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A BAYESIAN LINEAR MODEL FOR THE HIGH-DIMENSIONAL
INVERSE PROBLEM OF SEISMIC TOMOGRAPHY

By Ran Zhang1, Claudia Czado and Karin Sigloch

Technische Universitàt Miinchen, Technische Universitàt Miinchen and

Ludwig-Maximilians Universitàt Miinchen

We apply a linear Bayesian model to seismic tomography, a high
dimensional inverse problem in geophysics. The objective is to estimate the
three-dimensional structure of the earth's interior from data measured at its

surface. Since this typically involves estimating thousands of unknowns or
more, it has always been treated as a linear(ized) optimization problem. Here
we present a Bayesian hierarchical model to estimate the joint distribution of
earth structural and earthquake source parameters. An ellipsoidal spatial prior
allows to accommodate the layered nature of the earth's mantle. With our ef
ficient algorithm we can sample the posterior distributions for large-scale lin
ear inverse problems and provide precise uncertainty quantification in terms
of parameter distributions and credible intervals given the data. We apply the
method to a full-fledged tomography problem, an inversion for upper-mantle

structure under western North America that involves more than 11,000 pa
rameters. In studies on simulated and real data, we show that our approach
retrieves the major structures of the earth's interior as well as classical least

squares minimization, while additionally providing uncertainty assessments.

1. Introduction. Seismic tomography is a geophysical imaging method that
allows to estimate the three-dimensional structure of the earth's deep interior, us

ing observations of seismic waves made at its surface. Seismic waves generated by

moderate or large earthquakes travel through the entire planet, from crust to core,

and can be recorded by seismometers anywhere on earth. They are by far the most
highly resolving wave type available for exploring the interior at depths to which

direct measurement methods will never penetrate (tens to thousands of kilome
ters). Seismic tomography takes the shape of a large, linear(ized) inverse problem,

typically featuring thousands to millions of measurements and similar numbers of

parameters to solve for.
To first order, the earth's interior is layered under the overwhelming influence of

gravity. Its resulting, spherically symmetric structure had been robustly estimated

by the 1980s [Dziewonski and Anderson (1981), Kennett and Engdahl (1991)] and
is characterized by O(102) parameters. Since then seismologists have been mainly
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1112 R. ZHANG, C. CZADO AND K. SIGLOCH

concerned with estimating lateral deviations from this spherically symmetric ref

erence model [Nolet (2008)]. Though composed of solid rock, the earth's mantle
is in constant motion (the mantle extends from roughly 30 km to 2900 km depth

and is underlain by the fluid iron core). Rock masses are rising and sinking at ve

locities of a few centimeters per year, the manifestation of advective heat transfer:

the hot interior slowly loses its heat into space. This creates slight lateral varia
tions in material properties, on the order of a few percent, relative to the statically

layered reference model. The goal of seismic tomography is to map these three
dimensional variations, which embody the dynamic nature of the planet's interior.

Beneath well-instrumented regions—such as our chosen example, the United
States—seismic waves are capable of resolving mantle heterogeneity on scales of
a few tens to a few hundreds of kilometers. Parameterizing the three-dimensional

earth, or even just a small part of it, into blocks of that size results in the mentioned

large number of unknowns, which mandate a linearization of the inverse problem.

Fortunately this is workable, thanks to the rather weak lateral material deviations

of only a few percent (larger differences cannot arise in the very mobile mantle).

Seismic tomography is almost always treated as an optimization problem. Most

often a least squares approach is followed requiring general matrix inverses [Aki

and Lee (1976), Crosson (1976), Montelli et al. (2004), Sigloch, McQuarrie and
Nolet (2008)], while adjoint techniques are used when an explicit matrix formu
lation is computationally too expensive [Fichtner et al. (2009), Sieminski et al.
(2007), Tromp, Tape and Liu (2005)]. While probabilistic seismic tomography
using Markov chain Monte Carlo (MCMC) methods has been given consider
able attention by the geophysical (seismological) community, these applications
have been restricted to linear or nonlinear problems of much lower dimensional

ity assuming Gaussian errors [Mosegaard and Tarantola (1995), Mosegaard and
Tarantola (2002), Sambridge and Mosegaard (2002)]. For example, Dçbski (2010)
compares the damped least-squares method (LSQR), a genetic algorithm and the
Metropolis-Hastings (MH) algorithm in a low-dimensional linear tomography
problem involving copper mining data. He finds that the MCMC sampling tech
nique provides more robust estimates of velocity parameters compared to the other

approaches. Bodin and Sambridge (2009) capture the uncertainty of the velocity
parameters in a linear model by selecting the representation grid of the corre
sponding field, using a reversible jump MCMC (RJMCMC) approach. In Bodin
et al. (2012a, 2012b) again RJMCMC algorithms are developed to solve certain
transdimensional nonlinear tomography problems with Gaussian errors, assum
ing unknown variances. Khan, Zunino and Deschamps (2011) and Mosca et al.
(2012) study seismic and thermo-chemical structures of the lower mantle and solve

a corresponding low-dimensional nonlinear problem using a standard MCMC al
gorithm.

For exploring high-dimensional parameter space the MCMC sampling faces
difficulties in evaluating the expensive nonlinear physical model while efficiently
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A ΒAYESIAN LINEAR MODEL FOR SEISMIC TOMOGRAPHY 1113

traversing the high-dimensional parameter space. We approach linearized tomo
graphic problems (physical forward model inexpensive to solve) in a Bayesian
framework, for a fully dimensioned, continental-scale study that features «53,000

data points and «11,000 parameters. To our knowledge, this is by far the highest

dimensional application of Monte Carlo sampling to a seismic tomographic prob
lem so far. Assuming Gaussian distributions for the error and the prior, our MCMC

sampling scheme allows for characterization of the posterior distribution of the

parameters by incorporating flexible spatial priors using Gaussian Markov ran
dom field (GMRF). Spatial priors using GMRF arise in spatial statistics [Congdon

(2003), Pettitt, Weir and Hart (2002), Rue and Held (2005)], where they are mainly

used to model spatial correlation. In our geophysical context we apply a spatial
prior to the parameters rather than to the error structure, since the parameters rep

resent velocity anomalies in three-dimensional space. Thanks to the sparsity of
the linearized physical forward matrix as well as the spatial prior sampling from

the posterior density, a high-dimensional multivariate Gaussian can be achieved
by a Cholesky decomposition technique from Wilkinson and Yeung (2002) or Rue

and Held (2005). Their technique is improved by using a different permutation
algorithm. To demonstrate the method, we estimate a three-dimensional model of
mantle structure, that is, variations in seismic wave velocities, beneath the Unites

States down to 800 km depth.

