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In this paper we study the out-of-equilibrium phase diagram of the quantum version of Derrida’s random
energy model, which is the simplest model of mean-field spin glasses. We interpret its corresponding quantum
dynamics in Fock space as a one-particle problem in very high dimension to which we apply different theo-
retical methods tailored for high-dimensional lattices: the forward-scattering approximation, a mapping to the
Rosenzweig-Porter model, and the cavity method. Our results indicate the existence of two transition lines and
three distinct dynamical phases: a completely many-body localized phase at low energy, a fully ergodic phase at
high energy, and a multifractal “bad metal” phase at intermediate energy. In the latter, eigenfunctions occupy a
diverging volume yet an exponentially vanishing fraction of the total Hilbert space. We discuss the limitations of
our approximations and the relationship with previous studies.
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I. INTRODUCTION

As discovered by the seminal work of Basko et al. [1],
isolated disordered interacting many-body systems can show
the absence of transport and thermalization even at finite en-
ergy density if the disorder is strong enough. This is known
as many-body localization (MBL), which is a purely quan-
tum phenomenon which occurs due to Anderson localization
in the Fock space as the result of the interplay of disorder,
quantum fluctuations, and interactions [1–3] and gives rise to
a completely new mechanism for ergodicity breaking, which
produces a robust dynamical phase of matter which is stable
within a range of interaction and other Hamiltonian parame-
ters. This remarkable phenomenon has attracted considerable
interest recently (see Refs. [4–8] for recent reviews), as it
implies that the long-time properties of MBL systems cannot
be described by the conventional ensembles of quantum sta-
tistical mechanics: They can remember, forever and locally,
information about their initial conditions.

Although significant and exciting progress has been made
in understanding these phenomena in recent years, in both
theory [4–8] and experiment [9–11], there still remain many
open issues. One set of open questions is about the nature (the
universality class) of the MBL phase transition between the
thermal and localized phases as the randomness is increased.
This transition is an eigenstate phase transition, marked by a
sharp change in properties of the many-body wave functions
and thus in the dynamics of the system. However, the behavior
of many-body eigenstates in the Hilbert space is not firmly
established [12–14]. For instance, it is still debated whether
there is only one phase transition or could there possibly
be some sort of intermediate phase that is neither fully lo-
calized nor fully thermal, where eigenstates are delocalized

but nonergodic [2,15–17], called the “bad metal” phase [1].
Investigations of the MBL transition so far have mostly been
numerical studies based on exact diagonalization (ED) of
relatively small one-dimensional systems [12,18,19], and how
to do a proper finite-size scaling analysis of these numerical
data remains unclear [20,21]. Also in experiments it is chal-
lenging to access the very long timescales, and possibly also
long length scales, on which the critical behavior develops.
Another frontier of the field is directed towards understanding
the existence of MBL in higher dimensions [22–24] and its
relationship with other form of ergodicity breaking such as
quantum glassiness [25–28].

In this context, exactly solvable, mean-field-like, and sim-
plified toy models might naturally play an important role in
making some progress, at least partially, in these directions
and in improving our understanding of MBL. Also developing
new techniques and tools to tackle analytically or semian-
alytically the transition and its properties might provide an
important step forward to provide further insight into some
of the problems mentioned above. With this in mind, in
this paper we study the out-of-equilibrium phase diagram
of the quantum version of Derrida’s random energy model
[29], which is the simplest toy model of mean-field spin
glasses. The quantum model’s equilibrium phase diagram has
been studied before [30,31] and a glassy phase was identi-
fied at low temperature and small transverse magnetic field.
The MBL transition of the quantum random energy model
(QREM) was also investigated previously [25,26,28,32–34].
In Refs. [25,26] the presence of a mobility edge separat-
ing ergodic eigenstates from many-body localized ones was
established, based on EDs of small systems and on a perturba-
tive expansion built on the forward-scattering approximation
(FSA) [35]. A later study identified three distinct dynamical
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phases, referred to as trapped, tunneling, and excited phases
in the context of quantum optimization problems [32]. The
interpretation of those phases, and in particular of the phase
right above the MBL localized phase, has been recently called
into question. In particular, in Ref. [28] the MBL phase was
identified with a hyperglass where the dynamics is practically
absent while the entire phase above TMBL with a dynamical
glass phase (or bad metal) is characterized by nonergodic
extended (NEE) eigenstates. In Ref. [34] the authors derive
an estimate of the transition to NEE eigenstates in agreement
with Ref. [28] and argue that the NEE phase is layered in an
alternating sequence of two distinct subphases. The dynam-
ical population transfer protocol on the QREM was further
analyzed in Ref. [33], yielding a numerical estimation of the
dynamical phase diagram and of the fractal dimensions of the
eigenstates in the NEE regime.

In this work we revisit the problem of the out-of-
equilibrium phase diagram of the QREM using two com-
plementary techniques, the first based on the FSA and on
a mapping onto a paradigmatic random matrix model, the
Rosenzweig-Porter model [36,37], and the second based on
a generalization of the self-consistent theory of localization
[38–41] (hereafter called the cavity approach) designed to take
into account the local structure of the Hilbert space of the
QREM. In agreement with Ref. [28], we find a multifractal
bad metal phase in a broad range of intermediate energies,
where eigenfunctions are delocalized but nonergodic, and out-
of-equilibrium relaxation to thermal equilibrium is expected
to be very slow [28,33] (exponential in the system size). We
also obtain a second transition into a fully delocalized ergodic
phase at higher temperatures.

The paper is organized as follows. In Sec. II we introduce
the QREM and recall basic properties of its equilibrium phase
diagram. Section III describes the mapping to a single-particle
tight-binding Anderson problem in Hilbert space. Section IV
provides qualitative arguments for the phase diagram within
the FSA. Section V contains the cavity approach and the
numerical results found with this method. In Sec. VI we
summarize the results found with our approximations and
discuss their relationship with previous results. Section VII
puts forward an interpretation of the results based on a family
of auxiliary Anderson toy models. Finally, in Sec. VIII we
provide concluding remarks and perspective for future studies.
Several technical details are reported in Appendixes A–C.

II. MODEL

The quantum random energy model for N spins 1
2 is defined

by the Hamiltonian

HQREM = E
({

σ̂ z
a

}) − �
∑

a

σ̂ x
a , (1)

where � is the transverse field and E ({σ̂ z
a }) is a random

operator diagonal in the {σ̂ z
a } basis, which takes 2N different

values for the 2N configurations of the N spins in the z basis,
identically and independently distributed according to

P(E ) = e−E2/N

√
πN

. (2)

Such a natural choice of the scaling of the random many-
body energies ensures that they are with high probability
contained in the interval [−N

√
ln 2,+N

√
ln 2] in the ther-

modynamic limit. Throughout the paper we will denote by
ε (=E/N) the intensive energy per spin corresponding to
the extensive energy E . A concrete implementation of the
E ({σ̂ z

a }) is given by the p → ∞ limit of the fully connected
p-spin model, E ({σ̂ z

a }) = limp→∞
∑

a1,...,ap
Ja1,...,ap σ̂

z
a1

· · · σ̂ z
ap

,
where the Ja1,...,ap are independent and identically distributed
Gaussian random variables. In consequence, the diagonal part
of the Hamiltonian corresponds to a mean-field spin-glass
model and exhibits all the fundamental features of the so-
called random first-order theory [42] with a one-step replica
symmetry-breaking glass transition [29].

The equilibrium properties (in the canonical ensemble) of
the QREM are well established [30,31]. At low transverse
field, it displays the same transition as the classical model be-
tween the paramagnetic and the glass phase at the Kauzmann
temperature TK = 1/(2

√
ln 2). All thermodynamic quantities

are identical to the � = 0 classical random energy model
(REM). For T < TK the system freezes in its ground state
at εGS = −√

ln 2. The classical model has also a dynamical
ergodicity-breaking transition below which the time to reach
thermal equilibrium is exponentially large in the system size
[43]. However, differently from the p-spin models with finite
p, for which the dynamical transition temperature Td is finite,
in the p → ∞ limit Td → ∞, due to the fact that the ran-
dom energies and spin configurations are totally uncorrelated
and flipping a single spin can change the energy by a large
amount. Within the semiclassical approximation of Ref. [30],
Td stays infinite even when quantum fluctuations are turned on
(� > 0).

At large magnetic field � > �c(T ) the system is a standard
quantum paramagnet and the REM term in the Hamiltonian
does not influence the equilibrium physics of this phase. The
first-order transition between these two regions takes place at
�c(T ), which is equal to

√
ln 2 ≈ 0.833 for T → 0 and to√

2/2 ≈ 0.707 for T → ∞. In this paper we will only focus
on the small-� region of the phase diagram (i.e., � <

√
2/2).

III. MAPPING TO ANDERSON LOCALIZATION
ON THE HYPERCUBE

The QREM defined by Eq. (1) can be viewed as the sim-
plest many-body model that displays Anderson localization in
its Hilbert space: If one chooses as a basis the tensor product
of the simultaneous eigenstates of the operators σ z

a , the Hilbert
space of the many-body Hamiltonian is an N-dimensional
hypercube of V = 2N sites. One can map a configuration
of N spins to a corner of the N-dimensional hypercube by
considering σ z

a = ±1 as the top/bottom face of the cube’s ath
dimension. The random part of the Hamiltonian is by defi-
nition diagonal on this basis and gives uncorrelated random
energies on each site orbital of the hypercube: At � = 0 the
many-body eigenstates of Eq. (1) are simply product states
of the form |σ z

1 〉 ⊗ |σ z
2 〉 ⊗ · · · ⊗ |σ z

N 〉 and the system is fully
localized. The interacting part of the Hamiltonian acts as
single spin flips on the configurations {σ z

a } and plays the
role of the hopping rates connecting neighboring sites in the
configuration space. The many-body quantum dynamics is
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then recast as a single-particle noninteracting tight-binding
Anderson model for spinless electrons in a disordered poten-
tial existing on the 2N corners of a hypercube in N dimensions,
with the spin configurations being lattice sites, |i〉 ≡ |{σ z

a }〉,
and the transverse field playing the role of the hopping ampli-
tude between neighboring sites

H = −�
∑
〈i, j〉

(|i〉〈 j| + | j〉〈i|) +
V∑

i=1

Ei|i〉〈i|, (3)

where 〈i, j〉 denotes nearest neighbors on the hypercube,
V = 2N is the total number of sites, and � is the hopping
kinetic energy scale. This mapping is exact, in the sense
that the Hamiltonians (1) and (3) have the same eigenval-
ues and the eigenvectors (when the simultaneous eigenstates
of the operators σ z

i are chosen as a basis). However, for a
generic interacting many-body Hamiltonian in finite dimen-
sions the random energies defined on neighboring corners of
the hypercube are strongly correlated, as they correspond to
many-body configurations which only differ by a single spin
flip, while for the QREM Ei are independent and identically
distributed random variables distributed according to Eq. (2),
since its distinguishing feature is precisely the absence of
such correlations.

