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Abstract. Seismic source inversion is a non-linear prob- and to combine this information with geological knowledge,
lem in seismology where not just the earthquake paramin order to estimate the probability of further earthquakes
eters themselves but also estimates of their uncertainties the same region. This purpose is served well by a vari-
are of great practical importance. Probabilistic source in-ety of existing source catalogues, global and regional. Large
version (Bayesian inference) is very adapted to this chal-earthquakes and those in densely instrumented areas are be-
lenge, provided that the parameter space can be chosen smaif studied in detail, using extended-source frameworks like
enough to make Bayesian sampling computationally feasifinite-fault or back-projection.
ble. We propose a framework for PRobabilistic Inference Smaller earthquakesMs < 7.5), and especially remote
of Seismic source MechanismBRISM that parameterises events with sparse data coverage, are better parameterised
and samples earthquake depth, moment tensor, and sourbg a point source. Most catalogues determine only a loca-
time function efficiently by using information from previ- tion and a moment tensor solution, which often allows for
ous non-Bayesian inversions. The source time function igdentification of the associated fault. But the waveform data
expressed as a weighted sum of a small number of empireontain additional information: for earthquakes exceeding
ical orthogonal functions, which were derived from a cata- Ms > 5.5, it is generally possible to invert for the tempo-
logue of > 1000 source time functions (STFs) by a princi- ral evolution of the rupture, described by a time series called
pal component analysis. We use a likelihood model based otthe source time function (STFR(ff, 1989 Houston 2007).
the cross-correlation misfit between observed and predictetiVhile the STF may further aid the understanding of earth-
waveforms. The resulting ensemble of solutions provides fullquake mechanism¥4élliée, 2013 and hazard or the interpre-
uncertainty and covariance information for the source pa-tation of an event in a mining contexgibowicz, 2009, our
rameters, and permits propagating these source uncertaintiggimary motivation for estimating it is a different one: the
into travel time estimates used for seismic tomography. TheSTF convolves the broadband Green function and strongly
computational effort is such that routine, global estimationaffects its waveform. Waveform tomography estimates three-
of earthquake mechanisms and source time functions frondimensional earth structure by optimising the fit of observed
teleseismic broadband waveforms is feasible. to predicted waveforms, but at high frequencies (e.g. ex-
ceeding 0.1 Hz) such fits can only succeed when the source
time function is incorporated into the predicted waveform
(Sigloch and Nolet2006 Stahler et al.2012. Hence the
1 Introduction purpose here is to develop an automated procedure to rou-
tinely estimate broadband source time functions and point
Seismic source inversion is one of the primary tasks of seisygyrce parameters from global seismogram recordings, in-

mology, and the need to explain devastating ground moveg|yding a full treatment of parameter uncertainties.
ments was at the origin of the discipline. The interest is to

locate the earthquake source using seismogram recordings,
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1056 S. C. Stahler and K. Sigloch: Bayesian source inversion Part 1

A few recent catalogues now include STF estimates
(Vallée et al, 2011, Garcia et al. 2013, but the treatment 6.0 km NEIC
of parameter uncertainties is still incomplete. Uncertain- @
ties in the STF correlate most strongly with source depth

f\ 10.0 km

_ ] =
S

estimates, especially for shallow earthquaksglpch and I TS 5;005;13 \~"264 % 0.82
Nolet, 2006, where surface-reflected phases (pP, sP) in-

evitably enter the time window for STF estimation (see @ U @
Fig.1). Inversion for the STF and the moment tensor is linear, [\

whereas inversion for depth is inherently non-linear. Hence a—2ta s
gradient-free optimisation techniques like simulated anneal-

ing (Kirkpatrick et al, 1983 or the first stage of the neigh- @ wJ @
bourhood algorithm (NA) $ambridge19993 have become {\

popular; Tablet presents an overview of gradient-free source N ;-Ookgﬁo w%;-ookgl
inversion algorithms from recent years. These optimisation e \/ 7% 0.
algorithms provide only rudimentary uncertainty estimates. @

A natural alternative, pursued here, is Bayesian sampling, @
where an ensemble of models is generated. The members PR 5.0 km /\ __13.0km
of this ensemble are distributed according to the posterior v 12% 0.87 \/ ¥5% 083
probability densityP (m), wherem is the model parameter
vector to estimate. Integrating over certain parameters of this @ @
joint posterior P (m), or linear combinations thereof, yields 6.0 km A\ 14.0 km
marginal distributions over arbitrary individual parameters or v 2.4 % 0.88 \/ 528 % 0.82
parameter combinations. To the best of our knowledge, en-
semble sampling in the context of source parameter estima- @ @
tion has been tried twice so faMgber 2006 Debski 2008, ok /\ 150 km
and has been limited to a few events in either case. V"‘ 50% 087 f \/ 5% 085

A hurdle to using sampling algorithms has been the ef-
ficient parameterisation of the source time function. We @ @
propose a parameterisation based on empirical orthogonal
wavelets (Sect2.1), which reduces the number of free pa- A\ v_97§;°0kg‘e 16.0 km
rameters to less than 12 for the STF, and to around 18 in to- v ' '
tal. We show that this makes Bayesian sampling of the entire @
model space computationally feasible.