Our approach is also applicable to other kinds of travel time tomography, such

as cross-borehole tomography or mining-induced seismic tomography [Dçbski
(2010)]. Other types of tomography, such as X-ray tomography in medical imag

ing, can also be recast as a linear matrix problem of large size with a very sparse

forward matrix. However, the response is measured on pixel areas and, thus,
the error structure is governed by a spatial Markov random field, while the re
gression parameters are modeled nonspatially using, for example, Laplace priors
[Kolehmainen et al. (2007), Mohammad-Djafari (2012)]. Some other inverse prob
lems such as image deconvolution and computed tomography [Bardsley (2012)],
electromagnetic source problems deriving from electric and magnetic encephalog

raphy, cardiography [Hâmâlainen and Ilmoniemi (1994), Kaipio and Somersalo
(2007), Uutela, Hââmàlainen and Somersalo (1999)] or convection-diffusion con
tamination transport problems [Flath et al. (2011)] can also be written as linear
models. However, the physical forward matrix of those problems is dense in con

trast to the situation we consider. For solutions to these problems, matrix-inversion

or low-rank approximation to the posterior covariance matrix, as introduced in

Flath et al. (2011), are applied to high-dimensional linear problems. In image re
construction problems Bardsley (2012) demonstrates Gibbs sampling on (ID and
2D-) images using an intrinsic GMRF prior with the preconditioned conjugate gra

dient method in cases where efficient diagonalization or Cholesky decomposition

of the posterior covariance matrix is not available. In other tomography problems,

such as electrical capacitance tomography, electrical impedance tomography or
optical absorbtion and scattering tomography, the physical forward model cannot
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1114 R. ZHANG, C. CZADO AND K. SIGLOCH

be linearized, so that the Bayesian treatment of those problems is limited to low

dimensions [Kaipio and Somersalo (2007), Watzenig and Fox (2009)].
The remainder of this paper is organized as follows: Section 2 describes the geo

physical forward model and the seismic travel time data. Section 3 discusses flexi

ble specifications for the spatial prior of the three-dimensional velocity model and

the Metropolis-Gibbs sampling algorithm for estimating its posterior distribution.

Method performance under various model assumptions is examined in simulation

studies in Section 4. Section 5 applies the method to real travel time data, which

have previously been used in conventional tomography [Sigloch (2011), Sigloch,
McQuarrie and Nolet (2008)], allowing for comparison. Section 6 discusses the
advantages, limitations and possible extensions of our model.

2. Geophysical models and the data. Here we explain the physics and the
data that enter seismic tomography and how they are formulated into a linear in

verse problem, which will be treated by our Markov chain Monte Carlo method in

subsequent sections.

2.1. The linear inverse problem of seismic tomography. Every larger earth
quake generates seismic waves of sufficient strength to be recorded by seismic
stations around the globe. Such seismograms are time series at discrete surface
locations, that is, spatially sparse point samples of a continuous wavefield that ex

ists everywhere inside the earth and at its surface. Figure 1 illustrates the spatial

distribution of sources (large earthquakes, blue) and receivers (seismic broadband

Fig. 1. Distribution of the seismic wave sources (large earthquakes, blue) and receivers (seismic
broadband stations, red) that generated our data. This is a regional tomography study that includes
only data recorded in North America. In the mantle under this region, down to a few hundreds of
kilometers depth, paths of incoming waves cross densely and from many directions, yielding good
resolution for a three-dimensional imaging study.
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A BAYES1AN LINEAR MODEL FOR SEISMIC TOMOGRAPHY 1115

stations, red) that generated our data. Each datum y; measures the difference be
tween an observed arrival time y°bs of a seismic wave i and its predicted arrival

time y pred :

obs pred
yi = yf ~ v; .

y(pred is evaluated using the spherically symmetric reference model IASP91 by
Kennett and Engdahl (1991). For the teleseismic Ρ waves used in our application,

this difference y,· would typically be on the order of one second, whereas y°bs and

ypred are on the order 600-1000 seconds, y, can be explained by slightly decreas

ing the modeled velocity in certain sub-volumes of the mantle.

We adopt the parametrization and a subset of the data measured by Sigloch, Mc

Quarrie and Nolet (2008). The earth is meshed as a sphere of irregular tetrahedra
with 92,175 mesh nodes. At each mesh mode, the parameters of interest are the

relative velocity variation of the mantle with respect to the reference velocity of

spherically-symmetric model IASP91 [Kennett and Engdahl (1991)]. The param
eter vector is denoted as β := (β(τ),τ e M Earth) G M92'175, where the set of mesh

node A/Earth fills the entire interior of the earth. Since both travel time deviations

y, and the β (r) are small, the wave equation may be linearized around the layered
reference model:

(1) yi=fff x,(r)/3(r)d3r,
J J J Earth

where x,· (r) e R represents the Fréchet sensitivity kernel of the i th wavepath, that

is, the partial derivatives of the chosen misfit measure or data y,· with respect to

the parameters β(τ). After numerical integration of kernel x, (r) onto the mesh,
(1) takes the form

(2) yi = Σ χι(Γ)β(Γ) = χίβ.
r eMEarth

Geometrically speaking, row vector x· maps out the mantle subvolume that would
influence the travel time y,· if some velocity anomaly β (r) were located within it.

This sensitivity region between an earthquake and a station essentially has ray
like character (Figure 2), though in physically more sophisticated approximations,

the ray widens into a banana shape [Dahlen, Hung and Nolet (2000)]. Over the
past decade, intense research effort has gone into the computability of sensitivity
kernels under more and more realistic approximations [Dahlen, Hung and Nolet
(2000), Nolet (2008), Tian et al. (2007), Tromp, Tape and Liu (2005)]. Since this
issue is only tangential to our focus, we chose to keep the sensitivity calculations

as simple as possible by modeling them as rays (the x- are computed only once
and stored). We note that the dependence of x, on β can be neglected, as is com
mon practice. This is justified by two facts: (i) velocity anomalies β deviate from

those of the (spherically symmetric) reference model by only a few percent, since
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1116 R. ZHANG, C. CZADO AND K. SIGLOCH
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Fig. 2. Physical setup and forward modeling of the seismic tomography problem. Left:
parametrization of the spherical earth. Grid nodes are shown as blue dots. The goal is to esti
mate seismic velocity deviations β at ~9000 grid nodes under North America, inside the subvol
ume marked by the red ellipse. Red stars mark a few of the earthquake sources shown in Figure 1.
The densified point clouds, between the sources and a few stations in North America, map out the
sensitivity kernels of the selected wave paths. Each sensitivity kernel fills one row of matrix X. Left:
schematic illustration of the components of an individual wave path.

the very mobile mantle does not support larger disequilibria, and (ii), even though

the ray path in the true earth differs (slightly) from that in the reference model,

this variation affects the travel time observable only to second order, according

to Fermat's principle [and analogous arguments for true finite-frequency sensitiv

ities, Dahlen, Hung and Nolet (2000), Mercerat and Nolet (2013), Nolet (2008)].
Whatever the exact modeling is, it is very sparse, since every ray or banana vis
its only a small subvolume of the entire mantle—this sparsity is important for the

computational efficiency of the MCMC sampling.

