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Abstract. Seismic source inversion is a non-linear prob-
lem in seismology where not just the earthquake param-
eters themselves but also estimates of their uncertainties
are of great practical importance. Probabilistic source in-
version (Bayesian inference) is very adapted to this chal-
lenge, provided that the parameter space can be chosen small
enough to make Bayesian sampling computationally feasi-
ble. We propose a framework for PRobabilistic Inference
of Seismic source Mechanisms (PRISM) that parameterises
and samples earthquake depth, moment tensor, and source
time function efficiently by using information from previ-
ous non-Bayesian inversions. The source time function is
expressed as a weighted sum of a small number of empir-
ical orthogonal functions, which were derived from a cata-
logue of> 1000 source time functions (STFs) by a princi-
pal component analysis. We use a likelihood model based on
the cross-correlation misfit between observed and predicted
waveforms. The resulting ensemble of solutions provides full
uncertainty and covariance information for the source pa-
rameters, and permits propagating these source uncertainties
into travel time estimates used for seismic tomography. The
computational effort is such that routine, global estimation
of earthquake mechanisms and source time functions from
teleseismic broadband waveforms is feasible.

1 Introduction

Seismic source inversion is one of the primary tasks of seis-
mology, and the need to explain devastating ground move-
ments was at the origin of the discipline. The interest is to
locate the earthquake source using seismogram recordings,

and to combine this information with geological knowledge,
in order to estimate the probability of further earthquakes
in the same region. This purpose is served well by a vari-
ety of existing source catalogues, global and regional. Large
earthquakes and those in densely instrumented areas are be-
ing studied in detail, using extended-source frameworks like
finite-fault or back-projection.

Smaller earthquakes (MS ≤ 7.5), and especially remote
events with sparse data coverage, are better parameterised
by a point source. Most catalogues determine only a loca-
tion and a moment tensor solution, which often allows for
identification of the associated fault. But the waveform data
contain additional information: for earthquakes exceeding
MS ≥ 5.5, it is generally possible to invert for the tempo-
ral evolution of the rupture, described by a time series called
the source time function (STF) (Ruff, 1989; Houston, 2001).
While the STF may further aid the understanding of earth-
quake mechanisms (Vallée, 2013) and hazard or the interpre-
tation of an event in a mining context (Gibowicz, 2009), our
primary motivation for estimating it is a different one: the
STF convolves the broadband Green function and strongly
affects its waveform. Waveform tomography estimates three-
dimensional earth structure by optimising the fit of observed
to predicted waveforms, but at high frequencies (e.g. ex-
ceeding 0.1 Hz) such fits can only succeed when the source
time function is incorporated into the predicted waveform
(Sigloch and Nolet, 2006; Stähler et al., 2012). Hence the
purpose here is to develop an automated procedure to rou-
tinely estimate broadband source time functions and point
source parameters from global seismogram recordings, in-
cluding a full treatment of parameter uncertainties.
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1056 S. C. Stähler and K. Sigloch: Bayesian source inversion Part 1

A few recent catalogues now include STF estimates
(Vallée et al., 2011; Garcia et al., 2013), but the treatment
of parameter uncertainties is still incomplete. Uncertain-
ties in the STF correlate most strongly with source depth
estimates, especially for shallow earthquakes (Sigloch and
Nolet, 2006), where surface-reflected phases (pP, sP) in-
evitably enter the time window for STF estimation (see
Fig.1). Inversion for the STF and the moment tensor is linear,
whereas inversion for depth is inherently non-linear. Hence
gradient-free optimisation techniques like simulated anneal-
ing (Kirkpatrick et al., 1983) or the first stage of the neigh-
bourhood algorithm (NA) (Sambridge, 1999a) have become
popular; Table4 presents an overview of gradient-free source
inversion algorithms from recent years. These optimisation
algorithms provide only rudimentary uncertainty estimates.

A natural alternative, pursued here, is Bayesian sampling,
where an ensemble of models is generated. The members
of this ensemble are distributed according to the posterior
probability densityP(m), wherem is the model parameter
vector to estimate. Integrating over certain parameters of this
joint posteriorP(m), or linear combinations thereof, yields
marginal distributions over arbitrary individual parameters or
parameter combinations. To the best of our knowledge, en-
semble sampling in the context of source parameter estima-
tion has been tried twice so far (Wéber, 2006; Deb̧ski, 2008),
and has been limited to a few events in either case.

A hurdle to using sampling algorithms has been the ef-
ficient parameterisation of the source time function. We
propose a parameterisation based on empirical orthogonal
wavelets (Sect.2.1), which reduces the number of free pa-
rameters to less than 12 for the STF, and to around 18 in to-
tal. We show that this makes Bayesian sampling of the entire
model space computationally feasible.

A normalised moment tensor is sampled explicitly, and
the scalar moment and absolute values forMj are derived
from the amplitude misfit (Sect.2.2). Section3 introduces
Bayesian inference as a concept and explains the model
space and prior assumptions. The ensemble inference is done
with the neighbourhood algorithm (Sambridge, 1999a, b). In
Sect.4, the code is applied to a magnitude 5.7 earthquake in
Virginia, 2011. Section5 discusses aspects of our algorithm
and potential alternatives, which we compare to related stud-
ies by other workers in Sect.5.4and in the Appendix.

Our procedure is called PRISM (PRobabilistic Inference
of Source Mechanisms); by applying it routinely, we plan to
publish ensemble solutions for intermediate-size earthquakes
in the near future. A usage of uncertainty information gained
from the ensemble is demonstrated in Sect.4.3, where the
influence of source uncertainties on tomographic travel time
observables is estimated. Further investigations of noise and
of inter-station covariances are presented in a companion pa-
per (Stähler et al., 2014).