A normalised moment tensor is sampled explicitly, and 9.0 km

the scalar moment and absolute values ¥ty are derived 17:8% 085

from the amplitude misfit (SecR.2). Section3 introduces
Bayesian inference as a concept and explains the model
space and prior assumptions. The ensemble inference is done
with the neighbourhood algorithnsambridge1999ab). In
Sect.4, the code is applied to a magnitude 5.7 earthquake inFigure 1. Source time function solutions forly5.7 earthquake in
Virginia, 2011. Sectiorb discusses aspects of our algorithm Virginia, USA, (2011/08/23) obtained from joint inversion for STF
and potential alternatives, which we compare to related studand moment tensa¥, using the iterative linearised optimisation
ies by other workers in Sed.4and in the Appendix. algorithm ofSigloch and Nolef2006. Trial source depths ranged
Our procedure is called PRISM (PRobabilistic Inference from 2km to 17km, inincrements of 1 km, and each deconvolution
of Source Mechanisms); by applying it routinely, we plan to Was based on the same _86 broadband, teleseismi@veforms. _
publish ensemble solutions for intermediate-size earthquake¥°Cte the strong changes in STF and moment tensor as a function
in the near future. A usage of uncertainty information gainedOf depth. Top left shows the moment tensor solution from the NEIC

. . catalogue for comparison. For every candidate solution, the percent-
from the ensemble is demonstrated in Sdc8, where the age of “non-negative” energy is given, a proxy for how oscillatory

influence of source uncertainties on tomographic travel time(ang thus inherently non-physical) the solution is. The third num-
observables is estimated. Further investigations of noise ander gives the average cross-correlation coefficient between observed
of inter-station covariances are presented in a companion pamnd predicted waveforms achieved by each solution. At depths be-
per Stahler et al.2014). tween 2 and 7 km, the STF is pulse-like, simple, and non-negative,
and waveform cross-correlation attains its maximum, signalling the
most likely depth range for this event. The present study offers an
approach to quantify these qualitative tradeoffs and judgements.

Solid Earth, 5, 10554069 2014 www.solid-earth.net/5/1055/2014/



S. C. Stahler and K. Sigloch: Bayesian source inversion Part 1 1057

2 Method These issues can be overcome by solving iteratively for
o _ _ s(r) and M; with a fixed depth $igloch and Nolegt2006
2.1 Parameterisation of the source time function Stahler et a].2012), but the approach requires significant hu-

) ) . man interaction, which poses a challenge for the amounts of
Source time function (STF) is a synonym for the moment 55 now available for regional or global tomography. More-

ratem(¢) of a point source, denoting a time series that de'over, such an optimisation approach does not provide sys-
scribes the rupture evolution of the earthquake. It is relateqgmatic estimates of parameter uncertainties.

tou(z), the vertical or transverse component of the displace-
ment seismogram observed at locatignby convolution
with the Green function:

Monte Carlo sampling avoids the unstable deconvolution
and permits straightforward estimation of full parameter un-
certainties and covariances. However, the model space to

3.3 9G/ sample grows exponentially with the number of parameters,
u(t) = ZZE(’&’M)*S@'MM’ (1) and the STF adds a significant number of parameters. In
j=lk=1 a naive approach, this number could easily be on the order of

wheres (t) = i (t) is the STF;M; ; denotes the elements of 100, i.e., computationally prohibitive. For example, the STFs
the symmetric, 3 3 moment tensotM; and G (rs, ry,1) is deconvolved in Figl were parameterised as a time series of
the Green function between the hypocentgeand receiver 25s duration, sampled at 10Hz, and thus yielding 250 un-

locationr. knowns — not efficient, since neighbouring samples are ex-
Due to the symmetry oM, we can reduce Eqlfto a  Pected to be strongly correlated. This raises the question of
simpler form: how many independent parameters or degrees of freedom this
problem actually has.

@) Due to intrinsic attenuation of the earth, the high-
est frequencies still significantly represented in teleseismic
P waves are around 1Hz. If from experience we require
where M; are the unigue moment tensor elements gnd 3 duration of 25s to render the longest possible STFs oc-
are the reSpeCtive derivatives of the Green function. The el'curring for our magnitude rangé—]@uston 200])' then the
ementsg; are not 3-D vectors because we compute eithertime-bandwidth product is 1 H25s= 25, and the problem
only its vertical component (foP waves) or its transverse cannot have more degrees of freedom than that.
component (for SH waves). In either cageis a superpo- Efficient parameterisation then amounts to finding a basis
sition of six partial functiong;, corresponding to contribu-  of not more than 25 orthogonal functions that span the sub-
tions from six unique moment tensor elemeMs with @ space of the real-world, band-limited STFs just described. In
weighting for the non-diagonal elementsMf, which appear  fact, we can empirically decrease the number of parameters
twice in Eq. (1). The orientation of the source is considered eyen further. By the method &figloch and Nolef2006), we
to remain fixed during the rupture —i.@4, does not depend  have semi-automatically deconvolved more than 3000 broad-
onr —so that a single time serie¢) is sufficient to describe  pand STFs while building data sets for finite-frequency to-
rupture evolution. mography. Of these, we propose to use the 1000 STFs that
For intermediate-size earthquakes3(& Mw < 7.0) the e consider most confidently determined as prior informa-
STF typically has a duration of several seconds, which istjon for what the range of possible STFs looks like, for earth-
not short compared to the rapid sequence of P-pP-sP Qjuakes of magnitudes < Mw < 7.5. By performing a prin-
S-sS pulses that shallow earthquakes produce in broadbanrghal component analysis on this large set of prior STFs, we
seismograms. Most earthquakes are shallow in this senséind that only around 10 empirical orthogonal wavelets are
i.e., shallower than 50 km. In order to assemble tomographyneeded to satisfactorily explain almost all of the STFs, as
sized data sets, it is therefore imperative to account for theshown in Fig.2.
source time function in any waveform fitting attempt that  |n concrete terms, we applied the MATLAB functipnin-
goes to frequencies above 0.05Hz (Sigloch and Nolet  comp.mto a matrix containing the 1000 prior STFs in its
2008. rows. The mean over the matrix columns (time samples)
Equations {) and @) are linear ins(z), so thats(r) canbe  \as subtracted prior to performing the decomposition, and
determined by deconvolving from u if M; in considered s shown in Fig.2a as waveleko(r). Principal component
fixed. However,g depends strongly on source depth (third analysis then determines(z) as the function orthonormal
component of vectars), so that a misestimated source depth tg 5¢(¢) that explains as much of the variance in the ma-
will strongly distort the shape of the STF, as demonstratedyix rows as possible. After subtracting (optimally weighted)
by Flg 1. Another complication is present in the fact that ob- s1(2) from each row, functiomz(t) is determined such that
served seismograms() (as opposed to the predicted Green it js orthonormal taso(r) andsy1(r), and explains as much as
functions) are time-shifted relative to each other due to 3-Dpossible of the remaining variance. Each subsequent iteration
heterogeneity in the earth, and should be empirically alignedyenerates another orthonormaluntil i = 256, the number
before deconvolving(t). of time samples (matrix columns). The source time function

