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Abstract

We generalize the theory of flow equations to open quantum systems focusing on Lind-
blad master equations. We introduce and discuss three different generators of the flow
that transform a linear non-Hermitian operator into a diagonal one. We first test our
dissipative flow equations on a generic matrix and on a physical problem with a driven-
dissipative single fermionic mode. We then move to problems with many fermionic
modes and discuss the interplay between coherent (disordered) dynamics and localized
losses. Our method can also be applied to non-Hermitian Hamiltonians.
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1 Introduction

The study of many-body quantum physics has been recently challenged by the appearance of an
increasing number of experimental platforms where genuine quantum phenomena take place
notwithstanding the presence of an environment and of dissipation. Exciton polaritons [1,2],
lossy atomic and molecular gases [3], cavity and circuit QED arrays [4, 5], arrays of trapped
ions [6] and Rydberg atoms [7], are only few prominent examples of a long list. Whereas
the notion of equilibrium has been a fruitful guide to the development of standard many-
body physics, these setups are inherently out of equilibrium and their description requires
the introduction of a Lindblad master equation that describes in an effective way the weak
coupling to a bath under the Markov approximation [8].

Several methods for addressing this dissipative out-of-equilibrium dynamics have been
proposed, based for instance on quantum trajectories [9], tensor networks [10,11], extensions
to mean field theories [12,13], and machine learning [14–17]; yet, the solution of many-body
physics for open quantum systems remains a formidable task. Clearly, techniques developed
in the framework of Hamiltonian closed systems are a continuous source of inspiration for
novel developments, and in this article we present the generalization of one such technique,
the so-called flow equations [18], to the dissipative framework.

The method of flow equations has been independently developed by Wegner in the context
of condensed-matter systems [19], and by Głazek and Wilson in the context of high-energy
physics [20,21]. The main idea is the search for a parameter-dependent unitary transformation
that transforms the Hamiltonian into a diagonal operator where eigenvalues can be easily read
out. The approach has been successfully applied to several problems; within condensed-matter
physics we can briefly mention Kondo and impurity problems [18], quantum quenches in the
Fermi-Hubbard model [22], quantum chemistry [23,24], quantum magnetism (including high-
order perturbation theory and bound-state physics) [25–28], and more recently many-body
localisation [29–38].
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In this article we develop the theory of dissipative flow equations. Technically, this re-
quires to work with generators of the real-time dynamics that are not Hermitian, whereas the
established theory relied significantly on the fact that Hamiltonians are Hermitian. We pro-
pose three different kinds of flow equations that are inspired by the original contributions by
F. J. Wegner [19] and S. R. White [23]. After elaborating on the links with the dissipative
Schrieffer-Wolff transformation [39] (for which we present a new derivation), we show how
to employ the method to infer stationary and time-dependent properties of the dynamics. We
discuss several examples, three of which deal with fermionic systems, where the study of the
eigenvalues of the generator of the dissipative dynamics is particularly interesting. The for-
mulation of the flow equation for fermions requires the use of the superoperator fermionic
formalism [40,41], which is briefly reviewed in an appendix.

It is interesting to stress that attempts to using the flow equations for studying dissipative
quantum systems have already appeared in the literature [42–50]. However, these approaches
have typically described the global unitary dynamics of the coupled system and environment,
rather than only focusing on the system, as we are proposing here. Our goal is not to follow a
microscopic path, but rather to start from the beginning with a dynamics that focuses only on
the system and takes into account the bath in an effective way. For this reason, our work will
mainly focus on the Lindblad master equation, which is the most generic way of describing the
dynamics of a system coupled to a Markovian environment. However, the method can also be
used for non-Hermitian Hamiltonians.

Before concluding this introduction, it is important to stress the long-term motivation of
this study. In this article we apply the dissipative flow equations only to quadratic fermionic
systems, for which well-developed techniques already exist for solving the dynamics. While
they perfectly serve as a benchmark for our novel method, it is also clear that our method
cannot compete with them in any respect. We see this article as a first study in the direction of
applying the dissipative flow equations to interacting systems which cannot be solved exactly
and where approximations are necessary. Our perspective is the study of the dissipative flow
equations in this context, where they could generate a new set of approximations and lead to
novel solutions in a renormalization-group-like spirit (see Ref. [18] for a similar discussion in
the Hamiltonian case).

The article is organized in two parts; in the former we present our theory of dissipative
flow equations. In particular, in Sec. 2 we introduce the main general framework, whereas
in Sec. 3 we present the details of three generators of the flow that accomplish the task of
diagonalizing the Lindblad master equation in the long-flow limit. The second part is devoted
to the discussion of several examples where we compare our approach with results obtained
using more established techniques. In Sec. 4 we test our method on the diagonalization of a
generic non-Hermitian matrix. We then move to physically-motivated problems with fermions
and in Sec. 5 we discuss the problem of a single fermionic mode coupled to an environment
inducing losses and gain. We then consider the problem of many fermionic modes in the
presence of a localised source of losses, without disorder (Sec. 6) and with disorder (Sec. 7).
This is also the occasion to discuss the dissipative flow equations in momentum space (Sec. 6)
and in real space (Sec. 7). Our conclusions are presented in Sec. 8. The article is concluded
by three appendices on the dissipative Schrieffer-Wolff transformation (Appendix A), on the
superoperator formalism for fermions (Appendix B) and on the dissipative scattering model
(Appendix C).
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2 Dissipative Flow Equation

2.1 Definitions

We study the dynamics of an open quantum system in contact with a reservoir within the
framework of the Markovian Lindblad master equation:

d
dt
ρ(t) = L[ρ(t)] = − i

ħh
[H,ρ(t)] +

∑

α

Lαρ(t)L
†
α −

1
2

�

L†
αLα,ρ(t)

	

. (1)

Here, ρ(t) is the density matrix of the system at time t, H is the Hamiltonian of the system
and Lα are the quantum-jump operators effectively describing the coupling to the environ-
ment. The superoperator L is linear and not Hermitian: its eigenvalues λ are complex and
such that ℜ[λ]≤ 0; due to its specific form, if λ is eigenvalue then λ∗ is also eigenvalue. The
eigenvalues determine the normal decaying modes of the dynamics: indeed, if L[τ] = λτ,
then τ(t) = τexp[λt]. The zero eigenvalue λ= 0 is particularly important because its eigen-
vectors represent stationary states of the dissipative dynamics: if L[ρ0] = 0 then ρ(t) = ρ0.

Given a Lindbladian L, we look for a parameter-dependent invertible transformation S(`)
with ` ∈ R+ such that S(0) = I and such that

L(`) = S(`)LS(`)−1 , (2)

becomes diagonal in the limit `→ +∞. We parametrize the invertible transformation intro-
ducing a generator η(`) which is a generic matrix, so that:

S(`) = T` exp

�

∫ `

0

η(`′)d`′
�

. (3)

Accordingly, it follows that

dL(`)
d`

= [η(`),L(`)] ; dL(`)†

d`
= −[η(`)†,L(`)†] , (4)

where the second equality has been reported for later convenience. Clearly, L(`), S(`) and
η(`) are linear superoperators: they act on operators (such as the density matrix or an observ-
able) and return an operator. In Sec. 3 we will present three generators that diagonalize L in
the infinite-flow limit.

Non-Hermitian Hamiltonians

This approach can be extended to non-Hermitian Hamiltonians, which constitute the other
main theoretical tool for describing open quantum systems. In this case the dynamics is de-
scribed by:

iħh
d
dt
|Ψ(t)〉= H̃|Ψ(t)〉 , (5)

where H̃ is a non-Hermitian operator; its eigenvalues have a clear physical importance: real
parts are related to energies and imaginary parts to gain and loss rates. The discussion
proposed in the previous paragraph can be easily adapted to this situation by applying the
parameter-dependent invertible transformation S(`) to H̃ in order to define a non-Hermitian
operator H̃(`) that is diagonal in the infinite-flow limit (only in this specific case, S(`) is an op-
erator because H̃ is an operator). Although in the article we will explicitly consider only Lind-
blad master equations, all results can be easily remapped to the framework of non-Hermitian
Hamiltonians; indeed, the master equations discussed in Secs. 6 and 7 require the application
of the flow-equation technique to two non-Hermitian Hamiltonians.
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Invariants of the flow

We now identify quantities that do not change during the flow L(`); the simplest example is
the characteristic polynomial:

pL(`)(x) = det [L(`)− x I] = det
�

S(`) (L− x I)S(`)−1
�

= det [L− x I] = pL(x) ; (6)

for this reason, it is an invariant of the flow. As a consequence, every eigenvalue of the matrix
L(`) is an invariant of the flow. In the following, it will be useful to use a set of quantities In
(n ∈ N+) that do not depend on `:

In = tr [L(`)n] =
∑

i

λn
i ; In ∈ C . (7)

It is worth mentioning that differently from the Hamiltonian setting for a generic Lindbladian
L, its 2-norm ‖L(`)‖22 = tr

�

L(`)†L(`)
�

is not an invariant of the flow.

