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Sebe, Senior Member, IEEE

Abstract—Although facial landmark localization (FLL) approaches are becoming increasingly accurate for characterizing facial
regions, one question remains unanswered: what is the impact of these approaches on subsequent related tasks? In this paper, the
focus is put on facial expression recognition (FER), where facial landmarks are used for face registration, which is a common usage.
Since the most used datasets for facial landmark localization do not allow for a proper measurement of performance according to the
different difficulties (e.g., pose, expression, illumination, occlusion, motion blur), we also quantify the performance of recent approaches
in the presence of head pose variations and facial expressions. Finally, a study of the impact of these approaches on FER is
conducted. We show that the landmark accuracy achieved so far optimizing the conventional Euclidean distance does not necessarily
guarantee a gain in performance for FER. To deal with this issue, we propose a new evaluation metric for FLL adapted to FER.

Index Terms—facial landmark localization, face registration, facial expression recognition.
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1 INTRODUCTION

D ESPITE continuous progress in facial expression recognition
(FER), many studies still focus on near-frontal faces [32].

As a result, most approaches perform poorly when head pose
variations occur (e.g., in video surveillance data). Recent work
considers the whole range of head poses under uncontrolled
conditions and this issue receives more and more attention [46].

Facial landmark localization (FLL) approaches have proven
their effectiveness in identifying the facial components of the face
(eyes, nose, and mouth) [10]. Once located, these landmarks can
be used to deal with head pose variations [19] and support FER as
well as various facial analysis tasks [2]. For example, the face can
be registered in order to guarantee stable locations for the major
facial components across images and minimize the variations in
scale, rotation, and position. It makes it then easier to extract
discriminative features to characterize the face.

Over the years, more robust approaches for FLL have been
proposed, which address a wide range of difficulties (head poses,
facial expressions, illumination, etc.). However, due to the limits
of popular datasets (e.g., 300W [35]) in terms of contextual
annotations, we lack a good understanding of the performances
of current approaches. Evaluations are generally limited to overall
performance. The performance according to the different diffi-
culties cannot be properly quantified. Besides, evaluation metrics
are mainly based on the Euclidean distance, which is not really
relevant to FER or other subsequent tasks. There is no guarantee
that an approach providing more accurate detections in terms
of Euclidean distance always leads to better performance when
used for FER, as illustrated in Figure 1. We show in this work
that some landmarks have a greater impact on face registration.
More significant geometric deformations can be induced if the
localization fails on important landmarks such as the rigid ones.

The main contributions of this paper are as follows.
• We quantify simultaneously the performance of current FLL

approaches in presence and in absence of head pose variations
and facial expressions. This allows us to get a clear view of their
strengths and weaknesses, so that we can interpret the results of
the following experiments more accurately.

Fig. 1. Comparison of the ability of different FLL approaches to provide
meaningful facial geometry information when used to register a face. On
the right-hand side of the image, we illustrate the registered face using
the landmarks provided by some of the approaches considered in this
paper. The graphs present a comparison of FLL performance (measured
as the Area Under the Curve - AUC) and FER performance (measured
as the accuracy - Acc.). A higher average AUC does not guarantee
that the corresponding localization is better suited to recognize facial
expressions.

• We study the impact of FLL on FER. Among other things,
this study highlights the respective importance of landmarks for
FER. Based on our observations, we provide some suggestions
on how to improve FLL considering FER.

• We propose two changes to the FLL evaluation metric, to
improve the correlation between the FLL precision and the FER
accuracy when FLL approaches are used to register faces.
The paper is structured as follows. Section 2 presents the

evolution of recent approaches for FLL and FER and highlights
the main objectives of our work. Section 3 introduces the dataset
and FLL approaches used in the experiments. Section 4 provides
an evaluation of the performances of the selected FLL approaches
in the presence of head pose variations and facial expressions.
Section 5 investigates the ability of these approaches to capture
meaningful facial geometry information when used for FER.
Section 6 investigates new FLL evaluation metrics coping with
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FER analysis challenges and improving the correlation between
FLL precision and FER accuracy. Finally, we discuss the results
and future work in Section 7.

2 BACKGROUND AND SCOPE

This section presents challenges related to FER and recent FLL
approaches. We present an overview of the literature on FER
that shows that under different capturing conditions (i.e., in the
presence or absence of head movements, head poses, facial ex-
pressions), FLL plays an important role in the process. Then, we
report recent advances in the field of FLL. Finally, the scope of
the paper is defined, including our positioning, the issues raised
by this work and how we address them.

2.1 Facial expression recognition
Since the majority of work is still done under controlled condi-
tions, we first present this line of work and then review the work
intended for uncontrolled conditions. For the latter, we distinguish
between landmark-based and landmark-free approaches.

2.1.1 Under controlled conditions
Skin deformations induced by facial muscles characterize facial
expressions. Different approaches exist to encode facial defor-
mations: appearance features, geometry features, or both. Many
appearance features have been proposed such as Local Binary
Patterns (LBP) [34]. They provide decent results for macro fa-
cial deformations, especially when they are computed on apex
frames (i.e., the frames of a video that depict the expressions at
their highest intensity). By relying on spatial features only, the
dynamics of facial expressions is not leveraged, which can limit
the performances at non-apex frames or in the presence of subtle
expressions.

Psychological experiments [4] showed that facial expressions
are identified more accurately in image sequences. A dynamic
extension of LBP, called Local Binary Pattern on Three Orthogo-
nal Plans (LBP-TOP), has been proposed [50]. However, optical
flow is one of the most widely used solutions [2]. Although
temporal approaches tend to provide better performances than
static approaches, they are very sensitive to the noise caused by
facial deformation artifacts and head movements.

Various deep learning approaches have also been proposed.
Pre-training and fine-tuning are commonly used to deal with
small datasets. Some work focuses on improving the ability of
models to represent expressions when using such techniques [11].
Handcrafted features, in conjunction with the raw image, can be
used as input to add information and increase invariance, e.g., to
scale, rotation, or illumination. Layers, blocks, and loss functions
have been specifically designed for FER in order to encourage the
learning of expression-related features [21]. For example, second-
order statistics such as covariance have been used to capture
regional distortions of facial landmarks [1]. Other well-known
strategies have also been applied to FER, i.e., network ensembles,
multitask networks, cascaded networks, and generative adversarial
networks [32], [41]. In order to extend these solutions to the tem-
poral domain, aggregation strategies have been proposed, which
aim to combine the outputs of static networks for each frame of
a sequence [23]. Samples of the same expression with different
intensities can be used jointly as input during training to help
address subtle expressions [51]. Deep spatio-temporal networks
based on recurrent neural networks [29] and 3D convolution [40]

are also used to encode expressions by exploiting both appearance
information and motion information from images or landmarks
[22].

2.1.2 Under uncontrolled conditions
All these approaches have proven their effectiveness in charac-
terizing facial expressions on static frontal faces, but they are
rarely evaluated under uncontrolled conditions. In situations of
natural interactions, facial expression analysis remains a complex
problem. It requires the solutions to be invariant to head pose
variations (i.e., in-plane and out-of-plane rotations) and large head
displacements (i.e., large in-plane translations). To deal with this
issue, two major approaches exist: landmark-based approaches and
landmark-free approaches.

Landmark-based approches Landmark-based approaches [21],
[46] [1] are probably the most popular. They rely on facial land-
marks to bring the face into a canonical configuration, typically a
frontal head pose. Eye registration is the most popular strategy for
near-frontal view. However, the eyes must be detected accurately
in the first place. Extensions considering more landmarks are
supposed to provide better stability when individual landmarks
are poorly detected. Registration approaches based on 2D features
[36] are suitable for near-frontal facial expression analysis in the
presence of limited head movements, but they encounter issues
during occlusions and out-of-plane rotations. Registration based
on 3D models can be used to generate natural facial images
in a frontal head pose [19]. Compared to 2D approaches, 3D
approaches reduce facial deformation artifacts when facial expres-
sions occur [3]. However, 3D approaches are not yet widely used.
The lack of suitable data and available models made it difficult to
include them in this study. Since all these approaches are based
on facial landmarks, an accurate localization of these landmarks is
critical. Poor localization is likely to impact the entire recognition
process.

