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Abstract
We investigate signatures of a self-trapping transition in the driven-dissipative Bose Hubbard
dimer, in presence of incoherent pump and single-particle losses. For fully symmetric couplings
the stationary state density matrix is independent of any Hamiltonian parameter, and cannot
therefore capture the competition between hopping-induced delocalization and the
interaction-dominated self-trapping regime. We focus instead on the exact quantum dynamics of
the particle imbalance after the system is prepared in a variety of initial states, and on the
frequency-resolved spectral properties of the steady state, as encoded in the single-particle Green’s
functions. We find clear signatures of a localization-delocalization crossover as a function of
hopping to interaction ratio. We further show that a finite a pump-loss asymmetry restores a
delocalization crossover in the steady-state imbalance and leads to a finite intra-dimer dissipation.

1. Introduction

Recent years have seen an increase of interest in open Markovian quantum systems, which describe a
number of experimental platforms for quantum information processing and quantum simulation, both in
the realm of atomic physics and quantum optics as well as in the solid state framework. Among these we
can mention for example cavity QED experiments [1] and their analogue with superconducting circuits [2].
Here the basic degrees of freedom, photons and qubits, are inevitably exposed to dissipative processes such
as losses and decoherence induced by the environment. The quantum dynamics of Markovian systems is
described theoretically within the framework of a Lindblad master equation which encodes the competition
between coherent (Hamiltonian) evolution and dissipative processes described by a set of jump operators
[3]. Out of this competition one can expect non-trivial stationary states and dynamical behavior to emerge,
leading to novel dissipative phase transitions [4, 5], both in small systems made by few quantum non-linear
oscillators [6, 7] as well as in larger arrays [8–14].

An intriguing question which has recently attracted large interest is to understand what kind of
dynamical phenomena can arise in these Markovian quantum systems and their relationship with
analogous phenomena in the field of classical non-linear dynamical systems in presence of non-linearities,
noise and dissipation [15].

A prototype example in this context is provided by the driven-dissipative Bose–Hubbard dimer (BHD),
which can be seen as a toy model of strongly correlated open Markovian quantum systems since it encodes
the basic competition between local dissipative processes, interactions and non-local coherent hopping
processes.

Besides its paradigmatic relevance, the driven-dissipative BHD has also been realized experimentally in a
variety of quantum light–matter platforms, including superconducting circuits [16, 17] and semiconductor
microcavities [18–20] and photonic crystals [21, 22].
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In the closed isolated case, corresponding to a purely conservative Hamiltonian evolution, the BHD has
been extensively studied, in particular its self-trapping, or localization-delocalization [23–29]. Here, an
initial imbalance of particles between the two sites of the dimer is either rapidly redistributed by hopping
processes leading to an homogeneous configuration or conserved indefinitely, leading to a self-trapped state
below a critical ratio between hopping and interaction. This transition corresponds to a spontaneous
breaking of the reflection symmetry between the two sites of the dimer. Open-Markovian extensions of the
BHD have been mostly focused on the coherently driven case [17, 30–33] or, in the case of the related
Jaynes–Cummings Dimer model [34], the purely dissipative case in absence of any external pumping.

In this work we theoretically study the driven-dissipative BHD in presence of single-particle losses and
incoherent single-particle drive. This case is somewhat peculiar, since it is known that for a perfectly
symmetric model the stationary state of the problem is completely independent of Hamiltonian parameters
and only set by the ratio between pump and losses [35], so it cannot contain any signature of a putative
delocalization transition. In order to explore the competition between hopping and interactions in a
dissipative setting one has therefore to go beyond the analysis of steady-state observables and focus instead
on response functions, or to consider an asymmetry between the two sites of the dimer.

In particular we prepare the system in different initial states and follow the exact quantum dynamics of
the model, characterizing also the properties of the stationary state reached at long times. Furthermore we
focus on the spectral properties of the BHD as encoded in the Green’s functions which for open-Markovian
quantum system, much like their closed system counterpart, contain rich insights on the structure of the
single-particle excitations around the stationary state.

The paper is organized as follows. In section 2 we introduce the BHD model and briefly review some of
its properties, while in section 3 we present details on its numerical solution. In section 4 we review the
known results about the semiclassical limit and the self-trapping transition in the isolated and dissipative
cases. Our results for the quantum dynamics in the symmetric pumping regime are discussed in section 5,
while those for finite pump/loss asymmetry in section 6. In section 7 we present results for the Green’s
functions of the BHD, while section 9 is devoted to conclusions.

2. The model

We start by considering the Hamiltonian of a BHD. The model is a paradigmatic interacting lattice model
which can be realized in a number of platforms. Our implementation including pumping and losses is
naturally realized using optical cavities (see also section 8). For this reason in the following we will refer to
the two lattice sites as cavities and to the bosonic degrees of freedom involved in the physics as photons. The
Hamiltonian reads

Ĥ = ω0 (n̂L + n̂R) + U (n̂Ln̂L + n̂Rn̂R) + J
(

â†LâR + â†RâL

)
, (1)

where n̂L = â†LâL and n̂R = â†RâR are the number operators of the left and the right cavities, respectively. The
two cavities have the same resonant frequency ω0 and Kerr non-linearity U, and photons can hop between
the cavities at a rate J.

We can add a simple mechanism for incoherent driving and dissipation at the master-equation level, by
using single-particle pump and loss operators. In practice, we describe the driven-dissipative dimer by a
reduced density matrix ρ̂ that evolves according to the Lindblad master equation

˙̂ρ =
ˆ̂Lρ̂ =

ˆ̂LH ρ̂+
ˆ̂LDρ̂ (2)

where
ˆ̂LHρ = −i

[
Ĥ, ρ̂

]
(3)

is the Hermitian part of the evolution, while the dissipative piece reads as

ˆ̂LDρ̂ = 2
∑
i=L,R

{
Γi

(
âiρ̂â†i −

1

2

{
â†i âi, ρ̂

})
+ Pi

(
â†i ρ̂âi −

1

2

{
âiâ

†
i , ρ̂

})}
(4)

with the constraint that Pi < Γi ∀i, as if ∃i : Pi > Γi single-particle jump operators alone are no longer
sufficient to provide a correct physical description of the system.

In this form, ΓL/R are interpreted as loss rates while PL/R as pumping rates. It is convenient to
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parametrize them as

Γi = Γ±ΔΓ/2, ΔΓ = ΓL − ΓR (5)

Pi = P ±ΔP/2, ΔP = PL − PR (6)

to distinguish the case in which pump/loss rates are symmetric in the dimer, ΔΓ = ΔP = 0 or asymmetric
due to an imbalance of pump and/or losses. In fact it is known [35] that for a Bose–Hubbard lattice with
uniform parameters and identical single-particle pump and loss rates, i.e. ΔΓ = ΔP = 0 the structure of
the stationary state density matrix is particularly simple and reads

ρ̂ss =
∑

N

πN |N〉 〈N| ,

where |N〉 is a Fock state with N bosons and πN ∼
(
P/Γ

)N
up to a normalization factor. We note in the

above expression that ρ̂ss is independent of any Hamiltonian parameter and only set by pump/loss ratio.
This implies in particular that the stationary state occupancy nα = Tr (ρssn̂α) is equal in the two cavities
and given by

nL = nR =
P

Γ− P
(7)

which coincides with the value of an uncoupled Kerr resonator. Given these results, it is clear that any
non-trivial dependence from J/U has to be looked for in properties other than the stationary-state
observables, as we will discuss in sections 5 and 7.1. The above result is however no longer true in presence
of a finite asymmetry in the dissipative couplings, leading to ΔΓ,ΔP �= 0, as we will see more in detail in
sections 6 and 7.2.