2.2 Observables

Stationary-state properties

The theory presented above gives direct access to the spectrum of L, but in addition to that,
one might be interested in computing the average of an observable O over the stationary-state
density matrix ρ0 (we are here assuming that it is unique, but the degenerate case is treated
in the same way):

〈O〉= Tr [O ·ρ0] ; (8)

where we find convenient to explicitly write the symbol · representing the multiplication of
operators. Using the fact that S−1(`)S(`) = 1, we can rewrite the latter expression as

〈O〉= Tr
�

O ·S−1(`)S(`)[ρ0]
�

≡ Tr
�

O ·S−1(`)[ρ0(`)]
�

; (9)

where
ρ0(`) = S(`)[ρ0]. (10)

This equation, valid at any `, becomes particularly useful for `→∞ because the Lindbladian
is diagonal and the stationary state ρ0,∞ = lim`→∞ρ0(`) can be readily obtained:

〈O〉= Tr
�

O ·S−1(∞)[ρ0.∞]
�

. (11)

However, the use of Eq. (11) requires the application ofS−1(∞) ontoρ0,∞, which amounts
to a backward evolution of the flow and is computationally unpractical. In order to find an
expression that is more computationally relevant, we observe that 〈O〉 in Eq. (11) can be
expressed in terms of the Frobenius scalar product between operators: 〈A, B〉F = Tr[A† · B];
it follows that 〈O〉 = 〈O,S−1(∞)[ρ0,∞]〉F. By introducing the adjoint of the superoperator
S−1(∞), we write 〈O〉 = 〈S−1†(∞)[O],ρ0,∞〉F. The computation of the operator
O(`) = S−1†(`)[O] is more practical because it obeys the differential equation:

dO(`)
d`

= −η†(`)[O(`)] . (12)

While the main flow is computed in order to put in diagonal form L, one can use the generator
η(`) to evolve O(`) with Eq. (12). Roughly speaking, this transforms the operator O into the
basis where the Lindbladian is diagonal.
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Time evolution

Another interesting question concerns the real-time dynamics of the expectation value of a
given operator:

〈O〉t = Tr [O ·ρ(t)] , (13)

with ρ(t) = eLt[ρ(0)] where eLt is the exponential of the superoperator tL and ρ(0) is the
density matrix at the initial time. We can use again the identity S(`)−1S(`) = 1 and write the
time evolution in the flowing basis

〈O〉t = Tr
�

O ·S−1(`) eL(`)t S(`)[ρ(0)]
�

= Tr
�

O ·S−1(`) [ρ`(t)]
�

, ρ`(t) = eL(`)tS(`)[ρ(0)] ;
(14)

where we have used the following property of the operator exponential:
S(`)eLtS(`)−1 = eL(`)t . Once more, the expression simplifies for ` → ∞, since in this ba-
sis the Lindbladian is diagonal. We obtain:

〈O〉t = 〈S−1†(∞)[O], ρ∞(t)〉F . (15)

Let us briefly analise the computational cost of this expression. While the flow is com-
puted in order to put the Lindbladian in diagonal form, we have to compute the operator
S−1†(`)[O] using the differential equation (12). Additionally, we must also compute the state
ρ`(0) = S(`)[ρ(0)], which obeys the differential equation:

dρ`(0)
d`

= η(`)[ρ`(0)] . (16)

Whereas for computing stationary properties, we needed to only flow the observable, in this
case we also need to flow the initial state. Once the flow is computed, the time-evolved state
can be obtained at all times.

3 Generators of the flow

In this section we present three generators of the flow that accomplish the goal described in
the previous section, namely the diagonalisation of the Lindbladian L in the infinite-flow limit
`→∞. It will be useful to address separately the diagonal and the off-diagonal parts of the
Lindbladian, that we dub respectively D(`) and V(`). Obviously, this choice is basis dependent
and L(`) = D(`) + V(`). In the following, in order to show that the generators diagonalize
the Lindbladian, we will in particular focus on ‖V‖22 and on I2.

3.1 First choice of the generator

Inspired by the original work by Wegner [18, 19], we propose the following generator of the
flow:

η(`) = [L(`)†,V(`)] . (17)

In order to show that it diagonalizes L, we now show that it induces a flow such that ‖V‖22 ≥ 0
cannot increase as a function of `.

Proof

We first compute the derivative with respect to the flow parameter as follows:

d
d`
‖V(`)‖22 =

d
d`

tr[V(`)†V(`)] = tr[V(`)† d
d`

V(`)] + tr[V(`) d
d`

V(`)†] . (18)
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Let us now discuss two interesting identities, which follow from the fact that V(`) multiplied
by any diagonal operator is an off-diagonal operator:

tr [V(`)D(`)] = 0 ; tr
�

V(`) d
d`

D(`)
�

= 0 . (19)

Concerning the second identity, it is important to stress that dD(`)
d` 6= [η(`),D(`)]. At this point,

we can use the second of the identities (19) and write:

d
d`
‖V(`)‖22 =tr[V(`)† d

d`
L(`)] + tr[V(`) d

d`
L(`)†] =

=tr[V(`)†[η(`),L(`)]]− tr[V(`)[η(`)†,L(`)†]] =
=tr[η(`)[L(`),V(`)†]]− tr[η(`)†[L(`)†,V(`)]] . (20)

If we take the definition in Eq. (17) we obtain:

d
d`
‖V(`)‖22 =− tr[η(`)η(`)†]− tr[η(`)†η(`)] = −2‖η(`)‖22 ≤ 0 . (21)

Possible issues

Similarly to the Hamiltonian case, Eq. (21) does not rule out the possibility of a flow that
does not start. This happens for instance when D(0) is the zero matrix. This issue can be
circumvented numerically by applying at the beginning of the dynamics a random invertible
operator R0 to the Lindbldian: L(0)→R0L(0)R−1

0 .

3.2 Second choice of the generator

As a second generator, we propose the following one, which is a slight modification of the
previous one:

η(`) = [D(`)†,V(`)] ; ηnk(`) =
�

d∗nn(`)− d∗kk(`)
�

Vnk(`) for n 6= k ; (22)

For later convenience, we have reported the matrix elements ηnk of η in a basis of choice,
using the notation dnn for the diagonal matrix elements of D and Vnk for the off-diagonal
matrix elements of V . We do not have a proof that this generator does the desired job apart
from the numerical evidence reported in the next sections, which also shows that it is more
efficient than the previous generator. We can however present some considerations on its
convergence based on perturbative arguments.

Perturbative solution

Let us begin by writing the flow equations for all matrix elements:

d
d`

dnn =
∑

q

�

ηnqVqn −Vnqηqn

�

=
∑

q

2
�

d∗nn − d∗qq

�

VnqVqn (23a)

d
d`

Vnk =(dkk − dnn)ηnk +
∑

q

�

ηnqVqk −Vnqηqk

�

=

=− |dnn − dkk|2Vnk +
∑

q

�

d∗nn − 2d∗qq + d∗kk

�

VnqVqk . (23b)

The solution of this set of equation looks rather demanding, but it can be simplified if we
assume that at the initial time the following condition holds:

|Vnk| � |dnn − dkk| . (24)
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We introduce the small parameter ξ proportional to the off-diagonal part of the Lindbladian.
We now expand each matrix element as:

dnn(`) =d(0)nn (`) + ξd(1)nn (`) + ξ
2d(2)nn (`) + . . . (25a)

Vnk(`) =ξV
(1)
nk (`) + ξ

2V(2)nk (`) + . . . (25b)

with initial conditions:

d(0)nn (0) =dnn(0), d(m)nn (0) = 0 for m> 0 ; (26a)

V(1)nk (0) =
Vnk(0)
ξ

, V(m)nk (0) = 0 for m> 1 . (26b)

The flow equations for each term of the expansion are obtained by comparing terms of the
same power of ξ:

d
d`

d(0)nn =0 ;
d
d`

d(1)nn = 0 ;
d
d`

d(2)nn =
∑

q

�

d(0)∗nn − d(0)∗qq

�

V(1)nq V(1)qn ; (27a)

d
d`

V(1)nk =− |d
(0)
nn − d(0)kk |

2 V(1)nk . (27b)

At the lowest non-trivial order for each term, the equations are solved by:

dnn(`) =dnn(0) +
1
2

∑

q

Vnq(0)Vqn(0)

dnn(0)− dqq(0)

�

1− e−2|dnn(0)−dqq(0)|2`
�

(28a)

Vnk =Vnk(0)e
−|dnn(0)−dkk(0)|2` + . . . (28b)

We obtain a correction that is thus completely consistent with perturbation theory (although
we remark that flow equations are a technique that is not perturbative in spirit). It is interest-
ing to observe that in this limit the off-diagonal matrix elements Vnk become zero with a typical
flow scale that is proportional to their eigenvalue difference
|dnn(0) − dkk(0)|2 ∼ |dnn(`) − dkk(`)|2. This means that an interpretation of the flow as a
generalized renormalization group where the decimation suppresses terms that are distant in
energies might be possible as in the Hamiltonian case [18].

3.3 Third choice of the generator

Let us now consider the following generator:

ηnk(`) =







Vnk(`)
Dnn(`)−Dkk(`)

, if Dnn(`) 6=Dkk(`);

0, if Dnn(`) =Dkk(`).
(29)

which resembles the one proposed by S. White in the Hamiltonian setting [23].

Perturbative limit and dissipative Schrieffer-Wolff transformation

Even if we are going to present a proof that shows that this generator works also in non-
perturbative regimes, we motivate its introduction considering the case of an off-diagonal part
of L(`) that is a small perturbation; its strength is controled by a small parameter ξ. This
situation is not uncommon in open quantum systems. For instance, in Ref. [51] the authors
discuss a perturbative approach to a ring of spins subject to strong dissipation and to a per-
turbatively small spin-spin coherent coupling. The same authors discuss in Ref. [52] an open
Jaynes-Cumming lattice where the spin-photon coupling is small and treated perturbatively.
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We thus propose an expansion of the generator η(`) in powers of ξ:

η(`) = ξη(1)(`) + ξ2η(2)(`) + . . . (30)

No zero-th order term is introduced because for ξ= 0 the matrix is diagonal and the generator
η(`) must be equal to zero, so that S(`) = I . At first order in ξ, the flow equation reads:

d
d`

L(`) = [ξη(1)(`) + ξ2η(2)(`) + . . . , D(`) +V(`)] = ξ[η(1)(`),D(`)] + o(ξ2) . (31)

In order to kill the off-diagonal part of L(`), it is reasonable to ask:

ξ[η(1)(`),D(`)] = −V(`) . (32)

This latter equation defines the third generator of the dynamics, whose matrix elements were
presented in Eq. (29).

It is important to observe that Eq. (32) also allows us to establish a link with the theory
of dissipative Schrieffer-Wolff transformation, whose form was first derived in Ref. [39], and
for which we present another derivation in Appendix A. In this approach, one looks for an
invertible transformation that rotates the Hilbert space and decouples subspaces related to
different eigenvalues of the unperturbed system. It is customary to introduce a generator also
for the Schrieffer-Wolff transformation, and at first order in the strength of the perturbation one
obtains exactly Eq. (32) (see Eq. (102) in Appendix A). Thus, the third generator implements
a flow that reproduces the action of the Schrieffer-Wolff transformation.