Landmark-free approaches Few approaches use directly (with-
out any preprocessing) the face crop obtained from face detection
[31]. Recently, a new way of addressing the problem has been
proposed. It consists in the regression of a 3D morphable model
(3DMM) directly from the image [8] using deep neural networks.
The facial expression is encoded as a vector of facial deformation
coefficients. These coefficients can then be used to classify the ex-
pression. This is referred to as facial expression regression. 3DMM
coefficients could have a strong discriminative power while being
less opaque than deep features. Recent work includes the release of
a new dataset of 6,000 human facial videos, called Face-Vid [27],
to help work in this direction. This approach, being more direct,
limits in principle the side effects of FLL and normalization.
Due to the 3D representation of the face, better robustness to
the difficulties encountered in uncontrolled conditions, such as
occlusions, is also claimed. Despite the theoretical advantages, this
approach seems yet not efficient enough to take over landmark-
based approaches. In the Appendix A we propose a comparison
between ExpNet [8] and a landmark-based solution CovPool [1].
Under the experimental protocol used, the results show that : (1)
the CovPool performances are higher and (2) even ExpNet can
benefit from the registration phase.

2.2 Facial landmark localization
Human-defined landmark schemes allow the components of the
face to be explicitly characterized. In this work, we exploit facial
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landmarks for normalization purposes only, which is the most
common usage. Note that normalization is not the only use of
facial landmarks. For example, they can be used to produce
geometric features [22], to analyze motion from landmark trajec-
tories [47], or to learn more specific features through attention
mechanisms [17]. Different landmark schemes with either few
landmarks (e.g., only the rigid ones for each facial component) or
with over a hundred landmarks (e.g., including the contours of the
face and of each component) are used depending of the application
(e.g., human-computer interaction, motion capture, FER) [35]. The
68-landmark scheme is usually considered to be suitable for many
applications with a reasonable trade-off between annotation time
and informative content.

2.2.1 Localization in still images
The majority of FLL approaches are based on cascaded regression
[45]. It is a coarse-to-fine strategy that consists in progressively
updating the positions of landmarks through regression functions
learned directly from features representing the appearance of the
face. Today, feature extraction and regression are trained jointly
using deep neural networks. Two main architectures can be distin-
guished: a) networks that directly regress landmark coordinates
using a final fully connected layer, and b) fully convolutional
networks (i.e., without any fully connected layer) that regress
heatmaps, one for each landmark. The latter has become popu-
lar, especially through hourglass-like architectures, which stack
encoder-decoder networks with intermediate supervision to better
capture spatial relationships [6]. Landmark heatmaps can also
be used to transfer information between stages during cascading
regression using coordinate regression [28].

FLL does not necessarily have to be treated independently
and can be learned together with correlated facial attributes using
multi-task networks [49]. It helps increase individual performance
on each task. While most authors focus on the variance of faces,
the intrinsic variance of image styles can also be handled to
improve performance using style-aggregated networks [12].

2.2.2 Localization in videos
Recent work has shown that temporal coherence can be used to
cope with facial and environmental variability under uncontrolled
conditions. The most recent approaches generally combine con-
volutional neural networks (CNNs) and recurrent neural networks
(RNNs) while decoupling the processing of spatial and temporal
information to better leverage their complementarity [33]. This
late temporal connectivity helps stabilize predictions and handle
global motion such as head pose variations. An unsupervised
approach based on the coherency of optical flow can encourage
temporal consistency in image-based detectors, which can reduce
the jittering of landmarks in videos [15]. The statistics of different
kinds of movements can also be learned using a stabilization
model designed to address time delays and smoothness issues [39].
To go further, local motion can be included using early temporal
connectivity based on 3D convolutions [5]. By improving the
temporal connectivity, more accurate predictions can be obtained,
especially during expression variations.

2.2.3 3D / Multi-view Localization
Another trend is the use of depth information to improve the
accuracy of landmarks. The vast majority of approaches consider
the face as a 2D object, which may cause issues in dealing
with some transformations, e.g. out-of-plane rotations. A 3D

Morphable Model (3DMM) can be fit to 2D facial images [53].
More recently [6], 3D landmarks were also directly estimated from
2D facial images. In a multi-view context, epipolar constraints can
be exploited [14]. 3D landmarks can be obtained through triangu-
lation based on the predicted 2D landmarks from all views. After
reprojection of the 3D landmarks, the difference between them
and the 2D ones is computed to enforce multi-view consistency.

2.3 Scope of the paper
Although FLL approaches grow more and more robust, it is not
clear today whether current performance is suitable for FER. We
find it difficult, with the commonly used evaluation protocols, to
understand the impact of FLL on FER.

The aim of this work is on evaluating the aptitudes of various
FLL approaches in the presence of head pose and facial expression
and the suitability of the detected landmarks for FER. To this end,
we have investigated several questions:
• How do current FLL approaches perform in the presence of

pose and expression variations? In this work, we selected and
evaluated the most representative and available approaches from
the literature. Among the selected approaches are coordinate and
heatmap deep regression models, including a multi-task one. In
addition to quantifying the performance of these approaches
according to the difficulties encountered in uncontrolled condi-
tions, we studied their impact on FER. Note that, unfortunately,
the temporal components of the recent dynamic approaches
[15], [39] are not provided by the authors (at the time of
writing). Moreover, 2D and 3D landmark predictions are not
easily comparable. So, the focus has been narrowed down to a
static 2D landmark evaluation. This is discussed in Section 4.

• What is the impact of FLL approaches on FER? We used
representative static and temporal approaches to study the im-
pact of FLL on FER. In this way, the recognition process is
fully understood and experiments are facilitated. This issue is
addressed in Section 5.

• Is the commonly used FLL evaluation metric relevant to FER?
By computing correlation coefficients between FLL and FER
performances, we show that the commonly used FLL evaluation
metric is a poor predictor of FER performances. In the light of
the conclusions drawn from Section 5, we investigated several
new FLL evaluation metrics adapted to FER that account for sta-
bility over time and the importance of some specific landmarks.
We addressed this issue in Section 6.

To answer these questions, it is important to define an eval-
uation protocol that covers both facial expression analysis and
landmark detection in the presence and absence of head move-
ments in video sequences. In recent years, many datasets have
been proposed, which helped improve the robustness of FER and
FLL approaches [10], [32]. Although these datasets include a large
range of difficulties, they do not allow for the proper identification
and quantification of the weaknesses of approaches according to
each of these difficulties. They lack suitable contextual annotations
and do not contain data captured in the absence of such difficulties,
which is required to fully understand their impact. With the emer-
gence of new datasets, such as SNaP-2DFe [3], data annotated
with facial landmarks, facial expressions, and head movements
are now available. In SNaP-2DFe, subjects are recorded both in
the presence and absence of specific difficulties (i.e., head pose
variations, facial expressions), along with contextual annotations
and synchronized multi-camera capture. Other datasets containing
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contextual annotations include WFLW [42]. However, they con-
tain only still images and the contextual annotations; although
they are numerous (i.e., expressions, poses, occlusions, make-
up, illumination, and blur), they remain limited as no details
beyond the category are provided. For these reasons, we use the
SNaP-2DFe dataset in our experiments. This makes it possible
to evaluate the robustness of recent FLL approaches according to
these difficulties, and to study its impact on FER.

Overall, we found that most approaches aim to optimize
facial landmarks globally. Some approaches deal with related
facial analysis tasks by relying on multi-task learning. Additional
dimensions are also considered, including depth and temporal
dimensions. As an example, stability over time is being considered
carefully, probably due to the increase in the video content avail-
ability. However, all these works have objectives quite apart from
subsequent tasks such as FER. There is, somewhat, the exception
of multi-task approaches, but they do not address explicitly this
issue. Is it the right choice? It is unclear today whether the current
performance is sufficient for the purposes for which it is used.

The problems faced by FLL approaches in localizing land-
marks in presence of expressions and head pose variations have
also a large impact on FER accuracy. We show that the localization
errors of some landmarks have more impact on FER results.

Considering the stability of landmarks over time and their
importance, the new FLL evaluation metric proposed improves
rank correlation consistently. This shows the benefit of considering
FER specificities when measuring FLL performances.

3 EXPERIMENTAL PROTOCOL

In this section we present the selected dataset, FLL approaches,
FER approaches and evaluation metrics used in our experiments.

3.1 Dataset

Unlike other datasets, SNaP-2DFe [3] has been collected simul-
taneously under constrained and unconstrained head poses, as
illustrated in Figure 2. Given its rich annotations, it represents a
great candidate to conduct our study, allowing for a comprehensive
analysis of both tasks regarding major difficulties.

Fig. 2. Sample images of facial expressions recorded under pitch
movements from the SNaP-2DFe dataset [3] (row 1: helmet camera,
expression only; row 2: static camera, both expression and head pose
variations).