3. Methods

The vectorized version of equation (2) is solved by exact diagonalization, yielding a bi-normalized set of left
and right eigenvectors (〈lα| and |rα〉, respectively) that satisfy

〈lα|
̂

L = Lα〈lα| and
̂

L|rα〉 = Lα|rα〉, (8)

where L̂ is the matrix representation of the superoperator ˆ̂L. The cokernel and the kernel5 of L̂ are,
respectively, the left vacuum 〈I| and the steady-state density matrix |ρss〉.

The diagonalization problem can actually be simplified by realizing that both the Hamiltonian and the

dissipator posses a global gauge symmetry, expressed by an operator functional ˆ̂K that commutes with ˆ̂L
and that acts as ˆ̂K• = −i

[
N̂, •

]
. By exploiting this symmetry the matrix L̂ can then be written in a

block-diagonal form, where each block is labeled by the eigenvalues of ˆ̂K.
The matrix L̂ and its eigenvectors are written in a basis of Fock states, with a cutoff Ncutoff on each

particle number. We have fixed Ncutoff = 20 throughout the work as a good compromise between accuracy
and time and memory costs; this cutoff guarantees that the error on the displayed average steady-state
occupations is equal or below 2%, while higher but more expensive cutoffs would not visibly change the
results on the Green’s functions.

3.1. Time dynamics
Having solved the eigenproblem, we can then expand [36]

|ρ(t)〉 = eLt |ρ(0)〉 =
∑
α

ρα(t)|rα〉, (9)

where
ρα(t) � eLαt〈lα|ρ(0)〉 = eLαtρα(0). (10)

We note that the form of the Lindblad equation ensures ReLα � 0 ∀α, which prevents the dynamics from
unbounded growth with time. Again, if we can exploit the global gauge symmetry, then it is sufficient to
diagonalize just the largest diagonal block of the Lindbladian. The knowledge of the time-evolution of the

5 The left and right eigenvectors corresponding to the special eigenvalue L0 = 0.
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density matrix can then be used to calculate the time-evolution of other observables, for example the
occupations of the two cavities (i = {L, R}):

ni(t) = Tr (n̂iρ(t)) =
∑
α

〈I|n̂i|rα〉 ρα(t). (11)

3.2. Kälĺen–Lehmann spectral representation of Green’s functions
Albeit not necessary if one only wants to calculate the steady-state density matrix |ρss〉, the full knowledge of
the spectrum can be used to explore the Green’s functions of the system. In fact, one can obtain
frequency-domain expressions for the retarded and the Keldysh components of the steady-state Green’s
function defined respectively as

GR
AB(t) = −iθ(t) 〈[A(t), B(0)]〉 (12)

GK
AB(t) = −i 〈{A(t), B(0)}〉 (13)

where the average is taken over the stationary state and the operator A is evolved with the Lindbladian of
the system. Upon inserting a complete set of left and right eigenvectors of the Lindbladian and going to the

frequency domain by defining GR/K
AB (ω) �

∫
dt eiωtGR/K

AB (ω), we obtain a spectral representation of those
functions:

GR
AB(ω) =

∑
α

〈I|A|rα〉 〈lα|B|ρss〉
1

ω − iLα
−
(∑

α

〈
I|A†|rα

〉 〈
lα|B†|ρss

〉 1

ω + iLα

)∗

(14)

GK
AB(ω) =

∑
α

〈I|A|rα〉 〈lα|B|ρss〉
1

ω − iLα
−
∑
α

〈I|B|rα〉 〈lα|A|ρss〉
1

ω + iLα

+

(∑
α

〈
I|A†|rα

〉 〈
lα|B†|ρss

〉 1

ω + iLα

)∗

−
(∑

α

〈
I|B†|rα

〉 〈
lα|A†|ρss

〉 1

ω − iLα

)∗

. (15)

We see that the Green’s functions of an open Markovian quantum system can be generically written as sum
of simple poles at complex frequencies given by the eigenvalues of the Lindbladian and with weights, in
general complex, given by the transition matrix elements between the stationary state and some excited
state of the system [36, 37].

From the practical point of view, if one focuses on the single-particle Green’s functions, the calculation
can be further simplified via the block-diagonal structure of the Lindbladian outlined above. In fact, since
the calculation of the single-particle Green’s functions involves states that differ at most by one particle
from the stationary state, it turns out that the full knowledge of the spectrum is not necessary; it is sufficient
to diagonalize just the 3 largest blocks of the diagonal-block structure. Assuming that the diagonalization
scales as the cube of the matrix linear dimension, this yielded a theoretical 104 speedup of the
diagonalization with the 20-bosons cutoff we have used in both cavities, as well as a 99.7% reduction of the
memory required to store the results.

4. Review of semiclassical dynamics and self-trapping transition

In order to have a reference point for the analysis of our results we can start by recalling the predictions of a
semiclassical treatment of the quantum dynamics for the BHD [23, 38]. This is obtained by writing the
exact equations of motion for the cavity field operators âL/R and by closing them by taking âL/R ≡ αL/R,
where αL/R are c-numbers. It is important to remark that this approach, which assumes a coherent state of
bosons, works for large photons number, while in the quantum treatment we are typically interested in a
few-photons treatment. The resulting equations of motion read

˙
αL = −i

[
(ω0 − U) + 2U|αL|2

]
αL − iJαR − Γeff

L αL

˙
αR = −i

[
(ω0 − U) + 2U|αR|2

]
αR − iJαL − Γeff

R αR,

where Γeff
L/R = ΓL/R − PL/R are the effective loss rates, which for single-particle losses must always be positive.

As discussed in more detail in appendix A, it is possible to write semiclassical equations for the total
number of photons N = nL + nR and for the occupation imbalance between the two cavities Z = nL − nR,
with nL/R = |αL/R|2.

4
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Figure 1. Evolution of the occupation imbalance for N0 = 3, Z0 = 1, U = 0.1 and Δω = 0. Different colors correspond to
different values of J/U around the critical value, predicted via equation (16). The lines in the top panel are for a closed system,
while the ones of the same color in the bottom panel are for an open system with Γeff

L = Γeff
R = 4 × 10−4; they are obtained

respectively by numerically solving the full system of equations discussed in section 4 (see also equations (A2) and (A3) in
appendix A).

Figure 2. (Top) time tcross at which Z(t) crosses the value Z = 0, as a function of J/U. (Bottom) semiclassical time-averaged
imbalance. While the closed system has an analytical expression, the open case requires to solve the full dynamics (A2) and to
choose an upper time limit in the integration; in this plot, we integrate up to t = 200. In both panels, the critical value of J/U
predicted via (16) (for the closed system) and as a numerical estimate (for the open system) is shown as a vertical dotted line.

In the closed-system case, corresponding to Γeff
L/R = 0, number and energy conservation yield simplified

analytical results for the imbalance Z, predicting a transition from a regime in which Z oscillates above the
initial condition Z0 to a regime in which it oscillates around 0 (solid lines in figure 1) as one increases the
value of J/U above the critical coupling(

J

U

)
c

= N0

(√
1 − (Z0/N0)2 + 1

2

)
(16)

which depends on the initial total number of photons N0 and imbalance Z0. This phase transition can be
seen as a divergence of the oscillation period (figure 11) or as a sharp decay to zero of the time-averaged

imbalance 〈Z〉T = 1
T

t0+T∫
t0

dt Z(t) (figure 2, bottom panel) (see appendix A).