Gathering all Ν observations, (2) can be rewritten as y = Χβ, where sparse ma

trix X e RNxd contains in its rows the Ν sensitivity kernels. The left panel of Fig

ure 2 illustrates the sensitivity kernels between one station and several earthquakes

(i.e., several matrix rows). In practice, the problem never attains full rank, so that

regularization must be added to remove the remaining nonuniqueness. The linear

system y = Χβ is usually solved by some sparse matrix solver—a popular choice
is the Sparse Equations and Least Squares (LSQR) algorithm by Paige and Saun
ders (1982), which minimizes \\Χβ — y||2 + λ2\\β\\2, where λ is a regularization

parameter that removes the underdeterminacy in X [Dçbski (2010), Montelli et al.

(2004), Sigloch, McQuarrie and Nolet (2008), Tian, Sigloch and Nolet (2009)].
In summary, we have formulated the seismic tomography problem as it is over

whelmingly practiced by the geophysical community today. We use travel time
differences y,· as the misfit criterion, that is, as input data to the inverse problem,

and seek to estimate the three-dimensional distribution of seismic velocity devia

tions β that have caused these travel time anomalies. The sensitivity kernels x- are
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A ΒAYESIAN LINEAR MODEL FOR SEISMIC TOMOGRAPHY 1117

modeled using ray theory, a high-frequency approximation to the full wave equa

tion. In the conventional optimization approach, a regularization term is added,
and the inverse problem is solved by minimizing the L2 norm misfit.

2.2. Setup of our example problem. Since all 92,175 velocity deviation pa
rameters of the entire earth are currently not manageable for MCMC sampling,

we regard as free parameters only 8977 of those parameters which are located be

neath the western U.S., that is, between latitudes 20°N to 60°N, longitudes 90°W

to 130°W, and 0-800 km depth. Tetrahedra nodes are spaced by 60-150 km. We
denote this subset of velocity parameters as /?usa.

Besides velocity parameters, we also consider the uncertainty in the location
and the origin time of each earthquake source, which contribute to the travel time

measurement. Government and research institutions routinely publish location es

timates for every larger earthquake, but any event may easily be mistimed by a

few seconds, and mislocated by ten or more kilometers (corresponding to a travel

duration of 1 s or more). This is a problem, since the structural heterogeneities

themselves only generate travel time delays on the order of a few seconds. Hence,

the exact locations and timings of the earthquakes—or rather: their deviations from

the published catalogue values—need to be treated as additional free parameters,

to be estimated jointly with the structural parameters. These so-called "source cor

rections" are captured by three-dimensional shift corrections of the hypocenter

(/3hyp) and time corrections (/2tmie) per earthquake.
Using the LSQR method, Sigloch, McQuarrie and Nolet (2008) jointly estimate

all 92,175 parameters together with these "source corrections." Using those LSQR

solutions, we have two modeling alternatives for the earth structural inversion with

Ν travel delay time observations y e MfV :

(3) Model 1: yusa = XUsa0USa +

where XUsa € R'Vx8977 denotes the ensemble of sensitivity kernels of the western

USA. AGvOu Σ) denotes the ,/V-dimensional multivariate normal distribution with

mean μ and covariance Σ, and the A-dimensional unity matrix is denoted by In
In model 1, we only estimate the velocity parameters /9usa and keep the part of

the travel delay time for the corrections parameters (path AB in right panel of

Figure 2) fixed at the LSQR solutions of j9hyp and βύτηε estimated by Sigloch,
McQuarrie and Nolet (2008). The extended model with joint estimation of source

corrections is given by

Model 2: yCr — Xusa^usa "F ^hyp^hyp -^time^time Τ ε,
(4)

ε ~ Μ ν ^0, — Ιν^·
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1118 R. ZHANG, C. CZADO AND K. SIGLOCH

Here we apply the travel delay time ycr assuming that the part of the travel time

running through path AC is given. This given part of the travel times is again based

on the LSQR solution estimated by Sigloch, McQuarrie and Nolet (2008).
The number of travel time data from source-receiver pairs is Ν = 53,270, col

lected from 760 stations and 529 events. The number of hypocenter correction
parameters is 1587 (529 earthquakes χ 3) and there are 529 time correction param

eters. Sigloch (2008) found that in the uppermost mantle, between 0 km to 100 km

depth, the velocity can deviate by more than ±5% from the spherically symmetric

reference model. As depth increases, the mantle becomes more homogeneous and

the velocity deviates less from the reference model.

3. Estimation method.

3.1. Modeling the spatial structure of the velocity parameters. In both mod
els (3) and (4) we have the spatial parameter /3usa, which we denote generically
as β in this section. In the Bayesian approach we need a proper prior distribu
tion for this high-dimensional parameter vector β. To account for their spatially

correlated structure, we apply the conditional autoregressive model (CAR) and
assume a Markov random field structure for β. This assumption says that the con

ditional distribution of the local characteristics βι, given all other parameters fj,

j φ i, only depends on the neighbors, that is, Ρ (β, | /}_,·) = Ρ (β,· | /9V, j ~ i),
where /?_,· \=(β\,, βί-\, βί+\,..., βάΥ and "~j" denotes the set of neighbors
of site i. The CAR model and its application have been investigated in many stud
ies, such as Pettitt, Weir and Hart (2002) or Rue and Held (2005). Since the earth

is heterogeneous and layered, lateral correlation length scales are larger than over
depths, and so we propose an ellipsoidal neighborhood structure for the velocity

parameters. Let (xj,yj,ZjY G M3 be the positions of the z'th and the / th nodes in
Cartesian coordinates. The y th node is a neighbor of node i if the ellipsoid equa

tion is satisfied, that is, (Xi D*J )2 + ( y'D >J )2 + (-'~Lf^-)2 < 1. To add a rotation of the

ellipsoid to an arbitrary direction in the space, we could simply modify the vector

(xi — xj, yi — yj,n — ζj)' to R(xi — xj, y,· — yj, z.> — ZjY with a rotation matrix
R — RxRyRz for given rotation matrices in the x, y and ζ directions, respectively.

The spherical neighborhood structure is a special case of the ellipsoidal structure

with Dx = Dy — Dz. Let D be the maximum distance of Dx, Dy and Dz. For
weighting the neighbors we adopt either the exponential we(·) or reciprocal weight
functions wr(·), that is,

ί 3 dn 1 D
(5) we(dij) :=exp|--^-j and wr(dij) - 1,
where dij is the Euclidean distance between node i and node j. The exponential
weight function is bounded while the reciprocal weight function is unbounded.
Those weighting functions have been studied by Pettitt, Weir and Hart (2002) or
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Fig. 3. Left: exponential and reciprocal weight functions for the spatial prior, for D = 150 km and
D = 300 km. Right: the trade-off relationship between numbers of neighbors and the prior variance

diag(β-1 (V0), Ψ = 10, I) = 150 km, w = reciprocal weights.