IV. ESTIMATE OF THE OUT-OF-EQUILIBRIUM PHASE
DIAGRAM WITHIN THE FORWARD-SCATTERING

APPROXIMATION

As discussed in Sec. III, the QREM can be mapped to an
Anderson model on a hypercube with V = 2N sites, labeled
by σ z configurations. The typical tunneling rate between two
configurations depends on their energy and on the Hamming
distance Nx between them (the Hamming distance Nx is de-
fined as the minimum number of spin flips which separate the
two configurations, with 0 < x < 1). Since the energy levels
are independent, the typical number of configurations of en-
ergy |E | = Nε and at distance Nx from a given configuration
is

Nε(x) =
(

N

Nx

)
e−Nε2

√
πN

. (4)

Here we estimate the matrix elements M(ε, x) between these
two configurations by perturbation theory in �, using the FSA
[25,44,45]. This consists in assuming that the matrix element
between two configurations at distance x is given by the prod-
uct of the matrix elements obtained along the Nx spin flips that
connect the two configurations, ignoring loopy contributions
in which spins are flipped twice since they contribute at higher
order in perturbation theory. Almost all states have energy
O(

√
N ), while E ≈ O(N ); therefore, we take the energy dif-

ferences appearing in the denominators of the perturbative
expansion to be E . Since there are (Nx)! such contributions,
corresponding to the (Nx)! to connect two configurations Nx
spin flips away, the resulting matrix element reads

M(ε, x) ≈
(

�

Nε

)Nx

(Nx)!. (5)

In the case of noninteracting particles in a disordered po-
tential, the Mott argument for hybridization states that the

metal-insulator transition occurs when the number of sites in
resonance with a given site i stays finite in the thermodynamic
limit [46–48]. Based on the analogy with single-particle An-
derson localization, one can thus characterize the localized
phase by the condition (Mott criterion)

lim
N→∞

Nε(x)|M(ε, x)| = 0 (6)

and from this estimate the point at which many-body localiza-
tion of the QREM takes place.

Analogously, the ergodicity-breaking transition can be es-
timated from the Fermi golden rule [28,46–48]. In fact, the
spreading amplitude Nε(x)|M(ε, x)|2 quantifies the escape
rate of a particle created at a given site i. When this amplitude
is much smaller than the spreading of energy levels due to
disorder, then ergodicity is broken:

lim
N→∞

Nε(x)|M(ε, x)|2 = 0. (7)

The nonergodic extended phase is thus realized when

Nε(x)|M(ε, x)|2 → 0, Nε(x)|M(ε, x)| → ∞. (8)

This means that although a given state is in resonance with
many other states of energy ε and at distance Nx from it, the
number of those resonances is not enough for the quantum dy-
namics to decorrelate in a finite time from the initial condition.

These two criteria for localization and ergodicity breaking
can be illustrated using the Rosenzweig-Porter (RP) model
[36,37,46,49] as a benchmark. For the sake of clarity, here we
briefly recall the definition of the RP model, whose Hamilto-
nian is a matrix of size V × V given by the sum of two terms

HRP = E + μ

Vγ /2 G, (9)

where Ei j = Eiδi j is diagonal with independent and identically
distributed entries (the distribution does not matter as long as
it has finite variance), μ is a constant of order one (whose
value is unimportant), and G is a random matrix drawn from
the Gaussian unitary ensemble (GUE) with unit variance. The
latter mimics an ergodic system (e.g., the clean lattice), while
E represents the on-site disorder. The parameter γ acts in
the RP model as a proxy of the disorder strength: At large
γ > 2, the GUE contribution is suppressed and the systems
is localized; at small γ < 1, the system is ergodic, while the
regime 1 < γ < 2 is special, with delocalized but nonergodic
wave functions which typically occupy V2−γ sites close in
energy. The criteria for these two transitions are exactly the
ones we introduced above for Anderson localization (6) and
ergodicity breaking (7).

Specializing now to the Nε(x) levels at energy ε and Ham-
ming distance Nx between them of the QREM, we can map
the effective (typical) transition rates (5) onto an effective
Nε(x) × Nε(x) RP random matrix with off-diagonal matrix
elements roughly scaling as M(ε, x) ∝ Nε(x)−γ . The effec-
tive exponent γ associated with a given set of configurations
(ε, x) defined as γ = −2 lnM(ε, x)/lnNε(x). We therefore
expect that the transition from Anderson localization to non-
ergodic extended states for the QREM happens when at least
one x sector becomes delocalized, i.e.,

max
x

N (ε, x)M(ε, x) ≈ max
x

eN f1(x,ε,γ ) � 1, (10)
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0.0 0.2 0.4 0.6
Γ

−0.5

0.0

0.5

ε

FIG. 1. Localization (blue) and ergodicity (orange) transition
lines, obtained from the mapping to the RP model (11) and (14).
The limits of the y axis coincide with the edges of the many-body
spectrum (|ε| <

√
ln 2). The red dashed lines correspond to ε = ±�

(see Refs. [25,26]).

where, using Stirling’s approximation for the factorials,

f1(x, ε, �) = x ln

(
�

eε

)
− (1 − x) ln(1 − x) − ε2. (11)

If � < ε, f1 is always negative. Otherwise, it has a non-
negative maximum at x∗

1 = 1 − ε/�, which determines the
mobility edge �MBL(ε) through the implicit equation

f1(x∗
1, ε, �MBL) = ε

�MBL
− ε2 + ln

�MBL

eε
= 0. (12)

This is the same result obtained through a similar argument in
Ref. [25].

Similarly, full ergodicity is recovered by requiring that at
least one x sector becomes ergodic,

max
x

N (ε, x)|M(ε, x)|2 ≈ max
x

eN f2(x,ε,γ ) � 1, (13)

with

f2(x, ε, �)=x ln x−(1 − x) ln(1 − x) − ε2+2x ln

(
�

eε

)
.

(14)
If � < 2ε, f2 is always negative. Otherwise, it has a non-
negative maximum at x∗

2 = 1/2[1 +
√

1 − 4(ε/�)2], which
gives a different implicit equation for the ergodic transition
�erg(ε).

Expanding the solutions to the two implicit equations
around ε = 0, we find �MBL ≈ ε [25,26,28,32] and �erg ≈
ε/2. The analogy with the RP model therefore indicates that
the QREM also undergoes two separate localization and er-
godicity transitions. The estimates for the transition lines
obtained in this way are shown in Figs. 1 and 2.

Note that the phase diagram of Fig. 1 implies that the
nontrivial localized and nonergodic behaviors are found at
nonzero energy density. Hence the fractions of localized and
NEE states is exponentially small in N and vanish as N → ∞,
while the vast majority of states around zero energy density
are fully ergodic, in agreement with Ref. [40].

Qualitatively, these results are in agreement with the recent
analysis of Refs. [28,34], which are based on a different (and
more thorough) strategy to estimate the off-diagonal tunnel-
ing rates between different spin configurations in the Hilbert

0.2 0.4 0.6 0.8 1.0
Γ

0

1

2

3

4

T

FIG. 2. Ergodicity and localization transition lines (Fig. 1), trans-
posed on the canonical phase diagram, with T = 1/2ε.

space, and are also in agreement with the numerical estima-
tions of Ref. [33]. However, while Eq. (14) predicts that the
transition line from the fully ergodic to the dynamical glass
(bad metal) regime is at finite energy density εerg, within the
approach of Refs. [28,34] the transition line is squeezed to
zero energy density, i.e., infinite temperature. We will return
to this point in Sec. VI.

V. CAVITY APPROACH

A. Cluster approximation on the hypercube

In large spatial dimensions the neighbors of a given site are
organized in a hierarchical way (i.e., the fraction of short loops
is suppressed) and their number grows exponentially with the
distance. These are distinctive features of treelike structures.
In fact, it was argued originally in [2] that the (noninteracting)
Anderson model on the Bethe lattice, first introduced and
studied in Ref. [38], can be thought of as a toy model for MBL
(see also Refs. [3,50–53] for a similar analysis and Ref. [54]
for a quantitative investigation of these ideas).

Since on treelike structures the model (3) allows, in prin-
ciple, for an exact solution [38], which yields the diagonal
elements of the resolvent matrix, assuming that for large
enough N the hypercube is well approximated by a Bethe
lattice provides a very simple way to investigate analyti-
cally, although approximately, the spectral properties of the
eigenvectors of the QREM (see Refs. [39–41,55] for similar
approaches in the context of MBL). The simplest approxi-
mation consists in taking random regular graphs (RRGs) of
V = 2N sites and fixed connectivity N as the underlying lat-
tices mimicking the Hilbert space [54], i.e., random lattices
which have locally a treelike structure but have loops whose
typical length scales as lnV ∝ N and no boundary, and which
are statistically translationally invariant.1 In practice, this cor-
responds to shuffling the position of the sites and/or rewiring
the connections of the hypercube in a random way, keeping
the total number of sites and the local connectivity of the
lattice fixed.

1The properties of random regular graphs have been extensively
studied. For a review see [56].
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There is however a potentially important issue related to
the Bethe approximation, which we explain below. The spec-
trum of the kinetic term of (3) is given by the density of
states (DOS) of the adjacency matrix of the N-dimensional
hypercube, which coincides with the distribution of the eigen-
values of the second term of the Hamiltonian (1), i.e., a
simple paramagnet, with energies contained in the interval
E ∈ [−N�, N�],

ρHC
I (E ) = 	(E )

�2N+1
, (15)

where the term �2N−1 in the denominator is a normalization
factor that ensures that

∫ +N�

−N�
ρHC

I (E )dE = 1 and 	(E ) is the
number of spin configurations at energy E :

	(E ) =
(

N

(N + E/�)/2

)
∼ 	0eNs(ε/�). (16)

Here 	0 is a normalization factor and s(ε/�) is the entropy
per spin at large N (apart from logarithmic corrections) for a
polarization m = ε/� = 〈σ x〉 of the spins in the x direction:

s(m) = ln(2) − 1 + m

2
ln(1 + m) − 1 − m

2
ln(1 − m). (17)

Approximating the hypercube as a treelike lattice amounts to
replacing Eq. (15) with the spectrum of the adjacency matrix
of a Bethe lattice of connectivity N which for large enough N
tends asymptotically to a semicircle law

ρRRG
I (E ) ≈

√
4�2N − E2

8π�2N
, (18)

with support in the interval E ∈ [−2�
√

N, 2�
√

N]. For en-
ergies of O(

√
N ), where the vast majority of the eigenvalues

are, ρRRG
I provides in fact a reasonably good estimation for

the true DOS, ρHC
I (see Fig. 10 of Appendix A for a quanti-

tative comparison). However, for extensive energies of O(N )
Eq. (18) completely neglects the exponentially small frac-
tion of eigenvalues in the tails of the DOS, corresponding
to strongly polarized spins in the x direction. Since at finite
energy density ε and N sufficiently large the energy Nε will
fall outside the edges of the semicircle (18) which describes
the spectrum of the delocalizing kinetic term within the Bethe
approximation, the Anderson localization of the eigenfunc-
tions of the Hamiltonian (3) will occur in the far Lifshitz tails
of the DOS [57] and this might affect its properties. In other
words, the system might appear as localized within the Bethe
approximation due to the fact that some of the matrix elements
associated with the kinetic term are artificially suppressed by
approximating the hypercube as a RRG.