The open system case is not analytically solvable, but the numerical solution of the equations for the
total number of photons and for the cavity occupation imbalance shows that the closed-system picture is

5
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Figure 3. (Inset) imbalance Z(t) = nL(t) − nR(t) for different values of J/U (U = 0.1), starting from a state |3, 1〉 at t = 0
(Z0 = 2). The cavities have a base frequency ω0 = 1.0. The effective loss is Γeff

L = Γeff
R = 1 × 10−4 and the pumping rate realizes

a steady-state occupation equal to 2 in both cavities, so that Zss = 0 by construction. The semiclassical, non-dissipative critical
value of J/U for this particular configuration is (J/U)c ≈ 3.73. The time-averaged occupation imbalance computed over the time
interval [0, 1000] is shown in the main panel.

preserved for low enough values of the loss coefficients, with the difference that even oscillations around a
value that is different from zero at initial times will eventually transition at long enough times to an
oscillation regime around zero during the dynamical evolution (figure 1, bottom panel).

We can define the time at which this dynamical transition happens to be some tcross for which the
imbalance Z(t) crosses the value Z = 0 for the first time. If we plot this time as a function of J/U, see top
panel of figure 2, we expect that for the closed system this time is divergent for values of J/U below the
critical value; for the open system, however, this time assumes finite values even below the critical point and
the critical point itself is at a slightly lower value than its closed-system counterpart ((J/U)c = 2.88 vs
(J/U)c = 2.91). The peak structure visible below (J/U)c for the open system is due to the commensurability
between the period of the imbalance oscillations, that is a function of J/U itself, and tcross.

Albeit holding in the limit of large photon number only, these semiclassical results provide a useful hint
for the quantities to look at in the quantum case, as well as a point of comparison that highlights the
intrinsic differences between the two types of analyses.

5. Results: dissipative quantum dynamics

We now move on to discuss the full dissipative quantum dynamics of the BHD introduced in section 2. We
focus in particular on the occupation imbalance Z(t) = nL(t) − nR(t) between the two cavities, which in the
semiclassical limit shows a clear change of behavior as a function of the parameters.

In the following we set ω0 = 1, U = 0.1 and consider a situation of symmetric pump and loss rates,
ΔP = ΔΓ = 0, so that by construction the imbalance is zero at long times. We set the effective losses
Γeff

L/R = ΓL/R − PL/R = 1 × 10−4 and the pump PL/R = 2 × 10−4, such that the identical occupation in the
two cavities is nL = nR = 2 (see equation (7)), independently on J/U.

We start discussing the imbalance dynamics as a function from J/U, at a fixed initial condition which we
take to be a Fock state |3, 1〉, corresponding to an initial imbalance Z0 = 2 and an initial number of photons
N0 = 4. At the semiclassical level, see equation (16), this would correspond to a critical coupling
(J/U)c = 3.73 for the self-trapping transition.

In the inset of figure 3 we plot the time-dependent imbalance Z(t) for different values of J/U. We find a
clear crossover as the hopping is increased, from a pure exponential decay to zero at small J/U = 0.1, to an
underdamped decay with fast oscillations superimposed at J/U = 0.26 which evolves further into strongly
anharmonic oscillations at large values of the hopping, whose frequency grows with J/U. We can interpret
this behavior as a signature of the self-trapping transition in the dissipative quantum dynamics. In the small
hopping regime each site of the dimer evolves almost independently and the imbalance goes to zero, while
for larger values of the hopping there is a substantial transfer of photons across the dimer, resulting in
coherent Rabi-like oscillations, before the imbalance reaches the stationary state.

6
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Figure 4. Evolution of the imbalance Z(t) for the same settings of figure 3, shown at longer times and at log scale. The black,
dotted line is obtained analytically at J/U = 0; it corresponds to an exponential decay at a rate 2Γeff . At long times, ln

(
Z(t)/Z0

)

fits a straight line; the inset shows the corresponding decay rate as a function of J/U.

Figure 5. Imbalance Z(t) = nL(t) − nR(t) for (J/U) = 0.04(J/U)c (U = 0.1), starting from different |n0L, n0R〉 number states at
t = 0. The cavities have a base frequency ω0 = 1.0. The effective loss is Γeff

L = Γeff
R = 1 × 10−4 and the pumping rate realizes a

steady-state occupation equal to 2 in both cavities, so that Zss = 0 by construction. The quantity (J/U)c refers to the semiclassical
non-dissipative value in (16).

The J/U dependence can also be studied from the point of view of the time-averaged occupation
imbalance 〈Z〉T . In contrast to the semiclassical case (figure 2), where one expects a sharp transition6

between 〈Z〉T �= 0 and 〈Z〉T = 0, in the quantum case we have a smooth crossover between the two
regimes. The average imbalance drops quickly with J/U due to the development of damped Rabi
oscillations, reaching a minimum around J/U � 0.25. Quite interestingly, though, we find the appearance
of a region in which the imbalance actually increases as a function of J/U before completely dropping to 0 at
higher values of J/U. We note that, with respect to the semiclassical case, the localized (self-trapped) phase
with 〈Z〉T �= 0 is strongly suppressed and that already for J/U � 1.25 the average imbalance is zero. This is
consistent with the expectation that quantum fluctuations, included in the exact solution and not properly
treated in the semiclassical approach, tend to reduce the broken symmetry phase.

We now discuss the dynamics on longer time scales, where we expect the small dissipative couplings to
dominate over the Hamiltonian parameters. To this extent in figure 4 we plot the time-dependent imbalance

6 In the open case, the extent of the jump discontinuity in ∂J/U 〈Z〉T depends on the upper limit of the integration time.
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Figure 6. (Top) steady-state cavity occupations as a function of J/U for a dimer with loss coefficients (ΓL,ΓR) = (6 × 10−2,
2 × 10−2) and pump coefficients (PL, PR) = (4 × 10−2, 1 × 10−2) described in the main text, at different values of U. The cavities
have a base frequency ω0 = 1.0. The top curves are the occupations of the left cavity, while the bottom ones are the occupations
of the right cavity. (Bottom) steady-state imbalance Z = nL − nR corresponding to the occupations in the top panel.

over a broad range of time scales and for different values of J/U. We see a clear separation of dynamical
regimes, from a short-time one—strongly dependent on J/U, as we discussed above—to a longer-time one
where the imbalance exponentially decays to zero. While naively one could have expected the decay rate to
be set only by the dissipative couplings we see in the inset of figure 4 that instead it shows a monotonic
increase with J/U.

Finally, we consider the dependence of the time-dependent imbalance Z(t) from the initial condition. To
this extent we fix as initial density matrix a pure Fock state ρ0 = |n0L, n0R〉 〈n0L, n0R|, corresponding to an
initial imbalance Z0 = n0L − n0R and initial photon number N0 = n0L + n0R, and change the values of
n0L, n0R. At the semiclassical level, as we see in equation (16), there is a critical value of J/U for any N0, Z0.
In order to highlight the difference between the exact quantum dynamics and the semiclassical evolution we
fix the value of the hopping to interaction ratio J/U to be always below (J/U)c(N0, Z0), such that at the
semiclassical level the system should be localized (self-trapped) at short times for all the chosen initial
conditions (see equation (16)) and delocalized at longer times (see figure 1).

We plot in figure 5 the quantum dynamics of the imbalance for different initial conditions. We see that,
quite at the opposite of what expected from the semiclassical analysis, the evolution of Z(t) has a strong
dependence on the initial state in which the system is prepared. In particular we find both regimes of slow
decay to zero of the imbalance (see for example the initial conditions corresponding to |3, 1〉 or |4, 1〉),
indicating localized/self-trapped behavior, as well as regimes of coherent Rabi-like oscillations of the
imbalance (see for example the initial conditions corresponding to |3, 2〉 or |4, 3〉) that we can interpret as
signatures of delocalization. This is consistent with the observation made earlier (see figure 3) that quantum
fluctuations renormalize the critical coupling and favor the delocalized regime. We conclude therefore that,
as in the semiclassical case, the self-trapping crossover can be accessed by changing the initial condition,
however we do not explore here the precise dependence of

(
J/U

)
c

from the initial state and whether it can
be encoded in a simple expression depending only on N0 and Z0 as in equation (16).

