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A number of experimental platforms for quantum simulations of disordered quantum matter,
from dipolar systems to trapped ions, involve degrees of freedom which are coupled by power-law
decaying hoppings or interactions, yet the interplay of disorder and interactions in these systems
is far less understood than in their short-ranged counterpart. Here we consider a prototype model
of interacting fermions with disordered long-ranged hoppings and interactions, and use the flow
equation approach to map out its dynamical phase diagram as a function of hopping and interaction
exponents. We demonstrate that the flow equation technique is ideally suited to problems involving
long-range couplings due to its ability to accurately simulate very large system sizes. We show that,
at large on-site disorder and for short-range interactions, a transition from a delocalized phase to a
quasi many-body localized (MBL) phase exists as the hopping range is decreased. This quasi-MBL
phase is characterized by intriguing properties such as a set of emergent conserved quantities which
decay algebraically with distance. Surprisingly we find that a crossover between delocalized and
quasi-MBL phases survives even in the presence of long-range interactions.

I. INTRODUCTION

Recent years have seen tremendous progress in our un-
derstanding of how isolated quantum many-body systems
approach thermal equilibrium or fail to do so, spark-
ing great interest in the possibility of engineering exotic
non-ergodic phases of quantum matter1–4. The interest
around this question has substantially broadened across
disciplines, evolving from a purely speculative issue in
the foundation of quantum statistical mechanics5 to a
central topic of modern research, from condensed matter6

to high-energy physics7,8, with direct implications for the
robustness of future quantum technologies. In particular,
quantum ergodicity breaking may pave the way towards
novel platforms to store and protect quantum informa-
tion from intrinsic decoherence9,10, a development with
clear technological signifiance.

Among possible scenarios for ergodicity breaking, spe-
cial attention has been devoted in the recent past to the
role of quenched disorder and interactions, leading to
Many-Body Anderson Localization (MBL)11–15. Experi-
mental advances in quantum simulators have allowed un-
precedented control over disordered many-body systems
and reported evidence of MBL behavior in a number of
platforms, ranging from one and two dimensional arrays
of ultracold atoms16–20 to ion traps with programmable
random disorder21,22 and dipolar systems made by nu-
clear spins23,24. Interestingly, most of the relevant plat-
forms for quantum simulations of disordered many body
systems involve degrees of freedom which are coupled by
long-range hopping processes or interactions, typically
decaying as a power-law of the distance. While the in-
terplay of disorder and interaction leading to MBL is by
now rather well understood for one-dimensional models
with short-range interactions, where a set of mutually
commuting, exponentially localized integrals of motion

(LIOMs, or l-bits) can be identified25–28 its fate in the
presence of long-range couplings is far less settled. From
one side, perturbative arguments suggest an instability
of the MBL phase in quantum spin chains with inter-
actions of random sign29–32 decaying with an exponent
β < 2d (with d the spatial dimension of the system),
while avalanche arguments33 would rule out a genuine
MBL behavior for interactions decaying slower than ex-
ponential, as do numerical simulations of spin transport
close to the MBL transition34. On the other hand, ex-
periments continue to find evidence of localization in this
regime21–24, and several scenarios have recently emerged
which are consistent with localized behavior even for
slowly decaying power laws35–40. Exact diagonalization,
which played a crucial role in understanding conventional
short-ranged MBL, is limited to small sizes and suffers
from strong finite size effects in long-range models, mak-
ing the theoretical descriptions of disordered interacting
quantum systems with power-law couplings a major open
challenge, whose solution is particularly pressing given
the experimental evidence of quasi-MBL in a number of
quantum simulators at the interface between solid state
and atomic physics.

In this work we address this problem for a model of
interacting fermions where both hopping and interaction
are disordered and power-law decaying, with different ex-
ponents. Using a significantly improved and extended
variant of the truncated flow equation approach, already
proven to be able to describe both the short-ranged MBL
phase in both one and two dimensions41 and the well un-
derstood delocalization of non-interacting fermions with
power-law hopping42, we map out the static and dynam-
ical properties of the system as a function of the hopping
and interaction exponents. We find that for rapidly de-
caying power laws the system at large on-site disorder is
in a quasi-MBL phase83 characterized by algebraically
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decaying l-bit interactions38,43 that we explicitly con-
struct. Remarkably, the flow equation technique is able
to capture the delocalization of this quasi-MBL phase
upon decreasing the hopping exponent, a non-trivial re-
sult that confirms the reliability of this approach. Sur-
prisingly we find that the quasi-MBL phase survives upon
increasing the range of the interactions, though with a
significantly broadened crossover to the ergodic regime.
We speculate that this phase may be unstable in the ther-
modynamic limit, and discuss possible connections with
other works.

The paper is organised as follows. In Section II we first
describe the model we propose, and discuss how it links to
other models studied in the literature. In Section III, we
discuss in detail the flow equation method which we use,
and in Section IV we provide detailed benchmarks for
both static and dynamic quantities to demonstrate the
high accuracy that can be achieved by this technique. In
Section V A we present results for the local integrals of
motion computed using this method, as well as the cou-
pling constants of the fixed-point Hamiltonian, and show
that they behave markedly differently. In Section V B,
we go on to compute the non-equilibrium dynamics us-
ing flow equations, presenting results for the imbalance
and a complete phase diagram. We end with a discus-
sion in Section VI and conclude with an outlook towards
the future in Section VII, and finally include a series
of technical Appendices which include additional details
and comparisons with other disorder distributions.