6
u(t)y="y_git)-st)- M,

j=1

www.solid-earth.net/5/1055/2014/ Solid Earth, 5, 1053069 2014



1058 S. C. Stahler and K. Sigloch: Bayesian source inversion Part 1

N A 1 displacement sourcé\ki and Richards2002 p. 112) with
s e - strike, slip and dip (to which a term for an isotropic com-
VAR 3 ponent might be added). Here we want to estimate the non-
AAAA glo" double-couple content of the solutions, and hence we sam-
o e ple the full moment tensor. The scalar moment is fixed to 1,
s 5| [Esmeae so that only relativeV/; are estimated. This is equivalent to
8 10 A 10°5 10 ‘ 20 sampling a hypersphere in the six-dimensional vector space
E N 03 number of base functions {Mxx’ Myy, MZZ? Mxy7 Myz7 sz} with
2 P\ A i
N 1
E 5 I EOJ Mo = 72\/M§x+M)2fy+Mz2z+2(M§y+My2z+M3z)
A gol = 1 (5)
AN S0

Uniform sampling on a:-D hypersphere can be achieved

, , by the method ofTashiro (1977, which transforms: — 1

0 t/sle?:onds 20 0 t/seclgnds 20 uniformly distributed random variables to produce: ran-
dom variables; that are distributed uniformly on a hyper-

Figure 2. Efficient pgrameterisation of the STF in terms of empiri- sphere with /Zlﬁ:lr_z — 1. We identifyr; with the moment
cal orthogonal functions, computed from a large set of manually de- !

convolved STFs that effectively serve as prior informatia First tensor components _and_ note that the non-diagonal elements
16 members of the basis of empirical orthogonal functi@imsMe- Mkl’k_ # l_appear twice in the sum (thus we actually sample
dian RMS misfit between members of the prior STF catalogue and®N €llipsoid rather than a hypersphere). We then have

their projection on a subspace of the model space spanned by the

first wavelet basis functiongc) A typical STF from the catalogue, Xi ™ v@o1, i=12..5
and its projection onto several subspaces spanned by the first few; = 1; Yo = /x2; Y1 ="Yox1

basis functions§ = [4, 8,12]).

M. /Mo =+/Y1-COS2mx3)V/2
can now be expressed as

M,y /Mo = /Y1 -sin(2x3)v/2 (6)
256
$(@0) =Y aisi(0) +50(0). @  Me/Mo=1/Y2— V1 cos2rxa)V2
i=1 M,y /Mo =+/Y2 —Y1-SiN(2m x4)

_In this paramet_terist_ation, tﬁ;eg\_/ unknqwn_s t? solve for dtur'Myz/MO =./Y3— Y2 -coq2mx5)
ing source estimation are tlg. Since principal componen )
analysis has sorted the by their importance to explaining Mzx/Mo= Y3~ Y2-sin(2rx5)
a_ltyp|cal STF, we may choose to truncate this sum at a rela—2_3 Forward simulation
tively low value N « 256:

N Broadband, teleseismic Green’s functions for P—pP—sP and
sy (1) :Zaisi(t)_i_s()([). (4) SH-sSH wave trains'are calculated by the WKBJ code

i1 of Chapman(1978, using IASP91 Kennett and Engdahl
199)) as the spherically symmetric reference model for the
o - : mantle. The reference crust at the receiver site is replaced
betweens(r) andsy (1) that one is VY'”'”Q tp tolerate. Fig- by a two-layered crust predicted by the model CRUST2.0
ure 2b shows the dependence of this mISfIth.If we tol- _(Bassin et al.2000. It uses the mean of layers 3-5 (soft
erate an average root mean square (RMS) misfit Of_ 1_0% Nsediments, hard sediments, upper crust) from the surface to
total signal variancey = _10 t_)ase functions are su_fﬂment, the Conrad discontinuity and the mean of layers 6 and 7
compared to 16, when usingsmcbase. In the following we iigdle crust and lower crust) between the Conrad and the
useN = 1?' il bi ) db Moho. Values for intrinsic attenuation in mantle and crust

A set o 'pote.ntla y pro ematic STF,S EXPressed by OUrg q taken from the spherically symmetric earth model PREM

base functions is shown in an electronic supplement to th's(Dziewoﬁski, 1981). The synthetic waveforms are compared
paper. to the observed seismograms in time windows that start 10 s
before the theoreticaP wave arrival time (according to
IASP91) and end 41.2 s after.

The orientation of the source can be parameterised either
by a moment tensor using 6 parameters or as a pure shear

In practice,N will be chosen based on the residual misfit

2.2 Parameterisation of the moment tensor

Solid Earth, 5, 10554069 2014 www.solid-earth.net/5/1055/2014/



S. C. Stahler and K. Sigloch: Bayesian source inversion Part 1 1059

3 Source parameter estimation by Bayesian sampling which essentially quantifies phase misfit. In the optimisation-
based, linearised approach to tomography, fitting the phase

3.1 Bayesian inversion shift between two waveforms remains a near-linear problem
o L L , _ in a wider range around the reference model than fitting the
Bayesian inversion is an application of Bayes’ rule: waveforms sample-wise. The cross-correlation fit is defined
P (d|m) P (m) as
Pm|d) = — 7) C
P(d) [, (WSt — ATy) -u; (1)dr)