6. Results: quantum steady state for finite pump/loss asymmetry

In the previous section we have considered the case of a BHD with symmetric pump and loss rates,
resulting in a trivial stationary state with zero imbalance for any value of J/U, but with a rich
nonequilibrium dynamics.

As we discussed in section 2, in presence of a finite pump/loss asymmetry among the two cavities the
stationary state becomes more interesting. We can therefore look for signatures of a delocalization crossover,
analogous to what we have shown in figure 3, directly in observables such as the steady-state occupation or
imbalance.

As an example, we consider two cavities with loss coefficients (ΓL,ΓR) = (6 × 10−2, 2 × 10−2) and
pump coefficients (PL, PR) = (4 × 10−2, 1 × 10−2), that thus realize steady-state occupations (n0L, n0R) =
(2, 1) in the uncoupled limit J = 0 (see equation (7)). In figure 6 we plot the dependence of the two cavity
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occupations (top panel) and imbalance (bottom panel) from the hopping to interaction ratio J/U, for
different values of U (keeping ω0 = 1 as unit). We see in the top panel that as J/U is increased the two
occupations both converge towards a common value, which is essentially independent from U. The
large-J/U limit of the occupations can be obtained analytically by considering the limit U = 0 and results in
a weighted average of the two uncoupled occupations (see equation (B12)).

As a consequence of the two occupations becoming equal at large J/U we see in the bottom panel that
the steady-state imbalance between the two cavities reduces and approaches zero for large enough J/U, a
signature of delocalization. We note that increasing U pushes the crossover J/U scale for delocalization to
lower values and we expect for U = 0.1 to obtain a behavior comparable with what obtained from the
dynamics (see figure 3).

7. Results: Green’s functions

A way to get some insights on the system even when the steady-state observables do not depend neither on J
nor on U, as in the case of symmetric pump and losses, is to look instead at the single-particle Green’s
functions. Either by seeing them as the resolvent of the Lindbladian or as response functions that link
different states and thus participate in the calculation of transport quantities like the optical transmission,
the Green’s functions are sensitive to the details of the Lindbladian spectrum, and not only to the zero
mode (stationary state), as it appears clearly from the Källén–Lehmann representation discussed in
section 3.2.

In this section we present our results for the Green’s function of the BHD, that we obtained from the
exact diagonalization of the Lindbladian as discussed in section 3. Specifically we consider the
single-particle Green’s functions, obtained from equation (15) with the choice A = ai and B = a†j with
i, j = L/R, and in particular the spectral function Aij(ω) and the cavity correlation function Cij(ω), defined
as

Aij(ω) � − 1

π
ImGR

ij (ω), Cij(ω) � − 1

2πi
GK

ij (ω) (17)

with i, j = L/R. The diagonal components (for i = j) contain information on the local (on-site) spectrum
and occupations of the bosonic mode and satisfy the sum rules

+∞∫
−∞

dωAi(ω) = 1 (18)

+∞∫
−∞

dω Ci(ω) = 2ni + 1, (19)

where ni is the stationary state occupation. The off-diagonal components contain instead information on
the delocalized modes across the dimer. In particular the correlation function CLR(ω) has real and
imaginary parts which satisfy the sum-rules

J

+∞∫
−∞

dω ReCLR(ω) = 〈T̂〉 (20)

J

+∞∫
−∞

dω ImCLR(ω) = 〈̂I〉, (21)

where 〈T̂〉 = J〈â†LâR + â†RâL〉 is the average kinetic energy in the stationary state while 〈̂I〉 = −iJ〈â†RâL

− â†LâR〉 is the average current flowing from L to R (see appendix C). We now presents our results for these
Green’s functions, starting from the pump/loss symmetric case and then discussing the role of a finite
pump/loss asymmetry.

7.1. Symmetric pump and losses
We start considering the case of symmetric pump and loss rates, ΔΓ = ΔP = 0. As a result the system is
completely symmetric upon reflection (L ↔ R) and as such the diagonal spectral functions in equation (17)
do not depend on the index i = L/R. As an example, in the top panel of figure 7 we plot the spectral
function of the left cavity for different values of J/U.

9
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Figure 7. (Top) spectral function AL(ω) for different values of J/U (U = 0.1). The cavities have a base frequency ω0 = 1.0
(vertical dotted line), while the effective loss is Γeff

L = Γeff
R = 1 × 10−4 and the pumping rate realizes a steady-state occupation

equal to 2 in both cavities. The circled peaks mark the bonding/anti-bonding states resulting from the splitting of the first excited
state at ω0 + U for decoupled cavities. (Bottom) real part of the off-diagonal cavity correlation function CLR(ω). This function is
negative (positive) for the bonding (anti-bonding) states marked by circles and discussed in the top panel.

At low J/U the spectral function resembles much the one of a single driven-dissipative Kerr resonator,
with a characteristic sequence of peaks located at frequencies given by the energy difference between states
with n + 1 and n photons, Δn = En+1 − En = ω0 + U + 2Un, where En = ω0n + Un2 is the energy of the
Kerr resonator with n photons (see the Hamiltonian in equation (1)). These peaks, which start at ω0 + U
and are equally spaced by 2U, would be infinitely sharp in the closed system while are broadened by the
dissipative processes by an amount roughly given by Γeff

L (it would perfectly match this value in the
non-interacting, decoupled case J = U = 0, see appendix B.1).

As J/U is increased we see that the first effect is the creation of sub-peaks within each resonance,
particularly in the low frequency ones, with the center of mass of each band remaining roughly located at
the isolated Kerr excitation energies. Upon increasing further J/U we see how different bands start to merge
in a continuum and for J/U = 0.64 a new features arises, namely a finite spectral weight appears below the
resonator frequency ω0 = 1, which becomes a sharp peak for large values of J/U (e.g. J/U = 1.50). This
peak corresponds to a delocalized photonic excitation as one can realize by looking at the spectral function
in the opposite limit of U = 0 (see appendix B.1), which has two poles at frequencies roughly ω± � ω0 ± J
since in this regime the dissipative couplings are very small.

10
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Figure 8. Spectral functions AL(ω) (top) and AR(ω) (bottom) for different values of J/U (U = 0.1). The cavities have a base
frequency ω0 = 1.0 (vertical dotted line), while the effective losses are Γeff

L = 2.5 × 10−4 and Γeff
R = 1 × 10−4 and the pumping

rates realizes uncoupled steady-state occupations equal to ∼3.3 in the left cavity and 2 in the right cavity.

It is interesting to connect these spectral features to the behavior of the time-dependent and of the
time-averaged imbalance shown in figure 3 for similar values of J/U. For small values of the hopping the
imbalance is different from zero at short and intermediate times, i.e. photons remain localized in one of the
two cavities and the spectral function resembles the one of an isolated Kerr resonator. Upon increasing J/U
photons start to hop coherently within the dimer: the imbalance shows short-time Rabi oscillations with a
period controlled by J/U and its time-average vanishes, while spectrally this translates in the emergence of
two peaks above and below the bare resonator frequency.

In the bottom panel of figure 7 we plot the real-part of the off-diagonal correlation function, for
different values of J/U and ΔΓ = ΔP = 0. We note that quite interestingly the imaginary part of this
Green’s function vanishes in this regime, a point onto which we will come back in the next section. At small
values of the hopping the real-part CLR(ω) is essentially zero, the cavities are almost decoupled, except at
frequencies corresponding to the eigenmodes of the (interacting) single cavity (see top panel at the same
value of J/U), where an anti-resonance like contribution emerges. Upon increasing J/U, as we discussed for
the spectral function, further peaks appear which start merging and shifting towards lower frequencies. We
note that the structure of the peaks evolve as well: at small J/U they are almost perfectly asymmetric in
frequency (leading to a vanishing integral, see equation (20)) while upon increasing J/U, when the system
becomes more delocalized, this asymmetry disappears. Furthermore, also the strength of the peaks increases
with J/U (note the different scale in the panels) in a way that appears opposite to the peaks in the spectral
function in the top panel. This is again consistent with the idea that upon entering in the delocalized regime
the weight is transferred from the localized (on-site) modes to the delocalized (off-diagonal ones).