II. THE MODEL

Theoretical investigations of localization in long-range
systems date back to Anderson’s original work11. One
well-understood example is the non-interacting random
hopping problem, where the hopping terms decay as a
power-law with exponent α, also known as Power-Law
Random Banded Matrix (PRBM) model. In this case,
localization is destroyed for α < d (where d is the spa-
tial dimension) and the system is critical at α = d44–52.
Here, we wish to study an interacting variant of the
PRBM model, incorporating random long-range inter-
actions in addition to the random long-range hopping
terms. We therefore consider a Hamiltonian describing a
one-dimensional chain of interacting fermions given by:

H =
∑
i

hini +
1

2

∑
ij

Vijninj +
∑
ij

Jijc
†
i cj (1)

where the on-site disorder is drawn from a box dis-
tribution hi ∈ [0,W ]. The couplings Jij = Jji and
Vij = Vji are also random and drawn from Gaussian
distributions with zero mean and standard deviations
which decay with distance as σJ = J0/|i − j|α and
σV = V0/|i − j|β respectively. Unless otherwise speci-
fied, we fix J0 = 0.5, V0 = 0.1 and W = 5, such that the
model with short-ranged hopping and interactions (re-

spectively α = β =∞) would be in the MBL phase, and
vary the power-law exponents α and β only.

To our knowledge, this model has not been studied in
the literature before. In Ref. 53, a related model of in-
teracting fermions with random power-law hopping was
studied numerically, but the role of on-site disorder and
random, power-law interactions was not considered. In-
terestingly, in the α, β → 0 limit, Eq. (1) reduces to
a model of fermions with all-to-all random couplings,
reminiscent of the maximally chaotic Sachdev-Ye-Kitaev
model54 with the addition of a random, on-site disorder.
In the literature, several studies have focused on quan-
tum spin models with power-law decaying exchange cou-
plings of random signs, which however are not equivalent
to fermionic models due to the long-range nature of the
couplings. For these models estimates based on the lo-
cator expansion and its breakdown suggest an instability
of the (many-body) localised phase for slowly decaying
transverse exchange with exponent β < 2d29–31, indepen-
dently of the longitudinal exponent α which controls the
degrees of freedom involved in resonance formation30,32.
The robustness and generality of those perturbative ar-
guments however has not been fully discussed. In par-
ticular, convergence of the locator expansion provides
at most a sufficient condition for localization but does
not usually guarantee delocalization. Different scenarios
have emerged recently which are consistent with localised
behavior even in presence of slowly decaying power-law
interactions, for which the locator expansion does not
converge. Examples include order-enabled localization35

cooperative shielding36–38, correlation-induced localiza-
tion in single particle problems39,40 or the existence of a
critical disorder for localization at finite size 55, vanishing
in the thermodynamic limit.

III. METHOD

Systems with long-range couplings are typically ex-
tremely challenging to study numerically, as they require
very large system sizes in order to avoid finite-size effects
as the interaction range is increased. With the addition of
disorder in the long-range couplings, the model in Eq. (1)
falls into a class of systems which cannot be efficiently
simulated using Matrix Product State methods, where
long-range couplings are typically represented as a sum
of decaying exponentials, which is not straightforward for
disordered long-range couplings. As a consequence a vast
majority of numerical results rely on exact diagonalisa-
tion (ED), which in a non-sparse model with long-range
couplings is limited to small system sizes where finite-size
effects will be significant.

To address this challenging problem here we make use
of the flow equation approach56–67 which we have recently
used to study MBL in the short ranged case41 as well as
the non-interacting PRBM model42 and in a periodically
driven Floquet system with weak interactions68.

The main idea is to diagonalize the Hamiltonian
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through a series of infinitesimal unitary transforms
parametrised by a fictitious ‘flow time’ l which runs from
l = 0 (initial basis) to l → ∞ (diagonal basis). The
Hamiltonian flow reads

dH
dl

= [η(l),H(l)]. (2)

where η(l) is the generator of the flow and the initial con-
dition at l = 0 is given by the Hamiltonian in Eq. (1). In
the following, we shall use Wegner’s choice of generator56

η(l) = [H0(l), V (l)], where H0 contains the terms which
are diagonal in a given basis, while V contains the off-
diagonal terms. This choice of generator, although not
unique42,62,69, guarantees56,57 that the off-diagonal terms
vanish in the l→∞ limit. While for quadratic problems
the flow equation approach is exact, in the presence of in-
teractions the flow generates higher-order couplings not
present in the original microscopic model. To deal with
these, we use a truncation scheme, originally introduced
in Ref 41, that we briefly discuss below for the present
case.

A. Generator of the Flow and Truncation

We make an ansatz for the form of the running Hamil-
tonian H(l) = H0(l) + V (l), with

H0(l) =
∑
i

hi(l) : c†i ci : +
1

2

∑
ij

∆ij(l) : c†i cic
†
jcj : (3)

V (l) =
∑
ij

Jij(l) : c†i cj :, (4)

where the : O : notation signifies normal-ordering. We
adopt normal ordering using the : Ô : notation in or-
der to i) ensure a consistent ordering of operators when
computing commutation relations, and ii) efficiently re-
sum contributions from higher-order terms to turn the
flow equation method into a powerful non-perturbative
scheme - see Refs. 57,70 and Appendix A for details.
Given the ansatz above the Wegner generator reads

η =
∑
ij

Fij : c†i cj : +
∑
ijk

ζkij : c†kckc
†
i cj : (5)

with Fij ≡ Jij [(hi − hj)−∆ij(〈ni〉 − 〈nj〉)] and ζkij ≡
Jij(∆ik −∆jk), where the scale-dependence of the coef-
ficients has been suppressed for clarity.