SNaP-2DFe [3] contains more than 90,000 images from 1,260
videos of 15 subjects. These videos contain image sequences of
faces in frontal and non-frontal scenarios. For each subject, six
head pose variations (static – no head movement, translation-
x – along the x-axis, yaw, pitch, roll – up to 60 degrees, and
diagonal – from the upper-left corner to the lower-right corner)
combined with seven expressions (neutral, anger, disgust, fear,

happiness, sadness, and surprise) were recorded by two synchro-
nized cameras, resulting in a total of 630 constrained recordings
(i.e., without head movements) and 630 unconstrained recordings
(i.e., with head movements). SNaP-2DFe also provides annota-
tions of the temporal patterns of expression activations (neutral-
onset-apex-offset-neutral). Sixty-eight facial landmarks have been
initially localized using the method in [24]. All frames were then
individually inspected and, when needed, re-annotated in order to
compensate for landmark localization errors.

3.2 Facial landmark localization approaches
Given the large number of facial localization approaches in
the literature, we have selected a subset of recent approaches
representative of the current state of the problem. We focus on
deep learning-based approaches as they currently constitute the
dominant trend. Among them, we selected state-of-the-art models
for each of the categories highlighted in Section 2.2:
• coordinate regression models: Deep Alignment Network

(DAN) [28];
• heatmap regression models: HourGlass (HG) [6] and Style

Aggregated Network (SAN) [12];
• multi-task models: Tasks-Constrained Deep Convolutional Net-

work (TCDCN) [49];
• dynamic models (without their temporal components1): Super-

vision By Registration (SBR) [15] and Fractional Heatmap
Regression (FHR) [39].
Since the code and the pre-trained models provided by the

respective authors are used, it is important to consider the datasets
used to train these approaches to ensure that there is no significant
bias in our evaluation. As shown in Table 1, most approaches
are trained mainly on 300W, HELEN, and AFLW. HG, TCDCN,
SBR, and FHR make use of additional datasets, either to improve
performance by limiting overfitting, or to provide the necessary
multi-task components.

TABLE 1
Datasets used to train the different approaches selected for our study.

Datasets FLL approaches
Name Type Images HG TCDCN DAN FHR SBR SAN

300W [35] Static 600 3 3 3 3 3 3
HELEN [30] Static 2,330 3 3 3 3 3 3
AFLW [26] Static 25,993 3 3 3 3 3 3
COFW [7] Static 1007 - 3 - - - -
MAFL [49] Static 20,000 - 3 - - - -

300W-LP [52] Static 61,225 3 - - - - -
Menpo [44] Static 10,993 3 - 3 - - -
300VW [37] Temporal 218,595 3 - - - - -

3.3 Facial expression recognition approaches
Based on the landmarks provided by FLL approaches, face reg-
istration is applied on the data recorded by the static camera in
order to correct head pose variations and obtain frontal faces (see
Figure 1, page 1). We have chosen a recent 3D approach among
the different face registration approaches used in the literature to
deal with head pose [19]. This approach has the advantage to
preserve facial expressions.

We have selected two typical features for FER: appearance-
based (LBP [34]) and motion-based (LMP [2]). We also include
CovPool [1], which is a static deep learning-based model. We did
not consider landmark-free approaches such as ExpNet [8] in the

1. The code and models of the temporal components are not provided by the
authors.
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main study as this method yields poorer results than the landmark-
based one (see Appendix A). CovPool is based on a custom
shallow model, the variant number 4, as stated in the original
paper. It takes as input aligned face crops obtained through FLL.
The SFEW 2.0 and RAF datasets with standard augmentation
techniques were used by the authors to train the model from
scratch. The output of the 2nd fully connected layer (capacity
of 512) serves as features.

For each method that we selected, feature extraction is per-
formed only on the apex frame of each sequence. Apex frames
correspond to the most favorable phase for FER and the most dif-
ficult one for FLL. We consider this phase as the most interesting
for our study. Apex features are fed into an SVM classifier with
an RBF kernel trained to recognize the 7 expressions.

4 EFFECTIVENESS OF LANDMARK LOCALIZATION

Nowadays, it may be difficult to clearly understand the current
state of the FLL problem. Hence, there is a need for benchmarks
to better identify the benefits and limits of the various approaches
proposed so far. Beyond overall performance, there is also a need
to quantify the accuracy of these approaches according to the
different difficulties. These measurements are especially relevant
as FLL appears to be critical for FER, which is now shifting to
uncontrolled conditions. To meet these needs, we investigate the
robustness of the selected FLL approaches in the presence of head
pose variations and facial expressions. An overall performance
analysis is first performed in order to identify which problem is
the most challenging. The analysis then focuses on each facial
landmark individually in order to identify more precisely which
facial regions are more difficult to characterize when confronted
to these problems.

4.1 Metric for facial landmark localization

The mean Euclidean distance between the predicted landmarks
and the ground truth (GT) normalized by the diagonal of the GT
bounding box is used as evaluation metric as it is robust to pose
variations [9]. The error en for image n is expressed as:

en =
1

L

L∑
i=1

||pi − gi||2
D

. (1)

where L is the number of landmarks, pi is the coordinates of the
i-th predicted landmark, gi is the coordinates of the corresponding
ground truth landmark, and D is the length of the diagonal of the
ground truth bounding box (D = round

(√
w2 + h2

)
, with w

and h the width and height of the bounding box, respectively).
From this metric, we compute the area under the curve (AUC)
and the failure rate (FR) with threshold α = 0.04. Above this
threshold, we consider a prediction as a failure, since facial
components are mostly not located correctly. The AUC and FR
are expressed as:

AUCα =

α∫
0

f(e)de. (2)

FRα = 1− f(α). (3)

where f is the cumulative error distribution (CED) function and
α the threshold.

4.2 Overall performance analysis
In this experiment, the objective is to determine which movement
caused by head pose variations or facial expressions has the
biggest impact on FLL. Table 2 shows the performance of the
selected approaches in the presence of head pose variations only
(i.e., neutral face with the 6 head movements), facial expressions
only (i.e., static frontal face with the 6 facial expressions), and
head pose variations combined with facial expressions (i.e., the 6
facial expressions along with the 6 head movements). For each
approach, AUC and FR are computed over the entire sequences.

TABLE 2
AUC/FR with and without head pose variations and facial expressions
on SNaP-2DFe. Static means no expression and no head movement.

Static Pose variations only Expressions only Pose variations & expressions Average
HG 56.57 / 0.00 54.30 / 0.42 55.35 / 0.05 52.94 / 0.58 54.79 / 0.26

TCDCN 59.98 / 0.00 54.86 / 4.49 59.73 / 0.00 52.97 / 5.01 56.88 / 2.37
DAN 72.05 / 7.21 68.73 / 8.44 71.77 / 6.41 67.88 / 8.34 70.10 / 7.60
FHR 72.51 / 0.00 69.90 / 0.17 71.84 / 0.00 68.51 / 0.65 70.69 / 0.20
SBR 74.64 / 0.45 70.44 / 1.02 73.76 / 0.57 68.86 / 2.02 71.92 / 1.01
SAN 73.99 / 0.00 70.97 / 0.21 73.80 / 0.00 70.27 / 0.44 72.25 / 0.16

Average 68.29 / 1.27 64.87 / 2.46 67.71 / 1.17 63.57 / 2.84 66.10 / 1.93

Table 2 indicates that the AUC is lower and the FR higher in
the presence of head pose variations than in the presence of facial
expressions for all approaches. These results suggest that head
pose variations are more challenging than facial expressions for
FLL. The appearance is generally much more affected by a change
in pose than a change in expression. The geometry of landmarks
is affected by the pose, and it challenges the geometric priors of
the model. In the simultaneous presence of both difficulties, the
performance tends to decrease further.

In order to obtain more accurate performance measurements
for each approach according to head pose variations and facial
expressions, the previous results on the full set (i.e., head pose
variations and expressions) are detailed by activation pattern in
Table 3. Expressions and most poses are mainly active at the apex.

TABLE 3
AUC/FR by activation pattern on SNaP-2DFe in the presence of facial

expressions.