7.2. Asymmetric pump and losses
We now move to discuss the case of asymmetric pump and losses, ΔP,ΔΓ �= 0, resulting as we know in a
non trivial stationary state density matrix (and finite imbalance, see section 6). A natural question is

11
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Figure 9. Cavity off-diagonal correlation function CLR(ω) for different values of J/U (U = 0.1). The cavities have a base
frequency ω0 = 1.0 (vertical dotted line), while the effective losses are Γeff

L = 2.5 × 10−4 and Γeff
R = 1 × 10−4 and the pumping

rates realizes uncoupled steady-state occupations equal to ∼3.3 in the left cavity and 2 in the right cavity.

whether this different nonequilibrium protocol results in a qualitatively different behavior of the Green’s
functions.

We start from the spectral functions, that we plot in figure 8 for a fixed pump/loss asymmetry and
different values of J/U. To highlight the comparison between the two cavities we plot the left and right
spectral functions on a common frequency scale. While we see a similar structure of peaks evolving with
J/U, as compared to the symmetric case of figure 7, we also note an interesting dependence from the
pump/loss asymmetry and the hopping. In particular, for small J/U the right cavity spectral function
(bottom panels) has slightly stronger peaks at low frequency than the left cavity one, reflecting the
asymmetry in the pump/loss rates. As the hopping is increased and the excitations are delocalized in the
dimer we see that this asymmetry in the left/right spectral functions decreases and for J/U = 1.50 the two
spectra are essentially the same and very close in shape to the symmetric one for the same value of J/U (see
figure 7).

Then we consider the off-diagonal cavity correlation function, see figure 9, that we study as a function of
J/U. In the top panel we plot the real part, ReCLR(ω), which shows a qualitative behavior very similar to the
symmetric case shown in figure 7, with anti-Lorentzian peaks which broaden and merge into a continuum
at large J/U indicating the increase in kinetic energy. On the other hand, an interesting difference appears in
the imaginary part of the off-diagonal cavity correlation function, ImCLR(ω), which is now different from
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Figure 10. Current flowing in the dimer as obtained from (21) and (22). The shown values of J/U are the same ones used for the
panels of figures 8 and 9.

zero and shows a non-trivial dependence from J/U, with narrow peaks which broaden and merge into a
continuum as J/U is increased.

We can understand the origin of a finite imaginary part of the off-diagonal cavity correlation function
by using the sum rule that relates the integral of ImCLR(ω) to the average current flowing from L to R (see
equation (21) and appendix C). In the stationary state the average current is completely determined by the
effective pump/loss rates Γeff

L/R = ΓL/R − PL/R and the stationary occupation nL/R through the relation

〈̂I〉 = ΔP − nLΓ
eff
L + nRΓ

eff
R , (22)

where ΔP is the pump asymmetry. We see that the right-hand side of this equation exactly vanishes in the
symmetric case ΔP = 0, Γeff

L = Γeff
R since as we know the occupations of the two cavities become equal

(nL = nR). On the other hand for finite pump/loss asymmetry there is a finite current flowing from L to R
and therefore an intra-dimer dissipation. This is interesting since the two cavities are only coupled by a
coherent hopping coupling. As a result of this finite current and dissipation the imaginary part of the
off-diagonal cavity correlation function has to be different from zero, both based on the sum-rule in
equation (21) and on physical intuition. In figure 10 we plot the average current versus J/U and compare it
with the integral over ImCLR(ω) to confirm the quantitative agreement. We also see that the overall current,
although very small, increases with J/U, an effect which does not appear clearly from the shape of ImCLR(ω)
in figure 9 but that is consistent with the idea that delocalization leads to more coherent exchange of
excitations between the two cavities and therefore an increased current.

Finally, we have also considered the case of extreme pump/loss asymmetry, corresponding to the
situation in which one of the two cavities is non-dissipative, i.e. Γeff

R = PR = 0. Quite interestingly we have
found that also in this case, as for perfectly symmetric rates, the current and the dissipative part of the
off-diagonal cavity correlation function ImCLR(ω) are both zero, for any value of J/U. We can understand
this result from a simple physical picture: in absence of a Markovian environment coupled to the right
cavity the current flowing from left to right cannot be dissipated and bounces back, resulting in a zero net
current. This can be also understood more formally, by looking at equation (22) and by noting that for
Γeff

R = PR = 0 this reduces to 〈̂I〉 = Γeff
L (n0L − nL). As we discuss in appendix B.2 in the limit Γeff

R = PR = 0
the left cavity occupation reduces to the one of an isolated left site coupled to Markovian pump and losses,
i.e. nL = n0L resulting therefore in a vanishing current.

8. Discussion

In this section we discuss our results on the BHD in the broader context of driven-dissipative phase
transitions and comment more in detail on the experimental realization of our setup and our findings.

As for their closed system counterparts, dissipative phase transitions emerge sharply in the limit of
thermodynamically large systems [5, 13]. In the open-system context this has been shown to arise when
taking the large volume limit at fixed finite-density or in the limit of large photon numbers,
correspondingly to a well defined classical limit. From this point of view it is not surprising that for our
BHD the localization-delocalization transition that exists at the semiclassical level turns in a crossover in
presence of quantum fluctuations. These are in fact particularly strong in the present case where the system
size is finite and therefore the Liouvillian gap is non-vanishing. This does not exclude of course the presence
of sharp nonequilibrium phase transitions for arrays of driven-dissipative cavities with incoherent
pumping, as it has been indeed recently discussed [11, 37].
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As we mentioned in the introduction, the driven-dissipative BHD has been realized experimentally in a
variety of quantum light–matter platforms. In circuit QED this can be done by considering the large
detuning limit of two coupled Jaynes–Cummings (JC) units, which can be realized by capacitively coupling
two resonators, each containing a transmon qubit. In this context the focus has been mostly on the case of
coherently driven cavities, or of purely dissipative (lossy) dynamics, however an incoherent pump can be
also engineered by weakly coupling each site of the dimer to a transmission line or to an incoherent noise
[39]. In an actual experimental setting, the case of perfectly symmetric dimer is obviously more difficult to
achieve due to local imperfections which introduce small disorder in the system. This however has been
shown to remain controllable, particularly for small lattices [40, 41]. Our results for the dynamics of the
imbalance or its dependence from external parameters, as well as the Green’s functions, can be directly
measured experimentally. The former has been done in the context of a JC dimer through homodyne
detection [16]. The latter can be naturally addressed in a transmission/reflection experiment. Finally, in
other light–matter platforms, such as semiconductor microcavities and photonic crystals, incoherent
pumping is even more natural to realize, especially for lasing applications [21]. We also mention the BHD is
relevant for ultracold atomic gases experiments with double-well systems, and in this context controlled
dissipative (incoherent) processes of pump and losses can be engineered by coupling to other bands.

9. Conclusions

In this article we have studied an open Bose–Hubbard dimer and investigated the possible signatures of a
dissipative localization–delocalization transition or crossover, where upon tuning the ratio of coherent
hopping versus local interaction an initial population imbalance is either trapped in one of the two cavities
(self-trapping) or equally distributed across the dimer.

In the semiclassical limit of many photons per site, that we reviewed for completeness in section 4, this
transition is known to occur sharply for a purely conservative (Hamiltonian) dynamics and to remain
present in the form of a short-time dynamical transition in presence of pumps and losses, while turning
into a smooth crossover at long times.