The flow of the Hamiltonian is given by Eq. 2. us-
ing the expressions above, it can be clearly seen that the
commutation relation between the interaction term of the
Hamiltonian and the interacting part of the generator will
lead to the generation of new higher-order terms in the
Hamiltonian during the flow. In practice, the successive
generation of these higher-order terms quickly renders
the calculation analytically intractable, however for weak

interactions the newly-generated terms have only an ex-
tremely small spectral weight. Specifically, the lowest-
order commutator responsible for generating new higher-
order terms has the following form:∑

ijk

∑
lm

Jij(∆ik −∆jk)∆lm[: c†kckc
†
i cj :, : nlnm :]. (6)

The result of this term will be at maximum of order J0V
2
0 ,

and as V0 � 1, the generation of high order terms is
heavily suppressed and this term may be considered neg-
ligible. We therefore discard all newly generated terms
and restrict ourselves to the variational manifold. Thus,
we can conclude to a high degree of certainty that this
truncation is accurate for the weak interactions consid-
ered here. Crucially, we can monitor the accuracy of our
truncation scheme, as we discuss further in Section IV.

B. Flow Equations

The flow of the Hamiltonian coefficients can be read
off from dH/dl = [η(l),H(l)], following a lengthy calcu-
lation. Explicit expressions for the flow equations are as
follows:

dhi(l)

dl
= 2

∑
j

J2
ij(hi − hj)− 4

∑
j

J2
ij∆ij(〈ni〉 − 〈nj〉)

+
∑
jk

J2
jk(∆ik −∆ij)(〈nk〉 − 〈nj〉) (7)

dJij(l)

dl
= −Jij(hi − hj)2 −

∑
k

JikJkj(2hk − hi − hj)

+ 2Jij∆ij(hi − hj)(〈ni〉 − 〈nj〉)
− Jij∆2

ij (〈ni〉+ 〈nj〉 − 2〈ni〉〈nj〉)

− 1

2

∑
k

Jij(∆ik −∆jk)2〈nk〉(1− 〈nk〉)

+
∑
k

JikJkj [(∆ij − 2∆jk)(〈nj〉 − 〈nk〉)

+(∆ij − 2∆ik)(〈ni〉 − 〈nk〉)] (8)

d∆ij(l)

dl
= 2

∑
k 6=i,j

[
J2
ik(∆ij −∆kj) + J2

jk(∆ij −∆ik)
]

(9)

In the l→∞ limit, the off-diagonal terms Jij vanish and
we obtain a diagonal Hamiltonian given by

H̃ =
∑
i

h̃ini +
1

2

∑
ij

∆̃ijninj (10)

In all of the following, the tilde notation indicates quan-
tities in the l → ∞ diagonal basis. In practice, we nu-
merically integrate these equations until the off-diagonal
elements have decayed to the required accuracy, typi-
cally using lmax ≈ 103 and discarding couplings which
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have reached zero below some cutoff (typically 10−6 or
less). In cases where the flow is slow to converge, e.g.
the weak-disorder limit, Eq. 9 can exhibit spurious di-
vergences which must be handled carefully in order to
obtain physically reasonable results. The consequences
of this divergence is that the normal-ordering corrections
in Eq. 8 can contribute an unphysically large negative
contribution to the flow of the off-diagonal elements, ef-
fectively sending them to zero exponentially quickly as
the system of equations attempts to stop the divergence,
resulting in a deviation from unitarity. In order to main-
tain an accurate flow in this regime, one can monitor the
flow equations at each flow time step and if a divergence
occurs, subtract both the divergent term in Eq. 9 and its
counter term in Eq. 8. This has the effect of ‘freezing’
the divergent terms while still allowing the other terms to
continue flowing. We note, however, that this is typically
not a problem in the strong-disorder regime we consider
here.

C. Non-Equilibrium Dynamics

In addition to obtaining the fixed point Hamiltonian
and its approximated spectrum, restricted to the ansatz
in Eq.(3), we can also compute the real-time dynamics
of an operator by transforming it into the basis which
diagonalises the Hamiltonian, time-evolving with respect
to the diagonal Hamiltonian, and then flowing the op-
erator back into the physical basis. We discuss this in
detail for the number operator ni(t) whose dynamics will
be presented in Section V.

To parameterise the flow of this operator, we make the
following ansatz for the running number operator at time
t = 0

ni(l, t = 0) =
∑
j

A
(i)
j (l)nj +

∑
jk

B
(i)
jk (l)c†jck (11)

with initial conditions A
(i)
j (l = 0) = δij and B

(i)
jk (l =

0) = 0 ∀ j, k. The flow equations for this operator can be
obtained by computing dni(l)/dl = [η(l), ni(l)] and are
given by:

dAij
dl

= −2
∑
k

Jjk(hk − hj)Bkj , (12)

dBjk
dl

= −Jjk(hk − hj)(Aik −Aij)

−
∑
n

[Jnj(hn − hj)Bnk + Jnk(hn − hk)Bnj ] ,

(13)

Note that higher-order terms cannot be consistently in-
cluded at this order of the truncation scheme, as their
flow is constrained by terms not included in the ansatz
for the running Hamiltonian. One may attempt to in-
clude higher order terms in Eq. 11 even without the corre-
sponding terms in the Hamiltonian, however in this case

we find that they are typically poorly controlled and of-
ten divergent. The normal-ordering procedure employed
as part of this construction (see Appendix A) does, how-
ever, allow us to take into account the leading effects of
the interactions even at this order. After transforming
ni(t = 0) into the diagonal basis, by solving Eq. (12-13)
from l = 0 up to l = ∞, we can time-evolve it with re-
spect to the diagonal Hamiltonian (10). As this is still
interacting, despite being diagonal, the exact time evo-
lution would require to sum over the exponentially many
classical configurations spanned by ni = {0, 1}, for every
i, which is not practical for large system sizes. Instead,
we proceed by writing down the Heisenberg equations of
motion and performing a time-dependent decoupling of
the interaction term to get

ñi(l =∞, t) =
∑
j

A
(i)
j (l)nj +

∑
jk

B
(i)
jk (l)eiφjk(t)c†jck

(14)

φjk(t) =

∫ t

0

dt′

[
(h̃k − h̃j) +

∑
m

(∆̃km − ∆̃jm)〈nm(t′)〉

]
(15)

where the expectation values are calculated self-
consistently at each timestep, an approach which rep-
resents a significant improvement upon the previous ver-
sion of this method presented in Ref. 41. We then use the
flow equations (Eqs. 12 and 13) to transform the number
operator back into the original basis, where it will take
the form:

ni(l = 0, t) =
∑
j

A
(i)
j (t)nj +

∑
jk

B
(i)
jk (t)c†jck (16)

where the A
(i)
j (t) terms picks up an implicit time-

dependence during the transform back into the initial
basis. At this point, the expectation value of this opera-
tor may be computed with respect to the desired initial
state.