Neutral to Onset Onset to Apex Apex to Offset Offset to Neutral All
HG 55.21 / 0.06 49.30 / 1.73 48.58 / 1.56 51.74 / 0.65 52.94 / 0.58

TCDCN 55.55 / 3.17 44.70 / 11.77 45.99 / 9.64 51.84 / 4.92 52.97 / 5.01
DAN 69.87 / 7.91 62.35 / 9.95 64.07 / 8.99 67.51 / 8.34 67.88 / 8.34
FHR 71.57 / 0.04 64.14 / 2.37 63.24 / 1.67 67.15 / 0.62 68.52 / 0.64
SBR 71.74 / 1.04 62.22 / 5.12 63.75 / 3.42 67.35 / 2.83 68.86 / 2.02
SAN 72.79 / 0.00 65.65 / 1.22 66.41 / 1.08 68.86 / 0.56 70.27 / 0.44

Average 66.12 / 2.04 58.06 / 5.36 58.67 / 4.39 62.41 / 2.99 63.57 / 2.84

As shown in Table 3, the accuracy of all approaches decreases
the most for images adjacent to the apex state. More specifically,
it corresponds to the moment where the expression and most head
pose variations are at their highest intensity. As soon as the face
gets closer to a neutral expression and a frontal pose, the accuracy
improves. These results suggest that facial expressions with head
pose variations remain a major difficulty for FLL. They show
that not only the presence of an expression, but also its intensity,
impact FLL as deformations are proportional to the intensity.

4.3 Robustness to head pose variations
In this experiment, we place the emphasis on head pose variations,
by highlighting which type of head pose presents the most difficul-
ties. In Table 4, the results are split by head pose variations. AUC
and FR are computed on all sequences with a neutral face between
the onset and the offset phase. The results (∆AUC and ∆FR)
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correspond to the difference in performance between a frontal
neutral face and a neutral face in the presence of the different
head pose variations. Negative (resp. positive) values for ∆AUC
(resp. ∆FR) indicate difficulties in the presence of the given head
pose variation.

TABLE 4
∆AUC / ∆FR for each head pose variation on SNaP-2DFe. Red cells

indicate decreases in AUC.

Translation-x Roll Yaw Pitch Diagonal Average

HG -0.89 / 0.0 +0.67 / 0.0 -4.17 / 0.0 -1.19 / +0.67 -10.18 / +3.67 -3.15 / +0.86

TCDCN -0.36 / 0.0 -1.36 / 0.0 -21.33 / +24.0 -9.39 / 0.0 -30.65 / +33.67 -12.61 / +11.53

DAN -4.0 / +2.0 -13.15 / +15.0 -1.76 / -1.0 -8.8 / +0.66 -15.79 / +4.33 -8.7 / +4.19

FHR -0.97 / 0.0 -1.69 / 0.0 -0.66 / 0.0 -10.08 / 0.0 -7.5 / +2.0 -4.18 / +0.4

SBR -4.21 / -0.33 -2.82 / -1.0 -7.15 / -0.33 -12.36 / +0.0 -16.71 / +1.67 -8.65 / 0.0

SAN -0.75 / 0.0 -5.22 / 0.0 -2.36 / 0.0 -8.02 / 0.0 -11.08 / 0.0 -5.48 / 0.0

Average -1.86 / +0.28 -3.93 / +2.33 -6.24 / +3.78 -8.31 / +0.22 -15.32 / +7.56 -7.13 / +2.83

According to the results in Table 4, some head pose variations
seem more difficult to handle than others. Diagonal and pitch
lead to a severe drop in the AUC and a considerable increase
in the FR, suggesting that these head pose variations are the most
challenging. They involve out-of-plane rotations, some of them
on several rotation axes, which have a significant impact on the
appearance of the face and the geometry of the landmarks. This
decrease in performance may also be related to an insufficient
amount of training data for these movements. There is a drop in
the AUC for yaw, roll, and translation-x as well, but with a ∆FR
of almost zero 2. This shows a better ability of the approaches to
manage these variations. The errors generated are fairly small and
do not result in localization failures. Even for SAN, which has the
best overall performance, the average ∆AUC remains high with
a loss of -5.48 with, however, an average ∆FR of 0.

4.4 Robustness to facial expressions
In this experiment, we focus on facial expressions, by highlighting
which types of expressions present the most difficulties. In Table
5, the results are split by facial expression. AUC and FR are
computed on all sequences where the face is frontal and static
from the onset to the offset of the expression. The results (∆AUC
and ∆FR) denote the difference in performance between a frontal
neutral face and a frontal face with the different facial expressions.
Negative (resp. positive) values for ∆AUC (resp. ∆FR) indicate
difficulties in the presence of the given facial expression.

TABLE 5
∆AUC / ∆FR for each facial expression on SNaP-2DFe. Red (resp.

green) cells indicate decreases (resp. increases) in AUC.

Happiness Anger Disgust Fear Surprise Sadness Average

HG -4.85 / +0.36 -4.41 / 0.0 -8.68 / 0.0 -1.75 / 0.0 -1.35 / 0.0 -3.39 / 0.0 -4.07 / 0.06

TCDCN -3.12 / 0.0 +1.51 / 0.0 -8.1 / 0.0 -0.02 / 0.0 +0.55 / 0.0 -4.57 / 0.0 -2.29 / 0.0

DAN +0.48 / -4.30 -0.86 / -0.22 -7.04 / +0.74 -1.29 / -2.16 -1.21 / -0.12 -3.11 / -2.67 -2.17 / -1.45

FHR -1.44 / 0.0 -2.28 / 0.0 -6.62 / 0.0 -0.96 / 0.0 +0.93 / 0.0 -4.09 / 0.0 -2.41 / 0.0

SBR +0.04 / -0.64 -0.37 / -1.00 -7.27 / -0.63 -3.49 / +2.01 -0.37 / -1.00 -4.03 / -0.38 -2.58 / -0.27

SAN +0.34 / 0.0 +1.0 / 0.0 -7.41 / 0.0 -1.52 / 0.0 -1.61 / 0.0 -4.12 / 0.0 -2.22 / 0.0

Average -1.43 / -0.76 -0.90 / -0.20 -7.52 / +0.02 -1.51 / -0.03 -0.51 / -0.19 -3.89 / -0.51 -2.62 / -0.28

The results reported in Table 5 show that some facial ex-
pressions seem more difficult to handle than others. Disgust and
sadness lead to a significant drop in the AUC. These facial expres-
sions involve complex mouth motions with significant changes in
appearance, which may explain why the different approaches have
more difficulties handling them. Besides, they also present a wider
range of activation patterns and intensities, that may be less present

2. The average ∆FR for roll and yaw is due to a single outlier (respectively
DAN and TCDCN).

in the datasets considered for training. The decrease in the AUC is
less marked for happiness, anger, fear, and surprise, which seem
to be handled better. As previously, a large value of the average
∆AUC, -2.22, is observed on the best selected approach in terms
of overall performance (SAN).

4.5 Analysis of the landmarks

To better identify the strengths and weaknesses of FLL ap-
proaches, a more detailed analysis at the level of each landmark
is proposed. Figure 3 illustrates the landmark error levels of the
different approaches according to each head pose variation (Figure
3-A), each facial expression (Figure 3-B) and the combination of
both (Figure 3-C). The landmark error levels are defined according
to the threshold specified in Section 4.1.

Fig. 3. Heatmaps of landmark localization error (A: per head pose, B:
per facial expression, C: overall).

Regarding head pose variations (Figure 3-A), in-plane trans-
formations (static, translation-x, and roll) do not have a strong im-
pact on most approaches. Eyebrows, the nose, and facial edges are
among the regions where landmark localization lacks precision,
especially for TCDCN, HG, and DAN. Out-of-plane (yaw, pitch
and diagonal) variations, however, result in much more significant
decreases of the accuracy. These transformations tend to stack up
landmarks due to self-occlusions of certain parts of the face. Pitch
and diagonal movements challenge all approaches. Eyebrows and
facial edges are generally poorly detected. In the presence of facial
expressions (Figure 3- B), eyebrows and facial edges are also the
most impacted regions for all approaches. Disgust and sadness are
among the most challenging expressions as they produce complex
inner motions, which also lead to poor localizations around the
mouth. When both difficulties occur (Figure 3-C), eyebrows, facial
edges, and the mouth are therefore heavily affected. Note however
that inner landmarks present less noise, especially around the
mouth. This could simply be related to the training data (i.e.,
poor annotations of facial edges) or an implicitly stronger shape
constraint during simultaneous variations.

4.6 Discussion

We show through these experiments that the accuracy of current
FLL approaches is still impacted in presence of head pose vari-
ations and facial expressions. The combination of both, which is
closer to the data captured under uncontrolled conditions, natu-
rally increases the difficulty of the localization. The difficulties
encountered are mainly related to certain expressions (disgust and
sadness), due to their complex motion, and to certain head pose
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variations (pitch and diagonal), due to out-of-plane transforma-
tions. It seems very damaging that landmark localization is the
weakest at the apex frame, which is the best phase for FER.