In the full quantum regime the situation is particularly interesting since it is known that in absence of
any asymmetry in the system parameters the stationary state density matrix is independent of any
Hamiltonian coupling and only set by the pump and loss coefficients. To address therefore possible
signatures of a dissipative self-trapping crossover one is forced to go beyond simple steady-state observables
or to explicitly break the symmetry between the two cavities. To this extent we have exactly solved the
problem by numerical diagonalization of the Lindbladian superoperator and obtained the stationary state,
the full dissipative quantum dynamics and properties of the excitations on top of the stationary state, as
encoded in the single-particle Green’s functions, see section 3.

In section 5 we have shown that the short-time dissipative dynamics shows clear signatures of a
crossover between a localized behavior with finite residual imbalance and coherent oscillations leading to a
vanishing imbalance, which can be accessed by either changing the ratio J/U or the initial condition. On the
other hand the long-times dynamics is largely controlled by the dissipative rates. In section 6 we have shown
that by breaking the symmetry of pump-loss rates between the two cavities one can induce a non-trivial
stationary state and a finite imbalance which shows a smooth delocalization crossover upon increasing J/U.

Finally, in section 7 we have presented our results for the single particle Green’s functions, in particular
the spectral function and the cavity correlation function describing spectrum and occupation of the bosonic
modes. These turn out to be sensitive probes of the Hamiltonian dynamics even in the fully symmetric case,
where the delocalization crossover is signaled by the splitting of the lowest energy single-photon peak into
bonding and anti-bonding modes as J/U is increased. In presence of a finite pump-loss asymmetry we have
shown that a finite current flows between the left and right cavities and this has direct consequences in the
emergence of a non-vanishing imaginary part of the off-diagonal cavity correlation function.

The methodology discussed in this work, based on the exact diagonalization of a few-sites Lindbladian
and on the computation of Green’s functions, can be applied to different problems. Within the BHD it
would be interesting to study the role of two-particle losses recently discussed in the context of the quantum
Zeno effect [42–46]. Another future direction is the development of an exact diagonalization Lindblad
impurity solver for dynamical mean field theory [47–50]; in this scheme the DMFT self-consistent bath is
approximated with a limited number of effective sites. In this respect we note that a two-site model turns
out to share many similarities [51] with a minimal, yet reasonably accurate, implementation of the DMFT
using a single site in the bath [52]. The rationale is simply that, in the dimer, one of the two sites plays the
role of the self-consistent bath for the other.
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Appendix A. Semiclassical dynamics

The driven-dissipative Bose–Hubbard dimer can be also analyzed at a semiclassical level, by writing the
Heisenberg equations for the cavity fields in (1) with pumping and losses as non-Hermitian terms and then
taking the expectation values:

ȧL = −i
[

(ωL − U) + 2Ua†LaL

]
aL − iJaR − Γeff

L aL

ȧR = −i
[

(ωR − U) + 2Ua†RaR

]
aR − iJaL − Γeff

R aR,

where Γeff
L/R = ΓL/R − PL/R are the effective loss rates, which for single-particle losses must always be positive.

By applying the transformation

aL/R � αL/ReiϑL/R , αi,ϑi ∈ R (A1)

one can then reduce the equations for the two complex numbers above into the following three equations
for the real quantities N = nL + nR, Z = nL − nR and φ = ϑL − ϑR:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Ṅ = −
(
Γeff

L + Γeff
R

)
N −

(
Γeff

L − Γeff
R

)
Z

Ż =−
(
Γeff

L + Γeff
R

)
Z −

(
Γeff

L − Γeff
R

)
N − 2J

√
N2 − Z2 sin(φ)

φ̇ = −Δω − 2UZ + 2J
Z√

N2 − Z2
cos φ,

(A2)

where Δω = ωL − ωR.

A.1. Closed system
In the Hamiltonian case, with Δω = 0 for simplicity, the equations reduce to⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Ṅ = 0 =⇒ N = N0 = const.

Ż = −2J
√

N2
0 − Z2 sin(φ)

φ̇ = −2UZ + 2J
Z√

N2
0 − Z2

cos φ

(A3)

by using the fact that in a closed system the energy is conserved, the two remaining equations can be further
reduced to a single equation for the macroscopic occupation imbalance:

Ż = −2
√

p(Z), (A4)

where p(Z) is a polynomial that can be factorized as

p(Z) = −U2

4

(
Z2 − Z2

0

) (
Z2 − Z2

1

)
, (A5)

with Z0 the initial imbalance and Z1 equal to

Z1 =

√
Z2

0 + 4

(
J

U

)√
N2

0 − Z2
0 − 4

(
J

U

)2

. (A6)
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Figure 11. Oscillation period T obtained from (A9) as a function of J/U; the settings are the same as in figure 1.

Being under a square root, the sign of p(Z) is the real discriminant on the evolution of Z. In turn, the
sign of p(Z) is completely determined by Z1 being real or imaginary (since Z0 is real). If Z1 is real then the
polynomial is positive only in the region between Z0 and Z1 and in the region between −Z0 and −Z1, no
matter whether Z1 is greater or less than Z0. If instead Z1 is imaginary then the polynomial is positive only
in the region between −Z0 and Z0.

The nature of Z1 is in turn determined by the sign of the polynomial(
J

U

)2

−
√

N2
0 − Z2

0

(
J

U

)
− Z2

0

4
. (A7)

If we assume that J/U is positive, then the polynomial above provides a critical J
U , given in the main text in

equation (16) that we rewrite here for simplicity(
J

U

)
c

= N0

(√
1 − (Z0/N0)2 + 1

2

)
. (A8)

For J
U <

(
J
U

)
c

Z1 is real and therefore Z(t) oscillates between Z0 and Z1; for J
U >

(
J
U

)
c

Z1 is imaginary and
therefore Z(t) oscillates between −Z0 and Z0. Then

(
J
U

)
c
, in this sense, can be interpreted as a critical value

for a transition from a localized regime (low J) to a de-localized regime (high J).
This transition can also be seen through the divergence of the oscillation period at the critical point

(figure 11), which can be analytically expressed as

T =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

4K

((
Z0
Z1

)2
)

U
√
−Z2

1

(
J

U

)
>

(
J

U

)
c∣∣∣∣∣∣∣∣

2

[
K

((
Z0
Z1

)2
)
− F

(
sin−1

(
Z1
Z0

)
,
(

Z0
Z1

)2
)]

U
√
−Z2

1

∣∣∣∣∣∣∣∣
(

J

U

)
<

(
J

U

)
c

,

(A9)

where F(ϕ, m) =
ϕ∫
0

du 1√
1−m2 sin2 u

and K(m) = F( π
2 , m) are respectively the incomplete and the complete

elliptic integral of the first kind.
The divergence is logarithmic, as one can infer by approximating the integral around the critical point

(Z1 → 0+). The fact that the period diverges, making the oscillations slower and slower, is a common
signature of a phase transition and it is called critical slowing down.

A.2. Open system
The question is now how much of the non-dissipative analysis done above survives in the presence of losses,
at intermediate times. As we cannot go further with an analytical treatment, we have to go back to (A2) and
solve the full system of equations.

Intuitively we expect to see a similar oscillatory behavior of Z(t) in the dissipative case, though the mean
value approaches zero at large enough times since, semiclassically, dissipative cavities decay to vacuum at
the stationary state.

Indeed, in figure 1 you see that the presence of dissipation has the double effect of increasing the
oscillation period and producing an overall decay of the occupation imbalance with time. But more
interestingly, it stimulates a dynamical transition from the regime in which the imbalance oscillations are
between Z0 and Z1 to a regime in which the imbalance oscillates around 0.
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Appendix B. Analytical quantum results at U = 0

B.1. Green’s functions
The Green’s functions at U = 0 can be obtained analytically via the Keldysh formalism. Here we start with
the single-cavity Green’s function and then extend to two coupled cavities.