IV. BENCHMARKS

In this section we present, for the model defined in
Eq. (1), detailed benchmark results of the flow equation
method. Specifically we compare the flow equation re-
sults with exact numerics on small system sizes for eigen-
states and dynamics. Furthermore we assess the validity
of the truncation scheme discussed in Section III by mon-
itoring the conservation of the so called flow-invariants.
The readers interested more in the physics of the prob-
lem (1) and the interplay between MBL and power-law
couplings, can directly jump to Section V.
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FIG. 1: The logarithm of the disorder-averaged relative error
in the eigenvalues δε computed with respect to exact diag-
onalization. (a) The relative error plotted across the same
parameter values as the phase diagram in Fig. 7 and aver-
aged over Ns = 512 disorder realizations. The error is largest
in the case where all couplings are both long-range, and de-
creases sharply when either or both exponents have a value
greater than zero. Note, however, that the average error re-
mains extremely small across the entire parameter region. (b)
The disorder-averaged relative error plotted for four fixed val-
ues of (α, β) against the on-site disorder strength W . In the
remainder of this work, we fix W = 5, however here we show
how the relative error decreases as the system becomes more
strongly disordered.

A. Eigenvalue Comparison with Exact
diagonalization

We first compare the static properties (i.e. the eigen-
values) for a small system of size L = 12 with Exact
diagonalization (ED) results obtained using the QuSpin
package71,72. We define the averaged relative error as:

δε =
1

N

N∑
i

|εFEi − εEDi |
εEDi

(17)

where εFE/ED refer to the many-body eigenvalues ob-
tained using flow equations (FE) and ED methods re-
spectively, and the sum runs over states in the many-
body Hilbert space. We can compute this quantity, here
restricting ourselves to the half-filled states, for a variety
of power-law exponents α and β in order to benchmark
the accuracy of our results. The results are summarised
in Fig. 1, where we show the average relative error across
the parameter range we will consider in this work, here
for a system size of L = 12 and with Ns = 512 dis-

FIG. 2: Behaviour of the flow invariant across the phase dia-
gram, with L = 64 and W = 5. The flow invariant is maximal
for β = 0. Note that the colour scale shows the logarithm of
δI2: the deviation of the flow equation transform from per-
fect unitarity is less than one percent across the majority of
the phase diagram. Each of the 11 × 11 points in this phase
diagram is the result of 50 ≤ Ns ≤ 128 disorder realizations,
as required for convergence.

order realisations. We also verified that the error de-
creases rapidly with increasing disorder strength, as ex-
pected, shown in Fig. 1b). We note that it is almost
always possible to reduce the error further by increas-
ing the maximum flow time lmax, however as the method
asymptotically approaches the exact eigenvalues we see
diminishing returns by increasing the flow time further,
compared with the increased CPU time required to ob-
tain the results.

B. Invariants of the Flow

As with any other unitary transform, there are a vari-
ety of conserved quantities of the flow equation formal-
ism. Specifically, traces of integer powers of the Hamil-
tonian Ip = Tr[Hp] are commonly known as ‘invariants
of the flow’, and are preserved by an exact implementa-
tion of the flow equation formalism. As we have seen,
however, in order for the calculation to remain tractable
we must make an approximation for the running Hamil-
tonian of the system. The neglect of any terms not con-
tained within the ansatz Hamiltonian introduces an er-
ror: this error may be quantified by computing the in-
variants of the flow at the start and end of the procedure,
and then computing the difference between them. This
difference is zero if the unitary transform is exact, and
non-zero if the truncation has introduced an error. This
allows us to have a self-consistent estimate of the error in
the transform which we can compute for any system size,
in addition to the relative error measured with respect to
ED which we can only compute on small system sizes ac-
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FIG. 3: Benchmarks of the density dynamics on the central site of a chain of length L = 12 when quenched from a CDW
initial state and averaged over 512 disorder realizations, comparing ED (blue) with FE (orange). a) α = 0.5, β = 2.0, b)
α = 2.0, β = 2.0, c) α = 0.5, β = 0.5. d) α = 2.0, β = 0.5. In all cases, the results are close, but the FE method slightly
overestimates the localization. In the more strongly localized regime for α, β � 1, the FE and ED results agree very closely.
The insets show the decay of fluctuations around their long-time mean value, with δn = σ2(〈nL/2〉 − ñ) and ñ = 〈nL/2(t)〉

t→∞:
note the power-law decay in the ED data is not seen in the FE data, due to the mean-field decoupling employed.

cessible to exact numerical methods. Here we focus on
the second invariant62 (p = 2) and define the truncation
error as:

δI2 =
|I2(l = 0)− I2(l =∞)|
1
2 (I2(l = 0) + I2(l =∞))

(18)

The main source of error in this scheme is the strength
of the interactions, which contribute to the generation of
higher-order terms not included in our variational man-
ifold. In the present case, as the truncated higher-order
terms scale approximately with integer powers of the in-
teraction strength V0 � 1, the neglected terms are typi-
cally small and the accuracy very good. However, in the
limit of β → 0, there are a large number of interaction
terms and the neglected terms can begin to become sig-
nificant. To get an idea of the accuracy of our results,
we can compute this quantity across the phase diagram
in the (α, β) plane: the result is shown in Fig. 2. We
find that the transform is almost perfectly unitary across
the entire phase diagram, with the main deviations away
from unitarity occuring close to β = 0.

