficient
breathing crack model and possibly crack propagation techniques.
A potential drawback of the proposed study is that if the basic
model is assumed to be approximate, the associated results could
also tend to differ from what might have been accurate.

• it would be interesting to apply the proposed hybrid approach on
a real industrial structure and to compare the results with full
experimental tests. One of the most important challenges may
be to identify the different sources of uncertainty but also to be
able to characterise and quantify the uncertainty related to each
parameter for a complex system. It means being able to determine
the type of PDF that follows each random parameter as well as the
range of variation in a real environment and in real conditions.
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• considering the methodology, it would be interesting to consider
more efficient sampling strategies to reduce the size of the train-
ing set, which is currently large. Indeed, its construction is based
on a tensorisation, which makes explode the size of the final
training set. One challenge would be to find a more efficient way
to train this hybrid surrogate model and avoids this expensive
tensorisation.
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