Proof

We consider the second invariant of the flow:

I2 = Idiag
2 (`) + Ioff

2 (`) with Idiag
2 (`) =

∑

n

L2
nn(`); Ioff

2 (`) =
∑

n6=m

Lnm(`)Lmn(`) . (33)

We now study the derivative with respect to ` of Ioff
2 : using the fact that d

d` I2 = 0 we obtain

d
d`

Ioff
2 =− 2

∑

n

Lnn(`)
d
d`

Lnn(`) = −2
∑

n 6=k

Lnn(`)
�

ηnk(`)Lkn(`)−Lnk(`)ηkn(`)
�

=

=− 2
∑

n6=k

Lnn(`)
Lnk(`)Lkn(`) +Lnk(`)Lkn(`)

Lnn(`)−Lkk(`)
=

=−
∑

n6=k

�

Lnn(`)−Lkk(`)
�Lnk(`)Lkn(`) +Lnk(`)Lkn(`)

Lnn(`)−Lkk(`)
= −2Ioff

2 . (34)

This differential equation is solved by:

Ioff
2 (`) = Ioff

2 (0)e
−2` , (35)

and shows a very efficient approach to 0 with a typical flow-scale that does not depend on any
system parameter. This scaling is expected to be particularly useful in numerical applications.

Possible issues

The fact that Ioff
2 is equal to zero does not mathematically guarantee that the off-diagonal

part of the Lindbladian matrix is equal to zero; one possible example is constituted by an
initial matrix that is triangular: in this case Ioff

2 (0) = 0. This issue, that is not present in
the Hamiltonian case, can be circumvented numerically by applying at the beginning of the
dynamics a random invertible operator R0 to the Lindbladian: L(0)→R0L(0)R−1

0 .
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4 First example: Numerical tests on a generic matrix

As a first example, we apply the flow equations to a generic non-Hermitian complex matrix
A with size 15× 15; the real and imaginary parts of the matrix elements are randomly taken
from the uniform distribution in the range [−1, 1]. We have verified that the main qualitative
features of the data that we present in this Section do not depend on the specific choice of A.

We implement the numerical solution by means of a 5-th order Runge-Kutta algorithm
(Butcher’s scheme); the flow step is d` = 10−3 and Nstep = 15000, so that `max = 15. During
the flow, we set to zero the off-diagonal matrix elements whenever their absolute value is less
than the 1% of the initial value, as routinely done in Hamiltonian setting [18]. We verify that
at the end of the simulation the matrix A(`max) is well approximated by a diagonal matrix;
the real and imaginary parts of the diagonal elements are compared with the values obtained
by standard matrix diagonalization and we benchmark the convergence using the discrepancy
∆2 =

∑15
i=1 |λ

(flow)
i −λ(exact)

i |2. We also study the invariants In, which should be conserved by
the flow, and in particular focus on the relative error δIn = |In(`max)− In(`= 0)|/|In(`= 0)|.

We study the dissipative flow equations using the first, the second and the third generator.
Concretely, we promote the matrix A to a parameter-dependent matrix A(`) and solve the
differential equation (see Eq. (4)):

dA(`)
d`

= [η(`), A(`)] . (36)

The generator η(`) is constructed by splitting the matrix into a diagonal and off-diagonal part
A(`) = D(`) + V(`) and subsequently following the prescrptions in Eqs. (17), (22) and (29),
respectively. The real and imaginary parts of the diagonal matrix elements are plotted in
Figs. 1, 2 and 3, respectively; a comparison with the exact results obtained with standard
diagonalization routines is also presented.

An important property of the third generator is the fact that the quantity Ioff
2 (`) satisfies

the differential equation (35); as a consequence, the convergence to the diagonal form is very
efficient. The exponential behaviour Ioff

2 (`) = Ioff
2 (0)e

−2` has been numerically verified, see
Fig. 4. A similar numerical calculation with the first and second generator shows a significantly
slower approach to zero, although in both cases we eventually recover an exponential law
(see Fig. 4). We thus conclude that for numerical applications the third generator is the most
efficient choice.

5 Second example: Fermionic mode with losses and gain

In this and following Sections we test the dissipative flow equations with several physical ex-
amples for which exact solutions can be easily obtained analytically and numerically. We will
show that the theory is correct and discuss the specific properties of each generator, high-
lighting advantages and disadvantages. We begin in this Section with the study of a single
fermionic mode coupled to a bath inducing incoherent losses and gain. The interest of this
simple example relies on the fact that the flow equations can be solved analytically in several
limits.

5.1 The problem

We study a single fermionic mode with energy ε coupled to a bath; fermions are lost at a rate
Γ1 and gained at a rate Γ2. We introduce the canonical fermionic operators ĉ and ĉ†, and model
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Figure 1: Flow equation solutions for the real (left panel) and imaginary (right panel)
parts of the diagonal elements of the generic matrix A using the first generator in
Eq. (17); dashed red lines represent the eigenvalues obtained by standard diagonal-
ization routines. For this specific case, the discrepancy is ∆ ' 8.5 · 10−3; we have
verified that the relative error of the invariants δIn with 1 ≤ n ≤ 15 never exceeds
10−5, the worst case being I15.

Figure 2: Flow equation solutions for the real (left panel) and imaginary (right panel)
parts of the diagonal elements of the generic matrix A using the second generator in
Eq. (22); dashed red lines represent the eigenvalues obtained by standard diagonal-
ization routines. For this specific case, the discrepancy is ∆ ' 7.3 · 10−3; we have
verified that the relative error of the invariants δIn with 1 ≤ n ≤ 15 never exceeds
10−8, the worst case being I15.

Figure 3: Flow equation solutions for the real (left panel) and imaginary (right panel)
parts of the diagonal elements of the generic matrix A using the third generator in
Eq. (29); dashed red lines represent the eigenvalues obtained by standard diagonal-
ization routines. For this specific case, the discrepancy is ∆ ' 1.9 · 10−7; we have
verified that the relative error of the invariants δIn with 1 ≤ n ≤ 15 never exceeds
10−7, the worst case being I15.
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Figure 4: Behaviour during the flow of |Ioff
2 (`)| for the first (blue), second (orange)

and third (green) generator. In this latter case, we recover the behaviour predicted
in formula (35).

the dynamics of the site with the following master equation:

d
dt
ρ(t) =−

i
ħh
[H,ρ(t)] +

∑

j

L jρ(t)L
†
j −

1
2

¦

L†
j L j ,ρ(t)

©

; (37a)

H = ε ĉ† ĉ, L1 =
p

Γ1 ĉ, L2 =
p

Γ2 ĉ† . (37b)

We propose the study of this model using the formalism of superfermion representation,
that is presented in detail in Refs. [40, 41] and that is also reviewed in Appendix B. Roughly
speaking, the idea is to treat the density matrix as a vector of an appropriate Hilbert space iso-
morphic to H⊗H, where H is the two-dimensional Hilbert space of a single fermionic mode:
ρ(t)→ |ρ(t)〉. We subsequently need to introduce superoperators c and c̃ that describe the ac-
tion of fermionic operators on the left or on the right of the density matrix; they square to zero
(c2 = 0 and c̃†2 = 0) and satisfy mutual canonical anticommutation relations {c(†), c̃(†)} = 0.
To all effects, this formalism describes the dynamics of a single fermionic mode coupled to a
bath as a fermionic two-mode problem. This approach has the great advantage to allow to
represent a quadratic fermionic master equation as the one in Eq. (37) as a matrix, and to link
the normal decaying modes to its eigenvalues.

A detailed discussion of model (37) using superoperators is reported in Ref. [40]; here we
briefly mention some relevant aspects. According to this formalism, (37) can be cast in the
following form:

iħh
d
dt
|ρ(t)〉= L|ρ(t)〉 , (38)

where L is an operator that is quadratic in the fermionic superoperators:

L = ε
�

c†c − c̃† c̃
�

− iħh
Γ1 − Γ2

2

�

c†c + c̃† c̃
�

+ħh
�

Γ1cc̃ + Γ2c† c̃†
�

− iħhΓ2 . (39)

Note that roughly this expression can be obtained from (37) by using a c̃ operator each time
the fermions act to the right of the density matrix. Since it is a quadratic operator, we can put
it into a 2× 2 matrix form by exploiting the aforementioned anticommutation relations. We
obtain:

L =
�

c† c̃
�

�

ε − iħh
2∆Γ12 ħhΓ2
−ħhΓ1 ε + iħh

2∆Γ12

��

c
c̃†

�

− ε −
iħh
2
(Γ1 + Γ2), ∆Γ12 = Γ1 − Γ2 . (40)
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It is possible to diagonalize the matrix with an invertible and non-unitary transformation (not
specified for the moment) and introducing the operators d, D†, D̃ and d̃†, so that:

L =
�

D† D̃
�

�

ε − iħh
2 (Γ1 + Γ2) 0

0 ε + iħh
2 (Γ1 + Γ2)

��

d
d̃†

�

− ε −
iħh
2
(Γ1 + Γ2) =

=
�

ε −
iħh
2
(Γ1 + Γ2)

�

D†d +
�

−ε −
iħh
2
(Γ1 + Γ2)

�

d̃†D̃ . (41)

The steady state is annihilated by both d and D̃ operators:

d|ρ∞〉= 0, D̃|ρ∞〉= 0 ; (42)

and is defined by this relation. The normal decaying modes are obtained by applying the D†

and d̃† operators onto the steady state; the corresponding Lindbladian eigenvalue determines
their time evolution. In this case, for instance, by looking at the eigenvalues of L, which
are λ± = ε ±

iħh
2 (Γ1 + Γ2), we can infer that decays take place according to the typical time

τ= (Γ1 + Γ2)−1.
It is to be stressed that the eigenvalues λ± with positive or negative imaginary part are an

artifact of this formalism, and do not correspond to losses and gain, but only to losses, as it
should be for this problem. The reason is apparent by looking at the passage from Eq. (39) to
Eq. (40), where we need to anticommute c̃ and c̃†. However, the physical significance is fully
restored when putting the master equation in canonical form, as in Eq. (41).