Fig. 1. Source time function solutions for a MW 5.7 earthquake in Virginia, USA (2011/08/23) obtained from

joint inversion for STF and moment tensor M , using the iterative linearised optimisation algorithm of Sigloch

and Nolet (2006). Trial source depths ranged from 2 km to 17 km, in increments of 1 km, and each decon-

volution was based on the same 86 broadband, teleseismic P-waveforms. Note the strong changes in STF and

moment tensor as a function of depth. Top left shows the moment tensor solution from the NEIC catalogue for

comparison. For every candidate solution, the percentage of “non-negative” energy is given, a proxy for how os-

cillatory (and thus inherently non-physical) the solution is. The third number gives the average cross-correlation

coefficient between observed and predicted waveforms achieved by each solution. At depths between 2 and 7

km, the STF is pulse-like, simple, non-negative, and waveform cross-correlation attains its maximum, signalling

the most likely depth range for this event. The present study offers an approach to quantify these qualitative

tradeoffs and judgements.
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Figure 1.Source time function solutions for aMW5.7 earthquake in
Virginia, USA, (2011/08/23) obtained from joint inversion for STF
and moment tensorM, using the iterative linearised optimisation
algorithm ofSigloch and Nolet(2006). Trial source depths ranged
from 2 km to 17 km, in increments of 1 km, and each deconvolution
was based on the same 86 broadband, teleseismicP waveforms.
Note the strong changes in STF and moment tensor as a function
of depth. Top left shows the moment tensor solution from the NEIC
catalogue for comparison. For every candidate solution, the percent-
age of “non-negative” energy is given, a proxy for how oscillatory
(and thus inherently non-physical) the solution is. The third num-
ber gives the average cross-correlation coefficient between observed
and predicted waveforms achieved by each solution. At depths be-
tween 2 and 7 km, the STF is pulse-like, simple, and non-negative,
and waveform cross-correlation attains its maximum, signalling the
most likely depth range for this event. The present study offers an
approach to quantify these qualitative tradeoffs and judgements.
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2 Method

2.1 Parameterisation of the source time function

Source time function (STF) is a synonym for the moment
rate ṁ(t) of a point source, denoting a time series that de-
scribes the rupture evolution of the earthquake. It is related
to u(t), the vertical or transverse component of the displace-
ment seismogram observed at locationr r by convolution
with the Green function:

u(t) =

3∑
j=1

3∑
k=1

∂Gj

∂xk

(rs,r r, t) ∗ s(t) · Mj,k, (1)

wheres(t) ≡ ṁ(t) is the STF;Mj,k denotes the elements of
the symmetric, 3× 3 moment tensor,M; andG(rs, r r, t) is
the Green function between the hypocentrers and receiver
locationr r.

Due to the symmetry ofM, we can reduce Eq. (1) to a
simpler form:

u(t) =

6∑
j=1

gl(t) · s(t) · Ml, (2)

whereMl are the unique moment tensor elements andgl

are the respective derivatives of the Green function. The el-
ementsgj are not 3-D vectors because we compute either
only its vertical component (forP waves) or its transverse
component (for SH waves). In either case,g is a superpo-
sition of six partial functionsgj , corresponding to contribu-
tions from six unique moment tensor elementsMl , with a
weighting for the non-diagonal elements ofM, which appear
twice in Eq. (1). The orientation of the source is considered
to remain fixed during the rupture – i.e.,Ml does not depend
on t – so that a single time seriess(t) is sufficient to describe
rupture evolution.

For intermediate-size earthquakes (5.5 < MW < 7.0) the
STF typically has a duration of several seconds, which is
not short compared to the rapid sequence of P–pP–sP or
S–sS pulses that shallow earthquakes produce in broadband
seismograms. Most earthquakes are shallow in this sense,
i.e., shallower than 50 km. In order to assemble tomography-
sized data sets, it is therefore imperative to account for the
source time function in any waveform fitting attempt that
goes to frequencies above≈ 0.05 Hz (Sigloch and Nolet,
2006).

Equations (1) and (2) are linear ins(t), so thats(t) can be
determined by deconvolvingg from u if Mj in considered
fixed. However,g depends strongly on source depth (third
component of vectorrs), so that a misestimated source depth
will strongly distort the shape of the STF, as demonstrated
by Fig.1. Another complication is present in the fact that ob-
served seismogramsu(t) (as opposed to the predicted Green
functions) are time-shifted relative to each other due to 3-D
heterogeneity in the earth, and should be empirically aligned
before deconvolvings(t).

These issues can be overcome by solving iteratively for
s(t) and Mj with a fixed depth (Sigloch and Nolet, 2006;
Stähler et al., 2012), but the approach requires significant hu-
man interaction, which poses a challenge for the amounts of
data now available for regional or global tomography. More-
over, such an optimisation approach does not provide sys-
tematic estimates of parameter uncertainties.

Monte Carlo sampling avoids the unstable deconvolution
and permits straightforward estimation of full parameter un-
certainties and covariances. However, the model space to
sample grows exponentially with the number of parameters,
and the STF adds a significant number of parameters. In
a naive approach, this number could easily be on the order of
100, i.e., computationally prohibitive. For example, the STFs
deconvolved in Fig.1 were parameterised as a time series of
25 s duration, sampled at 10 Hz, and thus yielding 250 un-
knowns – not efficient, since neighbouring samples are ex-
pected to be strongly correlated. This raises the question of
how many independent parameters or degrees of freedom this
problem actually has.

Due to intrinsic attenuation of the earth, the high-
est frequencies still significantly represented in teleseismic
P waves are around 1 Hz. If from experience we require
a duration of 25 s to render the longest possible STFs oc-
curring for our magnitude range (Houston, 2001), then the
time-bandwidth product is 1Hz· 25s= 25, and the problem
cannot have more degrees of freedom than that.

Efficient parameterisation then amounts to finding a basis
of not more than 25 orthogonal functions that span the sub-
space of the real-world, band-limited STFs just described. In
fact, we can empirically decrease the number of parameters
even further. By the method ofSigloch and Nolet(2006), we
have semi-automatically deconvolved more than 3000 broad-
band STFs while building data sets for finite-frequency to-
mography. Of these, we propose to use the 1000 STFs that
we consider most confidently determined as prior informa-
tion for what the range of possible STFs looks like, for earth-
quakes of magnitude 5.5 < MW < 7.5. By performing a prin-
cipal component analysis on this large set of prior STFs, we
find that only around 10 empirical orthogonal wavelets are
needed to satisfactorily explain almost all of the STFs, as
shown in Fig.2.