We have shown that eyebrows, facial edges, and the mouth
are among the regions that are the most affected. This may be
explained by a poor annotation of these landmarks. It could also
be related to a potential lack of distinctive features, especially for
outline landmarks, and the propensity of landmarks to overlap in
these regions. A possible solution could be to leverage the facial
boundaries to which each point is strongly associated [42]. These
facial boundaries are easier to identify than inner landmarks in
uncontrolled conditions and can help reduce ambiguity. So far, this
approach is particularly interesting in the presence of occlusions,
but less so in the presence of expressions.

In addition to poor annotation, the limited availability of some
conditions and unsuccessful data augmentation can be considered
for further discussions. All these issues are more prominent for
video data, most likely due its quantity and redundancy. Effective
data augmentation can be crucial with current deep neural net-
works, especially when data under certain conditions is lacking.
SAN, which relies on a smart form of augmentation, is a good
example, as it is one of the most accurate approaches that have
been evaluated. Hard sample mining strategies can help identify
data that needs to be augmented [16]. However, constantly adding
more data to improve performance is not always the most desirable
solution, e.g., in terms of resources. Moreover, augmentation may
be difficult or even impossible for extreme poses and expressions
which are not necessarily found in the original data.

One way to alleviate these issues could be through recent
advances in self-supervised learning and semi-supervised learning.
Self-supervised aims to learn rich features that are transferable
[18]. It can be used as a pre-training step to improve supervised
FLL [20]. Both labeled and unlabeled data can be used jointly to
obtain abundant facial landmark labels, i.e., learning from partially
labeled data [13]. The ability to exploit large amounts of unlabeled
data could help improve the robustness of FLL, especially for
video, making us no longer be constrained by the quality and
quantity of manual annotations. Besides, when a specific landmark
scheme is not required, unsupervised FLL [48] could also be
leveraged for FER instead of supervised FLL. However, given that
the landmarks detected by these approaches are not controlled, the
suitability of unsupervised FLL for subsequent tasks like FER has
yet to be demonstrated.

Overall, the difficulties studied in this work, head pose vari-
ations and facial expressions, involve generally coherent move-
ments. Leveraging the dynamic nature of the face appears to be
necessary in order to obtain more stable predictions over time and
bring more robustness to these difficulties [5]. Besides, many of
the subsequent tasks, especially FER, have a dynamic nature. This
makes it particularly relevant to consider temporal information
in order to be consistent with these tasks. However, temporal
information, and more specifically facial dynamics, are currently
under-exploited. This may be due to a lack of suitable data to
train such dynamic models. Note that the ground truth of the few
existing datasets may also lack stability. Current approaches do
not make sufficient use of the possible synergy between motion,
appearance, and shape. We believe that this is the key to achieve
robust FLL in uncontrolled conditions.

Without studying the impact of FLL on subsequent tasks,
it appears difficult to really understand how to improve current
approaches in a useful way rather than in terms of Euclidean

distance. Depending on the application, it may not be necessary
to accurately detect all facial landmarks to properly characterize a
face. For instance, landmarks around the mouth and the eyebrows
seem to be more representative of some facial expressions than the
landmarks located on the edges of the face. In the next sections,
we conduct work in this direction regarding FER.

5 IMPACT OF LANDMARK LOCALIZATION ON FA-
CIAL EXPRESSION RECOGNITION

After investigating the effectiveness of current FLL approaches,
we look at their impact on FER. In this section, we evaluate
how inaccurate FLL impacts FER through face registration. We
consider two experimental settings. First, we train a classifier on
frontal faces and then use registered faces for testing. Then, we
train a classifier on registered faces and also use registered faces
for testing. Hence, we can evaluate the impact of FLL in two
common settings used for FER in presence of head pose variations.

5.1 Evaluation protocol
Regarding FER, we apply a 10-fold cross validation protocol. For
each evaluation, we report the average cross-validation accuracy.
Stratification is performed both on facial expressions and head
movements. When analyzing the results, one should be aware that
face registration can sometimes be of poor quality (about 5 to 10%
of all images). This can result in reduced performances.

5.2 Training based on frontal faces
Data from the helmet camera (without head pose variations, see
first row in Figure 2, page 4) is used to train a facial expression
classifier on frontal faces. Based on the predictions of the selected
FLL approaches, we perform face registration on the data from
the static camera (see second row in Figure 2, page 4) to obtain
frontalized faces, which are used as the test set. Then, we evaluate
the ability of FLL approaches to provide reliable inputs for face
registration followed by FER. Different handcrafted and learned
features (LBP [34], LMP [2], CovPool [1]) are extracted to charac-
terize facial expressions. Motion-based features (LMP) highlight
the ability of FLL approaches to provide stable landmarks over
successive images.

TABLE 6
Comparison of FER performance according to different FLL

approaches using texture-based (LBP and CovPool) and motion-based
(LMP) features.

Original face Registered face

Feature Helmet camera Static camera GT HG TCDCN DAN FHR SBR SAN

LBP 79.0 38.5 31.9 29.8 30.8 24.0 28.5 27.9 27.4

LMP 84.2 31.3 33.7 24.3 24.7 22.1 14.0 25.9 31.8

CovPool 86.8 55.7 57.2 54.2 55.6 49.8 52.1 52.1 52.9

The results in Table 6 show that both texture-based and
motion-based features give satisfactory performances in absence
of head movements (i.e., on images from the helmet camera).
However, a drastic fall in performance on the images from the
static camera is observed due to head pose variations (e.g., roll,
pitch, yaw) and large displacements (e.g., translation-x, diagonal).
Note, however, the better ability of the deep learning approach
(CovPool) to generalize, which is possibly due to its more diverse
and discriminative features. Face registration based on the ground
truth systematically leads to better FER accuracy, except for
LBP. Still, it remains worse than the performances obtained on
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the data from the helmet camera. Most FLL approaches achieve
performances that tend to be close to the ground truth. This is only
true for texture-based features, not for motion-based features. The
selected FLL approaches appear to be unstable over time, which is
likely to result in temporal artifacts in registered face sequences.
This tends to confirm the necessity for stable landmarks over
time to drive face registration and keep the benefits of motion-
based features. It represents a major obstacle to solving FER since
motion-based recognition appears to be significantly better than
texture-based recognition, as dynamic analysis has been shown to
be more suitable for emotion recognition [4]. It is worth pointing
out that HG and TCDCN, although among the weakest approaches
in terms of FLL accuracy, perform similar to the best approaches
when using texture-based features. Their lack of accuracy may be
related to landmarks which are not critical for FER. Overall, these
results show the importance of a suited protocol to ensure that face
registration is beneficial. Note that training was performed on the
data from the helmet camera, which does not contain registration
artifacts. In the following, training is performed on the data from
the static camera using face registration as a pre-processing step.

5.3 Training based on registered faces
In the following experiments, faces from the static camera are
frontalized and used for both training and testing. We evaluate
whether the FLL and face registration steps are able to preserve
distinctive features for FER.

5.3.1 Impact of head movements
Table 7 presents the difference (∆Acc) between the accuracy
obtained using the ground truth landmarks and the accuracy
obtained using the predictions of the selected FLL approaches
during head movements. The raw scores using the ground truth
landmarks are also provided to facilitate interpretation.

TABLE 7
∆Acc (%) between registered faces based on the ground truth and the
selected approaches during head movements. Static means no head

movement. Red (resp. green) cells indicate decreases (resp. increases)
in accuracy.