In order to overcome, at least partially, these limitations in
this paper we put forward a cluster expansion, which takes
into account, at least locally, the specific structure of the
hypercube up to a certain distance (in particular, including all
the shortest loops of length 4, 6, 8, etc.) and improves sys-
tematically the simplest, single-site, Bethe approximation. In
practice, we consider clusters of s = 2n neighboring corners
on the hypercube (corresponding to spin configurations which
differ by few spin flips only) and obtain self-consistent recur-
sion equations for the s × s elements of the local resolvent
matrix on each cluster by assuming that the clusters are on a
treelike structure.

q1

q2

qN-3. . .

p

qN-2

1

4

2

3

1

2

4

3

FIG. 3. Schematic representation of the recursion step which
yields the self-consistent equations for the s × s elements of the
(cavity) resolvent matrix for clusters of four sites. All loops up to
length 12 of the hypercube are treated exactly.

The standard single-site Bethe approximation corresponds
to n = 0, while the case n = 2 is schematically represented in
Fig. 3 (n = N corresponds, of course, to the exact solution of
the problem). We will take n = 2 throughout.

For n = 2 a plaquette of four corners corresponds to four
spin configurations such as

|1〉 = ∣∣↑,↑, σ z
3 , . . . , σ z

N

〉
,

|2〉 = ∣∣↑,↓, σ z
3 , . . . , σ z

N

〉
,

|3〉 = ∣∣↓,↓, σ z
3 , . . . , σ z

N

〉
,

|4〉 = ∣∣↓,↑, σ z
3 , . . . , σ z

N

〉
for any configuration {σ z

a }a=3,...,N . The N − 2 neighbors of
such a plaquette on the hypercube are found by flipping the
N − 2 spins σ z

3 , . . . , σ z
N one by one. Two neighboring plaque-

ttes of four sites are connected by four edges. The Hilbert
space will then be approximated as a RRG of 2N/4 square
plaquettes of connectivity N − 2. More details are given in
Appendix A.

One can show that within the cluster approximation the
support of the spectrum of the kinetic term of the Hamiltonian
(3) becomes indeed broader and broader as n is increased,
Emax ≈ �(2

√
N − n + n) (see Appendix A). One can easily

obtain, at least formally, the self-consistent recursion relations
for the elements of the resolvent matrix (or Green’s functions)
of the Hamiltonian (3), defined as G(z) = (H − zI )−1, at any
order n of the cluster expansion. The key objects are the so-
called cavity resolvent matrices Gp→q(z) = (Hp↔q − zI )−1,
i.e., the resolvent matrices of modified Hamiltonians Hp↔q

where all the 2n edges between the sites of the cluster p and the
sites of the cluster q have been removed (gray dashed lines of
Fig. 3). Let us assume, as explained above and as sketched in
Fig. 3, that at large enough N the clusters occupy the vertices
of a treelike structure (at least locally) and let us imagine
taking a given cluster p and its neighbors {q1, . . . , qN−n}. If
one removes such a cluster from the graph, then the clusters
{q1, . . . , qN−n} are (quasi)uncorrelated, since the lattice would
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break into N − n semi-infinite (quasi)disconnected branches
(neglecting the large loops of length of order N). One then
obtains (e.g., by Gaussian integration) the iteration relations
for the elements of the cavity resolvent matrix on the s sites of
the cluster [38,57,58][

G−1
p→qk

(z)
]

uv
= Huv − zδuv − �2

∑
ql ∈∂ p/qk

[Gql →p(z)]uv, (19)

where z = Nε + iη, η is an infinitesimal imaginary regulator
which regularizes the polelike singularities on the right-hand
sides (discussed below), ε is the intensive energy density
around which one chooses to study the spectral properties,
Huv are the matrix elements of the Hamiltonian (3) between
the sites u and v belonging to the cluster p, and ∂ p/q denotes
the set of all N − n neighbors of the cluster p except q. The
indices u, v = 1, . . . , s identifying the sites belonging to each
cluster are chosen as in Fig. 3. (Note that for each cluster
with N − n neighbors one can define N − n cavity Green’s
functions and N − n recursion relations of this kind.)

After finding the solution of Eq. (19), one can finally ob-
tain the resolvent matrix of the original problem on a given
cluster p as a function of the cavity Green’s functions on the
neighboring clusters [57,58]:[

G−1
p (z)

]
uv

= Huv − zδuv − �2
∑

qk∈∂ p

[Gqk→p(z)]uv. (20)

For n = 0 these equations simply return the standard recur-
sion relations for the Anderson model on the Bethe lattice
(with connectivity N and Gaussian independent and identi-
cally distributed random energies) [38,57,58]. For n = 1 and
2 simple analytic expressions of the inverse of the local s × s
resolvent matrices are known, which allows one to write sim-
ple recursion equations for its s diagonal elements and its
s(s − 1)/2 off-diagonal elements (see Appendix A for more
details). For n � 3, however, the local inversion involved in
Eqs. (19) and (20) must be done numerically at each iteration
step.

There are essentially two ways, which we detail in Ap-
pendix B, to solve the recursion equations for the Green’s
function and obtain information on the spectral statistics at
finite N . The most accurate strategy, which we will refer to as
the cluster belief propagation (CBP) algorithm (see Ref. [58]
for a detailed explanation of this approach for the usual tight-
binding Anderson model on the Bethe lattice), is to solve
directly Eqs. (19) and (20) on random realizations of the hy-
percube of 2N sites (i.e., N spins) (see Appendix B for details).
However, due to the fact that random energies Ei of the QREM
are uncorrelated, in order to access larger system sizes one
can adopt another strategy, which we will refer to hereafter as
the cluster population dynamics (CPD) algorithm [59], which
consists in interpreting the recursion relations for the Green’s
functions as equations for their probability distributions once
the average over the disorder is taken. In fact, since Gp→q and
Gp are random matrices, one can assume that averaging over
the on-site random energies leads to functional equations on
their probability distribution Q(G) and Q(G) (see Appendix
B for details). Figure 11 of Appendix B shows that the cluster
approximation provides a quite accurate approximation of

local observables, such as the distribution of the local density
of states (LDOS), as compared to exact diagonalization for
small systems.

B. Spectral statistics and the η → 0+ limit

The statistics of the diagonal elements of the resolvent
give, in the η → 0+ limit (discussed below), the spectral
properties of H. In particular, the probability distribution of
the LDOS at energy E = Nε is given by

ρi(ε) =
∑

α

|〈i|α〉|2δ(Nε − Eα ) = lim
η→0+

ImGi(Nε + iη)

π
,

(21)

from which the average DOS is simply obtained as ρ(ε) =
(1/V )

∑
i ρi(ε) = limη→0+ Tr ImG(Nε + iη)/(Vπ ). (We have

defined Gi = [Gp]uu with i = 2n p + u, p = 1, . . . , 2N−n, and
u = 1, . . . , s = 2n.) Similarly, the spectral representation of
the inverse participation ratio of the eigenstates |α〉 of energy
Eα close to Nε can be obtained as

ϒ2(ε) =
∑

i

|〈i|α〉|4δ(Nε − Eα )

= lim
η→0+

η
∑V

i=1 |Gi(Nε + iη)|2∑V
i=1 ImGi(Nε + iη)

. (22)

Another useful observable is the typical DOS

ρ typ(ε) = lim
η→0+

exp
(
V−1 ∑V

i=1 ln ImGi(Nε + iη)
)

V−1
∑V

i=1 ImGi(Nε + iη)
. (23)

However, at this point we encounter another difficulty which
is due to the very unusual (and simultaneous) scaling with
N of the parameters of the Hamiltonian (3). In fact, the
dependence of the random energies and the connectivity of
the lattice on N produces a density of states that strongly
concentrates around zero energy density, as naturally ex-
pected for many-body systems: At small � one has that
ρ(E ) ≈ P(E ) = e−E2/N/

√
πN , while at large � one expects

that ρ(E ) ≈ 	(E )/�2N+1 [see Eq. (15)]. Thus, in both
cases the mean level spacing δ(E ) = 1/Vρ(E ) is well de-
fined locally, but depends strongly (i.e., exponentially) on
the local energy density. In particular, for small � one has
that

δ(ε) ≈ √
πNeN (ε2−ln 2). (24)

In order for Eqs. (21)–(23) to be well defined, the limit η →
0+ should be taken in such a way that the imaginary regulator
goes to zero on the same scale as the mean level spacing [58].
Hence, studying the asymptotic behavior of the model at large
N implies varying simultaneously the following parameters
[39].

(i) The total number of sites diverges exponentially
V = 2N .

(ii) The connectivity of the lattice grows as N .
(iii) The standard deviation of the random on-site energies

grows as
√

N/2, according to Eq. (2).
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(iv) The energy at which we study the system grows as Nε,
with ε of O(1).

(v) The imaginary regulator vanishes exponentially as
δ(ε) = 1/Vρ(ε).

Thus, the N → ∞ limit of the model (3) is quite different
from the usual thermodynamic limit of the standard (non-
interacting) Anderson model (where one just takes the limit
V → ∞ and η → 0 keeping fixed the other parameters) and
might give rise to unusual scaling and new properties.

In the following we will be mostly interested in studying
the dependence on �, ε, and N of the probability distribu-
tion of the LDOS (21), from which one can compute several
spectral quantities of interest, such as the inverse partici-
pation ratio (22) and the typical value of the LDOS (23).
In particular, in order to assess the ergodicity of the wave
functions, it is customary to introduce the fractal dimensions
defined through the asymptotic behavior of these two latter
quantities:

ϒ2(ε) ∼ [Ṽ (ε)]−D2(ε),

ρ typ(ε) ∼ [Ṽ (ε)]D1(ε)−1. (25)

This definition takes into account the actual volume of the
portion of the phase space accessible at finite energy density ε,
Ṽ (ε) = 2Nρ(ε), since at finite energy density ε, ergodic eigen-
states are uniformly spread over the hypersurface at constant
energy. In the small-� part of the phase diagram, as a first
approximation one has that ρ(E ) ≈ P(E ).