CC(AT) =
wherem is a vector of model parameters (in our case depth, \/ft (u§ @ — ATi))zdt S it — AT;))?dr
moment tensor elementd; and STF weights;), andd is
a vector of data, i.e., a concatenation Bfand SH wave-  whereu; (7) is the measured and(r) is the synthetic wave-
forms. These quantities are considered to be random variform for a modeln at statiorni. In generalCC is a function
ables that follow Bayes’ rule. We can then identi®y(m) of the time lagAT; for which we compare the observed and
with the prior probability density of a model. This is the in- predicted waveforms, but here we imply theT; has already
formation on the model parameters that we have independeriteen chosen such as to maximG€ (AT;). (This value of
of the experiment. The conditional probabilitydivenm, AT; that maximises the cross-correlation is called the “finite-
P(d|m), also calledC(m|d), is thelikelihood of a modelm frequency travel time anomaly” of waveform(¢), and rep-
to produce the datd. Term P (d) is constant for all models resents the most important observable for finite-frequency
and is therefore dropped in what followB(m|d) is called  tomography Kolet, 2008 Sigloch and Nolet2006. Sec-
the posterior probability density (short, “the posterior”) and tion 4.3, which discusses error propagation from source in-
denotes the probability assigned to a maaehfter having  version into tomographic observables, further clarifies this

. (13)

done the experiment. motivation of the cross-correlation criterion further.)
. Correlation CC(AT;) measures goodness of fit, so we
P(m|d) = P(m)L(m|d)k (8)  choose decorrelatio; =1— CC(AT;) as our measure of

misfit (one scalar per wave path From the large set of pre-
existing deterministic source solutions described in Seit.
we estimated the distribution of this misfl?;, based on
our reference data set of about 1000 very confidently de-
convolved STF solutions. For this large and highly quality-
controlled set of earthquakes, we empirically find that the
decorrelationD; of its associated seismogramsg(z) and
us(r) follows a log-normal distribution in the presence of
the actual noise and modelling errors. The statistics of this
k= /exp:—@(m|d)]P(m)dm (10) finding are discussed further in the Companiqn paStﬂi(ler

et al, 20149, but here we use it to state our likelihood func-

Since the posterioP (m|d) may vary by orders of magnitude
for differentd, we work with its logarithm. We introduce the
quantity® (m|d) to denote some kind of data misfit such that
the likelihood can be written a&(m) = exg —® (m|d)].

In(P(m|d)) = —®@n|d)+InP(m) —Ink (9)

The normalisation constahtis

and calculated by the neighbourhood algorithm in the ensemElon £, which is the multivariate log-normal distribution:

ble inference stage. 1 T ool
In the case of multivariate, Gaussian-distributed noise on, _ exp(—i (In(D) — )" Sp™(In(D) _“))
the data with a covariance mati$gp, (27;)% [det(Sp)] '

(14)

d=gm)+e, €¢~N(@O,Sp), (11) D is the decorrelation vector into whiehdecorrelation coef-
_ _ ficients D; are gathered. Each; was measured on a pair of
whereg(m) is the data predicted by model, we would ob-  observed/predicted broadband waveforms that contained ei-

tain the familiar expression ther aP or an SH arrival. The parameters of this multivariate
1 log-normal distribution are its mean vectgrcontainingn
d(m|d) =k <—(d — g(m))TSBl(d — g(m))> . (12) meansu; and its covariance matri®p. Empirically we find
2 that theu; and the standard deviatioas(diagonal elements

. . - - of Sp) depend mainly on the signal-to-noise-ratio (SNR) of
Th\l/\S/ tedrm IS tusrl: ally Cﬁq".ed Mahlalan.ob|3.?f|stancé2§rrl|sﬁt. bWaveformu,-. The data covariance between two statibasd
€ do notchoose this sample-wise diflerence between ob- (off-diagonal elements i8p) is predominantly a function

served and predicted waveforms as our measure of misf of the distance between statiomnd station;. We estimate

There are questi(_)ns about th_e Gaussian noise assumption f_ﬂ{eir values from the data set of the 1000 trustworthy STF so-
real data, but mainly we consider there to be a measure that fitions, i.e., from prior information, and proceed to use these
more robust and adapted to our purpose, the cross-correlation L !

(mis-)fit between data and syntheti&tghler et al.2014), #eandSp in our Bayesian source inversions

www.solid-earth.net/5/1055/2014/ Solid Earth, 5, 1053069 2014



1060 S. C. Stahler and K. Sigloch: Bayesian source inversion Part 1

It follows from Eq. (L4) that the misfitd is Table 1.Sampling of the prior probability distribution: range of STF
weightsg; that are permitted in the first stage of the neighbourhood

1 n n .
¢ = é(ZZ('”(DJ)—MJ)TSD,lu('”(Dj)—w)> algorithm.
i

1
+ 5In(@r)"|detSp)]) (15)

~.

Range| i Range| i Range

+15 | 7 +08 | 12 +£05
+10 | 8 +0.7 | 13 05
+09 | 9 +0.7 | 14 +04
+08 | 10 +06 | 15 +04

3.2 Construction of the prior probability density

A WNPE

A crucial step in Bayesian inference is the selection of prior
probabilities P (im) on the model parameters. Our model

parameters are as follows: marginally better fits by fitting the noise. Smaller earthquakes

— m1: source depth. We assume a uniform prior basedn other contexts, like mining tremors or dyke collapse in
on.the assumed depth of the event in the NationaIVOICa”iC settings, may have strong volume changes involved

Earthquake Information Center (NEIC) catalogue. If &d therefore polarity changes in the STF (€bouetetal.
the event is shallow according to the International 2003. However, such events are outside of the scope of this

Seismological Centre (ISC) catalogue 80km), we study. ) ) . . .
draw from depths between Okm and 50km; iy, ~ Our approach is to punish slightly non-negative STF esti-

1(0,50). For deeper events, we draw from depths be.Mmates only slightly, but to severely increase the penalty once

tween 20km and 100km. Events deeper than 100 kmthe fraction of “negative energyl’ exceeds a certain thresh-

have to be treated separately, using a longer time win-OId Ip. To quantify this, we definé as the squared negative

dow in Eq. (3 that includes the surface reflected Partofthe STFdivided by the entire STF squared:

hasepP andsP.
P ¥ I foTSN(I)Z'@(—SN(t))dt h 16
— mo,...,mi3=at,...,a1o. the weights of the source = T on@? » where (16)
time function (Egq4). The samples are chosen from uni- ON
form distributions with ranges shown in Taldlgbut are _ o
subjected to a priorrstr (see below). SN =so() + ;a’s’ @) (17)