In concrete terms, we applied the MATLAB functionprin-
comp.mto a matrix containing the 1000 prior STFs in its
rows. The mean over the matrix columns (time samples)
was subtracted prior to performing the decomposition, and
is shown in Fig.2a as wavelets0(t). Principal component
analysis then determiness1(t) as the function orthonormal
to s0(t) that explains as much of the variance in the ma-
trix rows as possible. After subtracting (optimally weighted)
s1(t) from each row, functions2(t) is determined such that
it is orthonormal tos0(t) ands1(t), and explains as much as
possible of the remaining variance. Each subsequent iteration
generates another orthonormalsi until i = 256, the number
of time samples (matrix columns). The source time function

www.solid-earth.net/5/1055/2014/ Solid Earth, 5, 1055–1069, 2014
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Figure 2. Efficient parameterisation of the STF in terms of empiri-
cal orthogonal functions, computed from a large set of manually de-
convolved STFs that effectively serve as prior information.(a) First
16 members of the basis of empirical orthogonal functions.(b) Me-
dian RMS misfit between members of the prior STF catalogue and
their projection on a subspace of the model space spanned by the
first wavelet basis functions.(c) A typical STF from the catalogue,
and its projection onto several subspaces spanned by the first few
basis functions (N = [4,8,12]).

can now be expressed as

s(t) =

256∑
i=1

aisi(t) + s0(t). (3)

In this parameterisation, the new unknowns to solve for dur-
ing source estimation are theai . Since principal component
analysis has sorted theai by their importance to explaining
a typical STF, we may choose to truncate this sum at a rela-
tively low valueN � 256:

sN (t) =

N∑
i=1

aisi(t) + s0(t). (4)

In practice,N will be chosen based on the residual misfit
betweens(t) and sN (t) that one is willing to tolerate. Fig-
ure2b shows the dependence of this misfit onN . If we tol-
erate an average root mean square (RMS) misfit of 10 % in
total signal variance,N = 10 base functions are sufficient,
compared to 16, when using asincbase. In the following we
useN = 12.

A set of potentially problematic STFs expressed by our
base functions is shown in an electronic supplement to this
paper.

2.2 Parameterisation of the moment tensor

The orientation of the source can be parameterised either
by a moment tensor using 6 parameters or as a pure shear

displacement source (Aki and Richards, 2002, p. 112) with
strike, slip and dip (to which a term for an isotropic com-
ponent might be added). Here we want to estimate the non-
double-couple content of the solutions, and hence we sam-
ple the full moment tensor. The scalar moment is fixed to 1,
so that only relativeMj are estimated. This is equivalent to
sampling a hypersphere in the six-dimensional vector space
{Mxx,Myy,Mzz,Mxy, Myz,Mxz} with

M0 =
1

√
2

√
M2

xx + M2
yy + M2

zz + 2(M2
xy + M2

yz + M2
xz)

= 1. (5)

Uniform sampling on an-D hypersphere can be achieved
by the method ofTashiro (1977), which transformsn − 1
uniformly distributed random variablesxi to producen ran-
dom variablesri that are distributed uniformly on a hyper-

sphere with
√∑6

i=1 r2
i = 1. We identifyri with the moment

tensor components and note that the non-diagonal elements
Mkl,k 6= l appear twice in the sum (thus we actually sample
an ellipsoid rather than a hypersphere). We then have

xi ∼ U(0,1), i = 1,2, . . . ,5

Y3 = 1; Y2 =
√

x2; Y1 = Y2x1

Mxx/M0 =

√
Y1 · cos(2πx3)

√
2

Myy/M0 =

√
Y1 · sin(2πx3)

√
2 (6)

Mzz/M0 =

√
Y2 − Y1 · cos(2πx4)

√
2

Mxy/M0 =

√
Y2 − Y1 · sin(2πx4)

Myz/M0 =

√
Y3 − Y2 · cos(2πx5)

Mzx/M0 =

√
Y3 − Y2 · sin(2πx5)

2.3 Forward simulation

Broadband, teleseismic Green’s functions for P–pP–sP and
SH–sSH wave trains are calculated by the WKBJ code
of Chapman(1978), using IASP91 (Kennett and Engdahl,
1991) as the spherically symmetric reference model for the
mantle. The reference crust at the receiver site is replaced
by a two-layered crust predicted by the model CRUST2.0
(Bassin et al., 2000). It uses the mean of layers 3–5 (soft
sediments, hard sediments, upper crust) from the surface to
the Conrad discontinuity and the mean of layers 6 and 7
(middle crust and lower crust) between the Conrad and the
Moho. Values for intrinsic attenuation in mantle and crust
are taken from the spherically symmetric earth model PREM
(Dziewónski, 1981). The synthetic waveforms are compared
to the observed seismograms in time windows that start 10 s
before the theoreticalP wave arrival time (according to
IASP91) and end 41.2 s after.

Solid Earth, 5, 1055–1069, 2014 www.solid-earth.net/5/1055/2014/
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3 Source parameter estimation by Bayesian sampling

3.1 Bayesian inversion

Bayesian inversion is an application of Bayes’ rule:

P(m|d) =
P(d|m)P (m)

P (d)
, (7)

wherem is a vector of model parameters (in our case depth,
moment tensor elementsMj and STF weightsai), andd is
a vector of data, i.e., a concatenation ofP and SH wave-
forms. These quantities are considered to be random vari-
ables that follow Bayes’ rule. We can then identifyP(m)

with the prior probability density of a model. This is the in-
formation on the model parameters that we have independent
of the experiment. The conditional probability ofd givenm,
P(d|m), also calledL(m|d), is thelikelihoodof a modelm
to produce the datad. TermP(d) is constant for all models
and is therefore dropped in what follows.P(m|d) is called
the posterior probability density (short, “the posterior”) and
denotes the probability assigned to a modelm after having
done the experiment.

P(m|d) = P(m)L(m|d)k−1 (8)

Since the posteriorP(m|d) may vary by orders of magnitude
for differentd, we work with its logarithm. We introduce the
quantity8(m|d) to denote some kind of data misfit such that
the likelihood can be written asL(m) = exp[−8(m|d)].

ln(P (m|d)) = −8(m|d) + lnP(m) − lnk (9)

The normalisation constantk is

k =

∫
exp[−8(m|d)]P(m)dm (10)

and calculated by the neighbourhood algorithm in the ensem-
ble inference stage.