C. Comparison with Exact Dynamics

Finally, in order to verify the accuracy of the time
evolution obtained with flow-equations we benchmark it
with exact quantum dynamics (ED). For this, we again
employed the QuSpin package71,72. Sample results for
the density dynamics on a single site are shown in Fig.
3 for a variety of values of α and β across the phase
diagram. The agreement in all cases is excellent, with

flow equations differing only very slightly from the exact
results.

Despite this striking agreement of the averaged den-
sity dynamics, it is interesting to note that the results
from the flow equation method do not capture the de-
cay of fluctuations around their mean values (shown in
the insets of Fig. 3). The reason for this is due to the
mean-field decoupling used in Eq. 15, which does not al-
low for the slow build-up of correlations that leads to
the power-law decay of fluctuations (or to the logarith-
mic growth of entanglement entropy). Similar results are
seen in the quantum Fisher information (not shown), a
proxy for the entanglement entropy, which does not dis-
play the expected slow increase with time due to the na-
ture of the mean-field decoupling used here in computing
the dynamics.

V. RESULTS

We are now in position to present the main results of
this work, concerning the effect of long-range couplings
on MBL physics as encoded in the model in Eq. (1). In
the following we focus on the behaviour of this model
in the weakly-interacting regime (unless otherwise spec-
ified, we fix J0 = 0.5 and V0 = 0.1 and W = 5) with
0 ≤ α, β ≤ 2d and study the interplay/competition be-
tween power-law hoppings and power-law interactions.
We first consider the two effects separately, fixing α =∞
and varying β and vice versa, while later we present a
complete phase diagram in the (α, β) plane.
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FIG. 4: l-bit interactions (top) and real-space support (bot-
tom) for power-law hopping and nearest-neighbor interactions
(α ∈ [0.0, 5.0] (top to bottom) in increments of 0.25, and

β = ∞). a) The disorder-averaged (median) ∆̃ij decay as a
power-law at long distances (notice log-log scale, dashed line
is a power law guide to eye) and as an exponential at short
distances (see inset, semi-log scale, for α ∈ [3.5, 5]). b) The
l-bits exhibit an exponential decay (most visible for large α)
crossing over to an extended behavior with long power-law
tails. The dashed line is the (α → ∞, β → ∞) short-range
limit. Chain size L = 128, disorder realizations Ns = 256.

A. Decay of l-bit interactions and real-space
support

We start discussing the properties of the fixed point
diagonal Hamiltonian (10) obtained by solving the flow-
equations. This describes a model of localized bits (or

l-bits) in presence of random fields h̃i and pairwise inter-

actions ∆̃ij . First, we can straightforwardly extract the

distance dependence of the coefficients ∆̃ij , as our pro-
cedure automatically generates the Hamiltonian in the
l-bit basis. These coefficients, which decay exponentially
in short-range systems41,73,74 and in periodically driven
systems68, are strongly modified by the existence of long-
range couplings. In Fig. 4, we show these quantities in
the case of power-law hopping and nearest-neighbor in-
teractions (corresponding to β = ∞). The ∆̃ij retain
their exponentially-decaying nature at short distances,
but acquire power-law tails at long range, with a decay
exponent ζ ≈ 2α for α ≥ 1. This follows immediately
from the structure of the eigenstates of the PRBM prob-
lem, which are indeed exponentially localized at short
distance with power-law tails46.

Secondly, we compute the real-space support of the
l-bit operators directly. This is something that is ex-
tremely natural within the flow equation approach, in
contrast to many other numerical methods. Starting
from a local density operator ñi defined in the diagonal
l → ∞ basis with support only on a single site, we can
transform it back into the physical (i.e. real space) basis

FIG. 5: l-bit interactions (top) and real-space support (bot-
tom) for nearest-neighbor hopping and power-law interactions
(α =∞, β ∈ [0.0, 5.0] (top to bottom) in increments of 0.25).

a) The disorder-averaged ∆̃ij retain their initial power-law
distribution for all β, except at very short distance and large
β (see inset, semi-log scale, for β ∈ [3.5, 5]). b) The l-bits re-
main exponentially localized in real space, with no almost no
dependence on β. The dashed line is the same quantity for a
short ranged many-body localized model ((α→∞, β →∞)).
Chain size L = 128, disorder realizations Ns = 256.

by inverting the unitary transform used to diagonalize
the Hamiltonian.

The real-space support of the l-bits also show power-
law tails characteristic of delocalization, after an initial
exponential decay at short range. The precise distance
where the decay crosses from exponential to power-law
depends on the exponent, as well as both the disorder
and interaction strength. As α→∞, the real-space sup-
port of the l-bits decays exponentially over a larger range
before the power-law tail appears, and the resulting l-bits
closely match the nearest-neighbour case (black dashed
line). This further illustrates the critical need for meth-
ods able to reach very large system sizes in order to ac-
curately extract the long-distance behaviour of these sys-
tems, even in the case of ‘short-range’ (α > 2d) power-law
exponents.

In Fig. 5, we show the case of power-law interactions
and nearest-neighbor hopping (corresponding to α =∞).