— m1ia,...,m18 = X1, ...xs5. the constructor variables for
the moment tensor (Ed). x; ~1(0,1), but they are
subjected to two priorsyisp andzcyp (see below).

and © is the Heaviside function. Based an we define
a priorrstE

Intermediate-sized and large earthquakes are caused b 3
the release of stress that has built up along a fault, driver STF"2: -+ M13) = exp|:— (1_0) ] (18)
by shear motion in the underlying, viscously flowing mantle.
Hence the rupture is expected to proceed in only one direcwhere the third power anfy = 0.1 have been found to work
tion, the direction that releases the stress. The source timbest. In other words, up to 10% of STF variance may be
function is defined as the time derivative of the moment, contributed by negative samples (mostly oscillations) with-
s(t) =m(t). The moment is proportional to the stress and out penalty, but any larger contribution is strongly penalized
thus monotonous, and hengé&) should be non-negative. by the priorzstr.
In practice, an estimated STF is often not completely non- The neighbourhood algorithm supports only uniform dis-
negative (unless this characteristic was strictly enforced)tributions on parameters. The introductionafre defined
The reason for smaller amounts of “negative energy” (timeby Eq. (L8) leads to a certain inefficiency, in that parts of the
samples with negative values) in the STF include reverbermodel space are sampled that are essentially ruled out by the
ations at heterogeneities close to the source, which producprior. We carefully selected the ranges of theby examin-
systematic oscillations that are present in most or all of theing their distributions for the 1000 catalogue solutions. A test
observed seismograms. Motivated by waveform tomographywas to count which fraction of random models were consis-
our primary aim is to fit predicted to observed waveforms. If tent with/ < 0.1. For the ranges given in Table we found
a moderately non-negative STF produces better-fitting synthat roughly 10 % of the random STF estimates hadO0.1.
thetics, then our pragmatic approach is to accept it, since A second prior constraint is that earthquakes caused by
we are not interested in source physics per se. However, wetress release on a fault should involve no volume change,
still need to moderately penalise non-negative samples in theneaning that the isotropic componeiso = M, + M, +
STF, because otherwise they creep in unduly when the proba7,, of the moment tensor should vanish. Hence we introduce
lem is underconstrained, due to poor azimuthal receiver covanother prior constraint,
erage. In such cases, severely negative STFs often produce

Solid Earth, 5, 10554069 2014 www.solid-earth.net/5/1055/2014/



S. C. Stahler and K. Sigloch: Bayesian source inversion Part 1 1061

Miso/ Mo\ ° :
mso(m14,---,m18)=exp[— <M> ] (19)

Oiso

. . 0.5
whereMj is the scalar moment, amgl, = 0.1 is chosen em-

pirically.

Third, we also want to encourage the source to be double-
couple-like. A suitable prior is defined on the compensated
linear vector dipole (CLVD) content, which is the ratic=

Parameter 2
(=)

|A3]/|111| between smallest and largest deviatoric eigenvalues 0.5t
of the moment tensor:
3 | . . .
7cLvp (M4, ..., mig) = €xp| — (0 ) . (20) 1 05 0 0.5 1
CcLvb Parameter 1
In the absence of volume change, a moment tensor with 1

€ = 0.5 corresponds to a purely CLVD source, while= 0
is a pure DC source. Again we have to decide on a sensi-
ble value for the characteristic constaryp. We choose 051
ocLvp = 0.2, which seems to be a reasonable value for the
intermediate-sized earthquakes of the kind we are interested
in (Kuge and Lay1994.

The total prior probability density is then

Parameter 2
(=)

P(m) = nsTR(mo, ..., m13) (21) 03¢

+ Tiso(M14, ..., m1g) +mwcLvp (M14, ..., m1g).

3.3 Sampling with the neighbourhood algorithm -1 03 0 03 |

. o Parameter 1
Our efficient wavelet parameterisation of the STF reduces

the total number of model parameters to around 18, but sam-
pling this space remains non-trivial. The popular Metropolis—
Hastings algorithm (MH)HKlastings 1970 can handle prob-
lems of this dimensionality, but is non-trivial to use for sam-
pling multimodal distributions (see the discussion for de-
tails). These problems are less severe for a Gibbs sampler,
but this algorithm needs to know the conditional distribu-
tion p(x;|x1,...xj_1,xj41,x,) along parametex; in then-
dimensional model spac&éman and Gemari984. This
conditional distribution is usually not available, especially
not for non-linear inverse problems.

To overcome the problem of navigation in complex high-
dimensional model spaces, the neighbourhood algorithm
uses Voronoi cells§ambridge1998 to approximate a map

of the misfit landscapeSambridge 19994 first stage), fol-  Figure 3. Principle of the neighbourhood algorithm, demonstrated
lowed by a Gibbs sampler to appraise an ensemble based @br a two-dimensional toy problem (the underlying distributions are
this map Gambridge1999h second stage). fictional and chosen for demonstration purposes). Top: in the pre-
In order to point the map-making first stage of the NA mapping stage, only the prior distribution is evaluated, resulting in
into the direction of a priori allowed models, we use a pre-a map of starting models that cluster in regions of high prior proba-
calculated set of starting models. For that, the NA is run with-Pility (marked by lighter shades of red). Middle: next, the NA loads
out forward simulations and without calculating the likeli- tis map, evaluates the posterior probability for every sample, and
hood, so that only a map of the prior landscape is producedr,ef'nes the map only in thc_e best-flttlng_Voronm cgl_ls. Lighter s_hades
from 32 768 samples (Figa). This means that from the start of blue correspond to a higher posterior probability. Bottom: in the

h il b detailed i iori bl . sampling or appraisal stage, the value of the posterior is interpolated
€ map will be more detailed In a priori favourable regions, ., 1o \whole Voronoi cell. The Gibbs sampler uses this map to pro-

and a;VOidS. the algorithm Wasting too much time refin[ng theduce an ensemble. This ensemble can be used to calculate integrals
map in regions that are essentially ruled out by the prior.  gyer the model space, like the mean or mode of selected parameters.