C. Numerical results for the fractal dimensions

In Fig. 4, where we plot D1 [Fig. 4(b)] and D2 [Fig. 4(a)] as
a function of N for � = 0.2, and several values of the energy
density ε, mostly on the delocalized side of the MBL transi-
tion and close to the mobility edge (ε � �), D1 and D2 are
obtained as numerical derivatives of ρ typ and ϒ2 with respect
to ln Ṽ . The figure shows three data sets, corresponding to the
results obtained from EDs (N � 14, closed symbols), the CBP
approach (N � 25 and n = 2, open symbols), and the CPD
approximation (N � 50 and n = 2, checkered symbols).

First of all, these plots demonstrate that the CBP and CPD
approximations are in reasonably good agreement with the
exact results for all values of ε, at least in the range of system
sizes accessible via EDs (see also Fig. 11 of Appendix B for
a detailed comparison of the full probability distribution of
the LDOS). At moderate energy density both fractal dimen-
sions show a clear nonmonotonic dependence: D1 and D2 first
rapidly increase with N and then start to decrease slowly after
going through a maximum. At small enough energy density
ε � 0.14, both D1 and D2 reach a finite plateau strictly smaller
than one at large N (horizontal dotted lines). This behavior
corresponds to genuine multifractal eigenstates, as recently
predicted in Ref. [28], and is found in a broad range of energy
density. The lower the energy, the higher the plateau values
reached by D1 and D2, i.e., the system gets closer and closer
to full ergodicity as the energy density is decreased. At larger
energies instead, above the mobility edge εMBL, D1 and D2

decay to zero in the large-N limit.
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ε=0.32
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FIG. 4. Plot of (a) D2 and (b) D1 versus N for � = 0.2 and
several values of the energy density as indicated in the legends.
Closed symbols correspond to the results obtained from ED, open
symbols give the results of the CBP approximation (with n = 2), and
checkered symbols correspond to the result of the CPD approach
(with n = 2). Two independent ED data sets, obtained with two
different algorithms, are shown to give the idea of the typical size
of the error bars. The vertical dashed lines represent the limits of
the range of applicability of ED (N � 14) and the CBP approach
(N � 25). The horizontal dotted lines indicate the asymptotic values
of D1 and D2 at large N in the bad metal phase. (Note that the
generalized fractal dimensions can become larger than 1 for some
intermediate values of N and for ε small enough, due to logarithmic
corrections to the many-body DOS.)

These results support the existence of two distinct noner-
godic regions of the phase diagram: a delocalized multifractal
phase (0 < D1, D2 < 1) at intermediate energy density, where
eigenstates occupy a volume that diverges yet is exponentially
smaller than the total Hilbert space, and a Anderson localized
phase (D1, D2 → 0), where eigenstates are exponentially lo-
calized in the Hilbert space and occupy a finite N-independent
volume on the hypercube. We have repeated the same analysis
for � = 0.1, finding similar results.

Note, however, that the cavity approach does not allow
one to determine sharply the phase boundaries between the
three phases because the numerical results are only available
for systems of moderate size, N � 50, and the asymptotic
values of the fractal dimensions cannot be firmly established,
especially in the vicinity of the transition line between the bad
metal and the MBL phases (see, e.g., the data for ε = 0.2
of Fig. 4). For � = 0.2 the MBL mobility edge within the
cavity approximation is estimated within the interval εMBL ∈
(0.15, 0.19) (see Fig. 6), which is in good agreement with the
estimation of Sec. IV, Eq. (11), and Fig. 1.

D. Level statistics

A natural question that arises concerns the statistics of the
energy levels in the multifractal phase. In fact, in analogy with
the RP model, it is reasonable to expect that in the mixed
phase the level statistics should be described by the Gaussian
orthogonal ensemble (GOE) on the scale of the mean level
spacing, while it might cross over to a different, possibly
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FIG. 5. Level compressibility (obtained from the CBP approach
with n = 2) on the scale of the mean level spacing rescaled by the
GOE asymptotic behavior, 2Nχ (ε; 2cδ)/N , as a function of N for
� = 0.2 and several values of ε. The black dashed line corresponds
to χ = 1 (Poisson statistics).

nonuniversal behavior, on a larger energy scale (proportional
to ṼD2−1) which goes to zero exponentially with N but stays
much larger than δ [36]. This scenario is also supported by
general arguments based on the convergence of the Dyson
Brownian motion to its stationary GOE distribution [37,60]. In
order to check this idea we have analyzed the behavior of the
level compressibility χ (ε; ω) for the number of energy levels
inside the interval [Nε − ω/2, Nε + ω/2] [61], which display
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D=2-γ [Ref. [28]]
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FIG. 6. Fractal dimensions D1 (green squares) and D2 (yellow
circles) obtained from the cavity approximation as a function of ε for
� = 0.2, determined by estimating the height of the plateaus of Fig. 4
at large N . The yellow shaded region indicates the energy interval
within which the numerical results of Fig. 4 suggest that the MBL
transition occurs, 0.15 � εMBL � 0.19. The vertical blue dashed
lines show the position of εerg ≈ 0.0885 and of εMBL ≈ 0.1585 found
in Sec. IV using the FSA and the mapping onto the RP model (12)
and (14). We also plot the results for the fractal dimension D obtained
in Refs. [28] (orange line) and [34] (magenta line), which predict that
D → 1 for ε → 0 (i.e., εerg → 0).

different scaling behaviors for the ergodic, localized, and mul-
tifractal states [58,62–66]. The number of energy levels inside
an energy interval of width ω (and centered around Nε) is
defined as L(ε; ω) = ∫ ε+ω/2

ε−ω/2

∑2N

α=1 δ(E ′ − Eα )dE ′. The level
compressibility is then the ratio between the variance of
L(ε; ω) and its average [61]

χ (ε; ω) = [L(ε; ω)]2 − L(ε; ω)
2

L(ε; ω)
,

where · · · denotes the average over the disorder. In the diffu-
sive regime of the standard ergodic metallic phase, described
by the Wigner-Dyson statistics, energy levels strongly repel

each other and the variance scales as [L(ε; ω)]2 − L(ε; ω)
2 ∝

lnL(ε; ω) [61]. The level compressibility thus vanishes as
χ (ε, ω) ∝ N ln 2/2N for large N . Conversely, in the localized
phase energy levels are thrown as random points on a line and
are described by a Poisson distribution. Hence [L(ε; ω)]2 −
L(ε; ω)

2 = L(ε; ω) and χ (ε; E ) → 1 for N → ∞. Finally,
for nonergodic multifractal states the variance of the number
of energy levels inside an interval should scale linearly with
the average [63–66], at least in the simplest scenarios, and
χ (ε; ω) is expected to converge to a (system-dependent) con-
stant between 0 and 1 in the large-N limit. In the following,
for simplicity we will only focus on the behavior of the level
compressibility when the energy interval ω is taken of the
order of the mean level spacings. In particular, we will set
ω = 2η = 2cδ, where η is given in Eq. (B1) and c = 64.2

As shown in Refs. [58,62], a simple spectral representation
of L(ε; ω) can be achieved in the framework of the CBP
approach, in terms of the resolvent matrices defined on the
clusters of the hypercube and of the cavity resolvent matrices
defined on the edges between the clusters,

L(ε; ω) = 1

π
lim

η→0+

{
2N−n∑
p=1

[�p(z+) − �p(z−)]

+
∑
〈p,q〉

[ϕp↔q(z+) − ϕp↔q(z−)]

}
, (26)

where z± = Nε ± ω/2 + iη, the angle �p(z) is defined as
the phase of det Gp(z), det Gp(z) = |det Gp(z)|ei�p(z), and
the angle ϕp↔q(z) is defined as the phase of det[Is −
�2Gq→p(z)Gp→q(z)] (we have chosen here to put the branch
cut in the complex plane along the negative real axis). In order
to analyze the scaling properties of the level compressibility
we then just need to compute the average of L(ε; ω) and its
fluctuations over many independent realizations of the random
energies of the hypercube. The scaling behavior of χ when
ω is taken on the scale of the mean level spacing ω = 2cδ is
shown in Fig. 5, where we plot the compressibility (divided by
the GOE asymptotic) versus N for � = 0.2 and several values
of the energy density in the region of multifractal eigenstates.
We observe that 2Nχ/N has a nonmonotonic behavior roughly
on the same scale as D1 and D2 and seems to approach a finite

2We have checked that varying c from 16 to 128 does not modify
the results.
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value at large N which grows as ε is increased towards the
localized phase. For ε � 0.26, in the MBL phase, χ tends
instead to 1 at large N , as expected for Poisson statistics.
This implies that in the whole multifractal region, on energy
scales proportional to δ the level compressibility goes to zero
in the thermodynamic limit, as in the diffusive regime of the
standard metallic phase.

VI. DISCUSSION

Above we have presented two complementary approximate
strategies to determine the out-of-equilibrium phase diagram
of the QREM. The first approach is based on the FSA and on
the mapping to the RP model [28], while the second approach
is a generalization of the self-consistent theory of Anderson
localization [38–40] adapted to take into account (at least
partially) the local structure of the Hilbert space of the QREM.
As discussed in more detail in Appendix B, the latter possibly
provides a quite accurate approximation of local observables,
such as the distribution of the LDOS, while the former is
expected to yield a better estimation of correlations, since it is
able to capture the fact that there is a factorial number of paths
connecting two points at a large distance in the configuration
space.

In this section we discuss and compare in more detail the
two approaches concerning the behavior of the fractal dimen-
sions D1 and D2 as a function of the energy density ε, which
we plot in Fig. 6 for � = 0.2 in the large-N limit. Within the
analogy between the QREM and the RP model discussed in
Sec. IV, the fractal dimension is expected to be equal to one
in the ergodic phase |ε| < εerg and to zero in the MBL phase
|ε| > εMBL and is conjectured to decrease from 1 to 0 in the
intermediate NEE regime (the multifractal spectrum should be
obtained as an “average” of the effective fractal dimensions
over all x sectors).

We also plot the estimations of Refs. [28] (orange line)
and [34], where the effective spectral dimension D is obtained
using similar (although probably more accurate) methods to
evaluate the amplitude of the tunneling rates 〈{σ z

a }|�σ x
b |{σ z

a }′〉
between two distant many-body configurations. The symbols
are the cavity-cluster predictions, extracted from the largest
size available when reasonably converged to a plateau (see
Fig. 4). The shaded area indicates the energy interval within
which the numerical results of Fig. 4 suggest that the MBL
transition should take place. Due to the limited range of
system sizes accessible via the cavity approach, we are not
able to conclude whether the fractal dimension would contin-
uously go to zero at εMBL or rather exhibit a finite jump at
the transition.