The ∆̃ij retain their initial power-law distribution at all
distances and at all stages during the flow procedure.
Surprisingly, we find that the real-space support of the
l-bits is essentially unmodifed by the range of the interac-
tions: they retain their exponentially decaying character
even in the limit of β = 0, with only an extremely small
extended ‘tail’ appearing following the strong initial ex-
ponential decay. This may be an effect of the truncation
in Eq. 3 suppressing degrees of freedom responsible for
delocalization, or it may be that delocalization is only
seen in higher-order contributions to Eq. 11, correspond-
ing to multipole processes.
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FIG. 6: Relaxation of the imbalance following a quench from a
CDW state with a) power-law hopping α ∈ [0.0, 2.5] in incre-
ments of 0.25 (bottom to top) and β =∞ (nearest-neighbour
interactions) and b) power-law interactions β ∈ [0.0, 2.5] in
increments of 0.25 (top to bottom) with α = ∞ (nearest-
neighbour hopping). Decreasing α makes the long-time im-
balance go to zero (as a power law in time for small α, see top
inset) whereas changing β has almost no effect on the long-
time dynamics of the imbalance which approaches a finite
plateau almost exponentially (see inset). Chain size L = 64,
disorder realizations Ns = 256.

B. Dynamics of Imbalance and Phase Diagram

We now move on to study the effect of power-law cou-
plings on the quantum dynamics of the system. We set up
an initial charge density wave (CDW) state and see how
it relaxes under its own quantum dynamics. To monitor
this, we define the imbalance as:

I(t) =
2

L

∑
i

(−1)i〈ni(t)〉 (19)

which involves computing the density dynamics on each
lattice site using flow equations, and then summing the
results. The long time behavior of the imbalance is often
used as a proxy for the MBL transition, since in a local-
ized phase any initial inhomogeneity persists at long time
due to enhanced memory of initial conditions while in a
thermal, delocalized phase the imbalance is expected to
decay to zero as a power law with a disorder-dependent
exponent, vanishing at the transition75,76. Using the
time-dependent mean-field decoupling on the effective l-
bit Hamiltonian, the results for the relaxation dynamics
of the imbalance are shown in Figure 3, for chains of
length L = 64 in the cases of power-law hopping with
nearest-neighbour interactions (panel a), and nearest-
neighbour hopping with power-law interactions (panel
b). In Fig. 6 panel (a), we see that for α & 1 the sys-
tem remains localized as for the short-range model, while
upon decreasing α the imbalance continuously decrease
toward zero, a behavior that is reminscent of the PRBM
model and similar models with non-random short-range
interactions53. For α = 0, the decay of the imbalance

FIG. 7: Phase diagram of model (1) as a function of α (hop-
ping exponent) and β (interaction exponent). The colour
scale shows the imbalance I(t) at a time t∗ = 100 following
a quench. The dotted lines show contours of the imbalance
I(t∗) = 0.15, 0.25, 0.35, 0.45 computed using a linear interpo-
lation: the solid white lines are guides to the eye. The system
size is L = 64, with 50 ≤ Ns ≤ 128 disorder realizations, as
required for convergence. For β = 0.0, 0.25 and 2.0, we also
took additional data points (not shown) at double the reso-
lution along the α axis in order to ensure that our resolution
was sufficient to resolve the main features.

is approximately exponential, while for α > 0 it is con-
sistent with a power-law. On the contrary, Fig. 6 panel
(b) shows that decreasing β, i.e. making the range of in-
teractions larger, has little to no effect on the long-time
imbalance and the system remains localized, with small
values of β leading to the appearance of a short plateau
that vanishes at longer times. Though short-lived, this
plateau is intriguing as it suggests that long-range inter-
actions may weakly stabilise localization at short times.

Having examined their effects separately, we now com-
pute the imbalance in the presence of both long-ranged
interactions and long-range hopping, and obtain a qual-
itative phase diagram shown in Fig. 7 where we show
the imbalance I(t) at a time t∗ = 100 after the quench
as a function of α, β and super-impose lines at fixed im-
balance as guide to the eye. In the upper-right corner,
corresponding to fast decaying hopping and interactions
(α, β ≥ 2), the system is in a quasi-MBL phase, with
a finite and large imbalance. Keeping β ≥ 2 and de-
creasing the hopping exponent α, the imbalance displays
a sharp crossover from localized to delocalized behavior,
consistent with the similar model of Ref.53.

We can now ask what happens to those two phases as
we increase the range of the interaction, i.e. decreases β
toward zero. The ergodic phase is expected to be robust
to long-range interactions, and indeed we see that the
imbalance for α < 1 remains constant and close to zero
upon decreasing β (see the almost vertical contour lines)
. On the other hand, and quite surprisingly, we find the
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FIG. 8: Long-time imbalance I(t∗) (at a time t∗ = 10 fol-
lowing a quench) versus system size L for different values
of (α, β), averaged over Ns = 256 disorder realisations for
the smallest system sizes (L = 6, 8, 12, 24, 36), Ns = 128 for
L = 48, Ns = 64 for L = 72 and Ns = 32 for L = 96. The
plots are shown on a log-log scale and the solid lines are lin-
ear fits to the data. Error bars indicate the variance across
disorder realisations. For β = 1.0 (panel a), the imbalance de-
creases with system size approximately like a power-law (note
the log-log scale) for α ≤ 1. For β = 0 (panel b) the imbalance
decays with system size for all values of α, suggesting slow
delocalization with system size. Interestingly, the imbalance
in the delocalized (small α) regime decays more slowly with
system size in the case of long-range interactions (β = 0.0).

imbalance to remain strongly unaffected by long range
interactions even for α & 1, consistently with the results
of Figure 3 for the α =∞ case. However the lines at fixed
imbalance bends towards the right for small β, suggesting
that the localization of the lower right corner of the phase
diagram may be less robust than the upper right corner,
consistent with a significantly broadened crossover from
localised to delocalised behaviour in this regime.