Parameter 2

Parameter 1
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Next, the prior landscape is loaded and a forward simula-Table 2. Crustal model assumed for the source region of the 2011
tion is run for each member in order to evaluate its posteriorVirginia earthquake (CRUST2.0).
probability. Then this map is further refined by 512 forward
simulations around the 128 best models. This is repeated un- Vp Vs o Depth
til a total of 65536 models have bee_n eyaluated. _ Upper 4.10kms! 215kms! 251Mgnt3  10.5km
In the second stage of the NA, which is the sampling stage, crust
400 000 ensemble members are drawn according to the pos-Lower 6.89kms! 3.84kms! 298Mgn3 24.5km
terior landscape from the first step. This process runs on crust
a 16-core Xeon machine and takes around 2 h in total per
earthquake.

Table 3. Credible intervals for source parameters of the Virginia
earthquake. The moment tensor compon@fits need to be multi-
plied by 136 Nm.

4 A fully worked example

1stdecile Median 9th decile

4.1 2011/08/23 Virginia earthquake Depth 1.8 5.9 11

In the fgllowing we present a fully \{vorked example for %\;\: _g:g; ?gg g;j
a Bayesian source inversion, by applying our software to the My, — —1.99 _0.955 —0.165
My 5.7 earthquake that occurred in central Virginia on 23 My, _27 ~0.325 272
August 2011 (Figs4 and5, also compare to Fidl). While Myy -94 474 2.7

not considered a typical earthquake region, events from this My -3.25 —0.563 1.87
area have nevertheless been recorded since the early days M, 3.16 4.42 7.84

of quantitative seismologyT@ber 1913. Due to its occur-
rence in an unusual but densely populated area, this relatively
small earthquake was studied in considerable detail, affordThe complete marginal distribution of the source depth esti-
ing us the opportunity to compare to results of other workers.mate is shown in Fig8, bottom left.
Moderate-sized events of this kind are typical for our tar- \ve aim for additional, informative ways of summarising
geted application of assembling a large catalogue. The greagng conveying the resulting ensemble. Figsins what we
est abundance of suitable events is found just below magnicg|| 3 “Bayesian beach ball”; an overlay of 1024 focal mech-
tude 6; toward smaller magnitudes, the teleseismic signal-toanisms drawn from the ensemble at random. The thrust fault-
noise ratio quickly deteriorates below the usable level. ing character of the event is unambiguous, but the direction
For the inversion, we used a set of Rwaveforms and 17 of slip is seen to be less well constrained. The estimate of
SH waveforms recorded by broadband stations at teleseismighe source time function and its uncertainty are displayed in
distances (Fig4). For waveform modelling, a simplified ver-  Fig. 4, bottom right. Within their frequency limits, our tele-
sion of the crustal model CRUST2 B4ssin etal.200Q was  seismic data prefer a single-pulsed rupture of roughly 3s du-
assumed around the source region. Layers 3-5 of CRUSTZ.fation, with a certain probability of a much smaller foreshock

were averaged into one layer above the Conrad discontinuityymmediately preceding the main event. Smaller aftershocks
and layers 6-7 were averaged into one layer from the Congre possible, but not constrained by our inversion.

rad discontinuity to the Moho; the resulting values are given

in Table 2. The algorithm ran 65536 forward simulations 4.2 Comparison to source estimates of other workers

to generate a map of the posterior landscape, and produced

an ensemble of 400 000 members in the second step. Fro®ur solution is consistent with the solution from the
this ensemble, the source parameters were estimated.3ableSCARDECcatalogue Vallée 2012, which puts the depth
shows the estimated credible intervals and the median of thef this event at 9 km, and its STF duration at 2.Ekapman
probability distribution for the depth and the moment ten- (2013 studied the source process of the 2011 Virginia event
sor. These quantiles represent only a tiny part of the infor-in great detail. He argues for three sub-events having oc-
mation contained in the ensemble, i.e., two statistics of 1-curred within 1.6 s at a depth of 7-8 km, and spaced less than
dimensional marginals derived from a 16-dimensional prob-2 km apart. This is compatible with our solution: since tele-
ability density function. Some credible intervals are large; seismic waveforms contain little energy above frequencies of
for example we cannot constrain the depth to a range narl Hz, we would not expect to resolve three pulses within 1.6 s
rower than 10 km with 90 % credibility. Using such credible with the method presented hef@hapman2013 used both
interval estimates, routine production runs of our softwarelocal and teleseismic recordings, and was therefore able to
should be able to clarify whether depth uncertainties in ex-exploit high frequencies recorded close to the source. His lo-
isting catalogues tend to be overly optimistic or pessimistic.cal crustal model featured an upper crustal velocity that was
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Figure 4. Waveform data and source estimates for the 2011/08/23 Virginia earthqugk®.(7). Top row: distribution of 41 and 17 teleseis-

mic broadband stations that recorde@ndS waveforms, respectively. Station colour corresponds to the signal-to-noise ratio in the relevant
waveform window. Middle row: synthetic broadband waveforms (red), compared to the data for the best-fitting model. Black waveforms are
P seismograms; blue waveforms are SH seismograms. The time windows.2rel6idg and start 5s before the theoretical phase arrival
time. The amplitudes of alP and SH waveforms have been normalised. Bottom left: posterior marginal distribution of estimated source
depth. Bottom right: posterior marginal distribution of the source time function. Probability densities are marked by colour and are highest

in the areas shaded red.
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P-wave dT standard deviation (s)

0

Figure 6. Standard deviations; of P wave travel timesAT;, as
calculated from the ensemble of solutions. The travel time estimates
are by-products of using waveform cross-correlation as the measure

h- for goodness of fit, and they represent our main input data for tomo-
graphic inversions. The unit on the colour scale is seconds.

Figure 5. Bayesian beach ball: probabilistic display of focal mec
anism solutions for the 2011 Virginia earthquake.