Land. Feature Static Trans.-x Roll Yaw Pitch Diagonal Average

GT
LBP 52.0 50.9 69.0 62.2 44.2 38.9 52.8
LMP 69.5 61.8 61.1 65.4 56.7 56.9 61.9

CovPool 80.8 77.2 81.9 81.8 60.9 64.0 74.4

HG
LBP -0.3 -10.4 -7.0 -1.2 -4.7 -3.0 -4.4
LMP -12.8 -17.4 -17.1 -16.8 -17.2 -9.0 -15.0

CovPool -4.1 -1.1 +0.9 -1.0 -7.2 -14.1 -4.4

TCDCN
LBP -11.3 -9.6 -16.7 -7.8 -8.6 -9.9 -10.6
LMP -20.4 -17.7 -19.8 -26.8 -15.6 -21.0 -20.2

CovPool -2.6 +1.0 -1.3 -4.6 -0.5 -4.4 -2.0

DAN
LBP -7.6 -9.5 -17.0 -9.4 -3.7 -14.5 -10.2
LMP -16.4 -15.3 -20.1 -22.7 -17.1 -17.0 -18.0

CovPool -5.7 -6.1 -10.2 -6.4 -11.8 -17.6 -9.6

FHR
LBP -2.5 -0.7 -11.0 -6.4 -13.9 -14.1 -8.1
LMP -9.4 -11.5 -2.4 -12.3 -9.5 -1.5 -7.7

CovPool +0.2 -1.0 -3.3 +2.1 -14.6 -13.2 -4.9

SBR
LBP +1.0 -1.6 -11.4 -1.1 -10.1 -10.0 -5.5
LMP -6.3 -13.3 -5.4 -21.1 -15.2 -18.7 -13.3

CovPool -1.8 -2.2 -0.3 -4.0 -13.4 -10.2 -5.3

SAN
LBP -0.7 -4.6 -10.0 -1.8 -9.4 -3.4 -4.9
LMP -0.8 -7.1 -2.1 -7.0 -8.0 -11.1 -6.0

CovPool +0.6 -0.2 +1.7 -1.6 -2.8 -11.7 -2.3

Average
LBP -3.5 -6.0 -12.1 -4.6 -8.4 -9.1 -7.2
LMP -11.0 -13.7 -11.1 -17.7 -13.7 -13.0 -13.3

CovPool -2.2 -1.7 -2.0 -2.5 -8.3 -11.8 -4.7

Compared to Table 6, scores are much higher with a train-
ing set based on registered data. However, it remains quite far
(i.e., more than 10%) from the scores obtained on data from
the helmet camera. Regarding texture-based recognition, learned
features (CovPool) give relatively small differences on in-plane
transformations (static, translation-x, and roll), except for DAN.
Handcrafted features (LBP), however, have difficulties during roll,
for some approaches (i.e., HG, TCDCN, and DAN), and also dur-
ing translation-x. Unsurprisingly, in the presence of out-of-plane

transformations (yaw, pitch, and diagonal), larger differences can
be observed than with in-plane transformations. Diagonal motion
appears to be challenging for both features, as well as pitch, to a
lesser extent. Overall, SAN provides the best performance, closely
followed by HG. As a reminder, in our benchmark (Section 4),
SAN is the best FLL approach while HG is the worst.

As for motion-based recognition, handcrafted features (LMP)
are strongly impacted by all movements. This is probably due to
temporal artifacts. However, there is significantly better perfor-
mance from SAN and FHR, which are likely to be more stable.

Note that some approaches (e.g., SAN) tend to perform better
than the ground truth (e.g., static, roll). The face registration
approach may have been trained on landmarks that are more
similar to those provided by these approaches than those from
the ground truth. It may also be due to an imperfect ground truth.

5.3.2 Impact of landmark localization accuracy
Table 8 presents the difference (∆Acc) between the accuracy
obtained using the ground truth landmarks and the accuracy
obtained using the predictions of the selected FLL approaches for
each facial expression. In addition to the scores using the ground
truth, scores on the helmet camera are also reported to provide
insights about the intrinsic difficulty of the expressions.

TABLE 8
∆Acc (%) between registered faces based on the ground truth and the
selected approaches for each facial expression. Red (resp. green) cells

indicate decreases (resp. increases) in AUC.

Land. Feature Happi. Fear Surprise Anger Disgust Sadness Avg.

Helmet cam.
LBP 86.8 83.1 84.3 59.4 73.0 89.2 79.3
LMP 97.3 64.5 79.4 84.8 88.7 79.0 82.2

CovPool 96.6 74.6 84.5 90.8 85.6 83.5 85.9

GT
LBP 65.3 54.7 60.3 30.7 47.4 54.4 52.1
LMP 80.5 29.4 54.8 66.3 58.4 57.8 57.8

CovPool 88.0 57.3 64.7 75.6 75.5 75.1 72.7

HG
LBP -5.3 -4.9 -4.9 +0.4 -1.6 -10.2 -4.4
LMP -13.7 +1.4 -16.4 -18.9 -15.2 -14.1 -12.8

CovPool -2.5 -3.7 -3.7 -5.4 -4.8 -8.3 -4.7

TCDCN
LBP -9.6 -10.0 -4.3 -10.7 -11.4 -8.4 -9.0
LMP -23.1 -9.7 -17.8 -31.9 -12.4 -20.4 -19.2

CovPool +1.7 -4.7 -2.5 -3.0 +0.2 -2.9 -1.8

DAN
LBP -14.2 -12.2 -7.7 -7.9 -10.6 -2.3 -9.1
LMP -27.9 -4.0 -17.0 -17.8 -9.1 -21.5 -16.2

CovPool -12.2 -8.7 -11.3 -4.6 -10.5 -4.7 -8.6

FHR
LBP -13.0 -9.7 -2.9 -7.2 -8.1 -3.7 -7.4
LMP -11.3 +6.0 -8.2 -5.3 -11.7 -7.0 -6.2

CovPool -0.6 -7.6 -6.3 -4.2 -1.3 -7.9 -4.6

SBR
LBP -10.3 -3.7 -7.8 +0.4 -2.0 -6.2 -4.9
LMP -21.8 -5.9 -9.4 -20.3 -6.6 -14.0 -13.0

CovPool -9.4 -3.1 -3.1 -7.0 -8.3 -1.1 -5.3

SAN
LBP -10.3 -4.2 -0.7 +1.5 -7.1 -2.8 -3.9
LMP -9.7 +4.4 -9.7 -11.0 -4.1 -3.7 -5.6

CovPool -8.0 -2.2 -1.6 -0.2 -3.2 +2.9 -2.0

Average
LBP -10.4 -7.4 -4.7 -3.9 -6.8 -5.6 -6.4
LMP -17.9 -1.3 -13.0 -17.5 -9.8 -13.4 -12.1

CovPool -5.1 -5.0 -4.7 -4.0 -4.6 -3.6 -4.5

LMP and CovPool are mostly suffering in presence of fear,
while LBP is struggling with more expressions, especially anger.
Happiness is one of the better handled expressions. Texture-based
recognition results show smaller differences with learned features
across all expressions. Handcrafted features have more difficulties
with expressions such as happiness, fear, and disgust. Expressions
involving significant deformations (e.g., of the lips) tend to have
a significant impact on face registration. Overall, SAN and HG
provides also the best performances.

The difference is once again larger for motion-based recogni-
tion (except for fear), probably because of unstable FLL, which
introduces temporal artifacts and reduces performance. As for
head movements, SAN and FHR perform better than the others.

5.4 Impact per landmark

To study the impact of each of the 68 landmarks, we use linear
regression and compute regression coefficients based on the FLL
error of all approaches and the accuracy of FER. The importance
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of a landmark is evaluated according to the rank of its regression
coefficient. Figure 4 shows the importance of facial landmarks
to preserve facial geometry information according to head pose
variations (first row) and facial expressions (second row).

Fig. 4. Importance of each landmark to preserve facial geometry infor-
mation according to head pose variations and facial expressions.

In static frontal conditions, mainly landmarks on the lips are
critical. During head pose variations, landmarks at the edges of the
face and at the nasal ridge do not seem to be of major importance.
The positions of the eyes, of the mouth, and of the center of
the nose may be sufficient to correctly register the face. Eye
areas appear to matter for out-of-plane transformations, to avoid
deformations of the face. Note that for yaw and diagonal motions,
the visible parts are as important as the occluded ones. We also
observe that the landmarks at the edges of the face and at the
nasal ridge are irrelevant when facial expressions occur. However,
landmarks in the mouth area are essential for all expressions,
except disgust in which eye areas are more critical.

Overall, landmarks located in the eye and mouth areas are
essential to correctly register the face while maintaining its ex-
pression. Although landmarks at the nasal ridge appear to be
irrelevant, note that landmarks at the bottom of the nose are
still strongly present in all heatmaps. A possible explanation is
that registration approaches, such as the one used in this work,
take advantage of the pseudo-symmetry of the face. Figure 5
illustrate the strong use of the pseudo-symmetry of the face during
registration. Although this leads to unnatural faces, expressions
are generally well preserved. Reconstruction artifacts can also
be found. They are similar between approaches but may vary in
intensity. This is probably related to the localization accuracy of
the landmarks that are critical for face registration.

5.5 Discussion

In these experiments, we studied the ability of current FLL
approaches to preserve facial geometry information during head
pose variations and facial expressions for FER. Table 9 provides
a summary of the results. HG and TCDCN perform poorly in
terms of landmark precision, but can perform very well for FER.
In contrast, FHR yields one of the best performances in terms
of landmark precision, far ahead HG. However these results are
not necessarily reflected on FER. Some facial regions are more
important than others to characterize facial expressions, which
could explain these results. It is more interesting to favor FLL
approaches that correctly localize landmarks in the mouth and
eye areas. Landmarks at the edges of the face were found to
be irrelevant. Moreover, the ∆Acc between the ground truth
landmarks and the predictions of most of the selected approaches,
when using motion-based features, is significantly larger than

Fig. 5. Qualitative results of face registration.

when using texture-based and deep learning-based features. This
is related to the stability of landmark localization over time.