All approaches agree in indicating the existence of three
different phases of the QREM: a fully ergodic regime at low
energy density |ε| < εerg; a NEE (or bad metal or dynamical
glassy) one at intermediate energy density εerg < |ε| < εMBL,
where the time to reach thermal equilibrium is exponentially
large in the system size and eigenvectors are extended but
multifractal, corresponding to 0 < D1,2 < 1; and a fully local-
ized one, with Anderson localized eigenstates, at high energy
|ε| > εMBL where D1,2 → 0.

However, some quantitative differences also emerge be-
tween these three approximations. According to the FSA

calculation of Sec. IV, the ergodic region extends up to a
finite energy (as also recently suggested by the numerical
results of Ref. [33]), while the approach of Refs. [28,34]
predicts instead that εerg → 0. The cavity approximation in-
dicates that if εerg is finite, it is significantly smaller than the
estimation of Eqs. (13) and (14). As we are going to see in
the next section, an argument based on a simplified solution
of the cavity equations, equivalent to an auxiliary Anderson
model in unconventional thermodynamic limit, also seems
to suggest that εerg might indeed squeeze to zero energy in
the thermodynamic limit (as

√
ln N/N in the large-N limit)

[34]. Anther difference is that within the cavity approach
the fractal dimensions D1 and D2 might possibly exhibit an
abrupt jump from a finite value smaller than one to zero at
the transition between the nonergodic delocalized and fully
localized regime, while the mapping to the RP model indicates
that if one identifies D = 2 − γ [36], the fractal dimensions
should vanish continuously at the MBL mobility edge, as
also found in Refs. [28,34]. These are still open questions for
future investigations.

VII. AUXILIARY ANDERSON MODELS AND
UNCONVENTIONAL THERMODYNAMIC LIMIT

In this section we further simplify the quantum cavity
analysis and introduce a family of auxiliary toy Anderson
tight-binding models on a Bethe lattice with connectivity
N � 1 where the volume V of the system is treated as an in-
dependent parameter from N and taken equal to infinity from
the start (see also Refs. [39–41,55] for similar approaches in
the context of MBL). The basic idea behind this procedure
is that in the original Anderson model on the hypercube (see
Sec. III) the scaling of the number of sites and the number of
neighbors with respect to the size N of the original QREM
is remarkably different, the former being exponential V = 2N

while the latter is linear k = N . As such one could hope to get
some insight into the solution of the quantum cavity equations
by taking the volume to infinity first, possibly providing an
estimation for the transition line between the fully ergodic
phase and the multifractal bad metal one.

Concretely, we consider a hybrid version of the model
(3) where the total number of sites of the lattice is sent to
infinity from the start keeping N fixed. Hence, for any given
choice of � and ε, this leads to a family of tight-binding
Anderson model parametrized by the connectivity N , with
random on-site disorder of standard deviation

√
N/2, given by

Eq. (2). The advantage of this procedure is that now for any
choice of �, ε, and N , the imaginary regulator can be taken as
infinitesimally small (since the mean level spacing vanishes in
the thermodynamic limit) and we can study whether the sys-
tem is in the localized or in the extended phase with standard
techniques.

We start by determining the mobility edge εloc(N ) =
Eloc(N )/N of the auxiliary models by computing the Lya-
punov exponent which describes the evolution of the imagi-
nary part � of the self-energy �, once the iteration relations
(19) have been linearized [38]. At a given order n of the
cluster expansion, the (cavity) self-energy on a cluster p of
s = 2n sites (in the absence of the 2n edges with one of the
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neighboring clusters q) is an s × s matrix defined as

�p→q = Sp→q + i�p→q = Hp − zIs − G−1
p→q,

where Hp is the Hamiltonian (3) acting on the sites of the
cluster and Is is the s × s identity matrix. In the localized
phase its imaginary part vanishes for η → 0+. Hence, in the
thermodynamic limit and close to the localization transition,
one can take the limit η → 0+ from the start and linearize the
recursive equations (19) with respect to �:

[Sp→qk ]uv
= �2

∑
ql ∈∂ p/qk

[Hql − Nε Is − Sql →p]−1
uv , (27)

[�p→qk ]uv
= �2

∑
ql ∈∂ p/qk

s∑
w,y=1

[Hql − NεIs − Sql →p]−1
uw

×[�ql →p]
wy[Hql − NεIs − Sql →p]−1

yv . (28)

Since Sp→q and �p→q are random matrices, these equations
naturally lead to functional self-consistent equations on their
probability distribution (see also Appendix C), which can be
solved with arbitrary numerical precision using a population
dynamics algorithm [57,58] for each value of �, ε, and N .

The Lyapunov exponent � describes the exponential
growth or the exponential decay of the imaginary part of
the diagonal elements of the self-energy with the number of
recursion steps r as �typ ∝ e�r . However, in the delocalized
phase after few recursions �typ becomes of order 1 and the
exponential behavior is lost. To circumvent this problem we
follow Ref. [67] and add an additional “inflationary” step to
the recursion.

(1) We reach to the stationary distribution of the real part
of the self-energies, Eq. (27).

(2) We initialize the imaginary parts of the self-energy to
very small values, e.g., �typ = θ = 10−24.

(3) We execute an iteration step using Eq. (28) and update
the whole population.

(4) We compute �typ after the iteration.
(5) We multiply all the imaginary parts by e�̂ = θ/�typ

such that the typical value of � remains equal to θ at each
iteration step.

(6) We go back to step 4.
An estimate of the Lyapunov exponent � can then be

obtained as the average value of �̂ at stationarity (in principle
one should take θ → 0 and consider the infinite population
size limit).

In Fig. 7 we report the results of an accurate numerical
computation of the Lyapunov exponent for � = 0.2 and for
several values of the energy density ε and of the connectivity
N , performed with population size M ranging from 225 to 227

and with θ from 10−16 to 10−24 (and for n = 2).
One observes that the critical energy density εloc(N ) at

which the Lyapunov exponent vanishes slowly but contin-
uously decreases as N is increased. In Fig. 8 we plot the
dependence of εloc(N ) as a function of N for three different
values of �: We find a similar behavior for all values of the
transverse field, at least in the region of the phase diagram
where the physical properties of the QREM are dominated by
the random term � <

√
2/2 [30,31]. In particular, we observe

that εloc(N ) seems to vanish in the large-N limit as
√

ln N/N .
Consistently, we find that the slope |d�/dε|εloc around εloc
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FIG. 7. Lyapunov exponent � as a function of the energy ε =
E/N of the hybrid Anderson tight-binding models when V is sent
to infinity at fixed N , for several values of N ranging from 32 to
1024 and for � = 0.2. The results are obtained within the cluster
expansion with n = 2. The vertical gray dotted line corresponds to
the prediction of the FSA for the localization threshold εloc = � (see
Appendix C).

grows roughly as
√

N (inset). This behavior can be under-
stood in terms of the analytic computation, carried out in
Appendix C in full detail, of the largest eigenvalue of the
integral operator associated with the self-consistent equation
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N
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|d
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c

100 1000
N

0.0625

0.125
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ε lo
c

Γ=0.1
Γ=0.2
Γ=0.4

FIG. 8. Mobility edge εloc(N ) [such that �(εloc ) = 0] of the fam-
ily of models (3) when the thermodynamic limit is taken from the
start, as a function of N for three different values of � (and for
n = 2). The solid curves correspond to the analytical prediction of
Eq. (29), with the fitting parameters c1 and c2 smoothly varying with
� as c1 ≈ −11.51, −9.27, and −6.62 and c2 ≈ 3.25, 4.54, and 6.5
for � = 0.1, 0.2, and 0.4 respectively. The horizontal dotted lines
correspond to the prediction of the FSA, εloc = �. The inset shows
the slope of the Lyapunov exponent computed at εloc as a function
of N for the same values of � as in the main panel. The black
dashed line is a power-law fit of the data as |d�/dε|εloc � ANγ , with
γ ≈ 0.57.
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for Q(S,�) in the large-connectivity limit and for n = 0 (i.e.,
in the standard single-site Bethe approximation, when the
underlying lattice is taken as a RRG of connectivity N), which
yields [38,68,69]

εloc =
[

ln{
√

N�2/π [ln(N/�4) + c1]} + c2

N

]1/2

, (29)

where c1 is a real constant of O(1) which only depends on �

and c2 can be expressed in terms of the solution μ� of the self-
consistent equations (C9) for the real part of the self-energy.
The predictions of this equation are plotted in Fig. 8 on top
of the numerical points, showing good agreement with the
numerical results.

It is interesting to compare the asymptotic behavior at large
N of the localization threshold εloc found here for the family
of auxiliary models with the large connectivity limit of the
standard Anderson model on the Bethe lattice [38,68,69]. In
fact, for Bethe lattices of connectivity k + 1 and on-site ran-
dom energies taken from a box distribution of width W , in the
large-k (and large-disorder) limit the localization transition (at
zero energy) takes place at disorder WL given by

4ρ ln(WL ) = 1

k
, (30)

where ρ is the density of state in the middle of the spectrum
which, at strong disorder, is just given by ρ(0) � 1/W . In
order to translate this relation to our case, assuming that that
ρ(E ) ≈ P(E ), one finds that the exponential dependence on
N of the DOS is exactly canceled for Eloc = Nεloc given by
Eq. (29):

ρ(εloc) ≈ e−c2

N� ln(N/�4)
.

(We have neglected the constant c1 for simplicity.) The vari-
ance of the random energies of the QREM scales as σ 2

E =
N/2, which leads us to identify the effective disorder as W ≈√

6N . Thus, from Eq. (30) one gets

4e−c2 ln
√

6N

N� ln(N/�4)
≈ 1

N
,

which is satisfied for c2 = ln(2/�).
Returning now to the QREM and to its Hilbert space for-

mulation (3) defined on finite Boolean hypercubes of V =
2N sites, we argue that the mobility edges of the auxiliary
models provide asymptotically in the large-N limit an es-
timation for the transition line between the fully ergodic
phase and the delocalized but multifractal one. The argument
goes as follows. Consider a wave function defined on the
N-dimensional hypercube which decays exponentially over a
finite N-independent length ξ . This corresponds to a multi-
fractal many-body state which occupies roughly ξN sites of
the Hilbert space, with a fractal dimension D ∼ log2 ξ . In
the original many-body setting, when the number of spins N
is sent to infinity, the volume of the Hilbert space (2N ) and
the connectivity of the hypercube (N) diverge concomitantly,
and such wave function will preserve its multifractal nature
at all N . If instead the volume of the Hilbert space is sent to
infinity while the connectivity is kept fixed, as in the auxiliary
model, then such a wave function will appear as genuinely

Anderson localized as it occupies a finite volume. In this
sense, it is natural to argue that the apparent N-dependent
Anderson localization transition of the family of auxiliary
models may in fact capture the transition from ergodic to
nonergodic eigenstates of the original problem.