5.2 Three approaches with dissipative flow equations

We now apply the techniques of the flow equations to the matrix representation of the su-
peroperator L in Eq. (40) in order to put it in diagonal form and extract the two eigenvalues
λ±.

We parametrize the Lindbladian matrix L(`) in the following way:

L(`) =

�

ε(`) + iα(`) µ2(`)
−µ1(`) ε(`)− iα(`)

�

,

�

α(`),ε(`),µ1,2(`) ∈ R
α(0) = −ħh2∆Γ12, ε(0) = −ε, µ1,2(0) = ħhΓ1,2.

(43)

Invariants of the flow

Since the matrix is 2× 2, there are only two independent invariants of the flow:

tr [L(`)] = 2ε(`), tr
�

L(`)2
�

= (ε(`) + iα(`))2 + (ε(`)− iα(`))2 − 2µ1(`)µ2(`) . (44)

From the invariance of these expressions, we obtain that:

ε(`) = ε(0) = ε, α2(`) +µ1(`)µ2(`) = ħh2 (Γ1 − Γ2)
2

4
+ħh2Γ1Γ2 = ħh2 (Γ1 + Γ2)

2

4
. (45)

First generator

The first generator of the dynamics reads:

η(`) = [L(`)†,V(`)] =
�

µ2
1(`)−µ

2
2(`) −2iα(`)µ2(`)

−2iα(`)µ1(`) −µ2
1(`) +µ

2
2(`)

�

, (46)

and its commutator with the Lindbladian matrix:

[η(`),L(`)] =
�

4iα(`)µ1(`)µ2(`) −2µ2(`)
�

2α2(`)−µ2
1(`) +µ

2
2(`)

�

2µ1(`)
�

2α2(`) +µ2
1(`)−µ

2
2(`)

�

−4iα(`)µ1(`)µ2(`)

�

. (47)
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This leads to a set of coupled non-linear differential equations:

d
d`
α(`) =4µ1(`)µ2(`)α(`); (48a)

d
d`
µ1(`) =− 2µ1(`)

�

2α2(`) +µ2
1(`)−µ

2
2(`)

�

; (48b)

d
d`
µ2(`) =− 2µ2(`)

�

2α2(`)−µ2
1(`) +µ

2
2(`)

�

. (48c)

By using the invariants listed above, we can reduce the three equations to a single one:

d
d`
α(`) =

�

ħh2 (Γ1 + Γ2)
2 − 4α2(`)

�

α(`) . (49)

We do not give an explicit (and useless) analytical solution here; it is however clear that the
stationary values of α(`) are ᾱ1,2,3 = {±(Γ1+Γ2)/2,0}, among which we find the correct value.
The specific value is determined by the initial conditions. Using the second invariant, we can
conclude that the stationary values ᾱ1,2 = ±(Γ2+Γ2)/2 are accompanied by the stationary value
µ̄1µ̄2 = 0; Eqs. (48) additionally say that each µ̄1 and µ̄2 should be equal to zero. Vice-versa,
the stationary value ᾱ3 = 0 is accompanied by µ̄1µ̄2 = (Γ1 + Γ2)2/4.

In order to test the stability of the three stationary solutions of the flow, we consider
Eq. (49), which we write in the form d

d`α(`) = f (α). We then evaluate f ′(α1,2,3) for the
three stationary values and obtain:

f ′(ᾱ1,2) = − 2(Γ1 + Γ2)
2 ≤ 0 =⇒ stable; (50a)

f ′(ᾱ3) = (Γ1 + Γ2)
2 − 12α2 = (Γ1 + Γ2)

2 ≥ 0 =⇒ unstable. (50b)

Given the presence of the second invariant, that links the flow of α(`) to that of µ1(`)µ2(`), we
can conclude that if ᾱ1,2 is a stable stationary values, then also µ̄1 = 0 and µ̄2 = 0 are stable
stationary values. This simple analysis reveals that the stationary points with vanishining off-
diagonal part are locally stable, and depending on the initial conditions, one of the two specific
value ᾱ1,2 is selected.

Second generator

The second generator of the dynamics reads:

η(`) = [D(`)†,V(`)] =
�

0 −2iα(`)µ2(`)
−2iα(`)µ1(`) 0

�

, (51)

and its commutator with the Lindbladian matrix:

[η(`),L(`)] = 4α(`)

�

iµ1(`)µ2(`) −α(`)µ2(`)
α(`)µ1(`) −iµ1(`)µ2(`)

�

. (52)

This leads to the following set of coupled non-linear differential equations:

d
d`
α(`) = 4µ1(`)µ2(`)α(`) ;

d
d`
µi(`) = −4α2(`)µi(`) . (53)

These equations are very similar to those obtained with the first generator and reported in
Eq. (48). The stationary values can be obtained with the invariants of the flow. This approach
leads us again to Eq. (49), for which the analysis discussed above can be repeated.
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Third generator

The third generator of the dynamics reads:

η(`) =

�

0 V12(`)
D11(`)−D22(`)

V21(`)
D22(`)−D11(`)

0

�

= −
i

2α(`)

�

0 µ2(`)
µ1(`) 0

�

, (54)

and its commutator with the Lindbladian matrix:

[η(`),L(`)] =
�

i µ1(`)µ2(`)
α(`) −µ2(`)

µ1(`) −i µ1(`)µ2(`)
α(`)

�

. (55)

This leads to the following set of coupled non-linear differential equations:

d
d`
α(`) =

µ1(`)µ2(`)
α(`)

;
d
d`
µi(`) = −µi(`) . (56)

It is very easy to obtain µi(`) = µi(0)e−` and accordingly to verify property (35), concerning
the flow-evolution of Ioff

2 :

Ioff
2 (`) = −µ1(`)µ2(`) = −Γ1Γ2e−2` = Ioff

2 e−2` . (57)

Using the second invariant, we can also obtain α(`):

α(`) = −

√

√(Γ1 + Γ2)2

4
− Γ1Γ2e−2` `→∞

−−−→ −
Γ1 + Γ2

2
. (58)

A simple analytical case: Γ2 = 0

In order to shed more light on the technique, we consider here the special case Γ2 = 0. In
order to study this special case, we re-parametrize L(`) setting µ2(`) = 0; the matrix is now
triangular, its eigenvalues can be directly read from the diagonal, which is not supposed to
evolve during the flow. Indeed, from the second invariant we obtain α(`) = − Γ12 . We notably
simplifies the differential equations satisfied by µ1(`); we list them here below for the three
generators:

d
d`
µ1(`) = −2(Γ 2

1 +µ
2
1(`))µ1(`) ;

d
d`
µ1(`) = −Γ 2

1µ1(`) ;
d
d`
µ1(`) = −µ1(`) . (59)

Whereas the second and third equations are trivial, and are solved by two exponentials, in this
limit it is possible to give a simple and analytical solution also to the former:

µ1(`) = Γ1
1

Æ

2e4Γ 2
1 ` − 1

. (60)

This results, together with those presented in Sec. 4 highlight the fact that the third gener-
ator of the flow is the most efficient from a numerical viewpoint. On the other hand, the first
and second generators share several similarities, and given that between the two the second
is the most efficient and simplest, we disregard from now on the first generator of the flow.
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Steady-state and long-time properties

We now present a characterization of the steady state following the guidelines presented in
Sec. 2.2. For simplicity, we focus on the charge operator ĉ† ĉ, that in superfermion notation
reads c†c, and introduce its matrix representation during the flow n(`):

n(`) =

�

n11(`) n12(`)
n21(`) n22(`)

�

; with n(`= 0) =

�

1 0
0 0

�

. (61)

Once the flow runs until the final value `→∞, the matrix is a representation of the charge
operator in the basis employed in Eq. (41) for the L operator:

c†c =
�

D† D̃
�

�

n11(`→∞) n12(`→∞)
n21(`→∞) n22(`→∞)

��

d
d̃†

�

. (62)

The steady-state charge reads 〈I |c†c|ρ∞〉 and thanks to Eqs. (42) which characterize the
steady-state, and using the anticommutation relations {D̃, d̃†} = 1 and {D̃, d} = 0, we ob-
tain that the charge of the stationary state is n22(`→∞) (for more details on this calculation,
we refer to Appendix B). Thus, our goal is to compute n(`) by solving the flow dynamics
d
d`n(`) = [η(`), n(`)].1.

Using the fact that the third generator admits a fully-analytical expression:

η(`) =
ie−`

p

(Γ1 + Γ2)2 − 4Γ1Γ2e−2`

�

0 Γ2
Γ1 0

�

= h(`)

�

0 Γ2
Γ1 0

�

, (63)

we obtain the following set of differential equations:

d
d`

�

n11(`) n12(`)
n21(`) n22(`)

�

= h(`)

�

Γ2n21(`)− Γ1n12(`) Γ2(n22(`)− n11(`))
−Γ1(n22(`)− n11(`)) −Γ2n21(`) + Γ1n12(`)

�

. (64)

We do not directly solve these differential equations, but rather compute the matrix

S(`) = ex p[
∫ `

0 η(`
′)d`′]; note that path ordering is not necessary because [η(`),η(`′)] = 0 for

` 6= `′; thus, one can first compute the integral of the matrix and then takes the exponential.
This matrix is useful because n(`) = S(`)n(0)S(`)−1; it is not difficult to see that it satisfies
the desired differential equation and initial condition. In this way it is possible to reconstruct
the density of the quantum dot; we obtain n22(`→∞) = Γ2/(Γ1 + Γ2), which is the expected
result.