In the case of multivariate, Gaussian-distributed noise on
the data with a covariance matrixSD,

d = g(m) + ε, ε ∼N (0,SD), (11)

whereg(m) is the data predicted by modelm, we would ob-
tain the familiar expression

8(m|d) = k′

(
1

2
(d − g(m))T S−1

D (d − g(m))

)
. (12)

This term is usually called Mahalanobis distance or`2-misfit.
We do not choose this sample-wise difference between ob-

served and predicted waveforms as our measure of misfit.
There are questions about the Gaussian noise assumption for
real data, but mainly we consider there to be a measure that is
more robust and adapted to our purpose, the cross-correlation
(mis-)fit between data and synthetics (Stähler et al., 2014),

which essentially quantifies phase misfit. In the optimisation-
based, linearised approach to tomography, fitting the phase
shift between two waveforms remains a near-linear problem
in a wider range around the reference model than fitting the
waveforms sample-wise. The cross-correlation fit is defined
as

CC(1Ti) =

∫
t

(
uc

i (t − 1Ti) · ui(t)dt
)√∫

t

(
uc

i (t − 1Ti)
)2dt ·

√∫
t (ui(t − 1Ti))

2dt

, (13)

whereui(t) is the measured anduc
i (t) is the synthetic wave-

form for a modelm at stationi. In general,CC is a function
of the time lag1Ti for which we compare the observed and
predicted waveforms, but here we imply that1Ti has already
been chosen such as to maximiseCC(1Ti). (This value of
1Ti that maximises the cross-correlation is called the “finite-
frequency travel time anomaly” of waveformui(t), and rep-
resents the most important observable for finite-frequency
tomography (Nolet, 2008; Sigloch and Nolet, 2006). Sec-
tion 4.3, which discusses error propagation from source in-
version into tomographic observables, further clarifies this
motivation of the cross-correlation criterion further.)

CorrelationCC(1Ti) measures goodness of fit, so we
choose decorrelationDi = 1− CC(1Ti) as our measure of
misfit (one scalar per wave pathi). From the large set of pre-
existing deterministic source solutions described in Sect.2.1,
we estimated the distribution of this misfitDi , based on
our reference data set of about 1000 very confidently de-
convolved STF solutions. For this large and highly quality-
controlled set of earthquakes, we empirically find that the
decorrelationDi of its associated seismogramsui(t) and
uc

i (t) follows a log-normal distribution in the presence of
the actual noise and modelling errors. The statistics of this
finding are discussed further in the companion paper (Stähler
et al., 2014), but here we use it to state our likelihood func-
tionL, which is the multivariate log-normal distribution:

L=

exp
(
−

1
2 (ln(D) − µ)T S−1

D (ln(D) − µ)
)

(2π)
n
2
√

|det(SD)|
. (14)

D is the decorrelation vector into whichn decorrelation coef-
ficientsDi are gathered. EachDi was measured on a pair of
observed/predicted broadband waveforms that contained ei-
ther aP or an SH arrival. The parameters of this multivariate
log-normal distribution are its mean vectorµ containingn

meansµi and its covariance matrixSD. Empirically we find
that theµi and the standard deviationsσi (diagonal elements
of SD) depend mainly on the signal-to-noise-ratio (SNR) of
waveformui . The data covariance between two stationsi and
j (off-diagonal elements inSD) is predominantly a function
of the distance between stationi and stationj . We estimate
their values from the data set of the 1000 trustworthy STF so-
lutions, i.e., from prior information, and proceed to use these
µ andSD in our Bayesian source inversions.

www.solid-earth.net/5/1055/2014/ Solid Earth, 5, 1055–1069, 2014
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It follows from Eq. (14) that the misfit8 is

8 =
1

2

(
n∑
i

n∑
j

(
ln(Dj ) − µj

)T
S−1

D,ij

(
ln(Dj ) − µj

))

+
1

2
ln
(
(2π)n|det(SD)|

)
(15)

3.2 Construction of the prior probability density

A crucial step in Bayesian inference is the selection of prior
probabilitiesP(m) on the model parametersm. Our model
parameters are as follows:

– m1: source depth. We assume a uniform prior based
on the assumed depth of the event in the National
Earthquake Information Center (NEIC) catalogue. If
the event is shallow according to the International
Seismological Centre (ISC) catalogue (< 30km), we
draw from depths between 0km and 50km; i.e.,m1 ∼

U(0,50). For deeper events, we draw from depths be-
tween 20km and 100km. Events deeper than 100km
have to be treated separately, using a longer time win-
dow in Eq. (13) that includes the surface reflected
phasespPandsP.

– m2, . . . ,m13 = a1, . . . ,a12: the weights of the source
time function (Eq.4). The samples are chosen from uni-
form distributions with ranges shown in Table1, but are
subjected to a prior,πSTF (see below).

– m14, . . . ,m18 = x1, . . .x5: the constructor variables for
the moment tensor (Eq.6). xi ∼ U(0,1), but they are
subjected to two priors,πiso andπCLVD (see below).