Congdon (2003). The left panel of Figure 3 illustrates the weight functions for
D = 300 km.

Let a>(dij) be either we(·) or wr(·) in (5). To model the spatial structure of /?usa
in (3) and (4), a CAR model is used. Following Pettitt, Weir and Hart (2002), let

0usa ^Ô^'W) With precision matrix

(6) QnW):= 1 + \Ψ\ Σ ω&φ, i=j,
i :j~i

-ifœ(dij), i φ j, i ~ j for ψ e
They showed that Q is symmetric and positive definite, and that conditional cor

relations can be explicitly determined. For φ -> 0, the precision matrix Q con
verges to the identity matrix, that is, φ = 0 corresponds to independent elements

of β. The precision matrix in (6) for both elliptical and spherical cases indicates
anisotropic covariance structure and depends on the distance between nodes, the

number of neighbors of each node and the weighting functions. The elliptical pre

cision matrix additionally depends on the orientation. The right panel of Figure 3

shows the trade-off between numbers of neighbors and prior variance, which in

dicates that the more neighbors the ith node has, the smaller is its prior variance

(Q1 (ψ))ιι· Posterior distribution of velocity parameters from regions with less
neighborhood information can be rough, since they are not highly regularized due

to the large prior covariances. This may produce sharp edges in the tomographic

image. However, this is a more realistic modeling method since one is more sure

about the optimization solution if a velocity parameter has more neighbors. More

over, this prior specification is adapted to the construction of the tetrahedral mesh:

regions with many nodes have better ray coverage than regions with less nodes. In
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1120 R. ZHANG, C. CZADO AND K. SIGLOCH

summary, the prior incorporates diverse spatial knowledge about the velocity pa
rameters. Since a precision matrix is defined, which is sparse and positive definite,

it provides a computational advantage in sampling from a high-dimensional Gaus
sian distribution as required in our algorithm (shown in the following sections).

3.2. A Gibbs-Metropolis sampler for parameter estimation in high dimensions.

To quantify uncertainty, we adopt a Bayesian approach. Posterior inference for
the model parameters is facilitated by a Metropolis within Gibbs sampler [Brooks
et al. (2011)]]. Recall the linear model in (4),

Υ = Χβ + ε, ε~λίΝ(θ Ι/*V Φ

where β := Q3usa, 0hyp, /9time)' and X := (Xusa, Xhyp, Xtime)· We now specify the
prior distribution of β as

β ~ Md(fio, Σβ) With β0 := (/?0,usa, /30,hyp, 00,time)'·

The prior covariance matrix Σβ is chosen as

/ — Q~\ir) 0 0 X
lusa

1(7) Σβ ·.= 0 0
0 0

Since we are interested in modeling positive spatial dependence, we impose that
the spatial dependence parameter ψ is the truncated normal distribution a priori,

that is, ψ ~ Λί(μφ, σψ)1(ψ· > 0). The priors for the precision scale parameters
lusa. hhyp, Itime and φ are specified in terms of a Gamma distribution Γ (a, b)

with density g(x; a, b) = γ^Γ)*Ω_Ι exp{—bx), χ > 0. The corresponding first two
moments are | and respectively.

The MCMC procedure is derived as follows: the full conditionals of β are

β\γ,ψ, η~Λίά(Ωβ1ξβ, Ωβ1),
(8)

with Ώβ := Σ β + φΧ'Χ, ξ β := Σ β ' jSq + fX'y

and η := (rçusa, ?/hyp, /?time)· For rçusa, r/|iyp, t?ume and φ, the full conditionals are
again Gamma distributed. The estimation of φ requires a Metropolis-Hastings
(MH) step. The logarithm of the full conditional of ψ is proportional to

log 7r(i/r \y, β,η) <x^~ log\Q(x//)\

- η-γ(βusa - ^0,usa)/Ô(^)(j8usa ~ 00,usa)

_ (Φ - μψ)2

Η
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A ΒAYESIAN LINEAR MODEL FOR SEISMIC TOMOGRAPHY 1121

For the MH step, we choose a truncated normal random walk proposal for φ to

obtain a new sample, that is, λί(φοΧά, σ^)1(ι\jr > 0). We use a Cholesky decompo
sition with permutation to obtain a sample of β in (8) (Section 3.4). The method
by Pettitt, Weir and Hart (2002), solving a sparse matrix equation, is not useful.

Here, computing the determinant of the Cholesky factor of ζ)(φ) is much more
efficient than calculating its eigenvalues, due to the size and sparseness of ζ)(φ).

3.3. Relationship to ridge regression. To show the relationship between our
approach and ridge regression (also called Tikhonov regularization), we consider
only model 1. For simplicity we neglect the notation "usa" in (3). The analysis is

also applicable to model 2.

Let /?ndge(À) := (X'X + XId)~xX'y be the corresponding ordinary ridge re
gression (ORR) estimate with shrinkage parameter λ [Dçbski (2010), Hoerl and
Kennard (1970), Swindel (1976)]. For given hyperparameters η, φ and φ, the full

conditional of β is β \ η, φ, φ ~ Ω^1) with Ωβ := ηζ)(φ) + φΧ'Χ
and ξ β := ηζ)(φ)β 0 + φΧ' y. The corresponding full conditional mean can there
fore be expressed as

Ε[β I y, φ, η] = (x'X + ^βw) (x'y + ^<2(Ψ)βο

This is close to the modified ridge regression estimator /9ndge(k, β0) := (X'X +
kld)~x (X'y + λβ0) defined in Swindel (1976). We can see that if φ -»■ 0, then

φ(2(Φ) ψ· which is the equivalent to λ in the modified ridge regression. This
shows that the prior precision matrix ηζ)(φ) is a regularization matrix with pa
rameter φ controlling the prior covariance. As discussed in Section 3.1, the prior

covariance βζ)~ι(φ) also varies with the specified weights in (5) with maximum
distance D and with number of neighboring nodes. For large φ or large weights
function values, as well as large number of neighbors, the prior variances are small,

which well reflects the prior knowledge about the data coverage and parameter un

certainty. Thus, the full conditional mean is close to the prior mean in this case.

3.4. Computational issues. Since the size of the travel time data requires high

dimensional parameters to be estimated, the traditional method of sampling the pa

rameter vector β fromΛΓά(ΩβΧξβ, Ω^1) directly, as defined in (8), is not efficient
with respect to computing time. We instead use a Cholesky decomposition of Ωβ.

Since the sensitivity kernel X is sparse, and the prior covariance matrix is sparse

and positive definite, the matrix Ωβ remains sparse and symmetric positive defi
nite. Therefore, we can reduce the cost of the Cholesky decompositions. For this

we apply an approximate minimum degree ordering algorithm (AMD algorithm)

to find a permutation Ρ of Ωβ so that the number of nonzeros in its Cholesky
factor is reduced [Amestoy, Davis and Duff (1996)]. In our case, the number of
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1122 R. ZHANG, C. CZADO AND K. SIGLOCH

nonzeros of the full conditional precision matrix Ωβ in (8) is about 5% of all ele
ments. After this permutation the nonzeros of the Cholesky factor are reduced by
50% compared to the original number of nonzeros.