We conclude this section with a remark on the time-evolution of the system, and on the
way the system approaches stationary properties. Let us write a generic density matrix in the
formalism of `→∞ that describes the system at time t = 0:

|ρ(0)〉= αD†d̃†|ρ∞〉+ |ρ∞〉 . (65)

We do not introduce unphysical terms that are linear in the fermionic operators and leave aside
problems related to the positivity and hermiticity of the represented density matrix. Applying
the Liouvillian (41) and recalling the properties (42) we obtain:

|ρ(t)〉= αe−(Γ1+Γ2)t D†d̃†|ρ∞〉+ |ρ∞〉. (66)

From this expression we can finally deduce the time-evolution of the expectation value of the
charge operator: n(t) = n22(`→∞)+αe−(Γ1+Γ2)t [n11(`→∞)− n22(`→∞)] From Eq. (64)
we obtain d

d`(n11 + n22) = 0 and from the initial condition n11(0) + n22(0) = 1 we have:

n(t) =
Γ2 +αe−(Γ1+Γ2)t(Γ1 − Γ2)

Γ1 + Γ2
. (67)

1The approach that we are using here is slightly different from that described in Sec. 2.2 because we treat the
observable as a superoperator acting on the density matrix.
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It is relatively easy at this stage to re-express α as a function of the initial charge density:
α= (n(0)− Γ2)

Γ1+Γ2
Γ1−Γ2

.

6 Third example: Dissipative scattering model

We now move to the application of dissipative flow equations to a problem involving many
fermionic modes.

6.1 The problem

We now discuss a gas of spinless fermions in a d-dimensional square box of volume Ld in the
presence of a loss mechanism that acts locally; the Lindblad master equation reads:

d
dt
ρ(t) = −

i
ħh
[H,ρ(t)]+

∫

dx Γ (x)
�

Ψ(x)ρ(t)Ψ(x)† −
1
2

�

Ψ(x)†Ψ(x)ρ(t) +ρ(t)Ψ(x)†Ψ(x)
�

�

.

(68)
We consider in particular the case of a loss mechanism that is localized around x = 0, and
choose the form: Γ (x) = γδ(x). Note that γ has the dimension of a volume divided by a time.
We furthermore assume that the Hamiltonian is single-particle H =

∑

k ε(k)ĉ
†
k ĉk and the full

dynamics can be written in momentum space as follows:

d
dt
ρ(t) = −

i
ħh

�

∑

k

ε(k)ĉ†
k ĉk,ρ(t)

�

+
γ

Ld

∑

k,q

�

ĉkρ(t)ĉ
†
q −

1
2

�

ĉ†
k ĉqρ(t) +ρ(t)ĉ

†
k ĉq

�

�

. (69)

This master equation is quadratic in the fermionic operators and amenable to the treatment
with fermionic superoperators recalled in Sec. 5 and detailed in Appendix B. We now pass to
the superoperator representation: iħh d

dt |ρ(t)〉= L|ρ(t)〉 with

L =
∑

k

ε(k)
�

c†
kck + c̃k c̃†

k

�

− i
ħhγ
2Ld

∑

k,q

�

c†
kcq − c̃q c̃†

k

�

−
ħhγ
Ld

∑

k,q

c̃kcq −
∑

k

�

ε(k) + i
ħhγ
2Ld

�

. (70)

In matrix form:

M =

�

H − iħh
2 Λ1 0

−Λ1 H + iħh
2 Λ1

�

, (71)

where H is a diagonal matrix with entries ε(k) and Λ1 is a matrix with all matrix elements
equal to ħhγ/Ld . Since the matrix is block triangular, in order to study its eigenvalues it is
sufficient to look for the eigenvalues of the matrix M ′ = H − iħhΛ1/2; in the following we will
only concentrate on it. This of course prevents a correct reconstruction of the observables, as
detailed in Sec. 2.2, but as long as the focus is on the spectrum it is a legitimate restriction.

The problem has been discussed in several articles, see for instance Refs. [53–57]. Here we
focus on a simplified situation, that of a one-dimensional setup (d = 1) with a linear dispersion
relation: ε(k) = ħhv 2π

L j, where v is a velocity and j ∈ Z. In particular, we are interested in an
important spectral feature of the model: for γ ≥ 4v, we observe the appearance of a strongly
dissipative state, namely of an eigenvalue with real part equal to 0 and imaginary part much
larger then that of the other eigenvalues:

λ= Λ tan
�

π

2

�

4v
γ
− 1

��

, γ > 4v ; (72)

whereΛ is an appropriate energy cutoff. This eigenvalue marks the appearance of a single state
where almost all dissipation is concentrated, whereas all other ones are weakly dissipative (see
Fig. 5). This separation of time-scales is typical of the quantum Zeno effect. In appendix C we
present the analytical solution of this model and the necessary details.
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Figure 5: Plot of the imaginary part of the eigenvalues of the dissipative scattering
model for L = 201 considering 601 states (the parameter jΛ defined in the appendix
is set to 300). The plot highlights the emergence of a strongly dissipative state for
γ > 4v which is well described by the formula in (72). For γ < 4v the formula in 144
in Appendix C describes the imaginary part of the eigenvalue with real part equal to
zero that evloves into the strongly dissipative state.

6.2 Dissipative flow equations

We will use this example to discuss the dissipative flow equations in momentum space. Fol-
lowing the expression in Eq. (70), we propose the following parametrization for the flow equa-
tions:

M ′(`) =
∑

k

gkk(`)c
†
kck + i

∑

k6=q

gkq(`)c
†
kcq , (73)

with the following initial conditions:

gkk(0) = ε(k)− i
ħhγ
2Ld

; gkq(0) = −
ħhγ
2Ld

, for k 6= q . (74)

We now divide the super-operator M ′(`) into a diagonal and an off-diagonal part:

D(`) =
∑

k

gkk(`)c
†
kck V (`) = i

∑

k6=q

gkq(`)c
†
kcq ; (75)

and apply the theory that we have developed for the dissipative flow equations.
The flow is characterized by several invariants In, the first and the second read:

I1 =
∑

k

gkk(`); I2 = Idiag
2 (`) + Ioff

2 (`) =
∑

k

g2
kk(`)−

∑

k6=q

gkq(`)gqk(`) . (76)

Second generator

We proceed to the solution of the problem using the second generator of the dynamics:

η(`) = [D(`)†, V (`)] , (77)

whose explicit expression reads (we omit for brevity the dependence on `):

[D(`)†, V (`)] =
∑

k

∑

s6=q

i g∗kk gsq

�

c†
kck, c†

s cq

�

=
∑

s6=q

i
�

g∗ss − g∗qq

�

gsq c†
s cq =

∑

sq

ηsq c†
s cq ; (78)
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where we have used the important identity:
�

c†
kct, c†

s cq

�

= δstc
†
kcq −δkqc†

s ct . (79)

We now compute the commutator [η(`), M ′(`)] by splitting it into two parts; first the commu-
tator with D(`)

[η(`), D(`)] =
∑

k

∑

s6=q

gkkηsq

�

c†
s cq, c†

kck

�

=

=
∑

k6=q

(gqq − gkk)ηkqc†
kcq =

∑

k6=q

i|gkk − gqq|2 gkqc†
kcq ; (80)

and then the commutator with V (`):

[η(`), V (`)] =
∑

k 6=t

∑

s6=q

i gktηsq

�

c†
s cq, c†

kct

�

=
∑

kqs

i
�

gsqηks − gksηsq

�

c†
kcq =

=−
∑

ks

2(g∗kk − g∗ss) gsk gksc
†
kck −

∑

k6=q

∑

s

gks gsq

�

g∗qq + g∗kk − 2g∗ss

�

c†
kcq . (81)

With this information we can write the flow equations for the coupling constants:

d
d`

gkk(`) =−
∑

s

2(g∗kk − g∗ss) gks gsk ; (82a)

d
d`

gkq(`) =− |gkk − gqq|2 gkq + i
∑

ss

gks gsq

�

g∗qq + g∗kk − 2g∗ss

�

. (82b)

Third generator

According to the general definition, we propose the following generator of the dynamics:

η(`) =
∑

k6=q

gkq

gkk − gqq
c†
kcq . (83)

In order to compute the commutator [η(`), L(`)], we can reemploy some of the results ob-
tained for the second commutator, and obtain:

[η(`), D(`)] =
∑

k6=q

gkqc†
kcq ; (84a)

[η(`), V (`)] =
∑

ks

2
gsk gks

gss − gkk
c†
kck +

∑

k6=q

∑

s

gks gsq

2gss − gqq − gkk

(gss − gqq)(gkk − gss)
c†
kcq + .. (84b)

We are now ready to write the flow equations for the third generator:

d
d`

gkk(`) =− 2
∑

s6=k

gsk gks

gkk − gss
(85a)

d
d`

gkq(`) =− gkq + i
∑

s6=k,q

gks gsq

2gss − gqq − gkk

(gss − gqq)(gkk − gss)
. (85b)
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Figure 6: Numerical solutions of the flow equations with the 2nd generator in (82)
(left column) and with the and 3rd generator in (85) (right column). We plot the
real (top line) and imaginary (middle line) parts of the diagonal elements gkk(`);
the bottom line is a zoom into the imaginary parts with smallest absolute value.
The dotted red lines represent the correct values computed with a standard linear
algebra package. We observe that the system has reached a diagonal form with a
good approximation in both cases, although the bottom left panel shows that the
flow of the second generator is not yet at complete convergence.

Figure 7: Behaviour during the flow of ‖V(`)‖22 for the second (light blue) and
third (red) generator. In this latter case, we recover the behaviour predicted in for-
mula (35). The second generator instead has a less uniform behaviour, although at
long times it also show an exponential law.
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Figure 8: Left: Spectrum of the matrix M ′ for a lattice of 10 sites and W = J after
averaging over 103 disorder realisations. The plot shows the appearance of a strongly
dissipative state for γ > 4J which is separated by a set of states which are quasi-
stationary with lifetime scaling as γ−1. Right: Size-scaling of the asymptotic decay
rate Γadr for different valus of γ and W . Each point is obtained by averaging over 104

disorder realizations. In all situations we observe an exponential scaling with the
lattice size, Γadr ∼ e−L . All results presented in this figure have been obtained with
standard diagonalization routines.

Numerical solutions

We have solved numerically the flow equations in (82) and in (85). In the following we
present the numerical results obtained by solving the flow equations for the dissipative scat-
tering model both with the second and third generator. We set γ= 5v and jΛ = 15 (so that we
consider 31 states in total). The numerical algorithm that has been used to solve the system
of coupled ordinary differential equations is a 5th order Runge-Kutta (Butcher’s scheme) with
a flow step d` = 10−4 and Nstep = 105 for the second generator, whereas Nstep = 8.5 · 104 for
the third generator.