50 % higher than ours, which may explain why he estimates® somewhat larger uncertainty ax7;. By contrast, Euro-
the source 1-2km deeper than our most probable depth d?ean stations all have good SNR, but uncertainties in the

5.9 km (Fig.4, bottom left). travel times are large nonetheless, because source uncertainty
happens to propagate into the estimateA 6if more severely
4.3 Uncertainty propagation into tomographic in this geographical region. This information would not have
observables been available in a deterministic source inversion and could

strongly affect the results of seismic tomography.
We are interested in source estimation primarily because we

want to account for the prominent signature of the source

wavelet in the broadband waveforms that we use for waves piscussion

form tomography. Input data for the inversion, primarily

travel time anomalied\7;, wherei is the station index, are 51 Performance of the empirical orthogonal basis for

generated by cross-correlating observed seismograms with  STF parameterisation

predicted ones. A predicted waveform consists of the con-

volution of a synthetic Green’s function with an estimated We choose to parameterise the source time function in terms

source time function (EcR). Thus uncertainty in the STF  of empirical orthogonal functions (eofs), which by design

estimate propagates into the cross-correlation measuremenits the most efficient parameterisation, if the characteristics

that generate our input data for tomography. Previous exof the STFs are well known. We think that they are, having

perience has led us to believe that the source model playsemi-automatically deconvolved thousands of STFs in prior

a large role in the uncertainty af7;. The probabilistic ap-  work (Sigloch and Nolgt2006 Sigloch 2011) and compared

proach presented here permits the quantification of this inthem with other studiesTénioka and Ruff1997 Houston

fluence by calculating\7; ; for each ensemble membg¢r 2001 Tocheport et a).2007). The flip side of this tailored

From all values for one station, the ensemble maahand basis is that it might quickly turn inefficient when atypical

its standard deviation; can then be used as input data for STFs are encountered. From the appearance of the eofs in

the tomographic inversion. Thus we obtain a new and robusFig. 2a, it is for example obvious that STFs longer than 20 s

observable: Bayesian travel time anomalies with full uncer-could not be expressed well as a weighted combination of

tainty information. only 10 eofs. Hence the STFs of the strongest earthquakes
Figure6 shows the standard deviation of P wave AT; considered (arounstfyy 7.5) might not be fit quite as well as

at all stations. Comparison to the signal-to-noise ratios ofthe bulk of smaller events, which contributed more weight to

Fig. 6 shows no overall correlation, except for South Amer- defining the eof base. For our tomography application, this

ican stations, where a higher noise level is correlated withbehaviour is acceptable and even desirable, since the largest

Solid Earth, 5, 10554069 2014 www.solid-earth.net/5/1055/2014/
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events are no more valuable than smaller ones (often quite the
opposite, since the point source approximation starts to break
down for large events). For a detailed display of a set of po-
tentially problematic STFs see the electronic supplement to
this paper.

Atfirst glance it might seem unintuitive that the basis func-
tions have oscillatory character and thus negative parts, rather
than resembling a set of non-negative basis functions (a set
of triangles would be one such set). However, the training
collection to which the principal components analysis was
applied did consist of predominantly non-negative functions,
which by construction are then represented particularly effi-
ciently, even if the eofs may not give this appearance. On top
of this, we explicitly encourage non-negativity of the solu-
tion via the priorzstr (EQ. 18). A rough estimation showed
that roughly 90 % of the model space are ruled out by the
condition that the source should have a vanishing negative
part.

We wanted to know how many basis functions of a more
generic basis (e.g., wavelets) would be required in order to
approximate the STF collection equally well as with the eofs.
A trial with a basis of sinc wavelets showed that 16 basis
functions were needed to achieve the same residual misfit as
delivered by our optimised basis of only 10 eofs. Since the
size of the model space grows exponentially with the number
of parameters, avoiding 6 additional parameters makes a big
difference in terms of sampling efficiency.

5.2 Moment tensor parameterisation

The parameterisation of the moment tensor is a technically
non-trivial point. We discuss the pros and cons of possible
alternatives to our chosen solution:

— Parameterisation in terms of strikg, slip A and dipé

1065

by the NA and similar, Cartesian-based algorithms are
in fact a rather poor measure of the similarity of two
double-couple sources. A more suitable measure of mis-
fitis the Kagan angledagan 1991), which is the small-

est angle required to rotate the principal axes of one
double couple into the corresponding principal axes of
the other, or the Tape measure of source similafigpé

and Tape2012.

This is an issue in model optimisation with the first stage
of the neighbourhood algorithnKénnett et al. 200Q
Sambridge and Kennet2001 Vallée et al, 2017).
Wathelet(2008 has introduced complex boundaries to
the NA, but unfortunately no periodic ones.

An alternative would be to samplgM, ., My,, M.,

M,,, M., M,,} independently, but this is inefficient be-
cause the range of physically sensible parameters spans
several orders of magnitude.

Finally, one might choose not to sample the moment
tensor at all. Instead, one might sample only from the
{S;,d} model space, followed by direct, linear inver-
sion of the six moment tensor elements corresponding
to each sample. This would speed up the sampling con-
siderably since the dimensionality of the model space
would be reduced from 16 to 10. Moment tensor inver-
sion is a linear problem (E®), and hence we would not
lose much information about uncertainties. In a poten-
tial downside, moment tensor inversion can be unstable
in presence of noise or bad stations, but from our ex-
perience with supervised, linear inversions, this is typi-
cally not a severe problem in practice. Therefore we are
considering this pragmatic approach of reduced dimen-
sionality for production runs.

is problematic for sampling. Strike and dip describe thes 3 Neighbourhood algorithm

orientation of the fault plane; an equivalent description
would be the unit normal vectar on the fault.
—singsing s
—sindcosp s

Ccoss

All possible normal vectors form a unit sphere. In or-
der to sample uniformly on this unit sphere, samples
have to be drawn from a uniform volumetric density
(Tarantola 2005 6.1). Since the neighbourhood algo-
rithm (and most other sampling algorithms) implicitly
assume Cartesian coordinates in the model space, the
prior density has to be multiplied by the Jacobian of
the transformation into the actual coordinate system, in
our case 1sind. To our knowledge, this consideration
is neglected in most model space studies, but it would
be more severe in ensemble sampling than in gradient-
based optimisation.

n— (22)

— A different issue with strike-dip parameterisation is the
following: the Euclidean distances applied{tby, 2, §}

www.solid-earth.net/5/1055/2014/

The neighbourhood algorithm avoids some of the pitfalls
of other sampling algorithms. Compared to the popular
Metropolis—Hastings algorithm, we see several advantages
for our problem:

— The MH is difficult to implement for multivariate distri-

butions. This is especially true when the parameters are
different physical quantities and follow different distri-
butions as is the case in our study.