TABLE 9
Summary of FLL performance in terms of AUC/FR (%) and FER

accuracy (%) according to texture-based (LBP), motion-based features
(LMP), and deep learning based features (CovPool).

Landmark LBP LMP CovPool
AUC FR Rank Acc. Rank Acc. Rank Acc. Rank

GT 1.00 0.00 n/a 52.1 n/a 57.8 n/a 72.7 n/a
HG 55.35 0.05 6 -4.4 2 -12.8 3 -4.7 4

TCDCN 59.73 0.00 5 -9.0 5 -19.2 6 -1.8 1
DAN 71.77 6.41 4 -9.1 6 -16.2 5 -8.6 6
FHR 71.84 0.00 3 -7.4 4 -6.2 2 -4.6 3
SBR 73.76 0.57 2 -4.9 3 -13.0 4 -5.3 5
SAN 73.80 0.00 1 -3.9 1 -5.6 1 -2.0 2

The FER results obtained using FLL are still far from from
those obtained with the ground truth landmarks, especially with
motion-based features. Besides, the results obtained with the
ground truth are not comparable to those obtained on the data
from the helmet camera where no head movements is present (see
Table 6 - column 1). This shows that there is still work to be done.

These results highlight two main issues to be addressed to
ensure that the subsequent tasks are taken into account and that
FLL is improved towards these goals, which is currently not true.
• What landmarks should be used? Some landmarks were found

to be irrelevant for FER (i.e., landmarks at the edges of the
face). As a result, in the context of FER, AUC and FR appear to
be inappropriate. One solution would be to define application-
specific landmark schemes that include only landmarks that are
relevant to the targeted application. Another approach would be
to customize FLL metrics to a given task by taking into account
the relevance of each landmark to this task.

• What evaluation metric should be optimized? The previous
discussion questions the suitability of the evaluation metrics
used for FLL in specific contexts. Besides landmark relevance,
our experiments show that it is also necessary to better consider
temporal information for FLL. Motion-based FER proves to be
an effective approach but is also the one that is the most affected
by landmark localization instability. More work should be done
to take into account the temporal dimension when localizing
landmarks, both in terms of evaluation metrics and models.
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This could greatly contribute to improve motion-based FER.
Recently, a metric has been proposed to estimate the stability
of an FLL approach [39]. However, this metric relies on the
assumption that the ground truth is stable, which is not always
true. A few spatio-temporal models have also been proposed
[33]. They suffer from some limitations as well, e.g., they
handle global movements better than local ones [5].
In the following section, we offer some initial answers to these

two questions by investigating new FLL evaluation metrics that
cope better with FER.

6 EVALUATION METRICS REVISITED

We investigate whether the landmarks identified as impactful in
our previous evaluations and the temporal stability can be used to
improve the current FLL evaluation metrics. We aim to find a new
FLL metric which is better correlated with FER performances.
We measure rank correlations since we analyze two variables
(AUC and FER rate) that do not follow a normal distribution.
In this case, the object of the study are not the raw values but
their rank with respect to the other variable. Another reason
for measuring rank correlation is practical: if FLL performance
and FER accuracy are rank-correlated, then, when evaluating two
FLL methods, one can predict, independently of their absolute
performances, which one will perform best for FER. Specifically,
we could use Spearman’s [38] and Kendall’s [25] rank coefficients.
These coefficients take values between -1 and +1. The closer
they are to 1, the more positive the correlation (similar rankings
of variables); the closer they are to -1, the more negative the
correlation (reverse rankings). Finally, if the correlation score is
close to zero, the probability that there is no monotonic link
between the two variables is high.

First, in the light of the conclusions of Section 5, we extend the
standard error metric of FLL (see Eq. 1, page 5) to also quantify
the stability of landmarks over time. To do so, we consider the
angle between the landmarks pi,n predicted at image n, the ground
truth landmarks gi,n of the same image, and the landmarks pi,n−1
of the previous image. This provides an error value between 0 and
1 corresponding to the angle that can vary from 0 to 180 degrees.
The temporal angle βi,n for the n-th image and the i-th landmark
is expressed as:

βi,n =
arccos

(
〈−−−−−→gi,npi,n,

−−−−−−−→gi,npi,n−1〉
||−−−−−→gi,npi,n||2.||−−−−−−−→gi,npi,n−1||2

)
π

. (4)

where gi,n are the coordinates of landmark i of frame n in the
ground truth, pi,n are the coordinates of predicted landmark i of
frame n and 〈., .〉 is the inner product. The error εn for the n-th
frame is then expressed as:

εn =
1

L

L∑
i=1

(βi,n + 1) · ||pi,n − gi,n||2
D

. (5)

where L is the number of landmarks, pi,n is the coordinates
of the i-th predicted landmark in frame n, gi,n is the coor-
dinates of the corresponding ground truth landmark, and D is
the length of the diagonal of the ground truth bounding box
(D = round

(√
w2 + h2

)
, with w and h the width and height

of the bounding box, respectively). We compare this metric to
the standard Euclidean distance and to the distance-based stability
measure proposed in [39]. For all three metrics, we measure FLL
performance as the AUC (see Eq. 3, page 5) with α = 0.04.

Then, we define the optimal subsets of landmarks to be con-
sidered in evaluating FLL in the context of FER, in two settings:
in the presence and in the absence of head movements. To do so,
we divide the standard 68-point landmark scheme into six subsets
corresponding to different areas of the face (see Figure 6): edges
(EG), eyebrows (EB), eyes (E), nose (N), inner mouth (MI), outer
mouth (MO). We choose to analyze landmark subsets that target
subregions of the face rather than working on a per-landmark
basis. This allows us to have a more global view on the behaviors
of the metrics. We evaluate the correlation between AUC and FER
accuracy for all subsets and combinations of subsets of landmarks
and each of the stability-based FLL metrics introduced previously
(see Appendix B for detailed experimental results). Finally, we
select the landmark schemes that maximize this correlation in each
setting and for each of these two metrics. It is important to note
that it is difficult to identify an ideal configuration that adapts to
all expressions and all movements. Besides, correlation values can
vary significantly from one subject to another.

Figure 6 shows the selected landmark schemes and the corre-
lations measured between the AUC of all FLL metrics and FER
accuracy, for each subject of the SNaP-2DFe dataset, w.r.t. to
each of the selected schemes and metrics. We report the values
of Kendall’s correlation coefficient only as it appears to be more
stable than Spearman’s coefficient in practice; the complete results
with both correlation measures are provided in Appendix B.
Correlations are measured in two settings: in the absence of head
movements (based on FER accuracy values from Table 8) and in
their presence (based on FER accuracy values from Table 7).

Fig. 6. Selected landmark schemes and correlation between the AUC
of the different FLL metrics and FER accuracy, in the presence and
absence of head pose variations.

The results show that the standard error metric for FLL and
the distance-based stability metric are both little or negatively
correlated with FER accuracy. The proposed metric based on
space-time stability in terms of angle increases the correlation in a
positive way, especially in the presence of head movements, since
this is a situation where stable landmarks are the most needed to
register the face correctly. Using task-specific landmark schemes
provides a more significant improvement on the correlation, es-
pecially for the stability-based metrics. Still; the best correlation
measured lies generally between 0.3 and 0.5.

The individual correlation scores of the subjects show a vari-
ety of situations, with some subjects showing high correlations
between FLL performance and FER accuracy, while for some
others they are much lower than the median. In the absence of
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head movements, we notice that subjects S1 and S5 tend to yield
high correlation scores; these two subjects have the particularity to
produce strong facial deformations when they display expressions.
Subjects S9 and S12 tend to yield lower correlation scores; from
their videos, we observe that their expressions have very low
intensity. In the presence of head movements, subjects S6, S9,
S11, and S12 yield higher correlation scores, while the scores
drop for subjects S1, S2 and S15. This can be explained by the
conditions of video acquisition, as the faces of some subjects were
tilted with respect to the camera.

In conclusion, we showed that changes in the FLL evaluation
metric that account for temporal stability and landmark importance
can lead to improved interpretation of FER performance from FLL
performance, although the correlation scores could still be further
improved.

7 CONCLUSION

The problem of FLL is currently being studied as an isolated prob-
lem when in fact it is a key component of many applications such
as FER. Although performance has improved considerably with
respect to the common metrics such as the Euclidean distance,
we have shown that it does not guarantee that an approach with a
lower mean error, a higher AUC, or a lower FR would give better
performances when used for a subsequent task.