On the other hand, the FSA analysis of the linearized re-
cursion relations of the auxiliary models on the Bethe lattice,
which consists in neglecting the real part of the self-energy in
the denominators of Eqs. (27) and (28), simply predicts (again
in the simplest n = 0 setting) that εFSA

loc = �, irrespectively of
N (see Appendix C for a detailed calculation). This is the
same result for the many-body mobility edge of the QREM
at the lowest order in � [25]. We argue that the localization
threshold predicted by the FSA does not depend on whether
the V → ∞ limit is taken before the N → ∞ one or not.
In fact, the FSA only keeps the leading-order contribution
to the wave-function amplitude at each site and determines
the convergence of the perturbative expansion by counting
the relative number of resonances found at a given distance
compared to the total number of sites accessible at such a dis-
tance. In this sense, this approximation captures the transition
from the Anderson-localized regime (where the perturbative
expansion is convergent, the eigenstates are weakly dressed
single configurations of spins and occupy a finite volume on
the hypercube) to a delocalized regime (where the perturbative
expansion does not converge and resonances can be found
at arbitrary large distances) irrespectively of the multifractal
nature of the eigenstates. These arguments thus suggest that
while εFSA

loc gives a rough estimate of the mobility edge be-
tween the MBL phase and the NEE phase [25], εloc given in
Eq. (29) provides an estimation of the transition between the
fully ergodic phase and the delocalized nonergodic one:

εMBL ≈ �,

εerg ≈
[

ln
√

N�2/π + O(ln(ln N ))
N

]1/2

. (31)

According to this interpretation, fully ergodic eigenstates of
the QREM are only found in a narrow energy window around
|ε| < εerg, which concentrates around zero in the thermody-
namic limit (in agreement with Refs. [28,34]). However, the
fraction of ergodic eigenfunctions at large N is approximately
given by

∫ Nεerg

−Nεerg
ρ(E )dE ≈ 1 − C/

√
N (ln N )3, where ρ(E ) ≈

e−E2/N/
√

πN and C is a constant of order 1 which depends
on �. Hence, although εerg → 0, due to the scaling of the
many-body energies with N , only a fraction of order 1/

√
N

of the 2N eigenstates are delocalized but nonergodic. Fur-
thermore, a finite value of the mobility edge εMBL ≈ � only
corresponds to an exponentially small fraction of Anderson-
localized eigenstates in the tails of the DOS.

VIII. CONCLUSIONS AND PERSPECTIVES

In this work we have revisited the dynamical phase dia-
gram of the QREM, using a complementary set of approaches,
the FSA coupled to a mapping to the RP model [28] and the
self-consistent theory of localization [38] extended to include
the local Hilbert space structure of the QREM [39,40]. While
the FSA is expected to yield a better estimation of correlations
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and large-distance physics, the latter provides a quite accurate
approximation of local observables. These approaches pro-
vide a qualitatively similar scenario for the phase diagram
in the energy-transverse field plane, namely, the existence of
three dynamical phases: a fully ergodic delocalized one, an
intermediate nonergodic extended regime with multifractal
behavior, and an Anderson localized one. Concerning the
quantitative features of the phase diagram and the properties
of the three phases, there remain however many open ques-
tions. The FSA and our RP mapping seem to suggest that
ergodic delocalized states exist in an entire region around zero
energy density (see also [32]), while the analysis of the quan-
tum cavity equations suggests that if such a region exists it is
much narrower in energy, in agreement with Refs. [28,34]. On
the other hand, an approximate analytic solution of the cavity
equations, corresponding to an auxiliary Anderson model on
a Bethe lattice where the connectivity is sent to infinity after
the thermodynamic limit is taken, mimicking the exponential
scaling of the number of sites of the hypercube, points toward
a threshold energy for full delocalization squeezing to zero in
the thermodynamic limit [28,34].

It is worth stressing upon concluding that certain fea-
tures of the QREM make it very peculiar and produce some
specific and unique features compared to other generic inter-
acting disordered models such as one-dimensional disordered
spin chains or mean-field spin-glass models. One is the ab-
sence of correlations between the many-body energies Ei

and the spin configurations {σ z
a }. The other unique feature of

the QREM is the fact that in the frozen glassy phase T < TK ,
the Edwards-Anderson order parameter is equal to one, im-
plying that essentially no spin can be flipped with respect
to the initial state. This property implies that in the MBL
phase of the QREM many-body wave functions are genuinely
Anderson localized and occupy a finite volume in the Hilbert
space, while for generic interacting models one expects that
the volume occupied by many-body eigenstates in the config-
uration space is subexponentially large due to the presence of
a finite fraction of active spins [14,45]. This makes the inves-
tigation using techniques developed here of other disordered
mean-field models interesting and worth pursuing.
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APPENDIX A: RECURSION RELATIONS FOR THE
MATRIX ELEMENTS OF THE RESOLVENT WITHIN

THE CLUSTER APPROXIMATION

For n = 1 the clusters are simply made by two sites (corre-
sponding to two spin configurations which differ by a single
spin flip) connected by an edge (Fig. 9). The cavity resolvent
matrix on such a cluster can then just be parametrized by three

q1

q2

qN-2

p

qN-1

. . .
1

2

1

2

FIG. 9. Schematic representation of the recursion step which
yields the self-consistent equations for the 2 × 2 elements of the
(cavity) resolvent matrix for clusters of two sites (n = 1).

complex numbers

Gp→q =
(

gp→q
1 gp→q

12

gp→q
12 gp→q

2

)
.

The matrix elements of the Hamiltonian (3) on the sites of the
cluster are

Hc =
(−E1 −�

−� −E2

)
.

Thus, Eq. (19) becomes

gp→qk
2

detGp→qk

= −E1 − z − �2
∑

ql ∈∂ p/qk

gql →p
1 ,

gp→qk
1

detGp→qk

= −E2 − z − �2
∑

ql ∈∂ p/qk

gql →p
2 ,

gp→qk
12

detGp→qk

= −� + �2
∑

ql ∈∂ p/qk

gql →p
12 ,

where detGp→qk = gp→qk
1 gp→qk

2 − (gp→qk
12 )2. From Eq. (20)

one can then write down the equations for the elements of the
resolvent matrix on the cluster

g
p
2

detGp
= −E1 − z − �2

∑
qk∈∂ p

gqk→p
1 ,

g
p
1

detGp
= −E2 − z − �2

∑
qk∈∂ p

gqk→p
2 ,

g
p
12

detGp
= −� + �2

∑
qk∈∂ p

gqk→p
12 ,

where g
p
1 and g

p
2 are the diagonal elements on sites i and j of

the cluster p of the resolvent matrix, gp
12 is the off-diagonal

element, and detGp = g
p
1g

p
2 − (gp

12)2. When gp→qk
12 and g

p→qk
12

are set to zero, these equations return the standard (cavity)
recursion equations for the single-site Anderson model on
the Bethe lattice [38,57]. Moreover, since the off-diagonal
elements are proportional to �, in the limit of small transverse
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field one might expand these equations in powers of � to
obtain the systematic corrections to the zeroth-order equations
due to the small loops

gp→qk
1,0 = −E1 − z − �2

∑
ql ∈∂ p/qk

gql →p
1,0 ,

gp→qk
2,0 = −E2 − z − �2

∑
ql ∈∂ p/qk

gql →p
2,0 ,

δgp→qk
12,1 = −�gp→qk

1,0 gp→qk
2,0 + O(�3),

δgp→qk
1,1 = �2

(
gp→qk

1,0

)2
gp→qk

2,0 + O(�4),

δgp→qk
2,1 = �2

(
gp→qk

2,0

)2
gp→qk

1,0 + O(�4),

where gp→qk
1,0 and gp→qk

2,0 are the diagonal elements of the resol-
vent at the zeroth order of the cluster expansion (i.e., within
the standard single-site Bethe approximation) and δgp→qk

12,1 ,
δgp→qk

1,1 , and δgp→qk
2,1 are the corrections for n = 1 up to the

lowest order in �.
One can proceed in a similar way for n = 2 and obtain

closed equations for the ten independent elements of the cav-
ity resolvent matrices on each cluster in terms of the elements
of the cavity resolvent matrices on the neighboring clusters.
However, the equations are much longer and we do not write
them here explicitly. It is just worth mentioning that in this
case the off-diagonal elements of the resolvent matrix between
pairs of sites of the cluster that are connected by an edge on
the hypercube (e.g., gp→qk

12 , gp→qk
23 , gp→qk

34 , and gp→qk
14 , using

the notation of Fig. 3) are proportional to �. Conversely, the
Green’s functions between pairs of sites that are not connected
by an edge on the hypercube (e.g., gp→qk

13 and gp→qk
24 ) are (as

expected) proportional to �2.

1. Spectrum of the kinetic term

It is instructive to study how the spectrum of the kinetic
term of the Hamiltonian is modified by the cluster expansion.
To this aim we consider the pure limit (in the absence of
disorder) of the equations above for n = 1. In the pure case
(Ei = Ej = 0) the hypercube is translationally invariant. One
can thus look for a uniform solution of the equations in the
form

g

g2 − h2
= −z − (N − 2)�2g,

g

g2 − h2
= −� + (N − 2)�2h,

where g = gp→qk
1 = gp→qk

2 and h = gp→qk
12 for all p and q. One

can then introduce the variables g+ = g + h and g− = g − h
in terms of which the equations above become

1

g+
= −z + � − (N − 2)�2g+,

1

g−
= −z − � − (N − 2)�2g−,

which coincide with the equations that one obtains for the
standard single-site Anderson model on the Bethe lattice in the
uniform limit, with energies shifted by ±�. The DOS is thus
modified accordingly. In particular, the edges of the spectrum

are shifted as well by +� on the right edge and by −� on the
left edge. One can indeed define g = g

p
1 = g

p
2 and h = g

p
12 for

all p and introduce the variables g± = g ± h, which verify the
equation

1

g±
= −z ± � − (N − 1)�2g±,

in terms of which the DOS can be obtained as ρ
(n=1)
I =

Im(g+ + g−)/2π .
For n = 2 a similar treatment of the equations yields

1

g±
= −z ± 2� − (N − 3)�2g±,

1

g0
= −z − (N − 3)�2g0,

where g± = g + f ± h and g0 = g − f , where g = gp→qk
u , h =

gp→qk
12 = gp→qk

23 = gp→qk
34 = gp→qk

14 , and f = gp→qk
13 = gp→qk

24 for
all u, p, and q. Similarly one defines g = g

p
u , h = g

p
12 = g

p
23 =

g
p
34 = g

p
14, and f = g

p
13 = g

p
24 for all u and p and introduces

the variables g± = g + f ± h and g0 = g − f, which verify the
equations

1

g±
= −z ± 2� − (N − 2)�2g±,

1

g0
= −z − (N − 2)�2g0,

in terms of which the DOS reads

ρ
(n=2)
I = Im

[
g+ + g− + 2g0

4π

]
.