Intermediate-sized and large earthquakes are caused by
the release of stress that has built up along a fault, driven
by shear motion in the underlying, viscously flowing mantle.
Hence the rupture is expected to proceed in only one direc-
tion, the direction that releases the stress. The source time
function is defined as the time derivative of the moment,
s(t) = ṁ(t). The moment is proportional to the stress and
thus monotonous, and hences(t) should be non-negative.
In practice, an estimated STF is often not completely non-
negative (unless this characteristic was strictly enforced).
The reason for smaller amounts of “negative energy” (time
samples with negative values) in the STF include reverber-
ations at heterogeneities close to the source, which produce
systematic oscillations that are present in most or all of the
observed seismograms. Motivated by waveform tomography,
our primary aim is to fit predicted to observed waveforms. If
a moderately non-negative STF produces better-fitting syn-
thetics, then our pragmatic approach is to accept it, since
we are not interested in source physics per se. However, we
still need to moderately penalise non-negative samples in the
STF, because otherwise they creep in unduly when the prob-
lem is underconstrained, due to poor azimuthal receiver cov-
erage. In such cases, severely negative STFs often produce

Table 1.Sampling of the prior probability distribution: range of STF
weightsai that are permitted in the first stage of the neighbourhood
algorithm.

i Range i Range i Range

1 ±1.5 7 ±0.8 12 ±0.5
2 ±1.0 8 ±0.7 13 ±0.5
3 ±0.9 9 ±0.7 14 ±0.4
4 ±0.8 10 ±0.6 15 ±0.4

marginally better fits by fitting the noise. Smaller earthquakes
in other contexts, like mining tremors or dyke collapse in
volcanic settings, may have strong volume changes involved
and therefore polarity changes in the STF (e.g.Chouet et al.,
2003). However, such events are outside of the scope of this
study.

Our approach is to punish slightly non-negative STF esti-
mates only slightly, but to severely increase the penalty once
the fraction of “negative energy”I exceeds a certain thresh-
old I0. To quantify this, we defineI as the squared negative
part of the STF divided by the entire STF squared:

I =

∫ T

0 sN (t)2
· 2(−sN (t))dt∫ T

0 sN (t)2
, where (16)

sN = s0(t) +

N∑
i=1

aisi(t) (17)

and 2 is the Heaviside function. Based onI , we define
a priorπSTF:

πSTF(m2, . . . ,m13) = exp

[
−

(
I

I0

)3
]

, (18)

where the third power andI0 = 0.1 have been found to work
best. In other words, up to 10 % of STF variance may be
contributed by negative samples (mostly oscillations) with-
out penalty, but any larger contribution is strongly penalized
by the priorπSTF.

The neighbourhood algorithm supports only uniform dis-
tributions on parameters. The introduction ofπSTF defined
by Eq. (18) leads to a certain inefficiency, in that parts of the
model space are sampled that are essentially ruled out by the
prior. We carefully selected the ranges of theai by examin-
ing their distributions for the 1000 catalogue solutions. A test
was to count which fraction of random models were consis-
tent withI < 0.1. For the ranges given in Table1, we found
that roughly 10 % of the random STF estimates hadI < 0.1.

A second prior constraint is that earthquakes caused by
stress release on a fault should involve no volume change,
meaning that the isotropic componentMiso = Mxx + Myy +

Mzz of the moment tensor should vanish. Hence we introduce
another prior constraint,
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πiso(m14, . . . ,m18) = exp

[
−

(
Miso/M0

σiso

)3
]

, (19)

whereM0 is the scalar moment, andσiso = 0.1 is chosen em-
pirically.

Third, we also want to encourage the source to be double-
couple-like. A suitable prior is defined on the compensated
linear vector dipole (CLVD) content, which is the ratioε =

|λ3|/|λ1| between smallest and largest deviatoric eigenvalues
of the moment tensor:

πCLVD(m14, . . . ,m18) = exp

[
−

(
ε

σCLVD

)3
]

. (20)

In the absence of volume change, a moment tensor with
ε = 0.5 corresponds to a purely CLVD source, whileε = 0
is a pure DC source. Again we have to decide on a sensi-
ble value for the characteristic constantσCLVD . We choose
σCLVD = 0.2, which seems to be a reasonable value for the
intermediate-sized earthquakes of the kind we are interested
in (Kuge and Lay, 1994).

The total prior probability density is then

P(m) = πSTF(m2, . . . ,m13) (21)

+ πiso(m14, . . . ,m18) + πCLVD(m14, . . . ,m18).

3.3 Sampling with the neighbourhood algorithm

Our efficient wavelet parameterisation of the STF reduces
the total number of model parameters to around 18, but sam-
pling this space remains non-trivial. The popular Metropolis–
Hastings algorithm (MH) (Hastings, 1970) can handle prob-
lems of this dimensionality, but is non-trivial to use for sam-
pling multimodal distributions (see the discussion for de-
tails). These problems are less severe for a Gibbs sampler,
but this algorithm needs to know the conditional distribu-
tion p(xj |x1, . . .xj−1,xj+1,xn) along parameterxj in then-
dimensional model space (Geman and Geman, 1984). This
conditional distribution is usually not available, especially
not for non-linear inverse problems.

To overcome the problem of navigation in complex high-
dimensional model spaces, the neighbourhood algorithm
uses Voronoi cells (Sambridge, 1998) to approximate a map
of the misfit landscape (Sambridge, 1999a, first stage), fol-
lowed by a Gibbs sampler to appraise an ensemble based on
this map (Sambridge, 1999b, second stage).

In order to point the map-making first stage of the NA
into the direction of a priori allowed models, we use a pre-
calculated set of starting models. For that, the NA is run with-
out forward simulations and without calculating the likeli-
hood, so that only a map of the prior landscape is produced,
from 32 768 samples (Fig.3a). This means that from the start
the map will be more detailed in a priori favourable regions,
and avoids the algorithm wasting too much time refining the
map in regions that are essentially ruled out by the prior.
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Figure 3. Principle of the neighbourhood algorithm, demonstrated
for a two-dimensional toy problem (the underlying distributions are
fictional and chosen for demonstration purposes). Top: in the pre-
mapping stage, only the prior distribution is evaluated, resulting in
a map of starting models that cluster in regions of high prior proba-
bility (marked by lighter shades of red). Middle: next, the NA loads
this map, evaluates the posterior probability for every sample, and
refines the map only in the best-fitting Voronoi cells. Lighter shades
of blue correspond to a higher posterior probability. Bottom: in the
sampling or appraisal stage, the value of the posterior is interpolated
to the whole Voronoi cell. The Gibbs sampler uses this map to pro-
duce an ensemble. This ensemble can be used to calculate integrals
over the model space, like the mean or mode of selected parameters.
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Next, the prior landscape is loaded and a forward simula-
tion is run for each member in order to evaluate its posterior
probability. Then this map is further refined by 512 forward
simulations around the 128 best models. This is repeated un-
til a total of 65 536 models have been evaluated.