Another part of this study aimed at quantifying the impact
of head poses and facial expressions on current FLL approaches.
In the presence of specific head poses and facial expressions, the
performance decreases significantly. In the third part, the impact
of FLL on FER has been investigated. The results obtained from
the ground truth landmarks are still far superior to those obtained
from the predictions of recent FLL approaches. This margin is
even more important when we compare these results to those
obtained using the ground truth frontal faces. Due to the instability
of landmark predictions over time, temporal approaches are more
impacted. It is also clear that not all landmarks are equally relevant
for FER, which further discredits the popular 68-points landmark
scheme and metrics used to evaluate current FLL approaches.
This is particularly noticeable with some approaches that provide
among the worst results in terms of landmark localization, but
perform among the best for FER.

From this study, two issues emerge: (1) Which landmarks
should be used? (2) Which metric should be optimized? The Eu-
clidean distance, as used in the literature, does not fit subsequent
tasks such as FER. The new FLL evaluation metrics proposed in
Section 6, which account for the specificity of FER, offer some
answers to these questions.

Suitable temporal modeling for FLL was also found to be of
major importance to effectively capture the dynamics of the face.
This complex dynamics involves both global motion, as in head
movements, and local motion at the level of each components of
the face. Such approaches are currently receiving little attention
and much work remains to be done. It would also be interesting to
study new loss functions based on the observations of this study
to improve and adapt FLL for FER.

It is also desirable to find a suited way to integrate temporal
and 3D approaches into this benchmark. SNaP-2DFe could be
extended to other major difficulties, including occlusions. It is
possible to artificially add static and dynamic occlusions to current
data. The impact of dynamic occlusions is an interesting chal-
lenge for temporal approaches. Finally, beyond SNaP-2DFe, other
datasets should be developed to evaluate FLL in other contexts.
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APPENDIX A
In this section, we provide empirical evidence of the importance
of facial landmarks for facial expression recognition. To this end,
we have selected and evaluated state-of-the-art landmark-free and
landmark-based approaches for FER, ExpNet [8] and CovPool [1],
respectively. Note that an extensive analysis of face registration for
FER is already available in [3].

Comparison between ExpNet and CovPool

ExpNet [8] and CovPool [1] are evaluated on original faces from
the static camera (i.e., with head movements) under nominal con-
ditions. CovPool is based on a custom shallow model, the variant
number 4, as stated in the original paper. It takes as input aligned
face crops obtained through FLL from data initially captured under
uncontrolled conditions. ExpNet extracts 29 3DMM expression
coefficients, which serve as features. ExpNet uses the ResNet-101
model trained from scratch using the raw face crops from the
CASIA dataset [43], without augmentation. ExpNet and CovPool
models are not trained on the same training data. ExpNet has
obviously been trained under better conditions, with over 10 times
more data.

TABLE 10
Comparison of FER performance between landmark-free (ExpNet) and

landmark-based (CovPool) approaches. The accuracies (%) with
original faces from the static camera and with registered faces based
on the ground truth landmarks are provided. Original (0ri) means plain
image for ExpNet and normalized faces for CovPool. Registered (Reg)

means frontalized faces for both approaches. Static means no head
movement.

All Static Roll Yaw Pitch Diagonal

Ori Reg Ori Reg Ori Reg Ori Reg Ori Reg Ori Reg

ExpNet 55.8 69.0 68.0 74.1 56.0 78.6 67.1 75.7 38.4 52.7 32.3 53.3

CovPool 72.2 74.4 75.2 80.8 81.1 81.9 80.8 81.8 61.6 60.9 56.8 64.0

The results of the evaluation are provided in Table 10. Despite
the possible bias related to the training data, overall, the landmark-
based approach (CovPool) outperforms the landmark-free ap-
proach (ExpNet) by a large margin. Even when ExpNet integrates
the registration step, its results remain below those obtained by
CovPool on original faces. Face registration leads to a significant
gain in performance for both models with a narrowing gap be-
tween them. There is an increase in accuracy of about 23.7% for
ExpNet and 3.1% for CovPool. This tends to illustrate the benefits
of face alignment and the difficulty that ExpNet has coping with
non-frontal faces. We can observe a difference of about 33.3%
between the performances of ExpNet on original faces and the
performances of CovPool with the complete recognition process
studied in this work, i.e., with a face registration step. Results
by head movement on original images show that CovPool also
outperforms ExpNet for all movements. ExpNet is particularly
struggling with pitch and diagonal movements. Face registration
leads to a positive impact on CovPool for all movements, except
for pitch, where the scores are close to each other. Results are
even better for ExpNet where the difference between original and
registered faces is more significant.

Discussion

These results show the usefulness of FLL for FER under uncon-
trolled conditions. The common facial expression classification ap-
proach based on registered faces appears to perform significantly

better than the facial expression regression approach. It is also
interesting to see an improvement of ExpNet when using facial
landmarks and normalization. This suggests that facial expression
regression approaches also benefit from these preprocessings.

The use of more supervision in the recognition process is
one reason that may explain these results. Explicitly exploiting
facial structure information is likely to be advantageous for a
facial analysis task. Given these findings, can we consider that
landmark-based approaches will always be better than landmark-
free approaches as they use more supervision in the recognition
process? Is this a problem in any way? Landmark annotations are
available in most datasets. Besides, recent advances on unsuper-
vised FLL [48] could be leveraged instead of supervised ones. In
the end, is it a good idea for landmark-free approaches to avoid
using landmarks? Some work suggests that the question is worth
asking [27].

Be that as it may, we believe that facial landmarks should
be used since they easily provide additional anchors for FER.
A solution that includes landmark information has every chance
to outperform a more naive solution. However, the accuracy of
FLL plays an important role in the recognition process, as we
demonstrated in the rest of the paper.

APPENDIX B
In this appendix, we provide detailed results obtained while
considering various subsets of landmarks covering simultaneously
different parts of the face. The subsets covering specific facial
regions are illustrated in Figure 7.

Fig. 7. Various landmark subsets covering specific facial regions: EG -
edges, EB - eyebrows, E - eyes, N - nose, MI - inner mouth, MI - outer
mouth, ALL - all landmarks.

Figures 8 and 9 show the correlation values measured when
considering combinations of landmark subsets covering jointly
several facial regions at a time, for each of the metrics mentioned
in Section 6. Correlations are measured in two settings: in the
absence of head movements (based on FER accuracy values from
Table 8) and in their presence (based on FER accuracy values from
Table 7).
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Fig. 8. Kendall’s correlation coefficient between the AUC of FLL ap-
proaches and FER accuracy, in absence of head movements, w.r.t. the
subsets of landmarks considered: EG - edges, EB - eyebrows, E - eyes,
N - nose, MI - inner mouth, MI - outer mouth, ALL - all landmarks. The
AUC is based on three metrics: Metric1 (traditional error metric), Met-
ric2 (spatio-temporal stabilisation error based on the distance), Metric3
(spatio-temporal stabilisation error based on the angle).

Fig. 9. Kendall’s correlation coefficient between the AUC of FLL ap-
proaches and FER accuracy, in presence of head movements, w.r.t. the
subsets of landmarks considered: EG - edges, EB - eyebrows, E - eyes,
N - nose, MI - inner mouth, MI - outer mouth, ALL - all landmarks. The
AUC is based on three metrics: Metric1 (traditional error metric), Met-
ric2 (spatio-temporal stabilisation error based on the distance), Metric3
(spatio-temporal stabilisation error based on the angle).
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Fig. 10. Spearman’s correlation coefficient between the AUC of FLL
approaches and FER accuracy, in absence of head movements, w.r.t.
the subsets of landmarks considered: EG - edges, EB - eyebrows, E -
eyes, N - nose, MI - inner mouth, MI - outer mouth, ALL - all landmarks.
The AUC is based on three metrics: Metric1 (traditional error metric),
Metric2 (spatio-temporal stabilisation error based on distance), Metric3
(spatio-temporal stabilisation error based on angle).

Fig. 11. Spearman correlation between the AUC of FLL approaches
and FER accuracy, in presence of head movements, w.r.t. the subsets
of landmarks considered: EG - edges, EB - eyebrows, E - eyes, N -
nose, MI - inner mouth, MI - outer mouth, ALL - all landmarks. The
AUC is based on three metrics: Metric1 (traditional error metric), Met-
ric2 (spatio-temporal stabilisation error based on the distance), Metric3
(spatio-temporal stabilisation error based on the angle).
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