To sample a multivariate normal distributed vector after permutation, we follow

Rue and Held (2005). Given the permutation matrix Ρ of Ω^, we sample a vector
v:= Ρ β, where ν = (L'p) 1 ((Lp ι)Ρξβ + Ζ) with Lp a lower triangular matrix
resulting from the Cholesky decomposition of ΡΏβ, and Ζ a standard normal dis
tributed vector, that is, Ζ ~A^(0, Id). The original parameter vector of interest β

can be obtained after permuting vector ν again. Rue and Held (2005) suggested
finding a permutation such that the matrix is banded. However, we found that
in our case the AMD algorithm is more efficient with regard to computing time.

Using MATLAB built-in functions, the Cholesky decomposition with an approxi
mate minimum degree ordering takes 8 seconds on a Linux-Cluster 8-way Opteron
with 32 cores, while the Cholesky decomposition based on a banded matrix takes

15 seconds. The traditional method without permutation requires 118.5 seconds.

4. Simulation study.

4.1. Simulation setups. In this section we examine the performance of our
approach for model 1. We want to investigate whether the method works correctly
under the correct model assumptions and how much influence the prior has on the

posterior estimation. We consider five different prior neighborhood structures of
β usa

(0) Independent model of j8usa, φ = 0 fixed, that is, 0usa ~A/rfusa(j80,
( 1 ) Spherical neighborhood structure with reciprocal weight function,
(2) Ellipsoidal neighborhood structure with reciprocal weight function,
(3) Spherical neighborhood structure with exponential weight function,
(4) Ellipsoidal neighborhood structure with exponential weight function.

Note that the independent model of /3usa corresponds to the Bayesian ridge
estimator as described in Section 3.3. For the weight functions in (5), we set
Dx = Dy = 300 km and Dz = 150 km for modeling ellipsoidal neighborhood
structures, and D = 150 km for the spherical neighborhood distance.

Setup I: Assume the solution by Sigloch, McQuarrie and Nolet (2008), denoted
λ τ CQD

as β usa , represents true mantle structure beneath North America. We use the
Λ τ S OR

forward model Χ β Usa to compute noise-free, synthetic data. Then, we generate

two types of noisy data, that is, Y = Xj8uSSa^R + ε with:

(A) Gaussian noise (e ~ Λ//ν(0, ^In), Φίτ = 0.4),
(Β) ί-noise (e ~ tp(0, In, %)> % = 3, corresponds to </>tr = 0.333).

Although we add /-noise to our synthetic earth model βη^Κ, our posterior
calculation is based on Gaussian errors. Additionally, we compare two priors for
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A ΒAYESIAN LINEAR MODEL FOR SEISMIC TOMOGRAPHY 1123

β usa ~ A/rfusa(/3o' ^ Ql (VO)t0 examine the sensitivity of the posterior estimates
to the prior choices:

(a) β0 ~A/^sa05usSaQR, 0.322Id),
(b) β0 = 0 (spherically symmetric reference model).

The priors for the hyperparameters are set as follows: ψ ~ Af(10,0.22), φ ~
Γ (1,0.1) resulting in expectation and standard deviation of 10, ??usa ~ Γ ( 10,2)
resulting in expectation of 5 and standard deviation of 1.6.

Setup II: In this case we examine the performance under known prior neigh
borhood structures. We construct a synthetic true mantle model with two types of

known prior neighborhood structures: )3usatr ~ Λ0usa (/Jusa^R, 1 (Vhr)) with

1usa.tr = 0.18 and Vtr = 10 using:

(a) a spherical neighborhood structure for 0usa with reciprocal weights,

(b) an ellipsoidal neighborhood structure for jSusa tr with reciprocal weights.

~ Τ S QR

Again, Gaussian noise is added to the forward model, that is, Y = Χ β usa + ε,

ε ~ tV/v(0, ^-//v), 0tr = 0.4. Posterior estimation is carried out assuming the five
different prior structures.

The number of MCMC iterations for scenarios in setups I and II is 3000, thin
ning is 15, and burn-in after thinning is 100. For convergence diagnostics we com

pute the trace, autocorrelation and estimated density plots as well as the effec
tive sample size (ESS) using coda package in R for those samples. According

to Brooks et al. (2011), the ESS is defined by ESS := 1+2^x> pk, with the orig
inal sample size η and autocorrelation pk < 0.05 at lag k. The infinite sum can
be truncated at lag k when pk becomes smaller than 0.05 [Kass et al. (1998), Liu
(2008)].

4.2. Performance evaluation measures. To evaluate the results, we use the
standardized Euclidean norm for both data and model misfits, ]] · || £y and || · || γ,β,

respectively. The function ||χ||ς of a vector χ of mean μ and covariance Σ is

called the Mahalanobis distance, defined by ||χ||χ; := J (χ — μ)'Σ~ι(χ — μ). To
include model complexity, we calculate the deviance information criterion (DIC)

[Spiegelhalter et al. (2002)]. Let θ denote the parameter vector to be estimated.
Furthermore, the likelihood of the model is denoted by l(y | Θ), where θ is the

estimated posterior mean of θ, estimated by ^ Σ?=ι @r with R number of inde
pendent MCMC samples. According to Spiegelhalter et al. (2002) and Celeux et al.
(2006), the deviance is defined as D(0) — —21og(f(y | θ)) + 2 log h(y). The term
h(y) is a standardizing term which is a function of the data alone and does not
need to be known. Thus, for model comparison we take ΰ(θ) = —21og(f(y | Θ)).
The effective number of parameters in the model, denoted by po, is defined by
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1124 R. ZHANG, C. CZADO AND K. SIGLOCH

Pd := Eq[D(6)] — D(ê). The term Efj[D(6)] is the posterior mean deviance and

is estimated by -p J2r=ι D{6r). This term can be regarded as a Bayesian measure

of fit. In summary, the DIC is defined as DIC = Ερ[ΰ{θ)] + po = D(0) + 2po
The model with the smallest DIC is the preferred model under the trade-off of
model fit and model complexity.