— As the MH is a random-walk algorithm, the step width

is a very delicate parameter. It affects the convergence
rate and also the correlation of models, which has to be
taken into account when estimating probability density
functions from the ensemble. This is a bigger problem
than for the Gibbs sampler, which the NA is based on.

The MH is rather bad at crossing valleys of low prob-
ability in multimodal probability distributions. We are
expecting such, especially for the source depth.

Solid Earth, 5, 1053069 2014
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These problems are less severe for a Gibbs sampler, on whidhcluding inter-station covariance&arcia et al(2013 and
the second stage of the NA is based. Tocheport et al(2007) use simulated annealing to infer depth
The first stage of the NA could be replaced by a completelyand moment tensor. A STF is estimated from thavave-
separate mapping algorithm, like genetic algorithms or sim-forms. By neglecting all crustal contributions and reducing
ulated annealing. Like the first stage of the NA, they only ex-the forward simulation to mantle attenuation, this approach
plore the model space for a best-fitting solution. Their resultsis very efficient.
might be used as input for the second stage of the NA. Com- Similarly, KolaF (2000 used a combination of simulated
pared to those, the NA has the advantage of using only twannealing and bootstrapping to estimate uncertainties of the
tuning parameters, which control (a) how many new mod-moment tensor, depth and a source time function. The study
els are generated in each step and (b) in how many differentvas limited to two earthquakes.
cells these models are generated. As in every optimisation al- Kennett et al(2000 used the first stage of the NA to opti-
gorithm, they control the tradeoff between exploration of the mise for hypocentre depth, moment tensor, and the duration
model space and exploitation of the region around the bestf a trapezoidal STF, using essentially the same kind of data
models. as the present study, and an advanced reflectivity code for for-
There is no hard-and-fast rule for choosing values for thesavard modelling. However, no uncertainties were estimated.
tuning parameters. Since we do not want to optimise for only Debski(2008) is one of the only two studies, to our knowl-
one “best” solution, we tend towards an explorative strategyedge, obtained source time functions and their uncertainties
and try to map large parts of the model space. Compared tby Bayesian inference. He studied magnitude 3 events in
other source inversion schemes, we are explicitly interesteé copper mine in Poland. By using the empirical Green'’s
in local minima in the misfit landscape. Local minima are functions (EGF) method, it was not necessary to do an ex-
often seen as nuisance, especially in the rather aggressive iplicit forward simulation. The study was limited to inverting
erative optimisation frameworks, but in our view they contain for the STF, which he parameterised sample-wise. This was
valuable information. What may appear as a local minimumpossible since the forward problem was computationally very
to the specific data set that we are using for inversion mightinexpensive to solve.
turn out to be the preferred solution of another source inver- The second sampling study \8éber(2006, which used
sion method (e.g., surface waves, GPS or INSAR). an octree importance sampling algorithm to infer probability
However, an ensemble that does not resolve the best-fittinglensity functions for depth and moment tensor rate function.
model is equally useless. The posterior of all models getsThe resulting ensemble was decomposed into focal mech-
normalised after all forward simulations have been done (se@anisms and source time functions, a non-trivial and non-
Eq.10). If one peak (the best solution) is missing, the normal- unique problem\{Véber 2009. With this algorithm, a cat-
isation constant will be too small, and therefor® (m|d) alogue of Hungarian seismicity was produced until 2010, but
will be too high for all other models, meaning that the credi- apparently this promising work was not extended to a global
bility bounds will be too large. It is possible that other sam- context.

pling schemes, such asrallel tempering might find better The most recent global source catalogue is the SCARDEC
compromises between exploration and exploitation, whichmethod byVallée et al.(2011). It uses the first stage of the
could be a topic of further study. neighbourhood algorithm to optimise the parameters source

depth, strike, dip and rake. For each model and each station,
5.4 Comparison with other source inversion schemes arelative source time functioflRSTF) is calculated. The mis-
fitis comprised of a waveform misfit and the differences be-
Table 4 shows a list of other point source inversion algo- tween the RSTF at different stations. Uncertainties of the pa-
rithms proposed and applied over the past 15 years. Mostameters are estimated by the variation of the misfit along
widely used is probably the Global Centroid Moment Tensordifferent parameters. The STF catalogue has been used to in-
(CMT) catalogue Dziewahski et al, 1981 Ekstrom et al. fer the stress drop of a large set of earthquakalide, 2013.
2012, which is mostly based on intermediate-peried40s) The PRISM algorithm as presented here is the first to
waveforms to determine a centroid moment tensor solutionenable Bayesian inference of seismic source parameters on
Its results are less applicable to short-period body wavea global scale and in a flexible framework. It allows for
studies, since waveforms in the latter are dominated by thesampling of the source time function by a set of optimised,
hypocentre, which may differ significantly from the centroid. wavelet-like basis functions. By producing a whole ensem-
Another classical catalogue is the ISC bulleBotdar and  ble of solutions, arbitrary parameters, like the uncertainty of
Storchak 2011), which goes back as far as 1960. The ISC travel time misfits, can be estimated from the ensemble after-
catalogue focuses on estimating event times and locationsyards, at little additional cost.
neither of which are the topic of this study. The ISC recently
adopted a global search scheme based on the first stage of
the NA, similar toSambridge and Kennef2001), followed
by an attempt to refine the result by linearised inversion,
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