The results are summarized in Fig. 6. We first observe that both generators let the system
converge to a diagonal form. In order to be more quantitative, the discrepancy ∆(`max) for
the second generator equals 6.0 · 10−3, whereas for the third generator is 8.11 · 10−11. Con-
cerning the conserved quantities, we observe that δI31 equals 1.8 · 10−2 for the second flow
and 3.8 · 10−6 for the third one. In Fig. 7 we show the flow of ‖V(`)‖22 and observe that the
third generator produces a more effective approach to zero.

This study corroborates the previous conclusions on the fact that for numerical applications
the third generator is more effective than the second one. On the other hand, the dynamics
generated by the second generator is more uniform than that of the third generator. In this
respect, we envision that the use of the second generator would be more useful in situations
where an approximated treatment is necessary (e.g. for interacting non-quadratic systems).

7 Fourth example: Disordered dissipative scattering model

In this Section we continue our analysis of dissipative flow equations applied to a many-
fermion problem and consider a one-dimensional lattice with a fermionic disordered tight-
binding model:

Ĥ = −J
∑

j

�

ĉ†
j ĉ j+1 +H.c.

�

+
∑

j

h j n̂ j . (86)

Here, h j takes random values and is uniformly distributed in the range [−W, W ]. We consider
a localized loss source at the center of the lattice ( j = 0) with loss rate γ, so that the master
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equation reads: d
dtρ(t) = −

i
ħh [H,ρ(t)] + γ

�

ĉ0ρ(t)ĉ
†
0 −

1
2 {n̂0,ρ(t)}

�

. In this example we aim
at investigating the interplay between disorder and losses, and at discussing the emerging
behaviour of the system as a dissipative insulator.

This analysis can be performed by focusing on the size-scaling of the asymptotic decay
rate, namely the longest typical decay time of the system, which is related to the spectrum of
the Lindbladian. Similarly to what done in Sec. 6, we rewrite the master equation using the
fermionic superoperators (see Appendix B) and link the spectrum of the master equation to
the eigenvalues λα of the matrix M ′ = H − iħhΛ1/2, which represents the master equation in
this formalism. The asymptotic decay rate reads:

Γadr =min
α
(−ℑ[λα]) . (87)

In Fig. 8 we show the asymptotic decay rate of the problem, obtained with exact diagonaliza-
tion, for several values of the lattice length L and of the decay rate γ. Its scaling is exponential
in the system size: Γadr ∼ exp[−L] and this behaviour is solely dictated by the presence of
disorder. Indeed, we verified that for a clean system the scaling is always algebraic L−α. Sim-
ilarly to the model discussed in Sec. 6, the system also displays a strongly dissipative state for
γ > 4J , both in the clean [54, 56] and in the disordered case (see Fig. 8). The latter result,
related to the disordered model, has not been thoroughly discussed yet and deserves further
investigation.

7.1 Dissipative flow equations

We propose to study this model using flow equations that are formulated in real space:

M ′(`) =
∑

j

g j j(`)c
†
j c j + i

∑

j 6= j′
g j j′(`)c

†
j c j′ , (88)

with initial conditions:

g j j(0) = h j − i
ħhγ
2
δ j,0; g j, j′(0) =

−J
i

�

δ j′, j+1 +δ j′, j−1

�

. (89)

The flow equations are not different from those presented in Sec. 6.2 and we limit ourselves
here to writing the final results. For the second generator of the flow:

d
d`

g j j(`) =−
∑

j′
2(g∗j j − g∗j′ j′) g j j′ g j′ j ; (90a)

d
d`

g j j′(`) =− |g j j − g j′ j′ |2 g j j′ + i
∑

n

g jn gn j′
�

g∗j′ j′ + g∗j j − 2g∗nn

�

. (90b)

For the third generator of the flow:

d
d`

g j j(`) =− 2
∑

j′ 6= j

g j′ j g j j′

g j j − g j′ j′
; (91a)

d
d`

g j j′(`) =− g j j′ + i
∑

n6= j, j′
g jn gn j′

2gnn − g j′ j′ − g j j

(gnn − g j′ j′)(g j j − gnn)
. (91b)

We present a numerical solution of the flow dynamics; we use a 5-th order Runge-Kutta
algorithm (Butcher’s scheme) with adaptive flow steps keeping an estimated error below the
threshold of 10−16 according to Butcher’s tableau.

In the top panels of Fig. 9 we show the flow of the imaginary part of the diagonal matrix
elements g j j(`) averaged over 104 disorder realizations obtained with the second and the third
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Figure 9: Top: Numerical solutions of the flow equations with the 2nd generator
in (90) (left) and with the 3rd generator in (91) (right). We plot the imaginary part
of the diagonal elements g j j(`) averaged over 200 (left) and 1000 (right) disorder
realisations in the case L = 12, γ = 2J and W = 1. In the insets we highlight a
comparison with the expected values computed with standard linear-algebra routines
(black dashed lines). Bottom: Behaviour of ‖V‖22 with the flow; the law is algebraic
for the second generator (left) and exponential for the third one (right).

flow generators. In both cases we see a good convergence to the expected values, computed
with standard linear-algebra numerical packages. This convergence is associated to the disap-
pearance during the flow of the off-diagonal part of the matrix. The bottom panels of Fig. 9
show that with the second generator the law is algebraic, whereas with the third generator it
is exponential in `.

8 Conclusion

In this paper we have generalized to open quantum systems the flow equations that have
originally been developed by Wegner, Głazek and Wilson. Specifically, our work shows how
to generalize the flow equations to operators that are not Hermitian, focusing in particular on
fermionic Lindblad master equations. Although we did not discuss it explicitly, our results can
also be employed for non-Hermitian Hamiltonians and in general for other master equations
with time-evolution generators that are local in time and time-independent, such as Redfield
master equations [58].

We have described three generators of the flow and have highlighted their peculiarities
and strong points. In particular, we have shown that the third generator is the most suited
for a numerical use without any physical approximation: its convergence has proven fast and
reliable, which is necessary and desirable for implementing a stable and efficient algorithm.

The main perspective of this work is related to the believe that the second generator of the
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flow could find a fruitful application in novel approximations schemes aiming at the develop-
ment of renormalization group-like approaches. We have indeed shown that, in the long flow
limit, the off-diagonal matrix elements approach zero with a flow scale that depends on the
difference of the two eigenvalues that they connect. This behaviour is reminiscent of decima-
tion schemes proposed for renormalization groups of Hamiltonians, as discussed for instance
in Ref. [18]; this property constitute a conceptual asset that is lacking in the case of the third
generator. Whereas we have benchmarked our new method with four different examples, in
all these cases efficient techniques for the solution of the dynamics exist. On the other hand,
the interest of dissipative flow equations might reside in the development of novel truncation
and approximation schemes for the treatment of interacting problems in the presence of dis-
sipation, where instead we lack a general and well-established method to use. The second
generator constitutes the best candidate for this studies.
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A Dissipative Schrieffer-Wolff transformation

We present a new derivation of the Schrieffer-Wolff transformation for Lindbladian operators
(and in general for non-Hermitian linear operators) based on the considerations presented in
Ref. [59] for Hamiltonian perturbation theory. The same results have already been derived in
Ref. [39] using the resolvant method detailed in Ref. [60].

We consider a quantum system whose dynamics is described by a Lindblad master equation

d
dt
ρ(t) = L[ρ(t)] (92)

and assume that the superoperator L can be written as the sum of two parts

L= L0 + ξL1 , (93)

where ξ is a dimensionless quantity which plays the role of a perturbative parameter. We
assume that L0 can be easily diagonalized and that its eigenvalues λαi can be grouped into
well-separated sets labeled byα. Eigenvalues relative to different values ofα are very different,
but within each set α there is not exact degeneracy, so that an additional index i is necessary.
The right eigenvectors {|α, vi〉}i span the subspaces E (0)α , the left eigenvectors are noted |α, u j〉
and the following relations hold:

L0|α, vi〉= λαi|α, vi〉, 〈α, ui|L0 = λαi〈α, ui|, Pα =
∑

i

|α, vi〉〈α, ui| , (94)

where Pα is the projector onto the subspace E (0)α thanks to the relation 〈α, u j|α, vi〉= δi j .
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The key idea of a Schrieffer-Wolff transformation is to obtain an effective operator L′ that
is block-diagonal with respect to the subspaces E (0)α (exactly like L0 is), and that has the same
spectrum of L

L′ =
∑

α

PαLαeffPα, PαL′Pβ = δαβLαeff ; (95)

but that at the same time takes into account presence of ξL1, which in principle is not block-
diagonal (if it were, there would be no need for this theory). This process will be imple-
mented by an invertible transformation Q (invertible transformations do preserve the spec-
trum), which we write as:

Q= eη, Q−1 = e−η; L′ =QLQ−1 . (96)

Using the Taylor series of the matrix exponential, it is possible to give another expression to
this latter formula using nested commutators:

L′ = L+
�

η,L
�

+
1
2!

�

η,
�

η,L
��

+ . . . . (97)

In order to determine the matrix elements of η, we will employ a perturbative approach
in ξ and expand η in powers of ξ:

η= ξη(1) + ξ2η(2) + ξ3η(3) + · · ·+ ξnη(n) + . . . . (98)

We do not include any zero-th order term because in the case ξ = 0 the operator is already
block diagonal and the invertible transformation should be Q = I , which is what one obtains
with η = 0. At this point we have to consider Eq. (97) and compare terms of the same order
in ξ. For the left-hand-side of the equation we introduce the notation:

L′ = L(0) + ξL(1) + ξ2L(2) + . . . (99)

For terms at zero-th order in ξ we obtain L(0) = L0; for those proportional to ξ we obtain the
interesting equality:

L(1) =
�

η(1),L0

�

+L1 . (100)

Exploiting the fact that the matrix elements of L(1) between two different manifolds must be
zero, see Eq. (95), one obtains the equation:

〈α, u j|η(1)|β , vi〉
�

λβ i −λα j

�

+ 〈α, u j|L1|β , vi〉= 0, for α 6= β . (101)

The latter equation determines the matrix elements of η(1) between two subspaces with dif-
ferent label α:

〈α, u j|η(1)|β , vi〉=
〈α, u j|L1|β , vi〉
λα j −λβ i

, α 6= β . (102)

For α = β , the matrix element is not unambiguously determined. This ambiguity follows
from the fact that once the matrix η has been found, it is possible to construct an infinite
number of other solutions by simply applying an arbitrary invertible transformation to Q that
does not mix different subspaces. One possibility to remove this uncertainty is to impose that
η has no matrix elements inside each manifolds: PαηPα = 0, ∀α. For this reason, we set
〈α, u j|η(1)|α, vi〉= 0.