B.1.1. Single cavity

The retarded, advanced and Keldysh components of the Green’s function are:

GR/A(ω) =
1

ω − ω0 ± i(Γ− P)
, (B1)

GK(ω) =
−2i(Γ + P)

(ω − ω0)2 + (Γ− P)2
. (B2)

The loss/pumping rates appear in couple as Γ− P, except for the Keldysh Green’s function in which they
also appear as Γ + P. This is a signature of the quantum nature of the system, encoded in the Keldysh
Green’s function, in the same way that it appears, for example, when adding quantum noise to a
semiclassical treatment.

B.1.2. Two coupled cavities

In the case of two coupled cavities, we distinguish between left and right cavity with a subscript L/R. The
uncoupled Green’s functions, denoted with a subscript 0, are the ones in (B2) that we have found before for
the single cavity, i.e.

GR/A
0i (ω) =

1

Δi ± iΓ−i
, GK

0i(ω) =
−2iΓ+i

Δ2
i + Γ2

−i

, (B3)

where

Δi � ω − ωi, i = L, R (B4)

Γ±i � Γi ± Pi, i = L, R. (B5)

Then the Green’s function components for the left cavity are

GR
L (ω) =

1

ΔL + iΓ−L − J2

ΔR+iΓ−R

(B6)

GA
L (ω) = (GR

L (ω))∗ (B7)

GK
L (ω) = −2i

[
Γ+L + J2 Γ+R

Γ2
+R + Γ2

−R

] ∣∣GR
L (ω)

∣∣2 (B8)

and the corresponding Green’s functions for the right cavity are obtained by simply replacing L → R.

B.2. Steady-state properties
The retarded Green’s function of the left cavity can be also rewritten as

GR
L (ω) =

ΔR + iΓ−R

Δ+Δ− + i (ΔLΓ−R +ΔRΓ−L)
, (B9)

where Δ± = ω − ω± and

ω± =
ωL + ωR

2
±

√(
ωL − ωR

2

)2

+ J2 + Γ−LΓ−R. (B10)

Since the spectral function is proportional to the imaginary part of the retarded Green’s function, this
means that the frequency spectrum will be peaked around ω+ and ω−, and J will just have the effect of
increasing or decreasing the separation between these two peaks.

As for the occupations of the two cavities, they can be calculated via (19). Analytical expressions can be

easily obtained in some limiting cases. For example, if Γ±R = Γ±L, you obtain that
+∞∫
−∞

dω CL(ω) =

Γ+L/Γ−L and therefore

nL ≡ n0L =
PL

ΓL − PL
(B11)
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Figure 12. (Top) Steady-state cavity occupations as a function of J for the dimer with loss coefficients (ΓL,ΓR) = (6 × 10−2,
2 × 10−2) and pump coefficients (PL, PR) = (4 × 10−2, 1 × 10−2) described in section 6, at U = 0. The dashed lines are the
theoretical predictions calculated by combining the exact formula for the Keldysh Green’s function (B8) and (19). (Bottom)
steady-state imbalance Z = nL − nR corresponding to the occupations in the top panel.

(and similarly for the right cavity), i.e. the occupation of the cavities at the steady-state is equal to the
occupation of the uncoupled cavities (J = 0) and it is completely fixed by the pump/loss rates, no matter
what the value of J is. This is actually a special case of a result obtained in [35], showing that any number of
cavities with the same incoherent pump/loss rates have a trivial steady state that does not depend on the
details of their Hamiltonian, i.e. in this case neither on J nor on U. This means, in practice, that in order to
have non-trivial physics at the steady state we must have, if not a loss imbalance between the two cavities, at
least a pump imbalance.

A more interesting case is the one at ‘strong’ J, where ‘strong’ means much bigger than at least all the
loss coefficients. This time, we do not impose any prior condition on the pump/loss rates. If ωL = ωR for
simplicity, then the steady-state occupations become7

nL ≡ nR =
Γ−Ln0L + Γ−Rn0R

Γ−L + Γ−R
, (B12)

i.e., for strong enough coupling the occupation of the left and of the right cavities are equal and equal to a
weighted average of their bare occupations.

In particular, if the effective losses are equal (Γ−L = Γ−R), then

nL ≡ nR =
n0L + n0R

2
, (B13)

i.e. the steady-state occupation of the two cavities is exactly the mean between the bare occupations.
The J = 0 and strong J limits match our intuitive expectations, i.e. that the occupations of the cavities, as

a function of J, start from their uncoupled values and get closer and closer to each other as J is increased, up
to the point at which they match each other’s value (figure 12).

Another interesting limiting case is obtained if one of the cavities, say e.g. the right one, has Γ±R = 0.
Then, for any J, we get

nL ≡ nR ≡ n0L. (B14)

In this case the uncoupled occupation of the right cavity, n0R, is formally ill-defined; however, it can be
easily regularized by taking PR = 0 and ΓR = ε, with ε > 0 arbitrarily small, for which n0R = 0.

From a physical point of view, in this case the steady-state occupations in the system are fixed by the
only available Markovian environments, i.e. the ones attached to the left cavity, so the occupations become

7 Note that the quantity Γ−L/R used in the quantum treatment has the same value of the semiclassicalΓeff
L/R. In addition, below the lasing

threshold we can always parameterize ΓL/R and PL/R as.

ΓL/R = Γ−L/R

(
n0L/R + 1

)

PL/R = Γ−L/Rn0L/R.
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equal as soon as the two cavities are connected (J > 0). For this reason, we expect this result to be valid at
U �= 0 as well.

Appendix C. Sum-rules and particle currents in the BHD

We start deriving the sum-rules for the off-diagonal correlation function defined in equations (20) and
(21). To this extent we note that, by our definitions in equations (13)–(17),

+∞∫
−∞

dω e−iωtCLR(ω) = 〈âL(t)â†R + â†RâL(t)〉

and that by taking the Hermitian conjugate we have
+∞∫
−∞

dω eiωtC∗
LR(ω) = 〈âRâ†L(t) + â†L(t)âR〉.

Taking the t → 0+ limit and the sum/difference of the above two equations we obtain
+∞∫
−∞

dω
(
CLR(ω) + C∗

LR(ω)
)
= 2〈â†LâR + â†RâL〉

as well as
+∞∫
−∞

dω
(
CLR(ω) − C∗

LR(ω)
)
= 2〈â†RâL − â†LâR〉,

from which the sum-rules quoted in the main text follow.
We now relate the average stationary current across the dimer to the pump-loss asymmetry. To this

extent we consider the BHD in equation (1) and we start writing down the quantum equation of motion for
the density of bosons in each site of the dimer, nα(t) = Tr (ρ̂(t)n̂α), with α = L/R, which read

dnL

dt
= i

〈[
T̂, n̂L

]〉
+ 2 (PL + nL (PL − ΓL)) (C1)

dnR

dt
= i

〈[
T̂, n̂R

]〉
+ 2 (PR + nR (PR − ΓR)) , (C2)

where T̂ = J
(

â†LâR + â†RâL

)
is the kinetic energy operator. The commutator gives[

T̂, n̂L

]
= −

[
T̂, n̂R

]
= J

(
â†RâL − â†LâR

)
≡ îI. (C3)