4.3. Results and interpretations. The first two blocks in Table 1 illustrate pos

terior estimation results for setup I. It shows that the estimation method with el

lipsoidal prior structures (2) and (4) turn out to be the most adequate, according to

the DIC criterion. The standardized data misfit criteria || · ||ςυ given the estimated

posterior mode β show similar results in all scenarios. However, this measure ig

nores the uncertainty of /?usa. The criteria ||y — Χβι\\τ,γ and ||y — Χβυ||sv show
the data misfit given the 90% credible interval with lower and upper quantile pos

terior estimates β L and βυ, respectively. These estimates give a range of the data

misfit for all possible posterior solutions of /?usa and show that methods with in

dependent prior generally yield larger ranges of misfit values than the ones with

spatial structures. This indicates that the credible intervals of methods with spa

tial priors can fit the data better. Further, methods with spatial priors in setup 1(b)

show smaller model misfit under || · than ones with independent prior, while in

setup 1(a) results with independent priors are better. Generally, estimated posterior

modes of rçusa vary considerably due to the different prior assumptions. Models

with ellipsoidal neighborhood structures have a stronger prior (in the sense of a

smaller prior variance) than models with spherical neighborhood structure. Sim

ilarly, models with reciprocal weights have a stronger regularization toward the

prior mean than models with exponential weights. This means that the posterior
estimates of rçusa adapt to different prior settings. Moreover, we notice that the es

timate of the spatial dependence parameter ψ depends strongly on its prior, as the

prior mean is close to the posterior estimates of \js in all scenarios. The last two

blocks in Table 1 illustrate results from setup II assuming known spatial structure

including hyperparameters. The DIC values indicate that our approach correctly
detects the underlying prior structures [in (a) it is prior structure (1), in (b) it is

prior structure (2)]. We can also observe that our approach estimates the hyperpa

rameters correctly. Estimated posterior modes of the parameters from the identified
model are close to their true values.

Generally, tomographic images illustrate velocity parameters as deviation of the

solution from the spherically symmetric reference model (in %). Blue colors repre
sent zones that have faster seismic velocities than the reference earth model, while

red colors denote slower velocities. Physically, blue colors usually imply that those

regions are colder than the default expectation for the corresponding mantle depth,

while red regions are hotter than expected. In our simulation study, we assumed

the true earth to be represented by the solution of Sigloch, McQuarrie and Nolet

(2008), shown in the left column of Figure 4. The middle and right columns of
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A BAYESIAN LINEAR MODEL FOR SEISMIC TOMOGRAPHY 1125

Table 1

Posterior estimation results of the simulation study under setups I and II, using synthetic earth models. The posterior mode of the velocity parameters is

denoted as β. The quantities β L and β // are lower and upper quantiles of the 90% credible interval of the MCMC estimates, respectively
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True Earth Model
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Fig. 4. Mantle models resulting from the simulation study. Left column shows the "true" model,
used to generate the synthetic data. The unit on the color bar is velocity deviation β in % from
the spherically symmetric reference model. All other columns show the posterior mode of velocity
deviation β, estimated using ellipsoidal prior structure with reciprocal weights. Middle columns
show results for setup 1(a), which uses the prior mean β φ 0. Right columns show results for setup 1(b)

assuming prior mean /?q = 0.

Figure 4 illustrate the estimated posterior modes /?usa from setup I with ellipsoidal
neighborhood structure and reciprocal weight for both Gaussian and t-noises, re
spectively. They show that the parameter estimates from Gaussian noises are close
to the true solution, while the solution from the t-noises tends to overestimate the

parameters. The magnitude of mantle anomalies is overestimated but major struc
tures are correctly recovered. The same effect can be seen in the last column of

Figure 4 which displays the estimated posterior modes of the tomographic solu
tions in setup 1(b). We have overestimation since the noise is not adequate to the
Gaussian model assumption. Moreover, we also observe that tomographic solu
tions with the prior mean /?0 φ 0 are smoother than the ones with the prior mean

00 = 0.
Figure 5 shows estimated credible intervals for the solutions of Figure 4.

Credible intervals for solutions with t-noises are larger than those for the Gaus

sian noises, as indicated by the darker shades of blue/red colors, which denote
higher/lower quantile estimates. This implies that parameter uncertainty is greater

if noise does not fit the model assumption. The same effect can be seen for results

with the prior mean β0 = 0. The bottom row of Figure 5 maps out how the re
gions differ from the reference model with 90% posterior probability. For model
conform Gaussian distributed noises and informative prior mean, more regions
differ from the reference model with 90% posterior probability than if we added
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Fig. 5. Continuation of Figure 4. The maps show velocity deviation in %from the reference Earth

model. Left half shows the results under setup 1(a), which uses the prior mean φ 0; right half
describes setup 1(b), which uses prior mean β ο = 0. First and second rows map out the lower and
upper quantités of the 90% confidence interval. Third row shows the posterior mode of velocity
structure β, but rendered only in regions that differ significantly from the reference model, according

to the 90% confidence interval.

f-noise or used the less informative prior. In the case of an informative prior and/or

correctly modeled noise, we achieve more certainty about the velocity deviations
from the reference earth model.

5. Application to real seismic travel time data. In this section we apply our
MCMC approach to actually measured travel time data.

The measurements are a subset of those generated by Sigloch, McQuarrie and
Nolet (2008). We use the same wave paths, but only measurements made on
the broadband waveforms, whereas they further bandpassed the data for finite
frequency measurements and also included amplitude data [Sigloch and Nolet
(2006)]. Most stations are located in the western U.S., as part of the largest-ever
seismological experiment (USArray), which is still in the process of rolling across

the continent from west to east. Numerous tomographic studies have incorporated
USArray data—the ones most similar to ours are Burdick et al. (2008), Sigloch,
McQuarrie and Nolet (2008), Tian, Sigloch and Nolet (2009), and Schmandt

This content downloaded from 
������������134.59.147.188 on Tue, 30 Aug 2022 16:16:55 UTC������������� 

All use subject to https://about.jstor.org/terms



A ΒAYESIAN LINEAR MODEL FOR SEISMIC TOMOGRAPHY 1129

and Humphreys (2010). All prior studies obtained their solutions through least
squares minimization, which yields no uncertainty estimates. Here we use 53,270

broadband travel time observations to estimate velocity structure under western

North America (over 11,000 parameters), plus source corrections for 529 events
(2116 parameters). We conduct our Bayesian inversion following two different
scenarios:

Model 1: We only invert for earth structural parameters. For the velocity pa

rameters we assume β ~ AC/usa(^ùfPR, as in (3) with φ ~ Λ/"(10,
0.52)1(φ > 0), φ ~ Γ(1,0.1) and Vusa ~ Γ(10, 2).