A comparison between the exact spectrum of the kinetic
term of the Hamiltonian (3), i.e., the adjacency matrix of the
N-dimensional hypercube (15), the DOS resulting from the
cluster approximation for n = 0, i.e., the adjacency matrix of a
RRG of connectivity N [Eq. (18)], n = 1, and n = 2 is shown
in Fig. 10 for � = 0.2 and three values of N . The imaginary
regulator is set to the value used to solve the recursion equa-
tions within the CBP approximation in the presence of the
disordered many-body on-site energies, Eq. (B1). At the order
n of the cluster expansion the (right) edge of the spectrum is
shifted by +n� (−n�) to the right (left) to the leading order
in N .

APPENDIX B: SOLUTION OF THE RECURSION
EQUATIONS AND COMPARISON WITH EXACT

DIAGONALIZATION

As explained in the main text, the cluster approximation
allows us to derive a system of closed equations (19) and (20)
for the diagonal elements of the resolvent matrix of (3). A
first, and crucial, question that we want to address here is to
what extent this approximation provides a good qualitative
and quantitative description of the spectral statistics of the
QREM. To this aim, in this Appendix we consider samples of
moderate size and compare the probability distributions of the
LDOS computed from the numerical solution of the recursion
relations (19) and (20) with those obtained from EDs of the
QREM.
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FIG. 10. Comparison between the exact DOS of the delocalizing
interacting part of the QREM [i.e., � times the adjacency matrix
of the N-dimensional hypercube (15), dotted red, blue, and green
curves] and the spectra of the kinetic term of Eq. (3) within the
cluster approximation for n = 0 [i.e., the standard single-site Bethe
approximation, which yields (� times) the adjacency matrix of a
RRG of connectivity N , Eq. (18), dashed orange, violet, and dark
green curves], n = 1 (dash-dotted violet and dark green curves), and
n = 2 (solid violet and dark green curves) for � = 0.2 and three
values of N . At each order of the cluster expansion the edge of
the spectrum is shifted by � to the right (to the leading order in
N). The imaginary regulator η is set to be η = cδ [Eq. (B1)], with
δ = 1/2Nρ(E ).

There are essentially two ways, which we detail below,
to solve the recursion equations for the Green’s function and
obtain information on the spectral statistics at finite N .

(i) CBP on the hypercube. The most accurate strategy,
which we will refer to as the cluster belief propagation algo-
rithm (see Ref. [58] for a detailed explanation of this approach
for the usual tight-binding Anderson model on the Bethe
lattice), is to solve directly Eqs. (19) and (20) on random
realizations of the hypercube of 2N sites (i.e., N spins). In
practice, one proceeds as follows.

(a) One first generates a random instance of the hypercube
drawing the 2N on-site energies from the distribution (2).

(b) One finds a partition of the hypercube in 2N−n clusters
of 2n sites each (note that the choice of the partition is not
unique).

(c) Then one finds the fixed point of Eq. (19), which
constitute a system of (s + 1)(N − n)2N−1 coupled equation
for the s(s + 1)/2 independent elements of the cavity Green’s
functions on each cluster [this can be done iteratively with
arbitrary precision in a time which scales linearly with (s +
1)(N − n)2N−1].

(d) Using Eq. (20) one obtains the s(s + 1)/2 independent
elements of the resolvent matrix on each cluster of that spe-
cific instance (and for that specific choice of the partition of
the hypercube in clusters).

(e) One then repeats this procedure several times to average
over different realizations of the on-site disorder (and over
different choices of the cluster partitioning).

As discussed above (see also [58]), in order for the re-
cursive equations to converge to the physical fixed point, the
broadening η must be larger than the mean level spacing.
Hence, in order to implement the η → 0+ limit correctly, for
any given choice of the parameters �, ε, and N , the imaginary
regulator is self-consistently set to be a constant of order 1
times the mean level spacing

η = c

2Nρη(ε)
= cπ∑V

i=1 ImGi(Nε + iη)
. (B1)

As shown in [58], for large enough system sizes and for c large
enough, ρη converges to its asymptotic value obtained in the
limit V → ∞ and η → 0+. We will take c = 64 throughout.2

Within the CBP approach one can study hypercubes of sizes
up to N = 26, which are considerably larger than the ones
accessible via the most efficient ED algorithms.

(ii) CPD algorithm on the RRG. In order to access even
larger system sizes, one can adopt another strategy, which
we will hereafter refer to as the cluster population dynamics
algorithm [59], which consists in interpreting the recursion
relations for the Green’s functions as equations for their prob-
ability distributions once the average over the disorder is
taken. In fact, since Gp→q and Gp are random matrices, one
can assume that averaging over the on-site random energies
leads to functional equations on their probability distribution
Q(G) and Q(G). From Eq. (19) we naturally get

Q(G) =
∫ 2n∏

u=1

dP(Eu)
N−n−1∏

q=1

dQ(Gq)

× δ

(
G−1 + Hc + zIs + �2

N−n−1∑
q=1

Gq

)
, (B2)

where P(E ) is given by Eq. (2), Hc is the Hamiltonian (3) on
the sites of the cluster (see, e.g., Appendix A for the explicit
expression of Hc for n = 1), which contains the s diagonal
random energies E1, . . . , Es, and Is is the s × s identity ma-
trix. [The notation dQ(Gq) is just a shortcut for the integration
over the s(s + 1)/2 independent elements of Gq.] Once the
fixed point of this equation is obtained, using Eq. (20), one
can find an equation for the probability distribution of the
elements of the resolvent

Q(G) =
∫ 2n∏

u=1

dP(Eu)
N−n∏
i=q

dQ(Gq)

× δ

(
G−1 + Hc + zIs + �2

N−n∑
q=1

Gq

)
. (B3)

As before, z = Nε + iη and the imaginary regulator is self-
consistently set to be c times the mean level spacing, η =
2−N cπ/〈ImG〉, where the average is performed over the dis-
tribution Q(G). This set of functional equations can be solved
numerically with an arbitrary degree of precision using a
population dynamics algorithm [57–59,67]. Hereafter, we will
show results obtained using populations of M fields going
from M = 225 to M = 227 (and for n = 2). Note that, differ-
ently from the CBP approach, within the CPD approximation
the specific structure of the hypercube is completely lost for
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FIG. 11. Probability distributions P(ln ImG) obtained from ED
(closed symbols), CBP (n = 2, continuous curves), and CPD (n = 2,
dashed curves) for N = 8 (orange), 10 (red), 11 (violet), 12 (ma-
roon), 13 (blue), 14 (turquoise), and 15 (green) and for (a) � = 0.2
and ε = 0.2, (b) � = 0.2 and ε = 0.32, (c) � = 0.1 and ε = 0.07,
and (d) � = 0.1 and ε = 0.16.

distances larger than the size of the clusters (apart from the
local connectivity of each cluster equal to N − n).

On the other hand, from exact diagonalization3 we can
easily obtain the matrix elements Gi for a given instance of the
QREM in terms of the eigenvalues Eα and the eigenvectors |α〉
of (1) as

Gi(Nε + iη) =
2N∑

α=1

|〈α|i〉|2 Eα − Nε + iη

(Eα − Nε)2 + η2
. (B4)

For each choice of the parameters �, N , and ε, the imaginary
regulator is set to the same value as the one used to solve the
self-consistent recursion relations (B1).

In Fig. 11 we focus on the probability distribution of the
imaginary part of the Green’s functions and plot Q(ln ImG)
for � = 0.1 and 0.2, for N ranging from 10 to 15, and for two
values of ε which are supposed to be on the ergodic side of the
MBL transition and close to the mobility edge, respectively
[25,26]. In all cases, we observe good agreement between the
probability distributions found from EDs and Eq. (B4), and
their CBP counterpart, found from the numerical solution of
the recursion relations (19) and (20) on the hypercube for n =
2. In the figure we also plot the distributions Q(ln ImG) ob-
tained from the CPD algorithm (B2) and (B3), which presents
very small deviations from the CBP results only in the very
far tails of the distributions at small ImG and are only visible
for some values of �, ε, and N .

3In fact, the diagonal elements of the resolvent can be obtained by
matrix inversion, which is slightly faster than ED.

APPENDIX C: ANALYTIC COMPUTATION OF THE
LOCALIZATION THRESHOLD OF THE AUXILIARY

ANDERSON MODELS IN THE LARGE-N LIMIT

In this Appendix we discuss the analytical computation of
the localization threshold(s) of the family of auxiliary Ander-
son tight-binding models described by the Hamiltonian (3),
when the thermodynamic limit V → ∞ is taken from the start
while keeping N fixed. For simplicity, we will only consider
the simplest setting n = 0, i.e., the standard single-site Bethe
approximation in which the hypercube is approximated by a
treelike structure of connectivity N .

1. Probability distribution of the real part of the self-energy

The first step is to realize that the recursion relations for
the real part of the self-energies in the linearized regime are
independent of the imaginary part and can be solved as ex-
plained below. It is useful to introduce the variables Xi→ j (i.e.,
the real part of the diagonal elements of the resolvent matrix
in the linearized regime) defined as

Xi→ j = − 1

Ei + Nε + Si→ j
= GR

i→ j . (C1)

In terms of these variables at the zeroth order of the cluster
expansion Eqs. (27) and (28) become

Si→ j = �2
∑

j′∈∂i/ j

Xj′→i,

�i→ j = �2
∑

j′∈∂i/ j

X 2
j′→i� j′→i. (C2)

Hence, the probability distribution of the real part of the
self-energy RS (S) can be obtained in terms of the probability
distribution RX (X ),

RS (S) =
∫ N−1∏

i=1

dXiRX (Xi )δ

(
S − �2

∑
i

Xi

)

=
∫

dk

2π
eikS

[∏
i

dxidki

2π
ei(ki−�2k)xi R̂X (ki )

]
,

where R̂X (k) is the characteristic function of RX (X ). Assum-
ing that at small k it behaves as the characteristic function of
a Cauchy distribution,

R̂X (k) � 1 − A|k| − ikμ, (C3)

implies that in the large-N limit also RS (S) is given by a
Cauchy distribution

R̂S (k) = [R̂X (�2k)]N−1 � e−(N−1)A�2|k|−i(N−1)�2μk,

RS (S) = AS

π
[
(S − μS )2 + A2

S

] , (C4)

with

AS = N�2A, μS = N�2μ. (C5)

(Throughout we will consider the large-N limit N − 1 ≈ N .)
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FIG. 12. Solutions A� (red) and (minus) μ� (blue) of Eqs. (C9)
for � = 0.2 and (a) ε = 0.2 and (b) ε = 0.1 as a function of N . The
blue dashed lines correspond to μ� ∼ −1/N . The vertical thick gray
dashed lines indicate the localization threshold where the Lyapunov
exponent vanishes for these particular values of � and ε (see Fig. 7).