If we take the difference between the two equations we obtain for the dynamics of the imbalance
Z = nL − nR the result

dZ

dt
= −2〈̂I〉+ 2

(
ΔP − nLΓ

eff
L + nRΓ

eff
R

)
(C4)

in the stationary state the right-hand side goes to zero and we obtain

〈̂I〉 = ΔP − nLΓ
eff
L + nRΓ

eff
R (C5)

from which, using equation (B11), we immediately conclude that for symmetric pump and losses there is
no average current between the two sites of the dimer and as a consequence, using equation (21), the
imaginary part of the off-diagonal cavity correlation function has vanishing integral.
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[4] Kessler E M, Giedke G, Imamoğlu A, Yelin S F, Lukin M D and Cirac J I 2012 Phys. Rev. A 86 012116
[5] Minganti F, Biella A, Bartolo N and Ciuti C 2018 Phys. Rev. A 98 042118
[6] Carmichael H J 2015 Phys. Rev. X 5 031028
[7] Casteels W, Storme F, Le Boit́e A and Ciuti C 2016 Phys. Rev. A 93 033824
[8] Le Boit́e A, Orso G and Ciuti C 2013 Phys. Rev. Lett. 110 233601
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[46] Rossini D, Ghermaoui A, Aguilera M B, Vatŕe R, Bouganne R, Beugnon J, Gerbier F and Mazza L 2020 arXiv:2011.04318
[47] Georges A, Kotliar G, Krauth W and Rozenberg M J 1996 Rev. Mod. Phys. 68 13
[48] Aoki H, Tsuji N, Eckstein M, Kollar M, Oka T and Werner P 2014 Rev. Mod. Phys. 86 779
[49] Arrigoni E, Knap M and von der Linden W 2013 Phys. Rev. Lett. 110 086403
[50] Scarlatella O, Clerk A A, Fazio R and Schirò M 2020 arXiv:2008.02563
[51] Capone M and Ciuchi S 2002 Phys. Rev. B 65 104409
[52] Potthoff M 2001 Phys. Rev. B 64 165114

20

https://doi.org/10.1103/physreva.86.012116
https://doi.org/10.1103/physreva.86.012116
https://doi.org/10.1103/physreva.98.042118
https://doi.org/10.1103/physreva.98.042118
https://doi.org/10.1103/physrevx.5.031028
https://doi.org/10.1103/physrevx.5.031028
https://doi.org/10.1103/physreva.93.033824
https://doi.org/10.1103/physreva.93.033824
https://doi.org/10.1103/physrevlett.110.233601
https://doi.org/10.1103/physrevlett.110.233601
https://doi.org/10.1103/physrevlett.116.143603
https://doi.org/10.1103/physrevlett.116.143603
https://doi.org/10.1103/physreva.97.013853
https://doi.org/10.1103/physreva.97.013853
https://doi.org/10.1103/physreva.96.023839
https://doi.org/10.1103/physreva.96.023839
https://doi.org/10.1103/physrevb.99.064511
https://doi.org/10.1103/physrevb.99.064511
https://doi.org/10.1103/physrevlett.124.043601
https://doi.org/10.1103/physrevlett.124.043601
https://doi.org/10.1103/physrevb.102.064301
https://doi.org/10.1103/physrevb.102.064301
https://doi.org/10.1103/revmodphys.65.851
https://doi.org/10.1103/revmodphys.65.851
https://doi.org/10.1103/physrevx.4.031043
https://doi.org/10.1103/physrevx.4.031043
https://doi.org/10.1103/physrevlett.113.110502
https://doi.org/10.1103/physrevlett.113.110502
https://doi.org/10.1103/physrevlett.105.120403
https://doi.org/10.1103/physrevlett.105.120403
https://doi.org/10.1103/physrevlett.108.126403
https://doi.org/10.1103/physrevlett.108.126403
https://doi.org/10.1038/nphys2609
https://doi.org/10.1038/nphys2609
https://doi.org/10.1038/nphoton.2015.65
https://doi.org/10.1038/nphoton.2015.65
https://doi.org/10.1103/physrevlett.124.213602
https://doi.org/10.1103/physrevlett.124.213602
https://doi.org/10.1103/physrevlett.79.4950
https://doi.org/10.1103/physrevlett.79.4950
https://doi.org/10.1103/physrevlett.87.180402
https://doi.org/10.1103/physrevlett.87.180402
https://doi.org/10.1103/physreva.66.053607
https://doi.org/10.1103/physreva.66.053607
https://doi.org/10.1103/physrevlett.95.010402
https://doi.org/10.1103/physrevlett.95.010402
https://doi.org/10.1103/physrevlett.103.105302
https://doi.org/10.1103/physrevlett.103.105302
https://doi.org/10.1103/physrevb.81.054305
https://doi.org/10.1103/physrevb.81.054305
https://doi.org/10.1103/physreva.88.063606
https://doi.org/10.1103/physreva.88.063606
https://doi.org/10.1103/physrevlett.104.183601
https://doi.org/10.1103/physrevlett.104.183601
https://doi.org/10.1103/physreva.83.021802
https://doi.org/10.1103/physreva.83.021802
https://doi.org/10.1103/physreva.95.013812
https://doi.org/10.1103/physreva.95.013812
https://doi.org/10.1103/physreva.101.033839
https://doi.org/10.1103/physreva.101.033839
https://doi.org/10.1103/physrevb.82.100507
https://doi.org/10.1103/physrevb.82.100507
https://doi.org/10.1016/j.crhy.2016.07.001
https://doi.org/10.1016/j.crhy.2016.07.001
https://doi.org/10.1088/1367-2630/ab0ce9
https://doi.org/10.1088/1367-2630/ab0ce9
https://doi.org/10.1103/physrevb.77.125324
https://doi.org/10.1103/physrevb.77.125324
https://doi.org/10.1103/physrevlett.107.053602
https://doi.org/10.1103/physrevlett.107.053602
https://doi.org/10.1103/physreva.86.023837
https://doi.org/10.1103/physreva.86.023837
https://doi.org/10.1103/physrevx.7.011016
https://doi.org/10.1103/physrevx.7.011016
https://doi.org/10.1063/1.523304
https://doi.org/10.1063/1.523304
https://doi.org/10.1119/1.12204
https://doi.org/10.1119/1.12204
https://doi.org/10.1103/physreva.41.2295
https://doi.org/10.1103/physreva.41.2295
https://doi.org/10.1126/science.1155309
https://doi.org/10.1126/science.1155309
https://arxiv.org/abs/2011.04318
https://doi.org/10.1103/revmodphys.68.13
https://doi.org/10.1103/revmodphys.68.13
https://doi.org/10.1103/revmodphys.86.779
https://doi.org/10.1103/revmodphys.86.779
https://doi.org/10.1103/physrevlett.110.086403
https://doi.org/10.1103/physrevlett.110.086403
https://arxiv.org/abs/2008.02563
https://doi.org/10.1103/physrevb.65.104409
https://doi.org/10.1103/physrevb.65.104409
https://doi.org/10.1103/physrevb.64.165114
https://doi.org/10.1103/physrevb.64.165114

	Signatures of self-trapping in the driven-dissipative Bose–Hubbard dimer
	1.  Introduction
	2.  The model
	3.  Methods
	3.1.  Time dynamics
	3.2.  Ktnqxe4;llén–Lehmann spectral representation of Green's functions

	4.  Review of semiclassical dynamics and self-trapping transition
	5.  Results: dissipative quantum dynamics
	6.  Results: quantum steady state for finite pump/loss asymmetry
	7.  Results: Green's functions
	7.1.  Symmetric pump and losses
	7.2.  Asymmetric pump and losses

	8.  Discussion
	9.  Conclusions
	Acknowledgments
	Data availability
	Appendix A.  Semiclassical dynamics
	A.1.  Closed system
	A.2.  Open system

	Appendix B.  Analytical quantum results at U = 0
	B.1.  Green's functions
	B.1.1.  Single cavity
	B.1.2.  Two coupled cavities

	Appendix C.  Sum-rules and particle currents in the BHD
	ORCID iDs
	References