In the second stage of the NA, which is the sampling stage,
400 000 ensemble members are drawn according to the pos-
terior landscape from the first step. This process runs on
a 16-core Xeon machine and takes around 2 h in total per
earthquake.

4 A fully worked example

4.1 2011/08/23 Virginia earthquake

In the following we present a fully worked example for
a Bayesian source inversion, by applying our software to the
MW 5.7 earthquake that occurred in central Virginia on 23
August 2011 (Figs.4 and5, also compare to Fig.1). While
not considered a typical earthquake region, events from this
area have nevertheless been recorded since the early days
of quantitative seismology (Taber, 1913). Due to its occur-
rence in an unusual but densely populated area, this relatively
small earthquake was studied in considerable detail, afford-
ing us the opportunity to compare to results of other workers.
Moderate-sized events of this kind are typical for our tar-
geted application of assembling a large catalogue. The great-
est abundance of suitable events is found just below magni-
tude 6; toward smaller magnitudes, the teleseismic signal-to-
noise ratio quickly deteriorates below the usable level.

For the inversion, we used a set of 41P waveforms and 17
SH waveforms recorded by broadband stations at teleseismic
distances (Fig.4). For waveform modelling, a simplified ver-
sion of the crustal model CRUST2.0 (Bassin et al., 2000) was
assumed around the source region. Layers 3-5 of CRUST2.0
were averaged into one layer above the Conrad discontinuity,
and layers 6-7 were averaged into one layer from the Con-
rad discontinuity to the Moho; the resulting values are given
in Table 2. The algorithm ran 65 536 forward simulations
to generate a map of the posterior landscape, and produced
an ensemble of 400 000 members in the second step. From
this ensemble, the source parameters were estimated. Table3
shows the estimated credible intervals and the median of the
probability distribution for the depth and the moment ten-
sor. These quantiles represent only a tiny part of the infor-
mation contained in the ensemble, i.e., two statistics of 1-
dimensional marginals derived from a 16-dimensional prob-
ability density function. Some credible intervals are large;
for example we cannot constrain the depth to a range nar-
rower than 10 km with 90 % credibility. Using such credible
interval estimates, routine production runs of our software
should be able to clarify whether depth uncertainties in ex-
isting catalogues tend to be overly optimistic or pessimistic.

Table 2. Crustal model assumed for the source region of the 2011
Virginia earthquake (CRUST2.0).

VP VS ρ Depth

Upper 4.10 km s−1 2.15 km s−1 2.51 Mg m−3 10.5 km
crust
Lower 6.89 km s−1 3.84 km s−1 2.98 Mg m−3 24.5 km
crust

Table 3. Credible intervals for source parameters of the Virginia
earthquake. The moment tensor componentsMkl need to be multi-
plied by 1016 Nm.

1st decile Median 9th decile

Depth 1.8 5.9 11

MW 5.57 5.67 5.74
Myy −0.233 1.38 2.54
Mxy −1.99 −0.955 −0.165
Mxz −2.7 −0.325 2.72
Myy −9.4 −4.74 −2.7
Mzy −3.25 −0.563 1.87
Mzz 3.16 4.42 7.84

The complete marginal distribution of the source depth esti-
mate is shown in Fig.3, bottom left.

We aim for additional, informative ways of summarising
and conveying the resulting ensemble. Figure5 is what we
call a “Bayesian beach ball”: an overlay of 1024 focal mech-
anisms drawn from the ensemble at random. The thrust fault-
ing character of the event is unambiguous, but the direction
of slip is seen to be less well constrained. The estimate of
the source time function and its uncertainty are displayed in
Fig. 4, bottom right. Within their frequency limits, our tele-
seismic data prefer a single-pulsed rupture of roughly 3 s du-
ration, with a certain probability of a much smaller foreshock
immediately preceding the main event. Smaller aftershocks
are possible, but not constrained by our inversion.

4.2 Comparison to source estimates of other workers

Our solution is consistent with the solution from the
SCARDECcatalogue (Vallée, 2012), which puts the depth
of this event at 9 km, and its STF duration at 2.5 s.Chapman
(2013) studied the source process of the 2011 Virginia event
in great detail. He argues for three sub-events having oc-
curred within 1.6 s at a depth of 7–8 km, and spaced less than
2 km apart. This is compatible with our solution: since tele-
seismic waveforms contain little energy above frequencies of
1 Hz, we would not expect to resolve three pulses within 1.6 s
with the method presented here.Chapman(2013) used both
local and teleseismic recordings, and was therefore able to
exploit high frequencies recorded close to the source. His lo-
cal crustal model featured an upper crustal velocity that was
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Credibleintervalsforsourceparameters:

1stdecilemedian9thdecile

depth1.85.911

MW5.575.675.74

Mtt-0.2331.382.54

Mtp-1.99-0.955-0.165

Mrt-2.7-0.3252.72

Mpp-9.4-4.74-2.7

Mrp-3.25-0.5631.87

Mrr3.164.427.84
Table3.CredibleintervalsforsourceparametersoftheVirginiaearthquake.Themomenttensorcomponents

Mklneedtobemultipliedby10
16

Nm.

Fig.5.Bayesianbeachball:Probabilisticdisplayoffocalmechanismsolutionsforthe2011Virginiaearth-

quake.
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Figure 5. Bayesian beach ball: probabilistic display of focal mech-
anism solutions for the 2011 Virginia earthquake.

50 % higher than ours, which may explain why he estimates
the source 1–2 km deeper than our most probable depth of
5.9 km (Fig.4, bottom left).

4.3 Uncertainty propagation into tomographic
observables

We are interested in source estimation primarily because we
want to account for the prominent signature of the source
wavelet in the broadband waveforms that we use for wave-
form tomography. Input data for the inversion, primarily
travel time anomalies1Ti , wherei is the station index, are
generated by cross-correlating observed seismograms with
predicted ones. A predicted waveform consists of the con-
volution of a synthetic Green’s function with an estimated
source time function (Eq.2). Thus uncertainty in the STF
estimate propagates into the cross-correlation measurements
that generate our input data for tomography. Previous ex-
perience has led us to believe that the source model plays
a large role in the uncertainty of1Ti . The probabilistic ap-
proach presented here permits the quantification of this in-
fluence by calculating1Ti,j for each ensemble memberj .
From all values for one station, the ensemble mean1Ti and
its standard deviationσi can then be used as input data for
the tomographic inversion. Thus we obtain a new and robust
observable: Bayesian travel time anomalies with full uncer-
tainty information.