On the other hand, from Eq. (C1) we have that

RX (X ) =
∫

dE dS P(E )RS (S)δ

(
X + 1

E + Nε + S

)

= 1

|X |2
∫

dE P(E )RS

(
−E − Nε − 1

X

)
. (C6)

After some simple algebra we obtain that

RS

(
−E − Nε − 1

X

)
= cX 2

π [(X − X0)2 + c2]
, (C7)

with

c= AS

(E +Nε+μS )2 + A2
S

, X0 =− E + Nε+μS

(E + Nε + μS )2 + A2
S

.

As a result, from the second line of Eq. (C6) and from the
relations above we get

RX (X ) =
∫

dE P(E )
c

π [(X − X0)2 + c2]
. (C8)

We can now finally compute self-consistently the characteris-
tic function of RX (X ) by expanding the equation above up to
first order in k:

R̂X (k)=
∫

dE P(E )e−c|k|−ikX0 � 1−
∫

dE P(E )(c|k|+ikX0).

From (C3), (C5), and the preceding equation we can thus
obtain two self-consistent relations for the coefficients A
and μ:

A� =
∫

dE P(Ei )
N�2A�

(E + Nε + N�2μ�)2 + (N�2A�)2
,

μ� = −
∫

dE P(E )
E + Nε + N�2μ�

(E + Nε + N�2μ�)2 + (N�2A�)2
.

(C9)
These equations can be easily solved numerically. In Fig. 12
we show the solutions A� and (minus) μ� of Eqs. (C9) for
� = 0.2 and ε = 0.2 [Fig. 12(a)] and ε = 0.1 [Fig. 12(b)] as

0.1 1 10 100
-S

1e-06

0.0001

0.01

1

R
S
(-

S
)

N=32
N=64
N=96
N=128
N=160

FIG. 13. Probability distributions RS (−S) for � = 0.2, ε = 0.2,
and several values of N across the localization transition of the aux-
iliary models. Closed symbols are obtained as the numerical solution
of the linearized recursion relations for the self-energy with the CPD
algorithm for n = 0, while solid lines correspond to the analytic
prediction of Eqs. (C4), (C5), and (C9).

a function of N . While A� decays very fast (exponentially)
with N , μ� decreases much slower, roughly as 1/N (blue
dashed lines). The vertical thick gray dashed lines indicate the
localization threshold where the Lyapunov exponent vanishes
for these particular values of � and ε (see Fig. 7).

In Fig. 13 we plot the probability distribution of the real
part of the self-energy RS (S) for � = 0.2, ε = 0.2, and several
values of N across the localization threshold. We focus on the
negative real axis since the peak of the distribution is located
in S = μS , which turns out to be negative. Closed symbols
correspond to the numerical solution found using the CPD
algorithm (for n = 0) of the linearized recursion equations for
the self-energy (28), while the solid lines correspond to the
analytic prediction (C4), with AS and μS given by Eqs. (C5)
and (C9). The agreement between the numerical results and
the analytic solution is excellent, and it improves for large N .

2. Computation of the Lyapunov exponent

Once the probability distribution of the real part of the
self-energy has been obtained, we can focus on the integral
equation for the joint distributions of the real and the imagi-
nary part (for n = 0):

Q(S,�) =
∫ N−1∏

i=1

[dEiP(E )dSid�iQ(Si,�i )]

× δ

(
S + �2

∑
i

1

Ei + Nε + Si

)

× δ

(
� − �2

∑
i

�i

(Ei + Nε + Si )2

)
. (C10)

We replace the δ functions by their integral representation
in the Fourier space and also write Q(Si,�i ) as the inverse
Fourier transform of Q̂2(Si, ki ) with respect to the second
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argument, defined as

Q̂2(S, k) =
∫ +∞

−∞
d� e−ik�Q(S,�), (C11)

yielding

Q̂(k1, k2) =
∫ ∏

i=1

[
dEiP(Ei )

dSid�idki

2π
Q̂2(Si, ki )

× eik1�
2/(Ei+Nε+Si )e�i[ki−k2�

2/(Ei+Nε+Si )2]

]
.

We can now perform the integration over d�i, which gives
2πδ(ki − k2�

2/(Ei + Nε + Si )2), and then integrate over ki:

Q̂(k1, k2) =
[ ∫

dE P(E )dS Q̂2

(
S,

k2�
2

(E + Nε + S)2

)

× eik1�
2/(E+Nε+S)

]N−1

. (C12)

Similarly to Ref. [38], we assume that in the localized phase
the asymptotic form of Q(S,�) holds for large enough �,

Q(S,�) � A(S)

�1+β
for � → ∞,

Q̂2(S, k) � Q̂2(S, 0) − α|k|βA(S) for k → 0, (C13)

where Q̂2(S, 0) is by definition the marginal of Q(S,�) once
we integrate over �, i.e., Q(S,�) = RS (S). Plugging the
asymptotic form (C13) into both sides of Eq. (C12), we obtain

R̂S (k1) − α|k2|β Â(k1) �
[ ∫

dE P(E )dS

(
RS (S)

− α

∣∣∣∣ k2�
2

(E + Nε + S)2

∣∣∣∣
β

A(S)

)
eik1�

2/(E+Nε+S)

]N−1

.

(C14)

We can now expand the right-hand side of (C14) in powers of
k2 up to the order |k2|β and define

I1 =
∫

dE P(E )dS RS (S)eik1�
2/(E+Nε+S),

I2 =
∫

dE P(E )dS
�2β

|E + Nε + S|2β
A(S)eik1�

2/(E+Nε+S).

The right-hand side of Eq. (C14) is given by
(I1 − α|k2|βI2)N−1 � IN−1

1 [1 − α(N − 1)|k2|βI2/I1] =
IN−1
1 − α(N − 1)|k2|βIN−2

1 I2. From Eq. (28) we have
that by definition IN−1

1 = R̂S . Hence, in the large-N limit
IN−2
1 � IN−1

1 = R̂S (k1) we get

Â(k1) � N�2β R̂S (k1)
∫

dE P(E )dSA(S)
eik1�

2/(E+Nε+S)

|E + Nε + S|2β
.

Changing the variable to w = E + Nε + S, replacing A(S) by
the inverse Fourier transform of Â(k), and integrating over dE ,
we obtain

Â(k1) � N�2β R̂S (k1)
∫

dw dk

2π
e−Nk2/4−ikNε

× Â(k)
eikw+ik1�

2/w

|w|2β
. (C15)

For a given choice of the parameters �, ε, and N , the local-
ization threshold at the zeroth order of the cluster expansion
is thus given by the value of the energy εloc(�, ε, N ) such that
the largest eigenvalue λβ of the integral operator defined by
the equation above becomes equal to one. As first noticed in
Ref. [38] (see also Refs. [68–70]), the kernel of the integral
operator is symmetric around β = 1

2 under the transformation
β → 1 − β, which implies that λ = 1 if and only if β = 1

2 .
Since this is the value of interest for the transition, hereafter
we will focus on the case β = 1

2 only. The integral over dw

can then be performed in terms of modified Bessel functions:∫
dw

eikw+ik1�
2/w

|w| = −2πY0(2�
√

kk1).

Following Ref. [68], we now assume that in the large connec-
tivity limit the eigenvector of the integral operator defined by
Eq. (C15) for β = 1

2 is very well approximated by R̂(k). As-
suming that the localization transition occurs on such energy
scales (apart from logarithmic corrections)

ε = ε̃√
N

, (C16)

with ε̃ of O(1), the equation for the mobility edge becomes

1 = N�

∫
dk

2π
e−Nk2/4−N�2A�|k|−ik(

√
N ε̃+N�2μ� )

× [−2πY0(2�
√

kk1)],

where we have used Eqs. (C5). Here A� is exponentially small
in N and can be neglected, while Nμ� is of order 1 at the
transition (see Fig. 12) and gives a correction of order 1/

√
N

to ε̃ as ε̃′ = ε̃ + �2
√

Nμ�. Since the integral over k is cut off
on a scale 1/

√
N we can then expand the Bessel function,

keeping only the leading logarithmic divergence at small k,
Y0(x) ≈ 2 ln(k)/π . In the N → ∞ limit we can then change
the variable to k̃ = √

Nk, yielding

1 =
√

N�√
π

e−(ε̃′ )2
[ln N − 4 ln � + O(1)].

Putting everything together, we finally obtain the equation for
the mobility edge (29) given in the main text.

3. Forward-scattering approximation

The FSA consists in neglecting the real part of the self-
energy in the denominators of Eqs. (27) and (28). From
Eq. (C6) one can then compute the probability distribution
RX (X ) for n = 0,

RX (X ) = 1

|X |2
e−(1/N )(1/X−Nε)2

√
πN

,

which does not verify exactly the asymptotic form (C3) for
its behavior at large X in the presence of the real part S. This
implies that, differently from what happens for the large con-
nectivity limit of the usual Anderson tight-binding model on
the Bethe lattice, the distribution RS (S) found within the FSA
does not coincide exactly with the distribution obtained in
Sec. C 1 in the presence of the real parts in the denominators.

Following the steps of the calculation detailed above for
the largest eigenvalue of the linearized recursion relations, one

014204-17



GIULIO BIROLI et al. PHYSICAL REVIEW B 103, 014204 (2021)

can compute the distribution of the imaginary part of the self-
energy as

Q(�) =
∫ N−1∏

i=1

[dEiP(E )�iQ(�i )]

× δ

(
� − �2

∑
i

�i

(Ei + Nε)2

)
,

which gives the self-consistent equation for its Fourier trans-
form

Q̂(k) =
[∫

dE P(E )Q̂

(
k�2

(E + Nε)2

)]N−1

.

Assuming, as before, the asymptotic form Q̂(k) ≈ 1 − α|k|β
and expanding the preceding equation at large N , one gets the

equation for the localization threshold within the FSA:

1 ≈ N�2β

∫
dE P(E )

1

|E + Nε|2β
. (C17)

The symmetry λ(β ) = λ(1 − β ) is now lost. Hence the tran-
sition point is not achieved at β = 1

2 , but rather at a given
point β� ∈ [0, 1

2 ] which depends on the other parameters of
the auxiliary models. Equation (C17) can be easily solved
numerically for any choice of �, ε, N , and β and gives the
localization threshold εFSA

loc = �, with β� → 1
2 for N → ∞.

Indeed, since the random energy E is typically of order
√

N ,
if ε is of order 1, one can expand the denominator in powers
of E/Nε, yielding

1 ≈ N1−2β

(
�

ε

)2β(
1 + β(2β − 1)

2Nε2
+ · · ·

)
,

which, in the N → ∞ limit and β → 1
2 , gives εFSA

loc = �.
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