We can now determine the matrix elements of Lαeff up to second order in ξ. For the zero-th
order, we simply obtain PαL0Pα. For the first order, instead, unsing Eq. (99) and observing
that

�

η(1),L0

�

has only matrix elements between states with different values of α, we obtain:
PαL1Pα.
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For the second order, the key equation is:

L(2) = [η(1),L1] + [η
(2),L0] +

1
2
[η(1), [η(1),L0]] , (103)

and our goal is to determine PαL(2)Pα. Since η(2) has only matrix elements between states
with different values of α, we know that Pα[η(2),L0]Pα = 0. Moreover, using Eq. (101)
one obtains: [η(1), [η(1),L0]] = [η(1),L(1)]− [η(1),L1]. Since L(1) has only matrix elements
between states with the same α, Pα[η(1),L(1)]Pα = 0. We are thus left with

PαL(2)Pα = +
1
2
Pα[η(1),L1]Pα . (104)

And consequently, up to second order we have:

Lαeff = PαL0Pα + ξPαL1Pα +
ξ2

2
Pα
�

η(1),L1

�

Pα + o(ξ2) . (105)

The final step is to evaluate the matrix elements of
�

η(1),L1

�

:

〈α, ui|
�

η1,L1

�

|α, v j〉=
∑

β 6=,α
k

�

〈α, ui|η1|β , vk〉〈β , uk|L1|α, v j〉−〈α, ui|L1|β , vk〉〈β , uk|η1|α, v j〉
�

=

=
∑

β 6=,α
k

〈α, ui|L1|β , vk〉〈β , uk|L1|α, v j〉
�

1
λαi −λβk

+
1

λα j −λβk

�

. (106)

Summarizing, in the case in which we have exact degeneracy within each set α (i.e. the
subscript i in λα,i is not necessary), we are left with:

PαL(2)Pα =
∑

β 6=α

PαL1PβL1Pα

�

1
λα −λβ

�

. (107)

B Superoperator formalism for fermions

We briefly review the superoperator formalism for fermions (see Refs. [40, 41] for more ex-
tensive discussions). It is also worth to mention that this formalism is also connected to the
third-quantization formalism presented in Ref. [61], where a real fermion representation is
preferred to a complex one. Section B.2 presents some remarks that we did not find explicitly
written elsewhere.

B.1 Generalities

The spirit of the superoperator formalism is to represent density matrices ρ in a space H⊗ H̃,
where H is the Hilbert space associated to the physical system (it could be a Fock space),
whereas H̃ is a space that is isomorphic to it. We introduce the basis {|n〉}n for H and the basis
{|ñ〉}n for H̃ and the isomorphism U : H→ H̃ that maps |n〉 → |ñ〉.

With this notation we can introduce the left vacuum vector:

|I〉=
∑

n

|n〉|ñ〉 ∈H⊗ H̃ , (108)

and the representation of the density matrix ρ =
∑

nmρnm|n〉〈m| as a vector of this space:

|ρ〉=
∑

nm

ρnm|n〉|m̃〉= ρ ⊗ Î |I〉 . (109)
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The normalization of the density matrix tr[ρ] = 1 reads 〈I |ρ〉 = 1, whereas the expectation
value of an observable Â, defined as 〈A〉= tr[ρ Â], reads 〈A〉= 〈I |Â⊗ Î |ρ〉.

We now consider the case where H is a fermionic Fock space, with L associated fermionic
operators ĉm (without loss of generality, we do not consider explicitly spin) satisfying canonic
anticommutation relations:

{ĉm, ĉn}= 0, {ĉ†
m, ĉ†

n}= 0, {ĉm, ĉ†
n}= δmn . (110)

In this case it is customary to define the left vacuum state in a slightly different way with
respect to Eq. (108), and namely:

|I〉=
∑

n1,n2...nL

(i)n1+n2+...+nL |n1, n2, . . . nL〉| ån1, n2, . . . nL〉 . (111)

The fermionic superoperators for the space H⊗ H̃ are defined as follows:

cm = ĉm ⊗ I ; c†
m = ĉ†

m ⊗ I ; c̃m = (−1)N̂ ⊗ ĉm; c̃†
m = (−1)N̂ ⊗ ĉ†

m ; (112)

the action of the ĉm on H̃ is obtained through the isomorphism U , and N̂ =
∑

m c†
mcm. The

new operators thus satisfy canonical anticommutation relations:

{cm, cn}= 0, {c†
m, c†

n}= 0, {cm, c†
n}= δmn ; (113a)

{c̃m, c̃n}= 0, {c̃†
m, c̃†

n}= 0, {c̃m, c̃†
n}= δmn ; (113b)

{cm, c̃n}= 0, {c†
m, c̃†

n}= 0, {cm, c̃†
n}= 0; {c̃m, c†

n}= 0 . (113c)

As a consequence, we can think of H⊗ H̃ as an enlarged Fock space with 2L anticommuting
modes. Once applied onto the left vacuum state (111), the cm and c̃m operators satisfy the
fundamental tilde conjugation rules, that are crucial in all subsequent calculations:

cm|I〉= −i c̃†
m|I〉, c†

m|I〉= −i c̃m|I〉 . (114)

The definitions of the c̃m operators in Eq. (112) are crucial for ensuring the anticommuting
properties in Eq. (113c). In principle they are a choice, but they are highly recommended
because they allow to treat cm and c̃m on the same footing.

B.2 Quadratic Lindblad master equations

Matrix representation based on superoperators

We now investigate the writing of a Lindblad master equation (2.1) in superoperator repre-
sentation assuming that the Hamiltonian is quadratic in the fermionic operators and that the
jump operators are linear:

Ĥ =
∑

mn

hmn ĉ†
m ĉn , L̂α =

∑

m

�

l1αm ĉm + l2αm ĉ†
m

�

. (115)

Before continuing, we make the following physical assumption: we are only interested in the
study of jump operators that either inject particles in the system or take them out. This means
that for a fixed α, either the l1αm or the l2αm are all zeros. As a consequence, it will always be
true that l1αml2αn = 0. For later convenience, let us write:

∑

α

L̂†
α L̂α =

∑

mn

∑

α

�

l∗1αm ĉ†
m + l∗2αm ĉm

��

l1αn ĉn + l2αn ĉ†
n

�

=

=
∑

mn

∑

α

�

l∗1αml1αn − l2αml∗2αn

�

ĉ†
m ĉn +

∑

mα

l∗2αml2αm =

=
∑

mn

(Λ1mn −Λ2mn) ĉ
†
m ĉn +

∑

m

Λ2mm . (116)
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In the last line we have defined the Hermitian matrices Λ1 and Λ2 with matrix elements
Λ1mn =

∑

α l∗αml1αn and Λ2mn =
∑

α lαml∗1αn.
It is customary to represent the operator iħhL instead of L for its formal similarity with

the Schrödinger equation for pure states. Since it is a linear operator, in the superoperator
representation it will have quadratic matrix form iħhL[ρ]→ L|ρ〉:

L =
∑

mn

�

hmn −
iħh
2
(Λ1mn −Λ2mn)

�

c†
mcn +

�

−hmn −
iħh
2
(Λ1mn −Λ2mn)

�

c̃†
n c̃m+

+ i(−i)ħh
�

Λ∗1mncm c̃n +Λ2mnc†
m c̃†

n

�

− iħh
∑

m

Λ2mm . (117)

In order to obtain this expression, we have directly promoted every original operator ĉ(†)m to
an operator c(†)m acting on H⊗ H̃. Subsequently, we have used the fact that the density matrix

ρ commutes with the parity operator P̂ = (−1)
∑

ĉ†
m ĉm (we also say that it is an even operator)

and thus that it commutes with every operator c̃(†)m . With these simple rules, every term can
be readily obtained. For instance, for what concerns the Hamiltonian dynamics Ĥρ−ρĤ, the
first term is easily recast in the superoperator language: Ĥρ|I〉=

∑

mn hmnc†
mcn|ρ〉; the second

instead requires some manipulation:

ρĤ|I〉= ρ
∑

mn

hmnc†
mcn|I〉= −iρ

∑

mn

hmnc†
m c̃†

n|I〉= i
∑

mn

hmn c̃†
nρc†

m|I〉= i(−i)
∑

mn

hmn c̃†
n c̃m|ρ〉 .

(118)
Let us now attempt to put the operator L in Eq. (117) in matrix form:

L =
�

c†
1 · · · c†

L c̃1 · · · c̃L

�



 M























c1
...

cL

c̃†
1
...

c†
L



















+ K , (119)

where M is a 2L × 2L complex matrix and K is a complex constant. We need to rewrite
Eq. (117) as follows:

L =
∑

mn

�

hmn −
iħh
2
(Λ1mn −Λ2mn)

�

c†
mcn +

�

hmn +
iħh
2
(Λ1mn −Λ2mn)

�

c̃m c̃†
n+

+ħh
�

−Λ∗1nm c̃mcn +Λ
∗
2mnc†

m c̃†
n

�

+

−
∑

m

�

hmm +
iħh
2
(Λ1mm −Λ2mm)

�

− iħh
∑

m

Λ2mm , (120)

so that the matrix M has the following block-diagonal form:

M =

�

H − iħh
2 (Λ1 −Λ2) ħhΛ∗2
−ħhΛ1 H + iħh

2 (Λ1 −Λ2)

�

, (121)

and the matrices H, Λ1 and Λ2 are Hermitian; moreover

K = −tr[h] + i
ħh
2

tr[Λ1 +Λ2] . (122)

We observe that the expression for L derived in the previous equations is a generalisation of
Eq. (40) presented in the main text for a dissipative fermionic mode.
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Diagonalization of a quadratic Lindblad master equation

The matrix M in Eq. (121) satisfies a strong symmetry:

M = Σ1M†Σ1, Σ1 =

�

0 I
I 0

�

, (123)

where I is the identity; this is a generic result that is true for any matrix of the form
�

A B
C A†

�

, (124)

provided B and C are hermitian. As a consequence, M and M† have the same spectrum;
indeed, if we look at the characteristic polynomial:

pM (λ) =det (M −λI) = det
�

Σ1M†Σ1 −λI
�

=

=det
�

Σ1

�

M† −λI
�

Σ1

�

= det
�

M† −λI
�

= pM†(λ) . (125)

Since the eigenvalues of M† are the complex conjugates of those of M , we obtain that if λ
is an eigenvalue of M , then this is true also for λ∗. This means in particular that either the
eigenvalues are complex and come in pairs, or they are reals.