Figure6 shows the standard deviationσi of P wave1Ti

at all stations. Comparison to the signal-to-noise ratios of
Fig. 6 shows no overall correlation, except for South Amer-
ican stations, where a higher noise level is correlated with
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Figure 6. Standard deviationsσi of P wave travel times1Ti , as
calculated from the ensemble of solutions. The travel time estimates
are by-products of using waveform cross-correlation as the measure
for goodness of fit, and they represent our main input data for tomo-
graphic inversions. The unit on the colour scale is seconds.

a somewhat larger uncertainty on1Ti . By contrast, Euro-
pean stations all have good SNR, but uncertainties in the
travel times are large nonetheless, because source uncertainty
happens to propagate into the estimates of1Ti more severely
in this geographical region. This information would not have
been available in a deterministic source inversion and could
strongly affect the results of seismic tomography.

5 Discussion

5.1 Performance of the empirical orthogonal basis for
STF parameterisation

We choose to parameterise the source time function in terms
of empirical orthogonal functions (eofs), which by design
is the most efficient parameterisation, if the characteristics
of the STFs are well known. We think that they are, having
semi-automatically deconvolved thousands of STFs in prior
work (Sigloch and Nolet, 2006; Sigloch, 2011) and compared
them with other studies (Tanioka and Ruff, 1997; Houston,
2001; Tocheport et al., 2007). The flip side of this tailored
basis is that it might quickly turn inefficient when atypical
STFs are encountered. From the appearance of the eofs in
Fig. 2a, it is for example obvious that STFs longer than 20 s
could not be expressed well as a weighted combination of
only 10 eofs. Hence the STFs of the strongest earthquakes
considered (aroundMW 7.5) might not be fit quite as well as
the bulk of smaller events, which contributed more weight to
defining the eof base. For our tomography application, this
behaviour is acceptable and even desirable, since the largest
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events are no more valuable than smaller ones (often quite the
opposite, since the point source approximation starts to break
down for large events). For a detailed display of a set of po-
tentially problematic STFs see the electronic supplement to
this paper.

At first glance it might seem unintuitive that the basis func-
tions have oscillatory character and thus negative parts, rather
than resembling a set of non-negative basis functions (a set
of triangles would be one such set). However, the training
collection to which the principal components analysis was
applied did consist of predominantly non-negative functions,
which by construction are then represented particularly effi-
ciently, even if the eofs may not give this appearance. On top
of this, we explicitly encourage non-negativity of the solu-
tion via the priorπSTF (Eq.18). A rough estimation showed
that roughly 90 % of the model space are ruled out by the
condition that the source should have a vanishing negative
part.

We wanted to know how many basis functions of a more
generic basis (e.g., wavelets) would be required in order to
approximate the STF collection equally well as with the eofs.
A trial with a basis of sinc wavelets showed that 16 basis
functions were needed to achieve the same residual misfit as
delivered by our optimised basis of only 10 eofs. Since the
size of the model space grows exponentially with the number
of parameters, avoiding 6 additional parameters makes a big
difference in terms of sampling efficiency.

5.2 Moment tensor parameterisation

The parameterisation of the moment tensor is a technically
non-trivial point. We discuss the pros and cons of possible
alternatives to our chosen solution:

– Parameterisation in terms of strikeφf , slip λ and dipδ

is problematic for sampling. Strike and dip describe the
orientation of the fault plane; an equivalent description
would be the unit normal vectorn on the fault.

n =

 −sinδ sinφf

−sinδ cosφf

cosδ

 (22)

All possible normal vectors form a unit sphere. In or-
der to sample uniformly on this unit sphere, samples
have to be drawn from a uniform volumetric density
(Tarantola, 2005, 6.1). Since the neighbourhood algo-
rithm (and most other sampling algorithms) implicitly
assume Cartesian coordinates in the model space, the
prior density has to be multiplied by the Jacobian of
the transformation into the actual coordinate system, in
our case 1/sinδ. To our knowledge, this consideration
is neglected in most model space studies, but it would
be more severe in ensemble sampling than in gradient-
based optimisation.

– A different issue with strike-dip parameterisation is the
following: the Euclidean distances applied to{φf ,λ,δ}

by the NA and similar, Cartesian-based algorithms are
in fact a rather poor measure of the similarity of two
double-couple sources. A more suitable measure of mis-
fit is the Kagan angle (Kagan, 1991), which is the small-
est angle required to rotate the principal axes of one
double couple into the corresponding principal axes of
the other, or the Tape measure of source similarity (Tape
and Tape, 2012).

This is an issue in model optimisation with the first stage
of the neighbourhood algorithm (Kennett et al., 2000;
Sambridge and Kennett, 2001; Vallée et al., 2011).
Wathelet(2008) has introduced complex boundaries to
the NA, but unfortunately no periodic ones.

– An alternative would be to sample{Mxx,Myy,Mzz,

Mxy,Myz,Mxz} independently, but this is inefficient be-
cause the range of physically sensible parameters spans
several orders of magnitude.

– Finally, one might choose not to sample the moment
tensor at all. Instead, one might sample only from the
{Si,d} model space, followed by direct, linear inver-
sion of the six moment tensor elements corresponding
to each sample. This would speed up the sampling con-
siderably since the dimensionality of the model space
would be reduced from 16 to 10. Moment tensor inver-
sion is a linear problem (Eq.2), and hence we would not
lose much information about uncertainties. In a poten-
tial downside, moment tensor inversion can be unstable
in presence of noise or bad stations, but from our ex-
perience with supervised, linear inversions, this is typi-
cally not a severe problem in practice. Therefore we are
considering this pragmatic approach of reduced dimen-
sionality for production runs.