Model 2: We invert for both earth structural parameters and the source correc

tions. The prior distributions are set to β ~ A0(/> ^R, ~Σβ) as in (4) and Έβ as de
fined in (7). For φ, φ and jjusa, we adopt the same distribution as in model 1. For the

parameters of the source corrections we adopt η^)ν ~ Γ(1,5) and rçtime ~ Γ(10,2).
We use the same five prior structures (0)—(4) as in the simulation study and run

the MCMC algorithm for 10,000 iterations. The high-dimensional β vector can
be sampled efficiently in terms of ESS with low burn-in and thinning rates thanks

to the efficient Gibbs sampling scheme in (8). However, the hyperparameters, for

example, ψ β, are more difficult to sample. To achieve a good mixing, we applied
a burn-in of 200 and a thinning rate of 25 (393 samples for each parameter) in our

analysis. On average, the effective sample size ESS values for /?usa, /Jhyp and j8time
are about 393, 393 and 327, respectively, which indicate very low autocorrelations

for most of the parameters. The ESS of both ijusa and ψ β is about 103, while
both zjhyp and φ have good mixing characteristics with ESS values equal to the
sample size, and rçtime has ESS value equal to 165. Figure 6 shows as examples the

parameters /3usa.955 at node 955, rçusa and φβ. The computing cost of our algorithm
is about 0(n4). Sampling model 1 with about 9000 parameters, our algorithm
needs 12 hours in 10,000 runs on a 32-core cluster, while under the same condition
it needs 38 hours for model 2.

Table 2 shows the results from model 1 (estimation of earth structure) and
model 2 (earth structure plus source corrections). For both models, results from the

independent prior structures, corresponding to the Bayesian ridge estimator, pro

vide the best ht according to the DIC criterion. We also run the model 1 with prior

mean y80 = 0 (the spherically symmetric reference model) and different covariance
structures (0)-(2). The DIC results for priors (0), (1) and (2) are 103,100, 103,700
and 103,370, respectively. Two reasons may explain the selection of prior (0):
(1) the data has generally more correlation structure than the i.i.d. Gaussian as
sumption, which can not be solely explained by the spatial prior structure of the

/J-fields. However, in our simulation study where different prior structures and the

corrected data error are applied (Table 1), the DIC was able to identify the correct

models; (2) Since the data are noisy, fitting could be difficult without a shrinkage

prior. The prior in (0) can be compared to shrinkage in the ridge regression, which

is the limiting case of priors in (1) to (4). Priors in (1) to (4) do not shrink the
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Fig. 6. Convergence diagnostics: trace plot, autocorrelation and kernel density estimation of the

parameters jSusa at node 955, and ψ β. For 10,000 MCMC iterations the samples shown in plots
are based on a burn-in of200 and a thinning rate of 25.

solutions of β-fields as much as prior (0). They better reflect the uncertainty since

the prior covariances in ( 1 )—(4) are larger than variances in prior (0) in regions that

have no data (no neighboring nodes), and smaller in regions with lots of data (lots

of neighboring nodes).

Furthermore, the standardized data misfit criteria || · || do not show much dif

ference between models with different prior specifications. According to the es

timated 90% credible interval, estimates using spherical prior structure show a
smaller range of data misfit in model 1, whereas in model 2, the independence
prior shows a better result. Since our method assumes i.i.d. Gaussian errors, the
resulting residuals might not be optimally fitted as expected. With regard to com

putational time, the independent prior model has a definite advantage over other

priors in both models 1 and 2. The general advantage of our Bayesian method is
that the independent model yields an estimate given as the ratio between the vari

ance of the data and the variance of the priors corresponding to ridge estimates

with automatically chosen shrinkage described in Section 3.3, whereas in Aster,
Borchers and Thurber (2005), Sigloch, McQuarrie and Nolet (2008), Bodin et al.
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Table 2

Posterior estimation results for the inversion using real data, under models 1 and 2 specifications

Model 1

Prior Mode Mode Mode

struct By-Will, By-WtBi, By-Wt/llx, DIC 0 >/usa 0

(0) 228.46 490.92 490.46 102,928 0.40 1.40 .

(1) 229.14 389.73 390.21 104,096 0.39 0.20 9.63

(2) 228.72 464.73 465.67 103,466 0.40 0.01 9.98

(3) 228.90 430.78 431.34 103,749 0.39 0.17 9.63

(4) 228.74 471.50 472.37 103,408 0.40 0.01 9.98

Model 2

Prior Mode Mode Mode Mode Mode

struct By-Wis, By -Wtlls, By -Wt/llz, DIC 0 i/usa 0 '/hyp Itime

(0) 225.40 483.96 488.35 93,788 0.49 1.15 - 0.01 5.01

(1) 225.76 515.29 524.61 94,993 0.48 0.10 9.63 0.01 4.53

(2) 225.48 498.96 501.45 94,374 0.48 0.00 9.55 0.01 4.70

(3) 225.61 503.20 512.01 94,669 0.48 0.11 9.63 0.01 4.53

(4) 225.44 496.69 498.97 94,312 0.49 0.01 10.00 0.01 4.70

Model 1

Prior Mode Mode Mode

struct «7-Χ0ΙΙς, Wy-xpLhy Ij-xfiuh, DIC Φ */usa Ψ

(0) 228.46 490.92 490.46 102,928 0.40 1.40 .

(1) 229.14 389.73 390.21 104,096 0.39 0.20 9.63

(2) 228.72 464.73 465.67 103,466 0.40 0.01 9.98

(3) 228.90 430.78 431.34 103,749 0.39 0.17 9.63

(4) 228.74 471.50 472.37 103,408 0.40 0.01 9.98

Model 2

Prior Mode Mode Mode Mode Mode

struct \\y-xp\\xy By -Χβί\\τ, Il y -XPuhy Die Φ Îusa ψ '/hyp •/time

(0) 225.40 483.96 488.35 93,788 0.49 1.15 - 0.01 5.01

(1) 225.76 515.29 524.61 94,993 0.48 0.10 9.63 0.01 4.53

(2) 225.48 498.96 501.45 94,374 0.48 0.00 9.55 0.01 4.70

(3) 225.61 503.20 512.01 94,669 0.48 0.11 9.63 0.01 4.53

(4) 225.44 496.69 498.97 94,312 0.49 0.01 10.00 0.01 4.70

(2012a) and all other prior work, the shrinkage parameter (strength of regulariza

tion) had to be chosen by the user a priori.

Figure 7 shows the estimated posterior and prior densities of parameters in
model 2, at four different locations of varying depth. We see that parameters at

locations with good ray coverage, for example, node 5400 and node 3188, have
smaller credible intervals than parameters at locations with no ray coverage, for
example, node 5564 and node 995 beneath the uninstrumented oceans. Geologi
cally, the regions between node 5400 and node 3188 are well known to represent

the hot upper mantle, where seismic waves travel slower than the reference veloc

ity. This is consistent with our results in Figure 7: the fact that β = 0 does not fall

inside the 90% credible intervals indicates a velocity deviation from the spheri
cally symmetric reference model with high posterior probability. Figure 7 shows

that the posterior is more diffuse than the prior. As mentioned in Section 3.1, the

spatial prior for β depends on distance of neighboring nodes, number of neigh
bors and orientation. The variance can be very small if the number of neighbors

is very large, as shown in Figure 3. Incorporating data, the information about β is

updated and thus may yield more diffuse posteriors than the priors, as we see here.