VI. DISCUSSION

Our results show that upon increasing the range of
the hopping, a transition from delocalization to quasi-
MBL exists, both for short ranged interactions as well
as for β < 2, in a regime where perturbative arguments
based on a locator expansion would exclude it. We have
performed extensive checks to validate our approach in
this regime, including comparison with exact numerics
for small system sizes and monitoring the flow invari-
ant, a sensitive probe of the validity of our scheme. This
quasi-MBL phase could also be metastable for finite size
and/or finite time: recent works suggest that in the in-
termediate regime 1 < β < 2 an infinitely large sys-
tem would be delocalized while finite-size systems will
see a localization transition as a function of increasing
system size L (or equivalently, exhibit a size-dependent
critical disorder Wc(L))29,31,55,77. Our results show (see
Appendix B) that the quasi-MBL phase shrinks as the
system size is increased, consistent with this argument,
and thus we expect that the quasi-MBL phase is likely

to be stable for finite-size systems, but unstable in the
thermodynamic limit. To further support this statement
we plot in Figure 8 the long-time imbalance I(t∗) ver-
sus system sizes L for different values of (α, β) in the
phase diagram. As we can clearly see for β = 0 the
imbalance decays like a power-law for all values of α sug-
gesting slow delocalization in the thermodynamic limit.
Interestingly, for α = 0.5 − 1 the final value of the im-
balance is larger for β = 0 than for β = 1, supporting
the idea of a broad interaction-induced crossover region
that slowly becomes ergodic in the limit of large system
sizes. The Gaussian distribution of couplings (with zero
mean) could also play a role in the apparent robustness
of the localized phase, as by comparison long-range cou-
plings with random signs, as commonly studied in quan-
tum spin models, exhibit enhanced delocalization, shown
in Appendix C. Finally, it is worth noticing that in the
α, β → 0 limit, Eq. (1) reduces to a model of fermions
with all-to-all random couplings, reminiscent of the max-
imally chaotic Sachdev-Ye-Kitaev model54. As shown in
Ref. 78, adding finite range hopping to SYK-like models
can lead to an increased localized behavior, at least for
finite systems, consistent with the results shown here.

On a technical level, there are two key avenues for im-
proving the method further. The first is the incorpora-
tion of higher-order terms into the ansatz for both the
running Hamiltonian and the running number operator.
The necessity of including the normal-ordering correc-
tions makes this procedure extremely algebraically chal-
lenging and difficult to automate, however, complicating
this procedure significantly. Further work is currently
underway on different techniques by which to alleviate
this issue. The second route towards improvement is the
search for a more optimal generator, perhaps one that
does not result in a proliferation of new couplings as the
Wegner generator does. Recently, connections between
Wegner generators and adiabatic gauge potentials have
been noted79, and it is likely that further ongoing work
examing this connection will allow systematic improve-
ments to be made to Wegner-type generators, improving
their convergence properties and allowing the intelligent
design of optimised generators for specific problems, by-
passing many of the implementation issues around con-
tinuous unitary transforms for arbitrary systems.

VII. CONCLUSION

We have used the flow equation method to study
a model of one-dimensional fermions with Gaussian-
distributed, power-law decaying hopping and interac-
tions, and diagonal box disorder. For large diagonal dis-
order, compared to typical scales of interactions and hop-
pings, we have provided evidence of a transition from a
delocalized ergodic phase to a quasi-MBL phase upon
increasing the exponent α controlling the range of hop-
ping. A crossover survives even for slowly decaying inter-
actions, β < 2, although it appears to become less sharp.
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This quasi-MBL phase has intriguing properties such as
algebraically decaying l-bit interactions. To probe the
possible metastability of this phase we studied the de-
cay of long-time imbalance with system sizes, finding
signature of slow power-law delocalization, which how-
ever appears more effective at finite β than in the regime
of β → 0. Assessing the corresponding lifetime of the
quasi-MBL case as well as the possible existence of a
critical disorder strength is an interesting open question
for future work. Another open question is the stability
of such a phase to the propagation of ergodic bubbles:
further investigation based on our model and approach
could provide insights into this largely unexplored ques-
tion, e.g. by studying the coupling of this quasi-MBL
phase to an ergodic bath80.

We have also used this work to demonstrate an im-
proved implementation of the truncated flow equation
approach, which to date remains the only controlled tech-
nique able to compute both the local intergals of motion
(l-bits) non-perturbatively, as well as to numerically con-
struct the effective Hamiltonian in the l-bit basis for large
system sizes, particularly in the case of disordered long-
range couplings, a situation which is extremely challeng-
ing to numerically investigate. We have shown that the
method is capable of extremely high accuracy across the
entire phase diagram, able to extract both static and dy-
namic properties, and error estimate both with respect
to exact numerical methods and self-consistent quantities
remain small for all parameters considered in this work.
Our results demonstrate that the truncated flow equa-
tion method is an extremely powerful, flexible method
for the study of disordered many-body systems, partic-
ularly in parameter regimes difficult to acces by other
means, and we have shown that it is able to access quan-
tities which are impossible to obtain with other methods.
Other recent developments include the extension of flow
equation methods to study driven68 and dissipative81 sys-
tems, highlighting the versatility and wide applicability
of this approach which we hope will become a key nu-
merical method for the study of disordered systems in
the near future.

Note: during review, we became aware of another very
recent work studying the effect of disordered long-range
couplings, the results of which are consistent with those
we present here82.
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Appendix A: Normal-ordering

A key ingredient in the calculation is the adoption of
a normal-ordering procedure41,57,70, which allow us to
consistently group together terms at each order of the
Hamiltonian, and to incorporate corrections from higher-
order terms which are then discarded from our variational
manifold. We will assume all contractions will be com-
puted with respect to a product state, and the relevant
contractions will be denoted:

{c†i , cj} = Gij + G̃ji = δij (A1)

Gij = 〈c†i cj〉 = δij〈ni〉 (A2)

G̃ji = 〈cjc†i 〉 = δij − 〈c†i cj〉 = δij(1− 〈ni〉) (A3)

To calculate the commutators of normal-ordered strings
of operators, we need to use the following theorem57:

: O1(A) :: O2(A′) : =: exp

∑
ij

Gij
∂2

∂A′j∂Ai

O1(A)O2(A′) :

(A4)

which, for example, leads to the following commutation
relation for pairs of fermion operators:

[: c†αcβ :, : c†γcδ :] = (Gγβ + G̃βγ) : c†αcδ :

− (Gαδ + G̃δα) : c†γcβ :

+ (GαδG̃βγ −G)γβG̃δα) (A5)

= δβγ : c†αcδ : −δαδ : c†γcβ : +(GαδG̃βγ −GγβG̃δα)

(A6)

which is just the regular commutator plus a constant.
All necessary commutators can be computed from Eq.
A4, though the calculation is extremely tedious and will
not be shown here: for further details, see Refs.41,57,70.
In principle, one should define an l-dependent state
and recompute the normal-ordering corrections at each
flow timestep accordingly, however to capture the main
physics it is sufficient to simply pick a target state and
compute the corrections with respect to that state57. In
the main text, we compute the contractions with re-
spect to an infinite-temperature product state such that
〈ni〉 = 0.5 ∀i. This has the advantage that many of the
normal-ordering corrections (e.g. the final terms in Eq.
A6 above) vanish identically.

Appendix B: Phase Diagram: Effect of System Size

To verify our conclusions, we have also computed the
phase diagram for a chain of L = 36 sites averaged over
Ns = 100 disorder realizations, shown in Fig. 9. The
phase boundary moves, as expected, but the general con-
clusion is the same. This demonstrates that the main
features of the phase diagram presented in the main text
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FIG. 9: The same quantity as in Fig. 4 of the main text,
here for system size L = 36 and averaged over N100 disorder
realizations. The solid white line represents I(t∗ = 100) =
0.25 (half the maximum value) for the L = 36 system, and is
a rough indicator of the position of the transition, while the
dashed white line is the same quantity for the L = 64 system
shown in Fig. 4 of the main text. There is a clear drift of
the boundary towards larger values of α as we increase the
system size, however the main features are robust.

are robust. The flow invariant remains below a maximum
value of δImax2 = 0.012 at all points in this figure. This
data suggests that, all other things being equal, there is
a slow growth of the number of resonances as the system
size is increased, consistent with the resonance counting
arguments in the existing literature. Our results are an
indication that even for large system sizes, localization
still persists over a large region of the phase diagram.
Note however that the reversal of curvature seen in Fig.
4 of the main text for α > 1 is not present in this data,

and the L = 36 system is more localized in this region,
with a larger imbalance. This is consistent with the idea
that larger systems exhibit more delocalising resonances,
destabilising the localized phase.

Appendix C: Random-Sign Disorder

Previous works on long-range couplings in spin chains
have considered so-called ‘random sign disorder’, in
which the couplings are fixed in magnitude but allowed to
vary in sign, i.e. Jij = ±J0/|i−j|α and Vij = ±V0/|i−j|β
where the signs are chosen randomly. These works have
predicted the absence of a localized phase in the regime
d ≤ β ≤ 2d, whereas we find clear signs of localization
in this regime. While this could be a finite-size effect, or
equivalently we may simply be below the critical disor-
der threshold for this system size, we have nonetheless
simulated this type of disorder as well in order to com-
pare with our (zero mean) Gaussian-distributed random
couplings. The results are shown in Fig. 10.

Remarkably, we find that the case of Gaussian-
distributed random couplings is indeed significantly more
localized than the random-sign disorder, both quantita-
tively and qualitatively. This effect is most prominent
at short distances, with the long-distances tails behav-
ing the same regardless of the specific type of disorder.
This difference, while striking at first sight, can be ex-
plained simply by the typical magnitude of the coupling
terms being large (and, crucially, non-zero) in the case of
random-sign disorder, while the typical value is zero for
the Gaussian-distributed disorder considered in the main
text. This clearly demonstrates that the short-range be-
haviour of these systems is a complex function of the
disorder and the long-range of the couplings, whereas at
large distances only the asymptotic form of the disorder
is important.
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M. H. Fischer, R. Vosk, E. Altman, U. Schneider, and
I. Bloch, Science 349, 842 (2015).

17 S. S. Kondov, W. R. McGehee, W. Xu, and B. DeMarco,
Phys. Rev. Lett. 114, 083002 (2015).

18 J.-y. Choi, S. Hild, J. Zeiher, P. Schauß, A. Rubio-Abadal,
T. Yefsah, V. Khemani, D. A. Huse, I. Bloch, and C. Gross,

mailto:steven.thomson@polytechnique.edu
mailto:marco.schiro@ipht.fr


12

FIG. 10: Various static properties of the fixed-point Hamiltonian with random-sign disorder, rather than Gaussian-distributed
disorder. All data here is taken for system sizes L = 64 with Ns = 128 disorder realizations, and the colour schemes are the
same as in the main text. The left column shows data for long-range hopping, while the rigth column shows data for long-range
interactions. a) Fixed-point couplings ∆ij in the case of power-law hopping and nearest-neighbour interactions β →∞, again
with α ∈ [0, 5] as in the main text. The black dashed lines are the same as in the main text. b) The same quantity plotted for
the case of power-law interactions (with α → ∞ andβ ∈ [0, 5] as before). c) The real-space support of the l-bits in the case
of long-range hopping. The black dashed line is the same as in the main text (the α, β → ∞ limit with Gaussian distributed
disorder), while the blue dots show the α, β →∞ limit of the random-sign disorder. d) The same quantity plotted for long-range
interactions, with α→∞ and β ∈ [0, 5]. The black dashed line is again the same as in the main text, while the red dots show
the α, β →∞ limit of the random-sign disorder.

Science 352, 1547 (2016).
19 M. Rispoli, A. Lukin, R. Schittko, S. Kim, M. E. Tai,
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