5.3 Neighbourhood algorithm

The neighbourhood algorithm avoids some of the pitfalls
of other sampling algorithms. Compared to the popular
Metropolis–Hastings algorithm, we see several advantages
for our problem:

– The MH is difficult to implement for multivariate distri-
butions. This is especially true when the parameters are
different physical quantities and follow different distri-
butions as is the case in our study.

– As the MH is a random-walk algorithm, the step width
is a very delicate parameter. It affects the convergence
rate and also the correlation of models, which has to be
taken into account when estimating probability density
functions from the ensemble. This is a bigger problem
than for the Gibbs sampler, which the NA is based on.

– The MH is rather bad at crossing valleys of low prob-
ability in multimodal probability distributions. We are
expecting such, especially for the source depth.
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These problems are less severe for a Gibbs sampler, on which
the second stage of the NA is based.

The first stage of the NA could be replaced by a completely
separate mapping algorithm, like genetic algorithms or sim-
ulated annealing. Like the first stage of the NA, they only ex-
plore the model space for a best-fitting solution. Their results
might be used as input for the second stage of the NA. Com-
pared to those, the NA has the advantage of using only two
tuning parameters, which control (a) how many new mod-
els are generated in each step and (b) in how many different
cells these models are generated. As in every optimisation al-
gorithm, they control the tradeoff between exploration of the
model space and exploitation of the region around the best
models.

There is no hard-and-fast rule for choosing values for these
tuning parameters. Since we do not want to optimise for only
one “best” solution, we tend towards an explorative strategy
and try to map large parts of the model space. Compared to
other source inversion schemes, we are explicitly interested
in local minima in the misfit landscape. Local minima are
often seen as nuisance, especially in the rather aggressive it-
erative optimisation frameworks, but in our view they contain
valuable information. What may appear as a local minimum
to the specific data set that we are using for inversion might
turn out to be the preferred solution of another source inver-
sion method (e.g., surface waves, GPS or InSAR).

However, an ensemble that does not resolve the best-fitting
model is equally useless. The posterior of all models gets
normalised after all forward simulations have been done (see
Eq.10). If one peak (the best solution) is missing, the normal-
isation constantk will be too small, and thereforeP(m|d)

will be too high for all other models, meaning that the credi-
bility bounds will be too large. It is possible that other sam-
pling schemes, such asparallel tempering, might find better
compromises between exploration and exploitation, which
could be a topic of further study.

5.4 Comparison with other source inversion schemes

Table 4 shows a list of other point source inversion algo-
rithms proposed and applied over the past 15 years. Most
widely used is probably the Global Centroid Moment Tensor
(CMT) catalogue (Dziewónski et al., 1981; Ekström et al.,
2012), which is mostly based on intermediate-period (> 40s)
waveforms to determine a centroid moment tensor solution.
Its results are less applicable to short-period body wave
studies, since waveforms in the latter are dominated by the
hypocentre, which may differ significantly from the centroid.
Another classical catalogue is the ISC bulletin (Bondár and
Storchak, 2011), which goes back as far as 1960. The ISC
catalogue focuses on estimating event times and locations,
neither of which are the topic of this study. The ISC recently
adopted a global search scheme based on the first stage of
the NA, similar toSambridge and Kennett(2001), followed
by an attempt to refine the result by linearised inversion,

including inter-station covariances.Garcia et al.(2013) and
Tocheport et al.(2007) use simulated annealing to infer depth
and moment tensor. A STF is estimated from theP wave-
forms. By neglecting all crustal contributions and reducing
the forward simulation to mantle attenuation, this approach
is very efficient.

Similarly, Kolář (2000) used a combination of simulated
annealing and bootstrapping to estimate uncertainties of the
moment tensor, depth and a source time function. The study
was limited to two earthquakes.

Kennett et al.(2000) used the first stage of the NA to opti-
mise for hypocentre depth, moment tensor, and the duration
of a trapezoidal STF, using essentially the same kind of data
as the present study, and an advanced reflectivity code for for-
ward modelling. However, no uncertainties were estimated.

Deb̧ski(2008) is one of the only two studies, to our knowl-
edge, obtained source time functions and their uncertainties
by Bayesian inference. He studied magnitude 3 events in
a copper mine in Poland. By using the empirical Green’s
functions (EGF) method, it was not necessary to do an ex-
plicit forward simulation. The study was limited to inverting
for the STF, which he parameterised sample-wise. This was
possible since the forward problem was computationally very
inexpensive to solve.

The second sampling study isWéber(2006), which used
an octree importance sampling algorithm to infer probability
density functions for depth and moment tensor rate function.
The resulting ensemble was decomposed into focal mech-
anisms and source time functions, a non-trivial and non-
unique problem (Wéber, 2009). With this algorithm, a cat-
alogue of Hungarian seismicity was produced until 2010, but
apparently this promising work was not extended to a global
context.

The most recent global source catalogue is the SCARDEC
method byVallée et al.(2011). It uses the first stage of the
neighbourhood algorithm to optimise the parameters source
depth, strike, dip and rake. For each model and each station,
arelative source time function(RSTF) is calculated. The mis-
fit is comprised of a waveform misfit and the differences be-
tween the RSTF at different stations. Uncertainties of the pa-
rameters are estimated by the variation of the misfit along
different parameters. The STF catalogue has been used to in-
fer the stress drop of a large set of earthquakes (Vallée, 2013).

The PRISM algorithm as presented here is the first to
enable Bayesian inference of seismic source parameters on
a global scale and in a flexible framework. It allows for
sampling of the source time function by a set of optimised,
wavelet-like basis functions. By producing a whole ensem-
ble of solutions, arbitrary parameters, like the uncertainty of
travel time misfits, can be estimated from the ensemble after-
wards, at little additional cost.
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6 Conclusions

We showed that routine Bayesian inference of source param-
eters from teleseismic body waves is possible and provides
valuable insights. From clearly stated a priori assumptions,
followed by data assimilation, we obtain rigorous uncertainty
estimates of the model parameters. The resulting ensemble of
a posteriori plausible solutions permits estimating the prop-
agation of uncertainties from the source inversion to other
observables of practical interest to us, such as travel time
anomalies for seismic tomography.

The Supplement related to this article is available online
at doi:10.5194/se-5-1055-2014-supplement.
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