We now make the assumption that the Jordan canonical form of the matrix M does not
contain any nilpotent part; we are not aware of any physical problem in quantum physics
where this matematical object played a role. For this reason, we assume that there is an
invertible transformation S that puts M in diagonal form:

M = S−1DS, D =



















λ1
. . .

λL
λ∗1

. . .
λ∗L



















. (126)

Thanks to this, we can write:

L =
∑

m

�

λmD†
mdm +λ

∗
mD̃md̃†

m

�

+ K , (127)

where the operators are defined through the matrix elements of S and S−1:


















d1
...

dL

d̃†
1
...

d†
L



















= S



















c1
...

cL

c̃†
1
...

c†
L



















;
�

D†
1 · · · D†

L D̃1 · · · D̃L

�

=
�

c†
1 · · · c†

L c̃1 · · · c̃L

�

S−1 .

(128)
It is important to stress that dm and D†

m are not Hermitian conjugated operators, similarly for
D̃ and d̃†. Yet, it is possible to show that the operators satisfy canonical anticommutation
relations. Obvious results:

{dm, dn}= 0, {d̃†
m, d̃†

n}= 0, {dm, d̃†
n}= 0 ; (129a)

{D†
m, D†

n}= 0, {D̃m, D̃n}= 0, {D†
m, D̃n}= 0 . (129b)
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The less obvious results {dm, D†
m′} = δmm′ and {d̃†

m, D̃m′} = δmm′ , follow from the judicious
application of the definitions (128). With similar reasonings it is possible to observe that the
tilde conjugation rules are satisfied:

dm|I〉= −id̃†
m|I〉, D†

m|I〉= −i D̃m|I〉 . (130)

It is interesting to observe that when Λ2 is a real matrix, in order to extract the spectrum
{λ} it is not necessary to diagonalize the full matrix M . Indeed, we can rewrite the matrix M
in Eq. (121) in the following compact way:

M = H ⊗ I2 +−
iħh
2
(Λ1 −Λ2)⊗σz +

ħh
2
(Λ∗2 −Λ1)⊗σx +

iħh
2
(Λ∗2 +Λ1)⊗σy . (131)

We now propose the following unitary transformation: σx →−σy , σy →−σz , σz → σx and
obtain the following matrix representation:

M =

�

H − iħh
2 (Λ

∗
2 +Λ1) + iħh

2 (Λ
∗
2 −Λ2)

− iħh
2 (Λ

∗
2 −Λ2) H + iħh

2 (Λ
∗
2 +Λ1)

�

. (132)

If Λ2 is a real matrix, M becomes a block-diagonal matrix and thus, in order to study the
spectrum of M , it is sufficient to study the spectrum of H ± iħh

2 (Λ1 + Λ2). We exploit this
possibility in Secs. 6 and 7, where Λ2 = 0.

Back to a fermionic master equation

We conclude this section with a discussion of the physical meaning of Eq. (127). First of all,
by exploiting the canonical anticommutation relations in (129), we rewrite it as:

L =
∑

m

�

λmD†
mdm −λ∗md̃†

mD̃m

�

. (133)

This equation now completely resembles Eq. (41) presented in the main text when dealing with
a single fermionic mode in the presence of losses and gain. Diagonalizing our master equation
is equivalent to turning it into a form where it looks like a system of single fermionic modes
independently coupled to independent sources of particle losses and gain. Thus, the imaginary
part of each eigenvalue ℑ[λα] gives us the typical time scales of the decays of the normal modes
of the problem. All considerations presented in the main text concerning eigenoperators of the
dynamics apply here in the multi-mode case. We can also write that after diagonalisation the
original master equation reads:

d
dt
ρ(t) =

∑

α

−
iεα
ħh
�

d̂†
αd̂α,ρ(t)

�

+ Γα,1

�

d̂αρ(t)d̂
†
α −

1
2

�

d̂†
αd̂α,ρ(t)

	

�

+

+ Γα,2

�

d̂†
αρ(t)d̂α −

1
2

�

d̂αd̂†
α,ρ(t)

	

�

, (134)

with the operators d̂α satisfying canonical anticommutation relations.

C Dissipative scattering model

In this appendix we derive some exact results and present some considerations for the dissi-
pative scattering model that is discussed in Sec. 6.
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C.1 General considerations

We search the eigenvalues λ and eigenvectors ~v of the matrix M ′ = H − iħh
2 Λ1 where H is a

diagonal matrix with entries ε(k) and Λ1 is a matrix with all entries equal to γ/Ld . We note
vk the entries of ~v and the secular equation reads:

ε(k)vk − i
ħhγ
2Ld

∑

q

vq = λvk, λ, vk ∈ C . (135)

With straightforward manipulations we obtain:

vk = −i
ħhγ
2Ld

1
λ− ε(k)

∑

q

vq ⇒
∑

k

1
λ− ε(k)

= i
2Ld

ħhγ
. (136)

This latter equation, can be reformulated as one equation for the real part and one for the
imaginary part:

∑

k

ℜ[λ]− ε(k)
|λ− ε(k)|2

= 0; −
∑

k

ℑ[λ]
|λ− ε(k)|2

=
2Ld

ħhγ
. (137)

In the following we will discuss some aspects of these eigenvalue equations for a specific form
of the energy dispersion relation, ε(k).

C.2 The case of a one-dimensional system with a linear spectrum

As anticipated in the main text, we consider a one-dimensional system (d = 1) with energies
ε(k) = ħhv 2π

L j, where v is a velocity and j ∈ Z; sums over k are converted into sums over j
and for brevity we also introduce ε0 = ħhv 2π

L . Let us begin by considering Eq. (137) and let us
show that when λ is purely imaginary (we thus take ℜ[λ] = 0 and parametrize it as λ= iλI)
it satisfies the first constraint. We fix a high energy cutoff Λ= ε0 jΛ with jΛ� 1 and such that
− jΛ < j < jΛ and write that:

∑

k

ε(k)
|λ− ε(k)|2

= lim
jΛ→∞

jΛ
∑

j=1

�

jε0

|iλI − jε0|
+

− jε0

|iλI + jε0|

�

= 0 . (138)

It is important to consider the cutoff otherwise one would obtain that every λ of the form
λ= ε(k) + iλI would satisfy the first constraint.

We continue with the second equation:

1
λI
+

jΛ
∑

j=1

2λI

j2ε2
0 +λ

2
I

= −
2L
ħhγ

. (139)

The series can be analytically evaluated:

1
λI
−

1
λI
+
π

ε0
coth

�

πλI

ε0

�

−
i
ε0

�

ψ

�

jΛ − i
λI

ε0

�

−ψ
�

jΛ + i
λI

ε0

��

= −
2L
ħhγ

; (140)

where ψ(z) is the Digamma function. We now consider the large band-width limit, with
| jΛ ± iλI/ε0| � 1, so that the following asymptotic expansion can be used:

ψ

�

jΛ − i
λI

ε0

�

−ψ
�

jΛ + i
λI

ε0

�

∼ log

 

jΛ − i λI
ε0

jΛ + i λI
ε0

!

= −2i arctan
�

λI

jΛε0

�

. (141)
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Note that by definition jΛ ± iλI/ε0 cannot lie on the negative real axis, where the expansion
would be problematic. Concluding, we obtain the following equation for the eigenvalue:

π

ε0
coth

�

πλI

ε0

�

−
2
ε0

arctan
�

λI

jΛε0

�

= −
2L
ħhγ

. (142)

The equation can be simplified by considering that jΛ is larger than ΛI/ε0, so that we can
approximate arctan x ∼ x . By introducing the variable x = πλI/ε0, the equation reads:

coth(x) = −
4v
γ
+

2
π

arctan
�

x
π jΛ

�

. (143)

Although the equations has formally two solutions, for physical reasons we only retain the
negative one. The peculiar property of this equation results from the fact that coth(x) is
always smaller than −1 for x < 0. Thus, we can identify three regimes depending on whether
γ/v is smaller than 4, larger than 4 or approximately 4. We discuss analytically two of them,
whose results can be compared with exact numerics in Fig. 5.

The case γ/v� 4

In this case 4v/γ � 1 and the solution must satisfy |x | � 1. The correction due to the
arctan(x/(π jΛ)), that in this case can be approximated by x/(π jΛ), is negligible and can be
safely disregarded. The eigenvalue reads:

λI = −
2ħhv

L
coth−1

�

4v
γ

�

= −
ħhv
L

log
�

4v/γ+ 1
4v/γ− 1

�

. (144)

The formula is well-defined only for γ < 4v and displays a divergence for γ→ 4v− that we do
not consider as physical because it is not in the regime of validity of the approximations.

In the deep perturbative limit γ� v the result gives:

λI = −
ħhv
L

log
�

1+ γ/(4v)
1− γ/(4v)

�

' −
ħhv
L

log
�

1+
2γ
4v

�

' −
ħhγ
2L

. (145)

The case γ/v� 4

In this case 4v/γ� 1 and the solution must satisfy |x | � 1. In this region, we can approximate
coth(x)∼ −1 and obtain:

λI = Λ tan
�

π

2

�

4v
γ
− 1

��

. (146)

We thus obtain that the result is proportional to the band edge, with limiting value for γ/v→∞
equal to −∞.
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