The left half of Figure 8 shows the estimated posterior modes of mantle structure

obtained by model 2, for independent and for ellipsoidal priors with reciprocal
weights. The right half of Figure 8 extracts only those regions that differ from the
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Node 955 Node 5564

'20 W 105° W

FIG. 7. Results of the Bayesian tomography using real travel time observations. Left: estimated

posterior density of β usa at a few selected model nodes, whose locations and depths are indicated on
the map. Unit on the x-axes is velocity deviation in %. Dashed lines: prior density, the prior variance
can be very small if number of neighbors is large. Solid lines: posterior density with 90% credible
intervals.

Ellipsoidal reclp

FIG. 8. Results of the Bayesian tomography using real travel time data. All maps show estimated
velocity deviation from the reference earth model IASP91 (in %). Left columns', estimated posterior
mode of velocity deviation, for the scenario of model 2. Right columns: same posterior mode, but
rendered are only regions that differ from the reference model with 90% posterior probability.
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reference model according to the 90% credible interval. The ellipsoidal prior re
sults in higher certainty of velocity deviations at a depth of 200 km compared to
the independence prior. At a depth of 400 km, the credible regions resemble each
other more strongly. This confirms geological arguments that deeper regions of

the mantle are more homogeneous and do not differ as much from the spherically
symmetric reference model as shallower regions.

Many lines of geoscientific investigations provide independent confirmation of
the significantly anomalous regions of Figure 8. The red areas map out the hot
upper mantle under the volcanic, extensional Basin and Range province and Yel
lowstone; the blue anomalies map out the western edge of the old and cool North
American craton.

The overall comparison of our solutions to earlier least-squares inversions, for
example, the model by Sigloch (2008) shown in the left column of Figure 4, con

firms that Bayesian inversion successfully retrieves the major features of mantle
structure. The images are similar, but the major advantage and novelty of our ap

proach is that it also quantifies uncertainties in the solution (which we have chosen
to visualize as credible intervals here).

6. Discussion and outlook. Uncertainty quantification in underdetermined,
large inverse problems is important, since a single solution is not sufficient for

making conclusive judgements. Two central difficulties for MCMC methods have
always been the dimensionality of the problem (number of parameters to sample)

or the evaluation of the complex physical forward model (nonlinear problems)
in each MCMC iteration [Bui-Thanh, Ghattas and Ffigdon (2011), Martin et al.
(2012), Tarantola (2004)].

Consider the model Υ = /(β) + ε with the physical forward model /(·), high
dimensional parameter β and error ε. In general, if the physical problem is linear

(/(β) = Χβ) and the full conditional of β is Gaussian, efficient sampling from
the high-dimensional Gaussian conditional distribution is essential for the explo
ration of model space. In this case the error ε need not necessarily be Gaussian,
but may be t or skewed-ί distributed [Friihwirth-Schnatter and Pyne (2010), Sahu,
Dey and Branco (2003)], or a Gaussian error with a spatial correlation such as
considered in Banerjee, Gelfand and Carlin (2003). Given a sparse posterior preci
sion matrix [e.g., (8)], efficient sampling from a multivariate normal can be carried
out by Cholesky decomposition of a permuted precision matrix as discussed in
Wilkinson and Yeung (2002) or Rue and Held (2005), by using an approximate
minimum-degree ordering algorithm. A further improvement to the current sam

pling approach might be to apply the Krylov subspace method from Simpson,
Turner and Pettitt (2008). This would require substantial implementation efforts

and is the subject of further research. If the forward matrix or the prior precision

matrix is not sparse, a dense posterior precision matrix for β will result. In this case

our sampling scheme is inefficient, but the model-space reduction method devel

oped by Flath et al. (2011) might be used instead. They exploit the low-rank struc
ture of the preconditioned Hessian matrix of the data misfit, involving eigenvalue
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1134 R. ZHANG, C. CZADO AND K. SIGLOCH

calculations. However, this approximation quantifies uncertainty of large-scale lin

ear inverse problems only for known hyperparameters, thus ignoring uncertainty in

those parameters. Eigenvalue calculation in each MCMC step can be time consum

ing and prohibitive for hierarchical models with unknown hyperparameters when

the posterior covariance matrix in every MCMC step changes. Here additional re
search is needed.

If the full conditionals cannot be written as Gaussian [this case includes the
cases of a nonlinear /(·)> a non-Gaussian prior of β or non-Gaussian, nonel
liptical distributed errors], using the standard MH algorithm to sample from the

high-dimensional posterior distribution is often computationally infeasible. Con

structing proposal density that provides a good approximation of the stationary

distribution while keeping the high-dimensional forward model /(·) inexpensive
to evaluate has been the focus of the research over the past years: Lieberman, Will

cox and Ghattas (2010) have drawn samples from an approximate posterior den
sity on a reduced parameter space using a projection-based reduced-order model.

In the adaptive rejection sampling technique by Cui, Fox and O'Sullivan (2011),
the exact posterior density is evaluated only if its approximation is accepted. The

stochastic Newton approach proposed by Martin et al. (2012) approximates the
posterior density by local Hessian information, thus resulting in an improvement

of the Langevin MCMC by Stramer and Tweedie ( 1999). Other random-walk-free,

optimization-based MCMC techniques for improving the proposal and reducing
correlation between parameters have been developed, such as Hamiltonian Monte

Carlo (HMC) [Neal (2010)], Adaptive Monte Carlo (AM) [Andrieu and Thorns
(2008), Haario, Saksman and Tamminen (2001)] and several variations, for ex
ample, delay rejection AM (DRAM) [Haario et al. (2006)], differential evolution
MC (DEMC) [Ter Braak (2006)] and differential evolution adaptive Metropolis
(DREAM) [Vrugt et al. (2009)], just to mention a few. However, MCMC sam
pling of high-dimensional problems still requires a massive amount of computing

time and resources. For example, the quasi three-dimensional nonlinear model of

Herbei, McKeague and Speer (2008) contains about 9000 parameters on a 37 χ 19
grid. We expect a long computing time since they use standard MCMC sampling

methods. The example by Cui, Fox and O'Sullivan (2011) shows that their algo
rithm achieves a significant improvement in both computing time and efficiency of

parameter space sampling for a large nonlinear system of PDEs that includes about

10,000 parameters. However, their algorithm gives 11,200 iterations in about 40

days, while our problem requires only 38 hours (on a 32-core cluster) for the same

number of iterations for about 11,000 parameters.

While the future may be in effective uncertainty quantification of nonlinear

physical problems using model reduction and optimization techniques, the com
puting time and resources at the moment are too demanding to explore the large

model space. This paper demonstrates effective Bayesian analysis tailored to a re

alistically large seismic tomographic problem, featuring over 11,000 structural and

source parameters. We deliver a precise uncertainty quantification of tomographic
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models in terms of posterior distribution and credible intervals using the MCMC

samples, which allows us to detect regions that differ from the reference earth

model with high posterior probability. Our approach is the first to solve seismic

tomographic problems in such high dimensions on a fine grid, and thus provides

ground work in this important research area.
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